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Abstract

Recent advances in generative models and large-
scale neural datasets have brought forth novel
methods to reconstruct stimuli from brain activ-
ity. This rapidly evolving family of brain-to-
stimuli reconstruction techniques has the opportu-
nity to revolutionize fundamental brain sciences
and human-computer interaction applications, yet
systemic comparisons of these techniques are
lacking. Here, we explore a novel method to re-
construct short videos from functional magnetic
resonance imaging (fMRI) brain activity of hu-
man subjects that achieves state-of-the-art perfor-
mance as assessed by a suite of evaluation metrics.
We perform preliminary comparisons of recon-
struction quality within our pipeline by testing
different combinations of semantic encoders and
video generation models. Lastly, we compare our
pipeline’s best reconstruction results with previ-
ous work. Together, this work comprehensively
assesses state-of-the-art methodologies in the in-
creasingly important discipline of brain-to-video
reconstruction.

1. Introduction

Humans observe the visual world through a spatiotemporal
stream of input. From this input humans must extract fine
details of object shape, identity, and motion to effectively
interact with their environment. Given current neuroimaging
techniques, we wonder how can this visual information
be best recovered? The ability to reconstruct a viewer’s
visual experience from their brain activity would increase
researchers’ understanding of biological intelligence and
invite medical advancements in human-computer interaction
technology.
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However, this line of brain-to-stimulus reconstruction work
is often limited by the ability to obtain high quality gener-
ative models and large-scale neural datasets. High quality
generative vision models are typically trained on billions
of images or videos requiring massive amounts of compu-
tational resources often out of reach of researchers. Large-
scale neural datasets are expensive and time-consuming to
collect. While videos are more ecologically valid than im-
ages, videos demand even more computational resources
for model training and are less often used in large-scale
neural data collection efforts. Fortunately, recent work in
generative Al and cognitive neuroscience disciplines are
making progress against these barriers with the availability
of high quality text-to-video generative models and large-
scale video fMRI datasets.

In this work, we learn robust neural representations using a
masked-brain modeling (MBM) technique. MBM extends
masked training methods popular in natural language pro-
cessing and computer vision to brain data by challenging
an encoder-decoder architecture to reconstruct masked por-
tions of the input brain signal (Chen et al., 2023b)(Chen
et al., 2023a). From this brain representation, we leverage a
class of generative models termed latent diffusion models
(LDMs) (Rombach et al., 2022) to generate high quality
naturalistic videos. LDMs accomplish these high fidelity
video (or image) generations through a denoising process
over latent pixel representations conditioned on an input
(e.g., text).

Functional magnetic resonance imaging (fMRI) data, as op-
posed to other forms of brain data, offers the advantages
of being non-invasive and high spatial resolution. fMRI’s
non-invasive data collection process facilitates large-scale
efforts and application of reconstruction techniques to a
wider population. fMRI’s high spatial resolution through-
out cortex captures a wide variety of visual representations
(Fischer et al., 2016)(Silver & Kastner, 2009)(Konen &
Kastner, 2008)(Haxby, 2012). Despite fMRI’s temporal
sluggishness, these representations have been shown to cap-
ture features of dynamic stimuli (Le et al., 2017)(Gazzola
& Keysers, 2009)(Rizzolatti & Sinigaglia, 2010)(Rust et al.,
2006)(Hasson et al., 2008).

We propose a 3-stage pipeline that combine these recent
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advancements in generative Al and neuroscience to gen-
erate high fidelity short videos from brain data, following
the progress of (Fosco et al., 2024). First, we use MBM
to train an encoder-decoder architecture to recover masked
portions of the fMRI signal while maintaining alignment
with a video’s CLIP representation. Second, we regress a
visual and semantic conditioning vector from the learned
encoder, and finally, reconstruct the video stimulus with the
LDM. We use resting state (no visual stimulus) fMRI data
from the Human Connectome Project (HCP) (Van Essen
et al., 2013) and video-fMRI pairs from the BOLD Mo-
ments Dataset (BMD) (Lahner et al., 2024), Human Actions
Dataset (HAD) (Zhou et al., 2023), and CC2017 dataset
(Wen et al., 2018) to train our models.

Our experiments compare the reconstruction quality of the
LDM and target semantic regressors used in the second and
third stages, then compare our best approach with previous
work. Our contributions are as follows:

1. We propose a novel fMRI-to-video reconstruction
pipeline that aggregates fMRI data across subjects and
datasets.

2. We vary core components of our pipeline to document
their effect on reconstruction quality.

3. We compare our best reconstruction pipeline to pre-
vious work to contextualize our findings within the
research community.

