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Abstract
Federated Learning (FL) is an emerging paradigm
that enables a model to be trained across a number
of participants without sharing data. While recent
works have begun to consider the effects of using
pre-trained models as an initialization point for
existing FL algorithms, these approaches ignore
the vast body of efficient transfer learning litera-
ture from the centralized learning setting. Here
we revisit the problem of FL initialization from a
pre-trained model considered in prior work and
expand it to a set of computer vision transfer learn-
ing problems. We first show that simply fitting
a linear classification head can be efficient and
effective in many cases. Second we demonstrate
that in the FL setting, fitting a classifier using
the Nearest Class Means (NCM) can be done ex-
actly and orders of magnitude more efficiently
than existing proposals, while obtaining strong
performance. Finally, we present that a two-phase
approach of first obtaining the classifier and then
fine-tuning the model can yield rapid convergence
and improved generalization in the federated set-
ting. We demonstrate the potential our method
has to reduce communication and compute costs
while achieving better model performance.

1. Introduction
Transfer learning from pre-trained models trained on suffi-
ciently abundant and diverse data is well known to produce
state-of-the-art results in tasks related to vision (He et al.,
2019; Girshick et al., 2014), Natural Language Process-
ing (NLP) (Radford et al., 2019), and other domains. Pre-
training combined with fine tuning to specialize the model
for a specific downstream task often leads to better gener-
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alization and faster model convergence in the centralized
setting (Weiss et al., 2016; Patel et al., 2015).

Federated Learning (FL) is an approach in which a com-
mon global model is trained by aggregating model updates
computed across a set of decentralized edge devices. It has
attracted significant interest recently due to its focus on data
privacy. FL literature has largely focused on models trained
from scratch (McMahan et al., 2017; Karimireddy et al.,
2020; Li et al., 2020) and the impact of data heterogene-
ity on algorithmic convergence (Li et al., 2020; Acar et al.,
2021; Karimireddy et al., 2020). A key consideration in FL
is the reduction of communication cost, a strong motivator
of the multi-iteration design of the FedAVG algorithm (see
e.g., McMahan et al. (2017)). Recently, several studies have
been conducted on the effect using pre-trained models on
the performance of standard FL algorithms, see e.g., Chen
et al. (2023); Nguyen et al. (2023). Here, it was found that
besides improving performance, pre-training can help to
close the accuracy gap between a model trained in the feder-
ated setting and its centrally trained counterpart, particularly
in the case of non-i.i.d. client data.

Prior work on transfer learning in the federated setting treats
the pre-trained model as a stable initialization for classical
FL algorithms that adapt all the model parameters. Ap-
proaches from the transfer learning literature demonstrate
that it is often more efficient to adapt only parts of the model
such as just the last layers (Kornblith et al., 2019), affine
parameters (Lian et al., 2022; Yazdanpanah et al., 2022),
or adapters (Houlsby et al., 2019). These approaches fre-
quently yield better performance and/or computation time
and more easily avoid over-fitting. Although not studied in
the prior works, we find that updating only the linear clas-
sifier can be highly efficient in the federated setting when
starting from a pre-trained model. It allows for both high
performance, limited communication cost (since only the
linear layer needs to be transmitted), and potentially rapid
convergence due to the stability of training only the final
layer. Training only the linear classifier in a federated setting
can still lead to classical FL problems such as client drift if
not treated appropriately. An example of this is illustrated
in Nguyen et al. (2023, Appendix C).

We propose a two-stage approach based on first deriving a
powerful classification head (HeadTuning stage) and sub-

1



Guiding The Last Layer in Federated Learning

sequently performing a full fine-tuning of the model (Fine-
Tune stage). Such two-stage approaches have been applied
in practice and studied theoretically in the transfer learning
literature (Kumar et al., 2022; Ren et al., 2023b). They
have been shown to give both improved performance in
in-distribution and out-of-distribution settings (Kumar et al.,
2022). We highlight that the two-stage procedure can lead
to many advantages in FL setting:

(a) the fine-tuning stage is more stable under averaging of
heterogeneous models

(b) convergence of the fine-tuning stage is rapid (minimiz-
ing compute and communication cost)

For the HeadTuning stage, our work highlights the Nearest
Class Mean (NCM), a classical alternative to initialize the
classification layer which we call FedNCM in the federated
case. FedNCM can be computed exactly and efficiently in
the federated setting without violating privacy constraints
and we will demonstrate that in many cases of interest, using
FedNCM to tune the classification head can even outper-
form approaches considered in prior work with significant
communication and computation costs savings.

