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ABSTRACT

The advent of Deep Research agents has substantially reduced the time required
for conducting extensive research tasks. However, these tasks inherently demand
rigorous standards of factual accuracy and comprehensiveness, necessitating thor-
ough evaluation before widespread adoption. In this paper, we propose Report-
Bench, a systematic benchmark designed to evaluate the content quality of re-
search reports generated by large language models (LLMs). Our evaluation fo-
cuses on two critical dimensions: (1) the quality and relevance of cited literature,
and (2) the faithfulness and veracity of the statements within the generated re-
ports. ReportBench leverages high-quality published survey papers available on
arXiv as gold-standard references, from which we apply reverse prompt engineer-
ing to derive domain-specific prompts and establish a comprehensive evaluation
corpus. Furthermore, we develop an agent-based automated framework within
ReportBench that systematically analyzes generated reports by extracting cita-
tions and statements, checking the faithfulness of cited content against original
sources, and validating non-cited claims using web-based resources. Empirical
evaluations demonstrate that commercial Deep Research agents such as those de-
veloped by OpenAI and Google consistently generate more comprehensive and
reliable reports than standalone LLMs augmented with search or browsing tools.
However, there remains substantial room for improvement in terms of the breadth
and depth of research coverage, as well as factual consistency. The complete code
and data will be released publicly.

1 INTRODUCTION

The rapid development of LLM-powered Deep Research agents has revolutionized the process of
knowledge synthesis by enabling autonomous execution of extensive research tasks, including aca-
demic literature surveys, industry analyses, and market assessments (Chen et al., 2025; Gottweis
et al., 2025; Lu et al., 2024; Tang et al., 2025; Yamada et al., 2025; Zheng et al., 2025; Li et al.,
2025). Tasks that traditionally required days or weeks of manual effort can now be completed
within minutes. Notable examples include advanced systems such as OpenAI (OpenAI, 2025) and
Google’s Gemini Deep Research (Google, 2025), which effectively integrate various external tools
and perform multiple rounds of deep reasoning. Despite their promising capabilities, widespread
practical adoption critically depends on their ability to consistently deliver research reports with
high factual accuracy and comprehensive content quality. Therefore, it is essential to monitor and
ensure the quality of generated reports through evaluation. However, defining what constitutes a
good report is challenging and lacks broad consensus, resulting in the current absence of mature
evaluation methodologies for research report generation.

In addressing this challenge, we decompose the evaluation of research reports generated by LLMs
into two core dimensions: writing quality and report content. Due to the subjectivity of writing-
style evaluation, while the criteria for assessing content quality can be more clearly defined, this
work focuses primarily on the evaluation of report content, leaving the assessment of writing quality
to future work. Specifically, we assert that the content quality of research reports hinges on two
critical factors: (1) the quality and relevance of cited literature, and (2) the faithfulness and veracity
of generated statements, whether derived from cited references or produced by the model.
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To establish a high-quality benchmark capable of rigorously assessing research reports, we propose
ReportBench, a novel evaluation framework leveraging expert-generated literature reviews. Given
the constraints of relying on human annotators, who typically vary in expertise, we propose using
published survey papers available on arXiv as gold-standard references. Published survey papers
are typically written by domain experts and have undergone a peer review process that provides
additional expert-level validation, considered among the highest-quality research reports currently
available.

In practice, our methodology unfolds in two phases. First, we generate domain-specific retrieval
prompts directly from expert-authored survey papers on arXiv: by analyzing each paper’s publica-
tion date and full text, we generate three granularity levels of prompts (sentence-level, paragraph-
level, and richly detailed versions) that precisely capture the scope, methods, and temporal con-
straints of the original research. These prompts form the backbone of our evaluation corpus, ensuring
that downstream agents search and synthesize information within the exact topical and chronologi-
cal boundaries of each survey. We extract the list of cited references from the arXiv surveys as the
ground truth. Given the synthesized prompts as test inputs, Deep Research agents conduct research
and generate reports, which are then evaluated based on the reference overlap with the ground truth,
serving as a measure of the research skills.

In the second phase of our validation pipeline, we design two different verification procedures based
on whether a statement includes an explicit citation to external literature. Specifically, for cited
statements, the system identifies all in-text citations within the report, maps each citation to its
corresponding source document, and employs semantic matching to ensure factual support from
the cited literature. For non-cited statements, the framework employs a voting mechanism across
multiple web-connected models to verify the factuality of these statements. By combining these
complementary validation procedures, ReportBench delivers a systematic and detailed assessment
of AI-generated research reports, ensuring the relevance and quality of cited literature and the factual
accuracy of all claims through citation-based and web-based validation. To validate these automatic
metrics and better understand errors, we further conduct a human evaluation and qualitative error
analysis on a subset of reports. The human evaluation results exhibit high agreement with our
automatic evaluation pipeline, further confirming the quality of ReportBench.

Our contributions can be summarized as follows:

• We present ReportBench, a systematic benchmark designed to evaluate the quality of research
reports generated by Deep Research agents, with a focus on the quality of references and the
factual accuracy of all statements presented in the report.

• We propose an automated and scalable data synthesis method for constructing academic sur-
vey tasks, including prompts and ground truth, from expert-authored survey papers on arXiv.
Additionally, we introduce an automatic agentic evaluation framework that evaluates the preci-
sion and recall of the generated report with respect to the ground-truth references and performs
factual verification of individual claims made within the report.

• We release a comprehensive benchmark suite—datasets, prompts, and evaluation scripts—to
support reproducible research and community-driven progress in evaluating LLM-based
knowledge synthesis.

DATASET CONSTRUCTION

PHASE I: Survey paper identification 
and reference extraction

PHASE II: Prompt generation PHASE III: Application domain 
distribution

I need a scholarly review on causal 
generative models. This review should 
primarily focus on two major directions: ......
Please ensure that all referenced literature is 
published before May 2024.

Figure 1: Overall benchmark data construction workflow.

2 METHODOLOGY

We introduce ReportBench, a comprehensive evaluation framework designed to rigorously assess
Deep Research agents through two interconnected components: (i) the automated construction of
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high-quality benchmark datasets derived from expert-authored survey papers, and (ii) a systematic
validation pipeline that evaluates the quality and factual consistency of AI-generated research re-
ports. In the following sections, we detail the processes that underlie the synthesis of the dataset and
the design of our evaluation workflow.

2.1 DATASET CONSTRUCTION

In this section, we detail the end-to-end pipeline to construct high-quality deep research questions
along with ground-truth answers based on published survey papers. This workflow comprises three
consecutive phases: (i) survey paper identification and reference extraction, (ii) prompt generation,
and (iii) application domain distribution. A diagram illustrating the data construction process is
presented in Figure 1.

2.1.1 PHASE I: SURVEY PAPER IDENTIFICATION AND REFERENCE EXTRACTION

The first step is to identify high-quality survey papers to create evaluation tasks. We start from the
complete arXiv metadata snapshot (arXiv.org submitters, 2024) and retain papers submitted on or
after 2020-01-01. To ensure the quality of papers, we only select those that have undergone peer
review and have been formally published. We achieve this by using regular expressions, i.e., query-
ing over titles to match “survey” or “review” to filter survey papers and searching “published” or
“accepted” in the comments field of a submission. To reduce systematic false positives in domains
such as astronomy, we prompted GPT-4o (Hurst et al., 2024) with each paper’s title and abstract to
produce a binary classification of whether the paper is a literature survey.