This work pushes the frontier of brain-to-video reconstruc-
tion research by studying the effect different modeling com-
ponents have on reconstruction quality.

2. Related Work

Diffusion models: Latent Diffusion models (LDMs) (Rom-
bach et al., 2022) are a family of generative models that
perform a denoising process on latent representations to
generate high fidelity outputs. Generative outputs can be
guided to incorporate desired features by conditioning the
denoising process on other inputs, such as text. This process
has exhibited impressive results in tasks as diverse as image
generation, super-resolution, recoloring, and audio genera-
tion (Dhariwal & Nichol, 2021)(Saharia et al., 2022b)(Song
et al., 2020)(Saharia et al., 2022¢)(Saharia et al., 2022a)(Liu
et al., 2023). Recently, LDMs have been used to generate
short videos true to a text input (Blattmann et al., 2023b).
In this work, we compare the brain-to-video reconstruction
quality between different LDMs.

Masked Brain modeling: Masked-brain modeling (MBM)
(Chen et al., 2023a) is self-supervised method to pre-train
models on fMRI data based on principles of Masked Signal
Modeling (MSM). MSM is a commonly used pre-training

task for large language and vision models (Devlin et al.,
2018; He et al., 2022; Wei et al., 2022; Xie et al., 2022)
where, after masking a portion of the input, an autoencoder
is tasked to recover the input in its entirety. Applied to
MBM, masking some amounts of fMRI data allows the
model to learn complex spatial relationships between ver-
tices of the brain.

Video reconstruction from brain activity: Early brain-to-
video reconstruction work used a voxelwise motion-energy
encoding model (Adelson & Bergen, 1985) to model dy-
namic movie information in visual cortex and a Bayesian
decoder to reconstruct the previously seen movie from a
sampled natural movie prior (Nishimoto et al., 2011). In
the space of deep learning, features from convolutional neu-
ral networks (CNNs) have showed promising video recon-
structions that capture basic object shape and content (Wen
et al., 2018)(Le et al., 2022)(Kupershmidt et al., 2022). Re-
searchers have found that using dual spatial and temporal
discriminators in generative adversarial networks (GANs)
result in spatiotemporally accurate reconstructions (Wang
et al., 2022), and variational autoencoders can leverage com-
pressed latent spaces to reconstruct videos frame-by-frame
(Han et al., 2019). In an approach most similar to ours,
(Chen et al., 2023b) uses MBM to learn powerful latent
representations of fMRI data that is then input into an LDM
to reconstruct the previously seen video.

3. fMRI Datasets

We train and evaluate our pipeline on four large fMRI
datasets diverse in subjects and stimulus (Van Essen et al.,
2013)(Lahner et al., 2024)(Zhou et al., 2023)(Wen et al.,
2018). Together, our pipeline uses over 1,000 hours of rest-
ing state data from 1,084 subjects and 28,100 short videos
(over 123,000 fMRI brain response trials) from 43 subjects.
To the best of our knowledge, the BOLD Moments Dataset
(BMD) (Lahner et al., 2024) and Human Actions Dataset
(HAD) (Zhou et al., 2023) have not been used in any prior
reconstruction work. The CC2017 dataset (Wen et al., 2018)
has been extensively used as a benchmark (Chen et al.,
2023b) and thus serves as a good comparison for our pro-
posed pipeline. Below we summarize each dataset’s fMRI
preprocessing and offer more details in Appendix section A
”fMRI Preprocessing and Data Preparation.”

To account for the anatomical differences between individ-
ual human brains, we first register each brain to a template
cortical surface in fSLR32k space (if not already done) us-
ing the MSMSulc algorithm (Robinson et al., 2018)(Glasser
etal., 2013). This algorithm accurately maps the gray matter
voxels along the cortical ribbon to a shared surface mesh to
establish a voxel-to-voxel correspondence between subjects.
In this way, the model is able to learn spatial patterns across
subjects and datasets.
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Figure 1. Reconstruction of short videos from fMRI activity A) Brain responses of subjects viewing video clips (red dotted outline)
was measured with fMRI and then used to reconstruct the seen video (purple dotted outline). The video reconstruction quality was
compared between pipelines using different diffusion U-Net models (blue), Z regressors (light blue), semantic B decoders (green), and B
regressors (light green). B) We show examples of a ground truth video (red dotted outline) and our reconstructions from various pipeline

combinations (purple outline).