Our contributions in this work are as follows:

(a) We provide empirical evidence that, for numerous
downstream datasets, training only the classifier head
proves to be an effective approach in FL settings

(b) We present FedNCM, a straightforward FL method that
significantly reduces communication costs when used
as a stand alone technique or as an initialization step
for HeadTuning which leads to improved accuracy

(c) We demonstrate that employing a two-stage process
consisting of HeadTuning (e.g., via FedNCM) followed
by fine-tuning results in faster convergence and higher
accuracy without violating FL constraints. We further
illustrate that it can address many key desiderata of FL:
high accuracy, low communication, low computation,
and robustness to high heterogeneity while being easier
to tune in terms of hyper-parameter selection

2. Methods
2.1. Background and Notation

In FL, distributed optimization occurs over K clients with
each client k ∈ {1, ...,K} having data Xk,Yk containing
nk samples drawn from distribution Dk. We define the
total number of samples across all clients as n =

∑K
k=1 nk.

The data Xk at each node may be drawn from different
distributions and/or may be unbalanced with some clients
possessing more training samples than others. The typical
objective function for federated optimization is given in
Eq. 1 (Konečnỳ et al., 2016) and aims to find the minimizer
of the loss over the sum of the client data:

w∗,v∗ ∈ argmin
w,v

K∑
k=1

nk

n
L(g(f(w,Xk),v)) (1)

In Eq. 1 we have split the model prediction into f , a base
parameterized by w that produces representations, and g, a
task head parameterized by v. In this work we will focus on
the case where the task head is a linear model, and the loss
function, L represents a standard classification or regression
loss. The w are derived from a pre-trained model and they
can be optimized or held fixed.

One approach to obtain the task head while using a fixed
w is to optimize only v in a federated manner over all the
data. In the case that g is given as a linear model and we
absorb the softmax into L this is known as Linear Probing
(LP) (Nguyen et al., 2023; Ren et al., 2023a).

2.2. FedNCM Algorithm
An alternative approach to derive an efficient g is through the
use of NCM and we note that FedNCM, the federated ver-
sion of NCM, can be derived exactly addresses many of the
critical concerns in the FL setting including privacy, commu-
nication, and computation time. Specifically, the server only
communicates the pre-trained weights once to each of the
clients and clients only communicate once with the server to
send back their weighted class means. The server can then
use each client’s class means to compute exactly the NCM,
see Appendix C for the complete algorithm. FedNCM can
be used to perform classification directly which corresponds
to just the HeadTuning phase of our two-step method, or the
class centroids can be used to initialize a linear task head for
further fine-tuning, (ie. both phases). An algorithm block
for FedNCM is provided in Appendix C.

To use NCM as an initialization, consider the cross-entropy
loss and (g◦f)(x) = vf(x;w)+b. We set the task-head, v
corresponding to the class c logit with the normalized class
centroid lc/∥lc∥ and the bias term to 0. This allows us to
initialize v with FedNCM and obtain further improvement
through fine-tuning f .

2.3. HeadTune + FineTune
FL algorithms are often unstable due to the mismatch in
client objectives leading to large changes and significant
deviations between client models after local training. When
using a pre-trained model which allows us a powerful initial
representation, we argue that a two-stage procedure will
improve training stability and converge more quickly. In
the first phase (HeadTune) we perform HeadTuning where
the parameters of g are updated e.g. by linear probing in
federated fashion or by using FedNCM. HeadTuning via
FedNCM requires only a single forward pass through the
data, one model communication to each client and one com-
munication of the centroids back. This incurrs a negligible
cost in compute and communication. In the second phase
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(FineTune), f and its parameters w are fine tuned in a feder-
ated setting according to the FL objective function specified
in Eq. 1. With the negligible cost of communication and
compute provided by FedNCM our two-phase approach can
have a substantial advantage with respect to convergence
when compared to simply fine-tuning (Nguyen et al., 2023;
Chen et al., 2023). We also note that our two-phase strategy
is compatible with any federated optimization algorithm in
the literature.