For each survey paper, we analyze its LaTeX source file to extract cited references. Specifically, we
parse LaTeX citation commands, identify and retrieve relevant bibliographic entries from associated
bibliography databases, and filter these to retain only references explicitly cited in the main text.
Hence, the extracted bibliography mirrors the true citation pattern of the paper. The resulting dataset
constitutes a gold-standard benchmark for evaluating retrieval precision. Finally, we retained 678
papers.

2.1.2 PHASE II: PROMPT GENERATION

Survey papers can be regarded as a great depth of research work focused on a specific topic at a
specific time, making it possible to create deep research questions in a reverse prompt engineering
manner. In other words, given the publication date and the full text of a survey paper obtained
through a PDF parsing tool, we prompt an LLM to generate a query whose ideal answer is precisely
that paper. Hence, we obtain a query and its ground truth (the survey paper itself). To increase the
diversity of prompts, we design three types of prompt templates:

Sentence-level prompt
A single sentence that succinctly defines the overarching
academic field covered by the survey.
Paragraph-level prompt
A short paragraph elaborating the research area, its main
subtopics, and the methodological perspectives covered in the
survey.
Detail-rich prompt
A detailed question that comprehensively describes the
specific research domain, key research directions, and
the methodological approaches of interest. Additional
constraints may be included, such as preferred conferences
or journals, language of the cited literature (e.g., English,
Chinese), participating institutions or laboratories.

In addition, to ensure that LLMs’ retrieval window matches the survey’s citation horizon and pre-
vents leakage of post-publication knowledge, we require each generated prompt to include a cut-off
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date corresponding to the most recent update of the paper. For example, an expression like the
following is needed.

“Ensure only papers published before April 2025 are referenced.”

Nevertheless, we still observe a phenomenon akin to prompt hacking during model evaluation, i.e.,
the model disregards the imposed temporal constraints and directly retrieves the original source
paper. As some tested systems integrate search tools internally, tool-side restrictions cannot be
applied for fair comparison. To address this issue, we augment the prompt with an additional explicit
instruction, stipulating that the model must refrain from citing the original paper corresponding to
the given prompt. We present three prompt examples in Appendix A.3

2.1.3 PHASE III: APPLICATION DOMAIN DISTRIBUTION

To facilitate a more granular analysis of tested models, we classified the prompts into distinct ap-
plication domains. Specifically, we utilize Gemini 2.5 Pro (Comanici et al., 2025) to classify each
paper based on the title and abstract. This process yields ten distinct categories, as shown in the
following box. To reduce misclassification, we introduce an unknown category, allowing the model
to assign uncertain cases to this class.

A Basic Research and Scientific Exploration F Transportation and Smart Mobility
B Information and Communications Technol-

ogy
G Public Safety and Social Governance

C Artificial Intelligence and Data Intelligence H Finance and Business Services
D Healthcare and Biomedicine I Energy and Environmental Sustainability
E Manufacturing and Smart Manufacturing J Culture, Media, and Digital Content
K Unknown Category

The distribution of prompts across these domains is inherently biased due to the specific disciplinary
focus of the arXiv corpus, as shown in Figure 2. From the pool of 678 candidate surveys, we
assign each survey to an application-domain bucket and perform stratified random sampling so that
domains contribute roughly equally. To create a balanced and general test set, we sample a fixed
number of surveys per domain (10 in our implementation) using uniform random sampling with
a fixed seed (random seed = 42), yielding 100 tasks in total without any additional hand-picking
beyond the earlier filters. As we have mentioned before, we create three types of prompts for each
paper. Thus, we randomly sample from these three types to obtain the final prompt with diversity.
In other words, a dataset with 100 prompts is created, which we name ReportBench. The quality
of the classification of this subset was then reviewed and validated by four research experts.

6.5%

6.8%

10.5%

21.8%

37.6%

Category Distribution (%)

Category
A  37.6%
B  21.8%
C  10.5%
D  6.8%
G  6.5%
F  4.1%
J  2.9%
K  2.8%
E  2.7%
I  2.2%
H  2.1%

(a) Category distribution (pie).
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(b) Category counts (bar).

Figure 2: Application domain distribution of the 678 filtered ReportBench prompts: (a) a pie chart
showing the proportion of each application domain, (b) a bar chart illustrating the total task counts
across all 11 categories.
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Ground-truth reference Generated reference

Ground-truth report
(from arXiv)

Extracted non-cited statement_2

Weakly Supervised Causal Representation Learning frameworks utilize 
paired observations before and after unknown interventions…

Extracted non-cited statement_3

Factual Acc = 66.7%

Generated report

Extracted cited statement_2

**CausalVAE** introduced structured causal 
disentanglement by incorporating known 
causal relationships into the VAE framework.

Extracted cited statement_3

URL_2

https://arxiv.org/
abs/2004.08697

URL_3

Match Rate = 33.3%

Precision = 33.3%
Recall = 20%
Ref Num = 3

CausalVAE: Structured Causal Disentanglement 
in Variational Autoencoder

Report_title_2 Report_title_3

CausalGAN: Learning causal implicit generative….

CausalVAE: Structured Causal Disentanglement…

Diffusion models beat GANs on image synthesis

Biscuit: Causal representation learning from ...... 

Reference Title ExtractionLearning causal semantic representation for ……

Extracted non-cited statements

Extracted cited statements

Cited Statement Extraction

Non-cited Statement 
Extraction

Supporting Source 
Extraction & Semantic 

Consistency Verification

Web-based Statement 
Verification

Figure 3: Evaluation Process.

2.2 EVALUATION PROCESS

Our evaluation process, as shown in Figure 3, uses test prompts derived from reverse prompt engi-
neering, which require models to generate complete research reports under two constraints: a time
limit and a restriction against referencing the original report. Content quality is first evaluated by
assessing the cited references: we compare the reference list in the generated report with that of
the ground truth, and the overlap ratio between the two lists serves as an indicator of the report’s
overall quality. Note that the time limit is enforced via the ground-truth bibliography: for each task
we only include references published on or before the source survey date and exclude the survey
itself, so any citation to post-cutoff papers or to the source survey lies outside the ground-truth set
is counted as an error, automatically lowering precision/recall even if the model ignores the instruc-
tion. Statement factuality is further assessed through two complementary validation procedures.
For cited statements, we verify alignment with source documents via semantic matching, while for
non-cited statements, we adopt a multi-model voting mechanism to assess factual correctness. This
dual strategy ensures both the faithfulness of cited content and the veracity of non-cited claims in
evaluating Deep Research reports. Prompts for evaluation are presented in Appendix A.4.