We train and evaluate our pipeline on brain activity from
41 regions of interest (ROIs) defined in the Glasser Atlas
(Glasser et al., 2016). These 41 ROIs (see 2) balance a broad
sampling of cortex with computational efficiency of model
training (see Appendix section B "Region of interest defi-
nition” for an analysis on this tradeoff). The ROI selection
samples from visual and visual adjacent cortices and cov-
ers approximately 22% of the whole brain. Defining ROIs
from the Glasser Atlas (Glasser et al., 2016) (as opposed
to subject-specific functional definitions) further facilitates
computational modeling by ensuring each subject’s brain
activity is derived from the same set of voxels of the same
size.

Human Connectome Project Dataset (HCP). We use
nearly an hour of resting state scans from 1,084 subjects
from the 1200-subject release of the Human Connectome
Project (HCP) (Van Essen et al., 2013). During the rest-
ing state scans, the subjects were instructed to fixate on a
cross-hair and remain awake. They did not perform any
task or view any other visual stimulus. Resting state fMRI
captures natural fluctuations of brain activity over time, and
temporal correlations have been used to understand cortical
organization in the brain (Smith et al., 2013).

BOLD Moments Dataset (BMD). In the BOLD Moments
Dataset (BMD) (Lahner et al., 2024), 10 subjects viewed

multiple repetitions of 1,102 3-second videos in an event-
related design. Each subject viewed a 1,000 video training
set 3 times and a 102 video testing set 10 times for a total
of 40,200 fMRI responses. For each trial, we use a general
linear model (GLM) to estimate a beta value at each voxel.
We maintain this train/test split in our pipeline’s training
and testing phases. The stimulus set was sampled from the
Moments in Time dataset (Monfort et al., 2019) and depicts
naturalistic, amateur-shot videos (e.g., home videos) that
may or may not contain humans. Each video in BMD is also
annotated with 5 text descriptions that were used in training
our pipeline’s semantic regressor.

Human Actions Dataset (HAD). In the Human Actions
Dataset (HAD) (Zhou et al., 2023), 30 subjects viewed
a single presentation of 720 2-second videos in an event-
related design. No stimuli were repeated within or across
subjects for a total of 21,600 individual fMRI responses. We
use a GLM to estimate single-trial beta responses to each
video. The stimuli were sampled from the Human Action
Clips and Segments (HACS) dataset (Zhao et al., 2019) and
depict naturalistic human-centered actions. The authors of
HAD did not define a train/test split, and we only use HAD
in our pipeline’s training.

CC2017 Dataset (CC2017). The CC2017 dataset (Wen
et al., 2018) consists of three subjects each viewing 18
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eight minute training segments and 5 eight minute testing
segments. In contrast to BMD and HAD’s event-related
design, the training and testing segments were presented
longform and were composed of shorter video clips (10-
15 second duration) concatenated together. The training
segments were composed of 374 video clips and the testing
segments were composed of 598 videos clips. The video
clips depict mostly naturalistic content shot by professionals
for cinematic movies or stock advertising footage. Each
training and testing segment was repeated two and five times
per subject.

In this work, we identify discrete fMRI-video pairs by
splitting the longform movie segments into 2 second clips
(CC2017’s acquisition TR) and identify the corresponding
fMRI response at an offset of 4 seconds (accounting for the
BOLD responses lag). We maintain the originally proposed
train/test splits for our pipeline’s training and testing.

4. Reconstruction Pipeline

Approach Overview. Our general three stage reconstruc-
tion pipeline first transforms the fMRI signal into a com-
pressed representation then regresses a predominantly visual
() and semantic vector (b) for a latent and conditioning in-
put, respectively, into a video generation model (Figure 2).
In the first alignment stage, an encoder-decoder network
is pre-trained using masked-brain modeling on resting state
fMRI data and further finetuned on the task-based fMRI
data. The encoder is additionally aligned to the video’s
CLIP representation to learn the video’s semantic properties
in addition to the fMRI signal’s spatial structure. In the sec-
ond regression stage, the output from the encoder in stage
1 is used to train a Z MLP regressor and a B MLP regressor
from the video’s ground truth z and b vectors. Finally, the
third reconstruction stage takes as input only a raw fMRI
signal and freezes all other models. It first uses the encoder
trained in stage 1 to encode a compressed representation of
the signal and the Z and B MLP regressors from stage 2 to
output a latent vector and conditioning semantic vector for
input into the denoising U-Net.