We now give an intuitive interpretation of the advantages of
our method using the framework of Ren et al. (2023a). As-
sume that the k-th worker is initialized via w0, and trained
locally with SGD for several steps until it reaches parame-
ters wk. Writing w∗ the optimal parameter, via triangular
inequality, we obtain the following inequality:

EXk [∥f(wk;Xk)−f(w∗;Xk)∥] ≤ (2)

EXk [∥f(w0;Xk)−f(w∗;Xk)∥+∥f(wk;Xk)−f(w0;Xk)∥]

In the NTK regime, for sufficiently small step size, Ren
et al. (2023a) show that the second term depends on the
approximation quality of the head g0 at initialization. This
term is bounded for some c > 0 by Eq. 3 where σ is the
sigmoid activation and {ei}i the canonical basis.

EXk∥f(wk;Xk)− f(w0;Xk)∥ ≤ (3)
c · E(Xk,Yk)∥eYk − gV(f(w0;Xk))∥

This suggests that a good choice of linear head v will lead
to a smaller right hand side term in Eq. 3, and thus reduce
the distance to the optimum. Consequently, FedNCM or LP
derived v (compared to a random v) may be expected to lead
to a more rapid convergence. Thanks to the initial consensus
on the classifier, we expect less client drift to occur, at
least in the first round of training, when v it initialized by
HeadTuning, compared to a random initialization.

3. Experiments
We experimentally demonstrate the advantages of FedNCM
and the two-stage FedNCM+FT. We also show that LP tun-
ing can at times be more stable and communication efficient
than the full fine tuning which is the almost exclusive focus
of prior work on FL with pre-trained models. We consider
a setting similar to Nguyen et al. (2023) using the CIFAR
10 dataset (Krizhevsky, 2009) and expand our setting to in-
clude four additional computer vision datasets Flowers102,
CUB, Stanford Cars and Eurosat. Additional details of these
datasets as well as a more comprehensive coverage of our
approach to measure communication and compute cost is
described in Appendix B. Unless otherwise specified, we
use SqueezeNet (Iandola et al., 2016), 100 clients, train
for 1 local epoch per round. We set client participation to
30% for CIFAR and 100% for all other datasets. Details

Dataset Method Accuracy Total Total
Compute Comm.

CIFAR-10

Random 67.8 ± 0.6 4.5 × 108 F 1.7Tb
FT Pretrain 85.4 ± 0.4 2.5 × 107 F 10.7 GB
FedNCM+FT
Pretrain

87.2 ± 0.2 2.5 × 107 F 10.7 GB

LP Pretrain 82.5 ± 0.2 7.5 × 107 F 149.3 GB
FedNCM 64.8 ± 0.1 1×F 319 Mb

CIFAR-10 ×32

Random 34.2 4.5 × 108 F 1.7TB
FT Pretrain 63.1 7.5 × 107 F 149.3 GB
LP Pretrain 44.7 2.5 × 107 F 10.7 GB
FedNCM 44.9 1×F 319 Mb

FLOWERS-102

Random 33.2 ± 0.7 3.7 × 107 F 1.7Tb
FT Pretrain 64.5 ± 1.0 3.15 × 106 F 149.3 GB
FedNCM+FT
Pretrain

74.9 ± 0.2 3.15 × 106 F 149.3 GB

LP Pretrain 74.1 ± 1.2 1.05 × 106 F 10.7 GB
FedNCM 71.8± 0.03 1×F 319 Mb

CUB

Random 15.0 ± 0.7 2.2 × 108 F 1.7Tb
FT Pretrain 52.0 ± 0.9 1.9 × 107 F 149.3 GB
FedNCM+FT
Pretrain