Content Quality. We first extract all URLs from the report. Since most reports generated by
the Deep Research products use URL links to cite web pages, we adopt the same citation format
throughout our evaluation, including when assessing the base models. While this approach results in
longer text, it offers the advantage of placing the citation immediately adjacent to the corresponding
statement, which ensures consistent performance even under chunked evaluation settings. After
normalizing and deduplicating them, we retrieve the content of each web page. An LLM is then
used to determine whether each page corresponds to a scholarly article and, if so, to extract the
article title. Finally, we compute the overlap between the extracted document titles and the ground-
truth reference titles to produce a quality score.

In our current implementation, we normalize and match URL-style citations, as models are in-
structed to cite using URLs and the released evaluator assumes this format. This is a design choice
rather than a fundamental limitation: the same extraction–normalization pipeline can be extended
to BibTeX entries, arXiv IDs, and DOIs by adding format-specific extractors and mapping them to
canonical URLs (e.g., https://doi.org/..., https://arxiv.org/abs/...) before comparison with the ground-
truth bibliography, enabling systems to use their native citation styles without changing the evalua-
tion protocol.

Cited Statements. We design a three-stage structured validation pipeline. First, an LLM automat-
ically identifies all statements in the generated report that contain explicit citation links, establishing
a mapping between each statement and its referenced source. Second, we retrieve the full content of
each cited webpage via web scraping and prompt the LLM to locate the most semantically relevant
passage that supports the original statement. Finally, the LLM performs consistency verification by
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comparing the statement with the retrieved content, and the results are aggregated to compute an
overall citation consistency score for the report. Unlike traditional “LLM-as-a-judge” approaches,
which often suffer from instruction-following issues or biased scoring, our method decomposes the
evaluation into fine-grained, interpretable, and verifiable steps. All intermediate outputs are retained
for optional human inspection, thereby maximizing the reliability and transparency of the evaluation
process.

Non-cited Statements. We use a simple two-step validation process. First, we extract all factual
statements in the report that do not have any citations, and remove content that is general common
sense or already supported by references. Then, we ask several web-connected LLMs to check
each statement independently. Each model looks up information online and gives its judgment. We
combine their answers using a voting mechanism to decide whether the statement is likely to be
correct. This approach avoids relying on a single model and makes the validation more reliable.

3 EXPERIMENT

In this section, we present the performance of a diverse set of models evaluated on ReportBench.
Specifically, we examine specialized Deep Research agents from OpenAI and Google Gemini. Ad-
ditionally, we assess several state-of-the-art (SOTA) base models, originally lacking native Internet
access, by augmenting them with an external search engine and link reader to enable the web-
retrieval capabilities essential for completing our evaluation tasks. These enhanced base models are
then benchmarked alongside the native Deep Research agents.

3.1 SETTINGS

Our evaluation pipeline uses different LLMs for distinct components. For statement extraction,
supporting source extraction, and semantic consistency verification, we adopt GPT-4o. For the fact-
checking of non-cited statements, we employ two web-connected models: Gemini-2.5-Pro and
Gemini-2.5-Flash. Each model performs three independent judgments per statement, resulting
in a total of six verdicts. The final decision is determined by majority voting, and the proportion of
votes is recorded as a confidence score. In the evaluation of base models, we integrated search and
link-reading tools using each model’s native function call interface. Specifically, we used SerpAPI1

for Google Search access and Firecrawl2 for retrieving web pages in Markdown format. Due to
context length limitations, we capped the maximum number of tool calls at five per instance.

To evaluate the performance of both Deep Research agents and base models, we manually collected
responses from the web-based interfaces of OpenAI and Gemini, as well as batch-executed outputs
from the base models, during the time window from July 14–25, 2025. Hence, the present results
correspond to the July 2025 snapshot. During data collection, we ensured that OpenAI was using the
standard version of Deep Research, powered by the o3 model. For Gemini, we made sure that both
the “Gemini 2.5 Pro” and “Deep Research” toggles were enabled on the web interface to activate its
full research capabilities.

3.2 EVALUATION METRICS

As described in our evaluation logic, we define three sets of metrics to assess a model’s performance
in conducting scientific research tasks. First, we compute the precision and recall of retrieved ref-
erences against the ground-truth references. Precision reflects the proportion of cited references that
are relevant, while recall measures the proportion of ground-truth references successfully retrieved.
We also report the average number of references per report to capture the model’s reference density.
To evaluate statement-level performance, we measure the average number of cited statements and
non-cited statements per report. For cited statements, we compute the match rate, i.e., the propor-
tion of statements that are semantically consistent with their cited sources. For non-cited statements,
we compute the factual accuracy, defined as the proportion of statements that are verified to be fac-
tually correct via web-connected LLMs.

1https://serpapi.com/
2https://www.firecrawl.dev/
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Test Model
Reference Cited statements Non-cited statements

Precision Recall Ref Num Match Rate Count Factual Acc Count

OpenAI Deep Research 0.385 0.033 9.89 78.87% 88.2 95.83% 38.9

Gemini Deep Research 0.145 0.036 32.42 72.94% 96.2 92.21% 49.6

Gemini-2.5-Flash 0.237 0.012 5.47 44.88% 12.1 98.52% 11.5

Gemini-2.5-Pro 0.269 0.010 4.27 59.24% 6.58 96.08% 9.35

o3 0.299 0.031 12.26 31.43% 16.16 82.22% 11.51

Claude-4-Sonnet 0.337 0.021 6.74 73.67% 14.93 92.64% 17.07

Table 1: Performance metrics of OpenAI Deep Research, Gemini Deep Research, and the base
models. “Ref Num” denotes the average number of references per report, and “Count” denotes the
average number of cited or non-cited statements.

3.3 PRODUCT-LEVEL COMPARATIVE ANALYSIS

Table 1 presents the performance metrics of OpenAI Deep Research and Gemini Deep Research. In
terms of retrieval performance, OpenAI achieves significantly higher precision (0.385) compared to
Gemini (0.145), indicating that the references it retrieves are more likely to match the gold-standard
set. Gemini shows a slightly higher recall (0.036 vs. 0.033), but this gap is negligible in practical
terms. As shown in the table, Gemini generates over three times as many references per report (32.42
vs. 9.89), yet this increase does not translate into a significant improvement in recall. This suggests
that Gemini tends to over-generate citations without proportionally improving the coverage of high-
quality references. In some cases, excessive citation may even introduce redundancy or dilute the
relevance of retrieved content. Given that the ground truth from ReportBench includes an average
of 153 references per paper, with many citations supporting the same or overlapping statements, we
believe recall should be considered a secondary signal rather than the primary focus of evaluation.

In terms of statement quality, both products demonstrate strong performance in generating reports.
OpenAI Deep Research achieves a higher citation match rate than Gemini (78.87% vs 72.94%) while
producing 88.2 cited statements on average, suggesting stronger precision in citation usage. For
non-cited statements, Gemini produces more such content (49.6 vs. 38.9), while OpenAI achieves
better factual accuracy (95.83% vs. 92.21%), indicating its stronger calibration in generating reliable
citation-free content.