In our experiments we perform reconstructions using differ-
ent video generation models and semantic encoders. Thus,
stage 1 stays fixed but the Z and B MLP regressors in stage
2 are trained for each model.

Stage 1: Alignment. The goal of this stage is to train an
encoder that learns robust, compressed representations of
the raw fMRI signal. We begin by pretraining an encoder-
decoder architecture using masked-brain modeling (MBM).
The fMRI input is divided into patches and some patches
are masked. The encoder processes the masked input into a
1024-dimensional latent vector, and the decoder reconstructs

the 1024-dimensional latent vector back into the original
unmasked fMRI input. This framework is supervised by a

simple reconstruction loss (MSE) over the masked patches.
This approach is similar to the masked image modeling
task (He et al., 2022) and learns the fMRI signal’s spatial
structure.

The encoder-decoder architecture is first pretrained on large-
scale resting state fMRI data from the Human Connectome
Project (HCP) (Van Essen et al., 2013) then finetuned on
task-based data from the Human Actions Dataset (HAD)
(Zhou et al., 2023) and BOLD Moments Dataset (BMD)
(Lahner et al., 2024). Finally, we add an additional con-
trastive learning loss between CLIP embeddings of BMD
and CC2017 (Wen et al., 2018) stimuli and their correspond-
ing (encoded) fMRI signal to learn semantic information.
Following (Radford et al., 2021), this contrastive loss pro-
motes high cosine similarity between positive pairs of fMRI
embeddings and its associated CLIP embedding while dis-
couraging cosine similarity between negative pairs of the
same fMRI embedding other CLIP embeddings:

N Jixci

Sy

i=1 Zj:l exp(%)

where f; is the fMRI embedding (output from the MBM
encoder), ¢; is the CLIP-text embedding, and 7 is a tem-
perature hyperparameter. We follow (Chen et al., 2023a)
and (Scotti et al., 2024) for training parameters of the MBM
model and alignment, respectively. Specifically, we use a
24-layer MBM encoder with patch size of 16 and hidden
dimension of 1024. The temperature was set to 0.9 and
masking ratio to 75%.

Econtrastive =

Stage 2: Regression. We freeze the encoder trained in
stage 1 and use its 1024-dimensional output vector to train
two multi-target MLP regressors with regularization: one
for the z vector and the other for the b vector. The ground
truth z and b targets are generated from the stimuli and mod-
els directly. The MLPs are composed of a linear layer, 3
residual blocks, and an output layer. The linear layer and
3 reisdual blocks each contain 2048 units. We additionally
use dropout regularization (p = 0.3), GELU (Hendrycks &
Gimpel, 2016) activations, and Batch Normalization. The
MLPs are trained with an MSE loss and predict flattened
output vectors. The output is then reshaped for input into the
denoising U-Net in stage 3. Note that near-perfect regres-
sion at this stage would result in near-perfect reconstruction
in stage 3, since we would be obtaining the exact latent and
conditioning vectors.

Stage 3: Reconstruction. In this final stage, we reconstruct
a video previously seen by the human participant purely
from their fMRI signal. We first transform the raw fMRI
signal into a 1024-dimensional vector using the encoder in
stage 1. From this vector, we regress the latent z vector
and conditioning b vector using the MLP regressors trained
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Figure 2. Our proposed reconstruction pipeline. Stage 1: We use masked-brain modeling to pretrain an encoder-decoder architecture to
reconstruct fMRI responses. The encoder is then aligned with a video’s CLIP embeddings. Stage 2: The video is used to compute ground
truth z and b vectors. These ground truth vectors are used to train a z and b regressor (MLP) from the video’s corresponding fMRI signal
latent representation from the output of stage 1’s MBM encoder. Stage 3: Stage 1’s frozen MBM encoder is used to generate a latent
representation of the fMRI signal. B and z vectors are regressed from the trained regressors in stage 2. A noised z vector and caption
generated from the b vector are input into a video generation model to generate the final video.

in stage 2. The z vector undergoes a re-noising process
(strength of 0.8, 40 steps following (Takagi & Nishimoto,
2023)) before being denoised in pretrained U-Net. The b
vector is decoded into a text caption with repetition penalty
of 6, minimum length of 4, and maximum length of 20 to
encourage more descriptive captions. The decoded caption
is then input into a pretrained (frozen) denoising U-Net as
a conditioning vector along with the noised z vector. In
this way, the resulting generated video captures visual and
semantic meaning derived from the original fMRI signal.