55.0 ± 0.3 1.9 × 107 F 149.3 GB

LP Pretrain 50.0 ± 0.3 6.3 × 106 F 10.7 GB
FedNCM 37.9 ± 0.2 1×F 319 MB

Table 1. Accuracy, total compute and total communication costs
of pure HeadTuning methods (below dashed lines) and their coun-
terparts. F is one forward pass of a single sample.

of hyper-parameter tuning for each method are provided in
Appendix F. Data is distributed between clients Following
the method of Hsu et al. (2019) using a Dirichlet distribution
parameterized by α = 0.1. We perform three seeds of each
experiment using the FLSim library described in Nguyen
et al. (2023). In Appendix E and F we demonstrate other
advantages of FedNCM+FT including robustness to larger
numbers of clients and hyper-parameters and compatibility
with multiple FL optimizers and architectures.

Baseline methods We compare our methods to the fol-
lowing approaches as per Nguyen et al. (2023): (a) Random:
the model is initialized at random with no use of pre-trained
model or NCM initialization. This setting corresponds to
the standard FL paradigm of McMahan et al. (2017). (b)
LP: Given a pre-trained model, we freeze the base and train
only the linear head using standard FL optimizer for train-
ing. (c) FT: A pre-trained model is used to initialize the
global model weights and then a standard FL optimization
algorithm is applied. (d) LP and FT Oracles: These are
equivalent baselines trained in the centralized setting that
provide an upper bound to the expected performance.

3.1. Efficiency of Pure HeadTuning for FL
As discussed in Sec. 1 tuning the classifier head alone is at
times as effective as fine tuning in the context of transfer
learning (Evci et al., 2022). In prior work, this situation was
briefly considered as a limited case in Nguyen et al. (2023,
Appendix C.2) using CIFAR-10. Results suggested that
tuning just the linear head (LP) might be a weak approach
in the heterogeneous setting but we revisit this claim and
expand the scope of these experiments to highlight where LP
can be beneficial in terms of performance, communication
costs, and compute time. We also show that FedNCM,
our approach for approximating a good classifier, can be
competitive with orders of magnitude less computation and
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Figure 1. Comparison of rounds vs accuracy as well as accuracy under communication and compute. We observe FedNCM+FT achieves
strong accuracies and often has advantages in terms of performance given a communication or compute budget.

communication cost.

In Nguyen et al. (2023) the CIFAR-10 fine-tuning is done by
feeding the 32× 32 input image directly into a pre-trained
ImageNet model. Since the architectures are adapted to
the 224× 224 size and trained at this scale originally, this
approach can lead to a very large distribution shift and may
be sub-optimal for transfer learning. With this in mind,
we additionally compare to CIFAR-10 using the traditional
approach of resizing the image to the source data (Korn-
blith et al., 2019; Evci et al., 2022). Tab. 1 shows accu-
racy, compute, and communication cost results for Pure
HeadTuning Methods (FedNCM and LP) as well as full
tuning approaches including our FedNCM+FT. In Tab. 1,

the CIFAR-10-32 × 32 row refers to results published in
(Nguyen et al., 2023) which we provide for comparison
with our results. We observe the significant effect using the
model’s native input size has on the results: overall accuracy
is higher (max 86% for the native CIFAR-10-224× 224 vs.
63% for CIFAR-10-32× 32) and the gap observed between
FT and LP is substantially smaller; an absolute improve-
ment of only 4.6% without image re-sizing vs 18.4% when
image re-sizing is done. For both sizes of CIFAR-10 and
on CUB, FedNCM can substantially exceed random per-
formance while maintaining a highly competitive compute
and communication budget. Experiments with Flowers102
show that FedNCM can already far exceed the difficult-to-
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train FT setting and furthermore, LP alone exceeds both
FedNCM and FT. Our two-phase method of FedNCM+FT
outperforms all other methods in terms of accuracy and also
allows high efficiency given a specific, potentially limited
compute and computational budget. We additionally note
that CIFAR-10 contains the same object categories as the
original ImageNet dataset while Flowers102 and CUB do
not. Flowers102 and CUB therefore represent more real-
istic transfer learning tasks and under these conditions we
observe the effectiveness of HeadTuning (FedNCM or LP)
for transfer learning.