Our evaluation pipeline relies on automatic URL-to-paper mapping and LLM-based judgments of
citation correctness and factuality. To assess the reliability, we also conduct a small-scale human ex-
pert study to validate our automatic evaluation pipeline and find high agreement (typically 84–96%)
between expert judgments and our URL mapping, statement-level factuality checks, and citation-
level precision/recall metrics, indicating that the pipeline is well-aligned with domain experts. For
more details, please refer to Appendix A.2.3.

3.4 MODEL-LEVEL COMPARATIVE ANALYSIS

We now analyze the results across several foundation models and compare them with the corre-
sponding Deep Research agents.

OpenAI Deep Research vs. o3
OpenAI Deep Research and o3 exhibit similar retrieval performance, with precision (0.385 vs.
0.299) and recall (0.033 vs. 0.031) showing only slight differences. Meanwhile, the average number
of references per report is also comparable (9.89 vs. 12.26). This observation aligns well with
OpenAI’s official disclosure that the retrieval and synthesis backbone of Deep Research is powered
by the o3 model (OpenAI, 2025).

However, we observe substantial differences in the number and quality of generated statements.
OpenAI Deep Research produces significantly more cited statements on average (88.2 vs. 16.16)
and more non-cited statements (38.9 vs. 11.51), while achieving a notably higher citation match rate
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(78.87% vs. 31.43%) and factual accuracy (95.83% vs. 82.22%). This suggests that Deep Research
is not a direct output of o3, but rather likely incorporates an additional writing module, possibly
optimized via fine-tuning or structured pipelines. Such a pipeline may be responsible for structuring
retrieved content into a more coherent, citation-aligned report.

Gemini Deep Research vs. Gemini-2.5-Pro
Similarly, Gemini Deep Research and its base model Gemini-2.5-Pro diverge significantly
across multiple dimensions. Gemini Deep Research trades off some precision (0.145 vs. 0.269)
to achieve much higher recall (0.036 vs. 0.010) and generates far more references per report (32.42
vs. 4.27). In terms of statement volume, it produces many more cited statements (96.2 vs. 6.58)
and non-cited statements (49.6 vs. 9.35). Despite this increase in volume, its citation alignment re-
mains strong (72.94% vs. 59.24%), while its non-cited statement accuracy is slightly lower than the
base model (92.21% vs. 96.08%). These pronounced gaps—in precision/recall trade-off, citation
count, and overall coverage—mirror the contrast observed between OpenAI Deep Research and o3,
and suggest that the system has undergone targeted optimization for thorough research and report
generation. Taken together with the visible “plan” and “step-by-step reasoning” phases presented in
the Gemini Deep Research web interface, it seems plausible that the system functions more like a
thoughtfully constructed multi-agent workflow or pipeline.

Base-Model Comparison
Among the four base models, Claude-4-Sonnet demonstrates the most balanced perfor-
mance—achieving a precision of 0.337, a recall of 0.021, an average of 6.74 reference documents
per report, a high citation semantic consistency (73.67%), and a strong non-cited statement factual
accuracy (92.64%). In contrast, Gemini-2.5-Pro attains higher precision (0.269) at the expense
of recall (0.010) and generates fewer reference documents on average (4.27 per report), limiting its
coverage. Gemini-2.5-Flash underperforms on both precision (0.237) and recall (0.012), with
lower citation semantic consistency (44.88%), indicating poorer citation relevance. Meanwhile, o3
produces the most references (12.26 per report) and moderate recall (0.031), but its citation semantic
consistency (31.43%) and non-cited statement accuracy (82.22%) lag behind.

Overall, Deep Research products significantly outperform their base models in coverage and fac-
tual grounding, pointing to the value of task-specific model fine-tuning or pipeline design beyond
standalone LLM capabilities.

4 ANALYSIS

It is notable that many models exhibit low citation semantic consistency, particularly when relying
on function-call mechanisms to retrieve and cite literature. In our manual inspection of evaluation
results, we identified two representative failure types: statement hallucination, where the content
deviates from the cited source, and citation hallucination, where the reference itself is fabricated.

Statement Hallucination. In our manual audit of arXiv:2407.15186 test cases, we identified rep-
resentative errors in statement generation. For example, OpenAI Deep Research generated the fol-
lowing claim:

Kulkarni et al. (2025) and others introduced RL fine-tuning where the model gets
a reward of +1 if its SQL yields the correct answer when run, and 0 otherwise
(arXiv:2503.23157v2, §3.2).

Upon inspection, the cited part indeed describes a reasoning-enhanced RL reward scheme for Text-
to-SQL; however, the list of authors does not include “Kulkarni”. In fact, Kulkarni did publish a
paper on reinforcement learning and Text-to-SQL, but it was not among the references cited in the
generated report. We speculate that the model may have encountered similar data during training
and mistakenly attributed Kulkarni’s contribution to this cited paper.

Citation Hallucination. During our evaluation of arXiv:2009.12619, we observed a clear instance
of link hallucination in the generated report from Gemini-2.5-Pro. The model generated the
claim:
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In-vehicle Crowd Monitoring: The use of surveillance cameras inside buses and
trains for passenger counting is a well-established practice. Advanced image pro-
cessing and computer vision techniques can automatically analyze video feeds to
estimate the passenger load. For instance, a system was proposed to estimate the
number of passengers in a bus using image processing techniques on the captured
video frames, achieving high accuracy. [Vision-Based In-Vehicle Crowd Monitor-
ing](https://www.researchgate.net/publication/224217198_
A_vision-based_system_for_in-vehicle_crowd_monitoring).

However, the cited URL does not exist and appears to be entirely fabricated by the model. Because
the link cannot be resolved, no supporting text or evidence can be retrieved to validate the state-
ment, resulting in a citation mismatch. This example highlights a common error mode in function-
call–driven retrieval: the model confidently invents plausible-looking reference links that nonethe-
less point to nothing, undermining factual grounding.

These examples demonstrate that even advanced Deep Research agents remain susceptible to hallu-
cinating author names, misaligning citations, and fabricating links. Crucially, our evaluation met-
rics—especially citation semantic consistency—are sensitive to such discrepancies, allowing us to
quantitatively capture and penalize these hallucination phenomena across model outputs.

5 RELATED WORK

Long-standing interest has been in the use of AI to synthesize information, not only in the writing
of scientific articles (Chen et al., 2025; Gottweis et al., 2025; Lu et al., 2024; Tang et al., 2025;
Yamada et al., 2025), but also in the search for information and the generation of reports in the
general domains (Zheng et al., 2025; Li et al., 2025). With the rapid advancement of information
synthesis research, the evaluation of long-form reports has become increasingly important.

Fact Checking Evaluation Driven by efforts from both academia and industry, automated fact
checking has evolved into a well-established multistage pipeline, which has become the dominant
research paradigm in the field (Eldifrawi et al., 2024). Claim detection aims to identify factual
statements worth verifying from large volumes of text (Guo et al., 2022; Panchendrarajan & Zubiaga,
2024), while evidence retrieval focuses on retrieving relevant documents or textual snippets that
support or refute a given claim (Eldifrawi et al., 2024; Nanhekhan et al., 2025). Building on this
pipeline, several benchmarks have been proposed to evaluate the performance of fact checking in
both the general domain (Thorne et al., 2018; Ma et al., 2024) and the scientific domain (Wadden
et al., 2020; 2022; Ho et al., 2025). However, these benchmarks focus solely on fact-checking
components, rather than evaluating the synthesized information as a whole.