S. Experiments and Results
5.1. Implementation Details.

We train and finetune our models with the fMRI datasets
described in Section 3. All videos were downsampled to
15 FPS and resized to 224 x 224. In the masked-brain
modeling reconstruction task in stage 1, we pretrain for
200 epochs with a batch size of 300. We finetune with
CLIP-style alignment with BMD and CC2017 for 50 epochs
and a batch size 120. For BMD video captions, we use the
human annotations available with the dataset supplied by the

authors. For CC2017 and HAD, captions were synthetically
generated with the EILEV (Yu et al., 2023) video-to-caption
model. Stage 1 training utilized 6 V100 GPUs and stage 2
was done on 2 Titan RTX GPUs.

5.2. Comparisons to previous work

We compare our pipeline’s best reconstructions to previous
fMRI-to-video techniques. We report results over BMD
and CC2017 in Table 1. Our best results are achieved with
a Zeroscope v2 reconstructor, which improves over two
previous works (Kupershmidt (Kupershmidt et al., 2022)
and Mind-Video (Chen et al., 2023b)) quite comfortably. We
showcase visual comparisons in Figure 3, where we observe
that our technique improves in visual fidelity, structure and
video quality.

5.3. Comparing Different Generative Models.

With the pipeline described above, we seek to understand
how different text-to-video generative models handle the
fMRI conditioning. Towards that objective, we swap differ-
ent video generation models in our Stage 3 and qualitatively
compare the resulting generations.
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Figure 3. We compare to previous works on CC2017 examples. The ground truth videos are shown in the first row, ours in the second
(green), and previous approaches below. Our proposed pipeline captures structural similarity better than previous approaches.

CC2017 BMD
Methods
SSIM MSE 2-way 50-way SSIM MSE 2-way 50-way
Kupershmidt 0.128 - - - 0.031 4561 0.514  0.004
Mind-Video 0.186 - 0.853 0202 0.176 0.763 0.711  0.101
Three-stage pipeline, Modelscope (Ours)  0.133  0.881 - - 0.119 0.885 - -
Three-stage pipeline, Hotshot-XL (Ours)  0.141  0.701 - - 0.151  0.790 - -
Three-stage pipeline, SVD (Ours) 0.140 0.754 - - 0.133 0.711 - -
Three-stage pipeline, Zeroscope v2 (Ours) 0.195 0.655 0.888 0.221  0.190 0.671 0.816  0.165

Table 1. We show a quantitative comparison of our reconstruction methodology against previous works. We achieve state-of-the-art results
on most metrics. Results from Kupershmidt and Mind-video on BMD are obtained through a reimplementation, as their code is not

readily available.

We use the following models in our analysis:

1. Modelscope (Wang et al., 2023): a text-to-video syn-
thesis model constructed from a text-to-image diffusion
model. It utilizes spatio-temporal blocks to maintain
temporal consistency.

2. Zeroscope v2 (Hysts, 2024): an evolution of Mod-
elscope, this model is also based on a diffusion archi-
tecture and trained to output high-quality 16:9 videos.
We do not utilize the accompanying high-resolution
secondary model to ensure fair comparisons.

3. Stable Video Diffusion (Blattmann et al., 2023a):
image-to-video diffusion model trained on a curated
set of high-resolution images and videos. Trained with
three distinct regimes. Harbors strong video priors.

4. Hotshot-XL (Mullan et al., 2023): a text-to-video
model derived from Stable Diffusion XL (Podell et al.,
2023) optimized for generating gifs. Makes shorter
videos with smaller aspect ratios.

For all the models above, we extract latent vectors and con-
ditioning vectors from their respective variational encoders
and text/image encoders. For SVD, wethe conditioning tar-
get is an image embedding instead of a text embedding, so
we skip the caption generation step for that model.

We showcase results in Figure 4. Our qualitative compar-
ison allows us to make several observations. First, video
quality is tied to model complexity and pretraining dataset
size. Models trained over larger datasets such as Stable
Video Diffusion appear to showcase a more in-depth prior
over videos. Second, adherence to the semantic concepts of
the observed video is varied accross models. This perfor-
mance is tied to our pipeline’s ability to correctly regress
the latent and conditioning vector from fMRI: the latents
from some models appear to be an easier target for our re-
gressor than others. Third, some models exhibit frequent
failure modes (eg. Hotshot-XL, first example) where both
the video quality, and the semantic adherence are incorrect.
In those cases, we hypothesize that the regressed latents and
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conditioning vectors are too imperfect to generate a mean-
ingful video. This hints at a variation in the difficulty of the
regression problem for each generative model: some latents
and conditioning vectors (regression targets) appear to be
more aligned with the fMRI signals, thus yielding a better
regressor. Interestingly, SVD showcases high quality video
but a disconnect in terms of semantic: as the conditioning
regression target is an image embedding instead of a BLIP
embedding, differences in regression difficulty might be the
cause for the failure mode in Figure 4.