3.2. FedNCM then FineTune
We now study in more detail the two-phase approach de-
scribed in Sec. 2.3. Fig. 1 shows the comparison of our
baselines and FedNCM+FT with FedAVG. We show both
accuracies versus rounds as well as accuracy given a commu-
nication and computation cost budget for CIFAR-10, Flow-
ers102, CUB, Stanford Cars and Eurosat datasets. We ob-
serve that when using datasets other than CIFAR-10, LP can
converge rather quickly and sometimes to the same accuracy
as FT, supporting our argument that phase one HeadTuning
methods are very relevant when doing transfer learning in
FL scenarios. In phase two additional fine-tuning allows us
to refine our performance on the transfer learning dataset.
Specifically, when using FedNCM in phase one, achieve a
strong starting accuracy due to the FedNCM initialization.
In phase FedNCM+FT converges with a better accuracy
than FT alone given the same computation budget. This
rapid convergence allows FedNCM+FT to be highly effi-
cient under most communication budgets compared to other
methods as shown in the second column of Tab. 1. For all
the datasets FedNCM+FT is always optimal early on. Fig. 1
shows that for Flowers102, Cars and CUB FedNCM+FT ex-
ceeds LP over any communication budget while for CIFAR-
10 and Eurosat LP can overtake FedNCM+FT after the early
stage. Regardless, FedNCM+FT remains competitive and
ultimately reaches higher performance at convergence. Fed-
NCM+FT obtains the best compute for all datasets except
for Eurosat where we see an initial decrease from FedNCM
although FedNCM+FT quickly recovers to obtain the best
compute performance making it the best algorithm for all
datasets considered. We note overall as compared to FT the
performance improvement can be drastic when considering
the trade-off of accuracy as a function of communication
and compute available. We also remark that the variance of
LP and FedNCM+FT is lower across runs than the FT and
Random counterparts. The Random baseline requires longer
training to reach convergence and the complete curves of all
five datasets are presented in Appendix D.

3.3. Heterogeneity
It is observed by Nguyen et al. (2023) that using a pre-
trained model initialization can reduce the effect of system

100 0.1 0.01
Alpha 

76

78

80

82

84

86

88

90

Ac
cu

ra
cy

88.3

81.8

89.2

85.3

79.4

87.1

80.2

77.0

84.3

Varying Heterogenity CIFAR-10
FT
LP
FedNCM + FT

100 0.1 0.01
Alpha 

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

64.6

75

74.2

64.5

74.9

74.1

56.3

74.9

73.7

Varying Heterogenity Flowers102

FT
LP
FedNCM + FT

Figure 2. We vary the heterogeneity (Dirichlet-α) for CIFAR-10
and Flowers102. Methods with HeadTuning: LP and FedNCM+FT
are more robust, with the substantial advantage of FedNCM + FT
increasing in challenging higher heterogeneity.

heterogeneity, we evaluate this by comparing a specific
Dirichlet distribution. While the effect of heterogeneity
is reduced, we observe that in highly heterogeneous set-
tings we still see substantial degradation in FT as shown in
Fig. 3.3. Here we consider for CIFAR-10 the nearly i.i.d.
α = 100, α = 0.1 as considered in Nguyen et al. (2023),
and a very heterogeneous α = 0.01. Firstly, we observe
that FedNCM+FT can provide benefits in the i.i.d. setting.
As heterogeneity degrades the naive FT setting sees a large
absolute and relative drop in performance. On the other
hand, FedNCM+FT as well as LP are able to degrade more
gracefully.