Citation Evaluation Research reports often include a substantial amount of citation-related content,
and evaluating the precision and standardization of these citations plays a crucial role in assessing
the overall quality of the report (Sarol et al., 2024). Given a report with citation content, tasks such as
cited context identification, evidence sentence retrieval, and citation accuracy classification are com-
monly used to analyze citation quality (Sarol et al., 2024). Widely applied in assisted paper writing
and review systems, citation verification tools are designed from multiple perspectives, including
syntactic verification, existence verification, and semantic verification (Barrot, 2025; Bairagi & Li-
hitkar, 2024). While citation correctness and existence have been well-studied, the completeness of
citations remains underexplored.

Survey Generation With the advent of LLMs, automated survey generation has seen rapid progress.
Early works leveraged LLMs to improve literature comprehension and survey writing (Wang et al.,
2024; Hu et al., 2025), achieving better coherence compared to sentence extraction methods. Sub-
sequent research explored structured and hierarchical organization with fixed references. Other
approaches focused on modeling paper relationships via citation networks, including AutoSurvey
(Wang et al., 2024) with a two-stage LLM pipeline and HiReview (Hu et al., 2025) with a taxonomy-
driven framework, though both faced limitations in capturing human writing styles or relying on
restricted citation scopes. More recently, SurveyForge (Yan et al., 2025) combines human outline
structure analysis with high-quality literature retrieval, generating and refining full survey content
through a scholar navigation agent. Compared with SurveyBench, ReportBench focuses solely on
well-defined and automatically verifiable dimensions of evaluation. In addition, through an au-
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tomated construction pipeline, it ensures data quality while offering clear scalability advantages,
enabling it to serve as a potential source of training data for report optimization in future work.

Deep Research Evaluation The rise of deep research agents (DRAs), driven by powerful models
such as ChatGPT (OpenAI, 2025) and Gemini (Google, 2025), has underscored the urgent need
for robust and targeted evaluation methodologies. While existing benchmarks evaluate capabilities
such as web retrieval (Wei et al., 2025; Zhou et al., 2025; Wu et al., 2025), multi-hop factual reason-
ing (Wei et al., 2024; Mialon et al., 2024; Phan et al., 2025), and end-to-end report generation (Du
et al., 2025; Bosse et al., 2025). These methods often operate at a surface level and fall short of evalu-
ating the core competencies essential for rigorous and reliable research. Compared to DeepResearch
Bench (Du et al., 2025), ReportBench differs in three key ways: (i) it proposes a largely automatic,
survey-driven data construction pipeline that is easier to scale than the manually authored tasks in
DeepResearch Bench; (ii) it provides a citation-level gold bibliography for each task, enabling pre-
cise measurement of reference precision/recall rather than relying solely on LLM-as-a-judge scores;
and (iii) it performs statement-level factuality checking for both cited and non-cited claims, yielding
more fine-grained diagnostics of hallucination, over-citation, and under-citation.

6 CONCLUSION

In this paper, we present ReportBench, a comprehensive benchmark for evaluating the quality of
references and the factual accuracy of all statements in reports generated by Deep Research agents.
By leveraging expert-authored survey papers as ground truth and reverse prompt engineering, we en-
able consistent evaluation of AI-generated research reports across multiple dimensions. Our frame-
work introduces a fine-grained validation workflow that separately assesses cited and non-cited state-
ments, combining citation semantic consistency checks and web-based factual verification. Through
large-scale experiments on leading LLM-based research agents and the base models, we demonstrate
that Deep Research products can outperform base models in content coverage and factual grounding,
but still face challenges in hallucination, over-citation, etc. We hope that ReportBench will serve as
a valuable tool for the research community to monitor, compare, and further improve the reliability
of AI systems designed for academic survey tasks.

7 ETHICS STATEMENT

ReportBench constructs 100 research tasks closely aligned with real-world scientific inquiry by
reverse prompt engineering expert-written survey papers. It evaluates generated reports compre-
hensively along two axes: content quality and statement factuality. Despite its strengths, several
limitations remain:

Data Distribution. The benchmark is predominantly constructed from peer-reviewed STEM (Sci-
ence, Technology, Engineering, and Mathematics) survey papers on arXiv, which induces a STEM-
centric bias and means that our results should not be over-interpreted as measuring general deep-
research ability in social sciences, humanities, or other under-represented domains. At the same
time, the data-construction pipeline itself is domain-agnostic: given a corpus of survey-like papers
and basic metadata, the procedure in Section 2.1 can be applied to other disciplines. We view in-
stantiating domain-specific variants (e.g., for social sciences and law) as important future work.

Copyright Constraints. To mitigate legal risk, we only include papers under permissive licenses
(CC BY 4.0, CC BY-SA 4.0, CC0 1.0, and the arXiv.org Non-exclusive license to distribute). The
dataset is released under CC0 1.0 and contains only essential metadata (e.g., title, abstract, and
references). Further narrowing the license scope would compromise domain balance. Authors who
wish to opt out, please contact us for removal.

Efficiency and cost. ReportBench is intentionally a quality-focused benchmark: we evaluate report
correctness and depth, but do not report comparative latency or cost, as token usage and end-to-end
delays were not systematically logged during the original runs and cannot be reliably reconstructed
ex post. A systematic study of efficiency—including proper instrumentation, request-level logging,
and controlled load conditions—is an important direction for future work and a natural extension of
the current benchmark.
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8 REPRODUCIBILITY STATEMENT

We will open-source ReportBench in full, including all constructed prompts, the ground-truth refer-
ence list for each example, and metadata of the source surveys (arXiv ID, title, authors, comments,
etc.). We will also release the complete evaluation code used in this work; users only need to provide
API keys for the external services specified in the repository (e.g., search and web retrieval) to run
end-to-end assessments of their generated reports on ReportBench. The repo will include configura-
tion files and scripts to reproduce our pipelines, along with instructions to re-run the tested baselines
and to evaluate new model outputs. To comply with the terms of service of the evaluated products
and models, we will not publish our generated reports during evaluation; instead, we provide the ex-
act prompts, evaluation scripts, and scoring logic so that others can independently obtain evaluated
model outputs under their own accounts and reproduce the paper’s results.
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A APPENDIX

A.1 USE OF LLMS

This work involved both human effort and the assistance of large language models (LLMs) in sev-
eral stages, with all outputs subject to human oversight and verification. During experiment im-
plementation, humans designed the codebase framework and core logic, while AI-based IDE tools
in combination with Claude-4-Sonnet and Claude-4-Opus were used to generate code. To ensure
quality, intermediate results were logged and manually inspected at each evaluation stage to prevent
the propagation of error. For related work discovery, we used OpenAI and Gemini’s Deep Research
to assist in surfacing potentially relevant papers, followed by manual reading, summarization, and
selection. In the writing process, OpenAI’s GPT-4o and GPT-4.1 models were employed to polish
drafts written by humans, focusing on improving grammar and clarity.