Evaluation Metrics. Following previous work (Takagi &
Nishimoto, 2023; Chen et al., 2023b), we utilize 3 main
evaluation metrics that aim to understand different charac-
teristics of performance. To measure pixel-level reconstruc-
tion quality, we utilize Structural Similarity (SSIM). For
semantic evaluation, we use the N-way top-k classification
approach from (Chen et al., 2023b), which measures how
often the classification of a simple ImageNet classifier over
the reconstruction and ground truth video match, limiting
the output of the classifier to N classes. We declare a suc-
cessful trial if the ground truth class is within the top-k
probabilities outputted over the reconstruction, and repeat
the test 100 times to report average success rates. We also
report MSE results over our target latent embeddings z and
semantic embeddings b , to observe how close our regressed
embeddings are to ground truth.

Evaluation Datasets We evaluate on two datasets: CC2017
(Wen et al., 2018) and BMD (Lahner et al., 2024) to
compare our pipeline against previous work (Chen et al.,
2023b)(Kupershmidt et al., 2022)(Wang et al., 2022) and
against an additional dataset, BMD, with different subjects
and video stimulus type (short video).

Results. We showcase our quantitative results over BMD
and CC2017 in Table 1. Results are reported for Subject
1 in both datasets. We observe top results on Zeroscope
v2, which exhibited the best semantic consistency across
qualitative comparisons. We observe that this model is able
to reconstruct examples from BMD and CC2017 with strong
structural reliability. We hypothesize that our pipeline’s
emphasis on regressing an accurate latent, a component

that previous approaches lack, enforces accurate structural
patterns that can then lead to reliable object positioning
across video generation models.

6. Conclusion

We describe a generative pipeline to reconstruct videos from
human brain activity and assess the impact of exchanging
different pipeline components. Using large text-to-video
diffusion models and resting state and video fMRI datasets,
we reconstruct the video the viewer previously saw with

state-of-the-art quality. Our comparisons show that differ-
ent generative models perform similarly at a qualitative

level, but show clear differences when measuring results
quantitatively. The best performing generation model was
Zeroscope V2, and we compare our pipeline with this model
to previous work, showcasing state of the art results.

Impact Statement

The techniques presented in this paper demonstrate innova-
tive methods for reconstructing visuals from brain signals.
Future advancements in these methods could have signifi-
cant positive impacts. For individuals with communication
disabilities, this technology could enable them to express
their thoughts directly through images, videos, or words,
greatly enhancing their ability to communicate. Addition-
ally, this research contributes to the scientific understanding
of the information recovery limits of various brain regions
and reveals what can be decoded and simulated using gener-
ative models. Continued improvements in this reconstruc-
tion process could lead to extensive clinical and therapeutic
applications, as well as further advancing the field of human-
machine communication.
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Figure 4. Reconstructions from different video generation models over BMD. We compare 4 different models: Zeroscope v2, Modelscope,
Stable Video Diffusion and Hotshot-XL. We observe that reconstruction quality and semantic similarity is varied. Models with weaker
image priors tend to generate distorted imagery with artifacts (e.g. modelscope), while models with higher complexity tend to generate
coherent video, but don’t reconstruct the semantic concept adequately (e.g. SVD).
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A. fMRI Preprocessing and Data Preparation

Our brain-to-video reconstruction pipeline relies on large amounts of spatially aligned fMRI-video pairs so the models can
learn robust spatial patterns in the brain data. To achieve this scale, we register all brain responses across four large datasets
(the Human Connectome Project (HCP) dataset (Van Essen et al., 2013), BOLD Moments Dataset (BMD) (Lahner et al.,
2024), Human Actions Dataset (HAD) (Zhou et al., 2023), and CC2017 dataset (Wen et al., 2018)) to a common space
(fsLR32k) and form discrete fMRI-video pairs for the task-based data.