4. Conclusion
We highlight the importance of the last layers when under-
taking FL from pre-trained models. Based on this observa-
tion we suggest a two phase training approach consisting of
HeadTuning which focuses on the linear classifier in phase
one, followed by Fine-Tuning the entire model in phase
two. We propose FedNCM, a federated version of NCM for
HeadTuning, which when combined as the two phase Fed-
NCM+FT demonstrates advantages in terms of performance,
communication, and computation.
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A. Related work
Federated Learning The best known approach in FL is the FedAvg algorithm proposed by McMahan et al. (2017). For
random initialization, convergence of FedAvg and related algorithms has been widely studied for both i.i.d. (Stich, 2018;
Wang & Joshi, 2018) and non i.i.d. settings (Karimireddy et al., 2020; Li et al., 2020; Fallah et al., 2020; Yu et al., 2019). A
commonly cited problem in FL is the challenge of heterogeneous data and a variety of algorithms have been developed to
tackle this (Li et al., 2020; Hsu et al., 2019; Legate et al., 2023; Karimireddy et al., 2020).

Transfer Learning Transfer learning is widely used in domains where data is scarce (Girshick et al., 2014; Alyafeai et al.,
2020; Zhuang et al., 2020; Yazdanpanah et al., 2022). A number of approaches for transfer learning have been proposed
including the most commonly used full model fine-tuning and last layer tuning (Kornblith et al., 2019) and some more
efficient methods such as selecting features (Evci et al., 2022), adding affine parameters (Lian et al., 2022; Yazdanpanah et al.,
2022), and adapters for transformers (Houlsby et al., 2019). Transfer learning and the effects of pre-training in FL have so far
only been explored in limited capacity. In their recent publication, Nguyen et al. (2023) show that initializing a model with
pre-trained weights consistently improves training accuracy and reduces the performance gap between homogeneous and
heterogeneous client data distributions. Additionally, in the case where pre-trained data is not readily available, producing
synthetic data and training the global model centrally on this has been shown to be beneficial to FL model performance
(Chen et al., 2023).

Nearest Class Means Classifier The use of the NCM algorithm in artificial intelligence has a long history. Each class is
represented as a point in feature space defined by the mean feature vector of its training samples. New samples are classified
by computing the distances between them and the class means and selecting the class whose mean is the nearest. NCM
has been widely used in areas such as continual learning, for example Rebuffi et al. (2017); Li & Hoiem (2017); Davari
et al. (2022) maintain a memory of exemplars used to compute an NCM classifier. Related to our work, recent literature
in continual learning considering pre-trained models were shown to ignore a simple NCM baseline (Janson et al., 2022)
capable of outperforming many more complex methods. In our work this NCM baseline, denoted as FedNCM for the
federated setting, demonstrates similar strong performance for FL while serving as a very practical first stage of training in
our proposed two-step process.

B. Datasets and Evaluation
Details of datasets used in our experimental section. (section 3 are shown in Tab. B.

Dataset Num. Num.
Classes Images

CIFAR-10 10 50000
Flowers102 102 1020

Stanford Cars 196 8144
CUB 200 5994

EuroSAT-Sub 10 5000
Summary of datasets used in our experiments.

Communication and Computation Budget Communication and computation costs of each proposed method are
considered both in total and given a fixed budget for either communication or computation. For the communication costs
we assume each model parameter transmitted is done so via a 32-bit floating point number, allowing us to compute the
total expected communication between clients and server. We emphasize that linear probing only requires that we send
client updates for the classifier rather than the entire model as is the case in the other settings; consequently LP has much
lower communication costs when compared to FT for any given number of rounds. Our proposed FedNCM is a one-round
algorithm incurring even lower communication costs than any other algorithm considered.

For computation time we consider the total FLOPs executed on the clients. We assume for simplicity that the backward pass
of a model is 2× the forward pass. For example, in the case of LP, each federated round leads to one forward communication
on the base model, f , and one forward and one backward (equivalent to two forward passes) on the head, g. Similarly, for
FedNCM the communication cost consists only one forward pass through the data.