A.2 ADDITIONAL ANALYSES

A.2.1 CITATION RECALL BY REFERENCE IMPORTANCE

To better understand which papers current agents tend to recover, we complement the global citation
recall with a stratified analysis by reference importance. Here we use citation count as a simple
proxy for how central or influential a paper is.

For each survey-level task, we take the ground-truth reference list and look up the citation count of
every paper in a standard scholarly index3. Within that single survey, we then sort its references by
citation count and cut at the 25%, 50%, and 75% quantiles. This yields four groups: Q1 contains
the least-cited 25% of references within that survey, Q2 the next 25%, Q3 the 50–75% range, and
Q4 the most-cited 25%. We deliberately define Q1–Q4 per survey (rather than globally) because
citation distributions can vary greatly across domains and we want “Q4” to always mean “the most
central references for this particular survey”, independent of field-specific scale differences.

Given these per-task quartiles, we compute stratified recall for each model by aggregating over all
tasks: for Q1, for example, we collect all references that fall into Q1 across all surveys and measure
what fraction were correctly cited by the model; we repeat the same calculation for Q2, Q3, and Q4.
Table 2 reports the resulting recall values (in percent).

Table 2: Citation recall by reference-importance quartile on ReportBench. Q1–Q4 partition refer-
ences within each survey by citation count (from lowest to highest). Values are recall in %.

Model Q1 Q2 Q3 Q4

Gemini-2.5-Flash 0.4 0.7 0.8 1.8

Gemini-2.5-Pro 0.3 0.6 0.9 1.3

o3 1.0 1.8 3.0 3.5

Claude-4-Sonnet 1.0 1.8 2.3 2.3

Gemini Deep Research 1.8 2.7 3.0 3.3

OpenAI Deep Research 1.3 2.3 3.2 3.3

Across all systems, recall consistently increases from Q1 to Q4: models recover substantially more
of the most highly cited references than of the long tail. For instance, o3 improves from 1.0% recall
in Q1 to 3.5% in Q4, and similar trends hold for the other systems. This stratified view shows that
current agents are much more likely to retrieve the core, high-impact references than obscure or
marginal ones.

We also observe that the two deep-research products (Gemini Deep Research and OpenAI Deep
Research) achieve uniformly higher recall across all quartiles than base-models. This indicates

3https://www.semanticscholar.org/product/api
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Table 3: Subjective content quality scores (1–5) and gaming rates (%) for each model on Report-
Bench. Values are means across tasks; higher is better for D, S, I, F, and SV. Abbreviations: D
= Content Depth, S = Synthesis & Structure, I = Insight & Trends, F = Future Directions, SV =
Survey-ness, G = Gaming Rate.

Model D S I F SV G (%)

Gemini-2.5-Pro 3.137 2.756 2.397 2.023 2.779 6.1

Claude-4-Sonnet 3.930 3.364 3.039 3.248 3.519 1.6

o3 4.066 3.582 3.270 3.041 3.721 2.3

Gemini Deep Research 4.560 4.160 4.070 4.070 4.480 0.0

OpenAI Deep Research 4.107 3.756 3.550 3.756 3.954 0.8

that ReportBench is sensitive enough to capture progress in literature coverage, rather than merely
penalizing systems on the very long tail of rare citations.

A.2.2 SUBJECTIVE CONTENT QUALITY EVALUATION

Our original design deliberately focused on objectively checkable aspects of quality, emphasizing
the quality of references and the factual accuracy of all statements in the report. To further assess
content quality and understand how it correlates with these initially defined objective dimensions,
we introduce an additional subjective content quality evaluation component to capture survey-style
qualities that are difficult to measure purely through reference- and fact-level checks.

Concretely, we define six dimensions intended to characterize the extent to which a report functions
as a genuine survey:

• Content Depth (1–5): How thoroughly the report covers the main subtopics of the field, dis-
cussing key methods, trade-offs, and limitations beyond superficial descriptions.

• Synthesis & Structure (1–5): How well prior work is organized into coherent themes or tax-
onomies and related to each other, rather than being listed in isolation.

• Insight & Trend Analysis (1–5): Whether the report draws non-trivial patterns and trends across
works, explaining underlying design principles and helping readers quickly understand the land-
scape.

• Future Directions & Open Problems (1–5): How concretely and convincingly the report pro-
poses future research directions or open problems grounded in the surveyed literature.

• Survey-ness (1–5): A holistic judgment of the extent to which the report functions as a genuine
survey paper in the ML/CS sense, integrating depth, synthesis, and insight into a useful starting
point for researchers.

• Gaming / Degenerate Behavior (binary): Whether the report resembles a trivial “bag-of-
sentences” output (e.g., near-pure per-paper listing without synthesis) versus a genuine attempt
at survey-style writing.

In Table 3, we abbreviate these six dimensions as D (Content Depth), S (Synthesis & Structure), I
(Insight & Trends), F (Future Directions), SV (Survey-ness), and G (Gaming Rate).

We then use LLM-as-a-judge to score each report along these six axes. For the first five dimensions
we use a 1–5 scale; for the last dimension we record a binary Gaming flag and report its empirical
rate. Table 3 shows the aggregated results over all tasks, and we highlight three key findings:

1. Deep-research products score highest on content quality. Gemini Deep Research and OpenAI
Deep Research achieve the best scores across all content dimensions (with Gemini generally first
and OpenAI second), indicating that the products are also better at producing genuinely survey-
like, synthesized reports—not just at citing correctly.
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2. Gaming behavior is rare and detectable. The Gaming flag is triggered only in a small fraction
of cases (0–6.1% across systems), with the specialized deep-research agents having near-zero
gaming rates. This suggests that, in practice, systems that would try to game the factual met-
rics by stitching together isolated sentences are both uncommon and explicitly penalized by this
additional rubric.

3. Content quality and objective metrics are strongly aligned. When we rank systems by the
holistic SV score and by our original citation/factuality metrics, the induced partial order over
systems is nearly identical. This indicates that our objective, reference- and factuality-based
metrics already capture much of the underlying report quality, and that the new content-quality
scores provide an interpretable confirmation rather than contradicting the original evaluation.

A.2.3 HUMAN EXPERT VALIDATION OF THE EVALUATION PIPELINE

Our evaluation pipeline relies on automatic URL-to-paper mapping and LLM-based judgments of
citation correctness and factuality. To assess the reliability of this pipeline, we conduct a small-scale
human validation study in which domain experts manually re-evaluate a stratified sample of system
outputs.

We randomly sample results across systems and tasks (with stratification by model), and for each
sampled report we evaluate the following components:

(a) URL-to-paper mapping accuracy. Experts manually resolve each system-generated reference
URL to a canonical scholarly record and compare it with our automatic mapping. The effective
agreement is 96.7%, combining (i) 80% strict agreement on verifiable references and (ii) 16.7%
cases where the model produces unverifiable or fabricated URLs, which should not be counted
as disagreement with the mapping pipeline because these hallucinated URLs have no correct
resolution to begin with. Only 3.3% of cases correspond to genuine technical retrieval failures.
Since unverifiable URLs are treated as incorrect references by construction, they do not inflate
citation scores, and these residual failures have negligible impact on system ranking.