We use the versions of the HCP and CC2017 datasets that were previously aligned to the fSLR32k space with the HCP
preprocessing pipeline (Glasser et al., 2013). For BMD and HAD, we register the data into fsLR32k space using Ciftify
(Dickie et al., 2019) after preprocessing the data with fMRIPrep (Esteban et al., 2019). We achieve fMRI-video pairs in
BMD and HAD by using a general linear model (GLM) to estimate single-trial beta responses to each 3 and 2 second
video stimulus, respectively. For CC2017 we trim the longform video stimulus into 2s chunks (the fMRI acquisition rate of
CC2017) and pair each chunk with the fMRI activity 4 seconds after the chunk’s onset to account for the hemodynamic lag,
as done in (Wang et al., 2022). Note that fMRI-video pairs were not made for HCP’s resting state data because resting state
brain activity has no associated stimulus. For all datasets, we use brain activity from 41 ROIs pre-defined in the Glasser
Atlas (Glasser et al., 2016) (see 2 for details). We describe the preprocessing steps that we performed for each dataset below
in detail. Please refer to each dataset’s original manuscript for detailed acquisition protocols.

A.1. HCP Preprocessing

We train the masked-brain model with the resting state fMRI data from 1,084 subjects available in HCP’s 1200-subject
release. Specifically, we use the "rfMRI_RESTX_LR_Atlas_ MSMAII_hp2000_clean.dtseries.nii” files for each subject, where
the run number X is 1, 2, 3, or 4. At each voxel, we normalize the data across time and average the responses over a 10
second window prior to model input.

A.2. BOLD Moments Dataset Preprocessing and Preparation

The authors of BMD (Lahner et al., 2024) gave us permission to use their data for this work. The data was first preprocessed
using fMRIPrep (Esteban et al., 2019), then registered to fSLR32k space using Ciftify (Dickie et al., 2019). The fMRI
activity was first temporally interpolated from the acquisition TR of 1.75s to Is to timelock the fMRI timeseries to the
stimulus onset (1.75 does not evenly divide into the trial’s 4s duration). The stimulus duration (modeled as a Os impulse
response), stimulus onsets, and interpolated fMRI timeseries was input into a GLM (GLMsingle (Prince et al., 2022)) to
estimate single-trial beta value at each vertex for each session separately. The beta values within each session were then
z-scored across conditions for the train and test conditions separately. In this way, 40,200 fMRI-video pairs were obtained
across BMD’s ten subjects.

A.3. Human Actions Dataset Preprocessing and Preparation

The HAD fMRI data (Zhou et al., 2023) was preprocessed using fMRIPrep (Esteban et al., 2019) and registered to fsLR32k
space using Ciftify (Dickie et al., 2019) by the authors. Similar to BMD preprocessing, GLMsingle (Prince et al., 2022) was
used to estimate single-trial beta values. However, since no stimuli were repeated, we used GLMsingle’s type-B estimates.
The responses were modeled with a Os impulse stimulus duration. For each subject separately, the beta estimates were
z-scored across stimuli conditions. This process resulted in a total of 21,600 fMRI-video pairs across all thirty subjects.

A 4. CC2017 Dataset Preprocessing and Preparation

In this work, we use a publicly available version of CC2017’s (Wen et al., 2018) fMRI data preprocessed and registered to
fsLR32k space with the HCP preprocessing pipeline (Glasser et al., 2013). Each of the 8 minute test and train segments were
divided into 2 second non-overlapping but continuous chunks to create 5,497 short video clips (after accommodating scanner
errors described in their manuscript). We obtain fMRI-video pairs by pairing each of the short video clips with the fMRI
response that occured 4s after the clip’s onset to account for the hemodynamic lag. This offset corresponds to approximately
the BOLD signal’s peak evoked by each clip. The values for the train and test stimuli were separately z-scored across
conditions. We note these time series estimates used in CC2017 are fundamentally different measures of brain activity than
the beta estimates used in BMD and HAD, but they capture similar spatial patterns across the brain and are z-scored to be
within the same range.
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B. Regions of interest definition