C. FedNCM Algorithm
Algorithm 1 outlines the steps in our proposed FedNCM method.
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Algorithm 1 FedNCM. K is the total number of clients, C is the number of classes in the training dataset, Dc is the total
number of samples of class c
Require: (X1,Y1), (X2,Y2), . . . , (XK ,YK) - Local datasets, wpt - pre-trained model

Server Executes:
1: for each client k ∈ K in parallel do
2: [mk

c ]c∈C ← LocalClientStats(Xk, Yk,wpt) ▷ Send to all clients, receive weighted class means
3: end for
4: for each class c ∈ C do
5: lc ← 1

Dc

∑K
k=1 m

k
c ▷ lc can be used in NCM classifier

6: end for

Client Side:
7: function LOCALCLIENTSTATS(X,Y,w)
8: for each class c ∈ N do
9: Let Xc = {xi ∈ X, yi = c}

10: mc ←
∑

x∈Xc
fw(x)

11: end for
12: return [mc]c∈C

13: end function

Dataset Algorithm FedNCM FedNCM + FT FT+Pretrain

CIFAR-10 FEDAVG 64.8 ± 0.1 87.2 ± 0.2 85.4 ± 0.4
FEDADAM 64.8 ± 0.1 89.4 ± 1.1 88.2 ± 0.2

FLOWERS102 FEDAVG 71.8 ± 0.03 74.9 ± 0.2 64.5 ± 1.0
FEDADAM 71.8 ± 0.03 76.7 ± 0.2 66.6 ± 1.0

Table 2. Model performance with different methods for a variety of FL algorithms, for FedAvg and FedADAM. FedNCM+FT outperforms
in all cases.

D. Extended Accuracy Comparison Figures
Figure 3 is the extended version of Figure 1 in the main body of the paper. In the paper we truncate the number of round
displayed for the random setting since random requires many more rounds to converge than the other methods. Figure 3
shows these same figures with the entirety of the training rounds displayed for the random setting.

E. Ablations
We perform a number of ablations, demonstrating other advantages of FedNCM+FT. We show robustness to larger numbers
of clients, insensitivity to hyperparameters, and compatibility with multiple FL algorithms and architectures.

E.1. Choice of FL Algorithm

So far we have focused on FedAvg, since our method is compatible with any FL optimizer we further analyze FedNCM+FT
for the case of FedAdam which obtained some of the higher performances in Nguyen et al. (2023). We observe that
improved FL optimizers can complement FedNCM+FT which can systematically exceed FT. Even with this improved
method, FedNCM which does not require an optimizer, continues to exceed the performance of FT on Flowers102. This
result suggests the considerations of the FL optimization algorithm (Nguyen et al., 2023) are not always the most critical for
optimal performance.

E.2. Varying the Local Epoch

The number of local epochs can drastically affect FL algorithms, typically a larger
amount of local computation between rounds is desired to minimize communication.
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Accuracy for Varying Number of Clients
FT
LP
NCM + FT

Figure 5. We increase the number of clients on CIFAR-
10. FedNCM+FT degrades more gracefully than FT
and LP.

However, this can often come at a cost of degraded performance. We
observe in Fig. 4 as in Nguyen et al. (2023) that FT can be relatively
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1 3 10
Local Epochs

79.0

80.0

81.0

82.0

83.0

84.0

85.0

86.0

87.0

Ac
cu

ra
cy

85.3

79.3

87.1

86.1

81.5

87.2
86.7

82.8

87.2
Varying Local Epochs CIFAR-10

FT
LP
FedNCM + FT

1 3 10
Local Epochs

64.0

66.0

68.0

70.0

72.0

74.0

Ac
cu

ra
cy

64.5

74

74.9

65.8

74.9

75.3

64.5

75.1
75

Varying Local Epochs FLOWERS

FT
LP
FedNCM + FT

1 3 10
Local Epochs

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

Ac
cu

ra
cy

95

93

96

95.1

92.6

94.6

92.7
92.5

94.8

Varying Local Epochs EUROSAT
FT
LP
FedNCM + FT

1 3 10
Local Epochs

42.0

44.0

46.0

48.0

50.0

52.0

54.0

Ac
cu

ra
cy 48.7

41.1

54.6

48.4

41.5

54.4

45.7

42.2

53.8

Varying Local Epochs CARS

FT
LP
FedNCM + FT

Figure 4. We vary the number of local epochs. FedNCM+FT always outperforms FT and nearly always LP in this challenging setting.

robust in some cases (CIFAR-10) to increasing local epochs. How-
ever, we also observe for some datasets that it can degrade, while LP
and FedNCM+FT are less likely to degrade. Overall FedNCM+FT
continues to outperform for larger local epochs.