(b) Cited-statement consistency. For statements in the report that explicitly cite a paper, experts
read both the statement and the cited paper and decide whether the statement faithfully repre-
sents the cited work. We then compare these labels with the outputs of our LLM-based citation
judge. The human and LLM labels agree on roughly 90% of evaluated statements, suggesting
that the automatic judge is reasonably aligned with expert judgments in this setting.

(c) Factuality of non-cited statements. For a subset of statements without explicit citations,
experts manually fact-check the content (using the web and standard scholarly search engines)
and assign a binary factuality label. We compare these labels against our multi-model, web-
augmented factuality pipeline. Agreement is high, on the order of 96%, indicating that our
factuality assessment is reliable even when no explicit reference is present.

(d) Citation-level metrics. We then ask experts to manually compute citation-level precision and
recall on the same sampled outputs and compare these values with the corresponding Report-
Bench scores produced by our pipeline. The two sets of results show an agreement rate of
84%, indicating that the final citation metrics closely track expert judgments despite minor
intermediate errors.

(e) Prompt and gold-label validation. Finally, experts examine the automatically constructed
prompts and gold bibliographies for a subset of tasks, checking for faithfulness to the underly-
ing source surveys (no leakage, correct temporal cutoff). In roughly 95% of the sampled tasks,
experts fully agree with the automatically derived prompt and ground-truth bibliography; the
remaining cases are minor edge conditions that do not affect our main conclusions.

Taken together, these results suggest that our automatic evaluation pipeline is well-aligned with
expert judgments across all of its major components, and that residual discrepancies are small com-
pared to the performance gaps observed between systems.

A.2.4 JUDGE-FAMILY SENSITIVITY: GEMINI VS. GPT

One concern with using a Gemini-family model as the LLM-as-a-judge is the possibility of a hidden
family-level bias in favor of Gemini-generated reports. To probe this, we conduct a sensitivity study
with an independent judge model from a different provider.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Comparison of Gemini vs. GPT as LLM-as-a-judge on three representative systems. Left
block: Gemini judge (same as in the main paper). Right block: GPT judge. Prec. = Precision, Rec.
= Recall, MR = Match Rate, Fact. = Factual Accuracy.

Gemini judge GPT judge

Model Prec. Rec. MR (%) Fact. (%) Prec. Rec. MR (%) Fact. (%)

Gemini-2.5-Pro 0.269 0.010 59.24 96.08 0.290 0.011 52.55 91.44

o3 0.299 0.031 31.43 82.22 0.321 0.031 32.01 72.61

Claude-4-Sonnet 0.337 0.021 73.67 92.64 0.365 0.024 64.21 84.06

Specifically, we re-run our citation–factuality evaluation using a GPT-series model as the LLM-
as-a-judge, while keeping everything else fixed: the system reports, the gold references, and the
evaluation pipeline (URL mapping, statement extraction, and scoring logic) are identical to the main
experiments. Table 4 compares the original Gemini-judge setup (as in the paper) with the new GPT-
judge setup on three representative systems. Precision/Recall are reported on the 0–1 scale; Match
Rate and Factual Accuracy are reported in percent.

We obtain two key observations. First, the induced model ranking is unchanged. Under both Gemini
and GPT judges, the relative ordering of systems on citation precision and recall is identical, and
consistent with the overall benchmark ordering. In other words, swapping the judge from Gemini to
GPT perturbs the absolute scores slightly but does not change which systems are better or worse on
our main metrics.

Second, GPT is somewhat stricter at statement-level evaluation. For all three test models, the GPT-
based judge yields lower match rates and factuality accuracies than the Gemini-based judge, indi-
cating a more conservative standard for accepting statements as supported. This suggests that our
original Gemini-based evaluation is, if anything, slightly optimistic rather than biased in favor of
Gemini-generated reports.

Overall, this sensitivity check shows that our main findings are robust to swapping the judge family,
and we do not see evidence that using Gemini-based judges materially advantages Gemini systems
relative to others.

A.2.5 TOOL-CALL BUDGET ABLATION

In the main experiments, we cap the number of tool calls at 5 per task, primarily for practical reasons
such as context length, latency, and cost. To understand how sensitive our results are to this design
choice, we run an explicit ablation on a representative baseline (Gemini-2.5-Pro), keeping everything
else fixed and varying the maximum number of tool calls.

Table 5: Effect of the maximum tool-call budget B on citation and factuality metrics for Gemini-
2.5-Pro on ReportBench. Precision/Recall are on the 0–1 scale; Match Rate and Factual Accuracy
are in %.

Max Tool Calls B Precision Recall Match Rate (%) Factual Acc. (%)

3 0.249 0.008 50.32 96.79

5 (paper setting) 0.269 0.010 59.24 96.08

10 0.275 0.008 57.20 95.71

Table 5 reports the resulting citation and factuality metrics when the maximum tool-call budget B
is set to 3, 5, or 10. Precision and recall are reported on the 0–1 scale, while Match Rate and Factual
Accuracy are reported in percent.

We observe two main trends. First, increasing the budget from 3 to 5 tool calls yields a clear but
modest improvement across citation precision, recall, and match rate, indicating that allowing a few
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additional searches helps the baseline discover more relevant literature. Second, while moving from
5 to 10 calls does slightly increase precision and occasionally match rate, the overall gains are unsta-
ble: recall and factual accuracy fluctuate or even decline. In practice, repeatedly fetching full papers
quickly pushes against the model’s context-length limit, and without additional mechanisms for con-
text compression or longer-term memory, simply raising the tool-call budget does not translate into
consistently better use of the retrieved evidence.

Collectively, these results suggest that the baselines reach a practical performance plateau at around
5 tool calls. This configuration captures most of the benefit from additional search, while higher bud-
gets offer diminishing and noisy returns under our current architecture. We therefore treat the 5-call
setting as a reasonable, saturated operating point; extending the budget further does not materially
change the comparative conclusions of the study.

A.2.6 FAILURE MODES AND ERROR TAXONOMY

To complement the quantitative metrics, we add a qualitative error taxonomy based on manual in-
spection of representative failure cases from multiple systems. Starting from our original distinction
between statement- vs. citation-level hallucinations, we further refine errors into more concrete cat-
egories. In a manually annotated sample of problematic reports, we observe three dominant types.

Temporal-cutoff violations (∼42%). The agent cites papers that clearly post-date the survey’s
publication (e.g., referencing 2024–2025 work in a task whose cutoff is 2021). These are often
otherwise reasonable references, but they break the historical constraint and indicate that the agent
is effectively “peeking into the future” instead of reconstructing the literature as of the survey date.
In one representative case, the agent cites the paper “Federated Learning Security and Privacy-
Preserving Algorithm and Experiments Research Under Internet of Things Critical Infrastructure”
as part of the core literature. However, the task explicitly enforces a temporal cutoff of July 2022,
while this paper appears to have been published around September 2023. This citation is therefore
not counted as a valid match in ReportBench and is categorized as a temporal-cutoff violation: the
reference is thematically relevant but violates the historical constraint on what was knowable at the
time of the original survey.