We define 41 regions of interest (ROIs) from the Glasser atlas (Glasser et al., 2016) to mask the fMRI data for stimulus
reconstruction. The Glasser atlas (Glasser et al., 2016) uses structural and functional neural information from 210 healthy
adults to divide the whole brain into 180 non-overlapping ROIs, which further compose 22 super groupings. Our unbiased
selection (Kriegeskorte et al., 2009) of 41 ROIs effectively balances a broad sampling of the whole brain with computational
efficiency. The 41 ROIs sample from 9 of the 22 super groups (see the ’Group Number’ column in 2) while focusing on
regions that have previously shown to respond to dynamic stimuli (VanRullen & Thorpe, 2001) (Logothetis & Sheinberg,
1996) (Le et al., 2017) (Gazzola & Keysers, 2009) (Rizzolatti & Sinigaglia, 2010) (Silver & Kastner, 2009) (Peeters et al.,
2009) (Peeters et al., 2013) (Wang et al., 2015). These 41 ROIs recognize the brain’s complex interconnected networks but
also recognize that most networks that contribute to visual perception reside in visual and visual-adjacent cortices (Etzel
et al., 2013)(Felleman & Van Essen, 1991)(Grill-Spector & Malach, 2004). This concentration of perceptually relevant
vertices in and around the visual cortex can be seen in the within-subject correlations presented in Appendix Figure 5 and is
replicated across many fMRI datasets (Allen et al., 2022)(Hebart et al., 2023)(Chang et al., 2019)(Zhou et al., 2023). To this
end, a whole brain ROI selection would have introduced primarily noisy vertices in largely inconsequential regions at a large
computational expense.

We demonstrate this accuracy to computational resource tradeoff by measuring MSE from the regressions of four different
ROI groupings: our 41 ROI selection (13,156 vertices) — 0.721, core vision (6,549 vertices from super-groups 1-4) —
0.755, the average of 10 randomly selected sets of 41 ROIs (average of 12,390 vertices) — 0.983, and the whole brain
(59,412 vertices) — 0.717. The whole brain’s slight improvement over Group41 comes at large computational cost (5x to
approximately 20x depending on the layer). Our ROI selection samples informative ROIs beyond the core visual regions
and performs significantly better than a random ROI selection of similar size. We list the 41 ROI names, ID, and Group
Number in Table 2.

C. Within Subject fMRI Correlations

We compute the similarity of brain responses within each subject in the CC2017 (Figure 5A) and BMD (Figure 5B) datasets
to provide intuition about the quality and response pattern of our model’s inputs. These similarities highlight highly reliable
responses in the visual and visual adjacent cortical regions and are similar in magnitude and pattern to other fMRI datasets
(Allen et al., 2022)(Hebart et al., 2023)(Chang et al., 2019).

In CC2017, we first extract each subject’s brain responses to each of the trimmed 2s clips (as explained above in Appendix
section A.4). We then correlate (Pearson’s R) the vector of brain responses corresponding to the first and second repetitions
of each of the 18 training set segments. The correlations were then averaged over the segments and visualized on a flattened
brain (Figure 5A). Note that this procedure of correlating the vector of brain responses is identical to correlating the fMRI
timeseries itself but trimmed at the beginning and end using the 4s offset of the first and last 2s segment.

In BMD, we estimate single trial beta values to each video presentation for each subject (as explained above in Appendix
section A.2). Since each training video was repeated three times, we correlate (Pearson’s R) the vector of beta estimates
corresponding to the 1,000 training videos between all three unique repetition pairs. The average of the three correlations
are visualized on a flattened brain (Figure 5B).

The correlation values should only be compared within datasets, not across datasets, because the fMRI timeseries values
used in CC2017 are a fundamentally different measure of brain activity than the beta estimates used in BMD.
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ROI ID  Group Number

Vi 1 1
MST 2 5
V6 3 3
V2 4 2
V3 5 2
V4 6 2
MT 23 5
% 7 4
V3A 13 3
RSC 14 18
POS2 15 18
V7 16 3
IPSI 17 3
FFC 18 4
V3B 19 3
LOl 20 5
LO2 21 5
PIT 22 4
PCV 27 18
STV~ 28 15
7m 30 18
POSI 31 18
23d 32 18
v23ab 33 18
d23ab 34 18
3pv 35 18
LIPv 48 16
VIP 49 16
MIP 50 16
PH 138 5
TPOJI 139 15
TPOJ2 140 15
TPOJ3 141 15
P2 144 17
Pl 145 17
PO 146 17
VMV1 153 4
VMV3 154 4
LO3 159 5
VMV2 160 4
VVC 163 4

Table 2. ROI name, group number, and index of the Glasser Atlas for the ROIs used in this work.
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Figure 5. A. Each CC2017 subject’s fMRI timeseries response to the two training set movie repetitions are correlated (Pearson’s R)
together and shown on a flattened brain. B. Each BOLD Moments Dataset (BMD) subject’s vector fMRI beta estimates to the three

training video repetitions are pairwise correlated (Pearson’s R). The average of the correlation pairs are shown on a flattened brain. All
correlations are clipped to a threshold of 0.01.
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