E.3. Increasing clients

Tab. 5 shows that as we increase the number of clients we observe that
the degradation of FedNCM+FT is less severe than both LP and FT,
suggesting it is stable under a large number of workers being averaged.
As discussed in Sec. 2.3 it is expected in the same round that a
representation would shift less from a starting point, and therefore
since the starting point is the same for all clients, we expect the client
drift within a round to be less given a fixed update budget.

E.4. ResNet18 Experiments

We perform experiments for LP, FT, FedNCM and FedNCM+FT using
the ResNet18 model using the FedAvg algorithm and the CIFAR-10
and Flowers102 datasets. Results are summarized in Table E.4 where
we observe that FedNCM performance is better by almost 13% compared to squeezenet, while FT performance is degraded
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Dataset FedNCM FedNCM + FT FT+Pretrain LP+Pretrain

CIFAR-10 77.74 ± 0.05 79.05 ± 1.31 77.87 ± 4.07 74.73 ± 3.03
FLOWERS102 74.13 ± 0.31 74.1 ± 0.26 34.41 ± 10.16 25.35 ± 2.59

Table 3. ResNet18 model performance for FedAvg. As with Squeezenet, FedNCM+FT continues to outperforms in all cases.
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Figure 6. Hyperparameter grids for FedAdam for CIFAR-10 FT, FedNCMFT (left) and Flowers (right). We observe CIFAR-10 FedNCM-
FT tends to do better or equal for all hyperparameters compared to FT. For Flowers it is much easier to tune, achieving strong values over
a wide range, a noticeable advantage in FL

compared to squeezenet. We hypothesis this is due to the challenges of deeper networks in heterogenous federated
learning. For the Flowers102 dataset, FedNCM and FedNCM+FT produce the best results by far. Additionally, for flowers
FedNCM outperformed all other methods. The variance between runs using ResNet18 is much higher than was observed for
SqueezeNet, FedNCM appears to help stabilize the results since it provides the most consistency by for both datasets.

F. Hyperparameter Tuning
We follow the approach of Nguyen et al. (2023); Reddi et al. (2020) to select the learning rate for each method on the various
datasets. For CIFAR-10 and SqueezeNet experiments we take the hyperparameters already derived in Nguyen et al. (2023).

For CIFAR-10, CUB, Stanford Cars and Eurosat datasets the learning rates for the FedAvg algorithm were tuned via a grid
search over learning rates {0.1, 0.07, 0.05, 0.03, 0.01, 0.007, 0.005, 0.003, 0.001}. For Flowers102, based on preliminary
analysis we used lower learning rates were tuned over learning rates
{0.01, 0.007, 0.005, 0.003, 0.001, 0.0007, 0.0005, 0.0003, 0.0001}.

Prior work on federated learning with pre-trained models has indicated that for FedADAM lower global learning rates
and higher client learning rates were more effective. As a result for CIFAR-10 and Flowers the client learning rate was
tuned over {1, 0.1, 0.01, 0.001, 0.0001} and the server learning rate was tuned over {0.001, 0.0001, 0.00001, 0.000001},
each combination of server and client learning rates were tried. For

F.1. Ease of Hyperparameter tuning

FL algorithms are known to be challenging for hyperparameter selection (Reddi et al., 2020) and this can affect their practical
application. We first note that FedNCM does not have any hyperparameters which already provides a large advantage. In
Fig. 6, we observe the final performance for a grid search over a range of server and client learning rates for FedAdam using
both FT and FedNCM+FT. We observe that FedNCM+FT not only has higher performance but it is also more stable over
the entire hyperparameter grid on Flowers dataset, and outperforms for all settings on CIFAR-10.

G. Compute
We use a combination of NVIDIA A100-SXM4-40GB, NVIDIA RTX A4500, Tesla V100-SXM2-32GB and Tesla P100-
PCIE-12GB GPUs for a total of 1.1 GPU years . In addition to the experiments reported in the paper, this includes
preliminary experiments and hyperparameter searches.
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