Unverifiable references (∼21%). The report contains citations that appear plausible in style (au-
thors, venue, year) but cannot be resolved to any real paper (no DOI/arXiv/URL match), or whose
content contradicts the summary in the text. These are classic citation hallucinations and remain a
major source of error. For example, in one failure case the agent writes a plausible paragraph on
manifold learning for multimedia and cites a paper titled “Manifold Learning for Music Information
Retrieval” with a link to a ResearchGate page. When we attempt to resolve this citation against
standard bibliographic sources, we cannot find a corresponding, stable publication record with full
metadata. In our pipeline, such references are treated as fabricated or unverifiable: the citation looks
syntactically reasonable and thematically relevant, but does not map to a concrete paper in the gold
bibliography or in standard indices, and therefore counts as a hallucinated citation rather than valid
prior work.

Misaligned research direction (∼9%). The agent drifts to a neighboring but different topic, re-
sulting in citations and discussion that are coherent in themselves but misaligned with the intended
survey focus. Typical cases include focusing on generic foundation models when the task is specif-
ically about long-context retrieval models, or emphasizing broad “AI in healthcare” literature when
the survey is about a particular subproblem such as continual learning for medical imaging. In such
cases, many cited papers are real and technically relevant to the broader area, but they do not answer
the concrete survey question posed in the task.

This expanded taxonomy clarifies not only that systems fail, but also how they fail, and it highlights
concrete targets for future improvement—for example, stronger temporal control, stricter reference
verification, and better task grounding at the prompt and planning stages.
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A.3 EXAMPLE PROMPTS IN REPORTBENCH

Sentence-level prompt
Please help me research the academic advancements in
different radar data representation methods in the field of
autonomous driving, and ensure only papers published before
April 2025 are referenced.

You also need to follow the following rules:
- Do not refer to the survey titled ‘‘Exploring Radar Data
Representations in Autonomous Driving: A Comprehensive
Review’’.
- Responses are given in the form of an English language
survey with citations where appropriate.

Paragraph-level prompt
I am conducting a literature review on 3D LiDAR localization
technology for autonomous vehicles. I hope you can summarize
and analyze the major research directions and methods in
this field, particularly methods based on 3D point cloud
registration, methods based on 3D features, and emerging
methods based on deep learning. Please ensure that all the
referenced literature is published before November 2020.

You also need to follow the following rules:
- Do not refer to the survey titled ‘‘A Survey on 3D LiDAR
Localization for Autonomous Vehicles’’.
- Responses are given in the form of an English language
survey with citations where appropriate.
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Detail-rich prompt
I need a detailed academic research report on using Graph
Neural Networks (GNN) for text classification. The report
should systematically review advancements in this field, with
a focus on the following aspects:
1. **Core Methodology**: Provide a detailed explanation
and comparison of two main approaches: corpus-level GNNs
and document-level GNNs. For each method, thoroughly analyze
graph construction strategies (e.g., defining nodes and edges
using PMI, TF-IDF, etc.), representation methods for nodes
and edges, and graph learning algorithms (e.g., GCN, GAT,
etc.).
2. **Key Model Analysis**: List and analyze representative
models, such as TextGCN, SGC, BertGCN (corpus-level), and
Text-Level-GNN, TextING (document-level).
3. **Evaluation and Challenges**: Summarize commonly
used benchmark datasets in this field (e.g., 20NG, R8,
MR) and evaluation metrics (e.g., Accuracy, F1-score), and
discuss major challenges faced by current research, such
as scalability, computational costs, and integration with
pre-trained language models.
**Restrictions**:
- Only refer to and cite papers published **before July
2024**.
- Focus on English literature published in top
conferences/journals in natural language processing and
artificial intelligence (e.g., ACL, EMNLP, NAACL, AAAI, WWW,
ICLR).

You also need to follow the following rules:
- Do not refer to the survey titled ‘‘Graph Neural Networks
for Text Classification: A Survey’’.
- Responses are given in the form of an English language
survey with citations where appropriate.

A.4 PROMPTS IN EVALUATION

A.4.1 CITED STATEMENT EXTRACTION

You are given a research report delimited by triple
backticks.
Identify every statement that cites an external source (e.g.
has a URL, DOI, or explicit citation marker) and pair it with
the corresponding URL.
Return a JSON list where each item has two keys:
- "statement": the single-sentence claim, stripped of
leading/trailing whitespace
- "url": the canonical URL that supports that claim
If a citation contains multiple URLs, duplicate the statement
for each URL.
ONLY return valid JSON. Report: ‘‘‘{report}‘‘‘
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A.4.2 NON-CITED STATEMENT EXTRACTION

You are given a research report delimited by triple
backticks.
You are also given a list of statements that already have
citations.
Your task is to identify factual claims or statements that:
1. Make specific assertions about facts, data, or events
2. Are NOT already included in the cited statements list
3. Could potentially be verified through external sources
4. Are NOT common knowledge or widely accepted facts
Exclude:
- Opinions, analysis, or subjective interpretations
- Statements that are already cited
- Common knowledge or universally accepted facts
- Vague or general statements
Return a JSON list where each item has one key:
- "statement": the factual claim that lacks citation support
ONLY return valid JSON.
Report:
‘‘‘{report}‘‘‘
Already cited statements:
{cited statements}

A.4.3 SUPPORTING SOURCE EXTRACTION

You are provided with
Statement: {statement}

Source Document:
{source text}

Return any relevant content from the source document that
supports the statement. This can be a sentence, paragraph,
or even the entire text if necessary.
If no content supports it, return ‘‘NOT FOUND’’.
Return plain text only.

A.4.4 SEMANTIC CONSISTENCY VERIFICATION

You will decide whether a claim is correctly supported by a
source sentence.

Claim from report:
{statement}

Source Sentence from original source:
{source sentence}

Respond with JSON containing:
- "reason": one short sentence explaining your decision
- "match": true or false // true if the source sentence
faithfully supports the claim
Return ONLY the JSON.
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A.4.5 WEB-BASED STATEMENT VERIFICATION

You are tasked with verifying the accuracy of a factual
statement using web search capabilities.

Statement to verify:
{statement}

Please:
1. Use web search to find reliable, authoritative sources
about this statement
2. Analyze the information you find from multiple sources
3. Determine if the statement is factually correct or
incorrect based on your research

Respond with JSON containing:
- "reason": a detailed explanation of your verification
process and findings (2-3 sentences)
- "decision": true if the statement is correct, false if it
is incorrect

Only return the JSON response.

A.4.6 REFERENCE TITLE EXTRACTION

Please analyze the following academic survey and extract all
cited academic paper titles and author information.

Survey content:
{response}

Please reply in JSON format, containing an array named
‘papers‘, where each paper object includes the following
fields:
- title: the title of the paper
- authors: a list of authors
- is academic paper: true (indicating this is an academic
paper)

Example format:
{
"papers": [
{
"title": "Deep Learning for Natural Language

Processing",
"authors": ["John Smith", "Jane Doe"],
"is academic paper": true

},
... ]

}

Note: Only extract explicitly mentioned academic papers.
Do not include books, websites, or other types of references.
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