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Abstract

Recent advances in localized implicit functions have enabled neural implicit rep-
resentation to be scalable to large scenes. However, the regular subdivision of
3D space employed by these approaches fails to take into account the sparsity of
the surface occupancy and the varying granularities of geometric details. As a
result, its memory footprint grows cubically with the input volume, leading to a
prohibitive computational cost even at a moderately dense decomposition. In this
work, we present a learnable hierarchical implicit representation for 3D surfaces,
coded OctField, that allows high-precision encoding of intricate surfaces with low
memory and computational budget. The key to our approach is an adaptive de-
composition of 3D scenes that only distributes local implicit functions around the
surface of interest. We achieve this goal by introducing a hierarchical octree struc-
ture to adaptively subdivide the 3D space according to the surface occupancy and
the richness of part geometry. As octree is discrete and non-differentiable, we
further propose a novel hierarchical network that models the subdivision of octree
cells as a probabilistic process and recursively encodes and decodes both octree
structure and surface geometry in a differentiable manner. We demonstrate the
value of OctField for a range of shape modeling and reconstruction tasks, show-
ing superiority over alternative approaches.

1 Introduction

Geometric 3D representation has been central to the tasks in computer vision and computer graphics,
ranging from high-level applications, such as scene understanding, object recognition and classifica-
tion, etc, to low-level tasks, including 3D shape reconstruction, interpolation and manipulation. To
accommodate with various application scenarios, a universal and effective 3D representation for 3D
deep learning should have the following properties: (1) compatibility with arbitrary topologies, (2)
capacity of modeling fine geometric details, (3) scalability to intricate shapes, (4) support efficient
encoding of shape priors, (5) compact memory footprint, and (6) high computational efficiency.

While explicit 3D representations have been widely used in recent 3D learning approaches, none
of these representations can fulfill all the desirable properties. In particular, point cloud and voxel
representations struggle to capture the fine-scale shape details — often at the cost of high memory
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consumption. Mesh-based learning approaches typically rely on deforming a template model, lim-
iting its scalability to handle arbitrary topologies. The advent of neural implicit function [44, 7, 37]
have recently brought impressive advances to the state-of-the-art across a range of 3D modeling and
reconstruction tasks. However, using only a global function for encoding the entirety of all shapes,
the aforementioned methods often suffer from limited reconstruction accuracy and shape generality.

To overcome these limitations, follow-up works have proposed to decompose the 3D space into
regular grid [27, 4], or local supporting regions [ 9], where each subdivided shape is approximated
by a locally learned implicit function. The decomposition of scenes simplifies the shape priors that
each local network has to learn, leading to higher reconstruction accuracy and efficiency. However,
these approaches do not take into account the varying granularities of local geometry, resulting in
two major shortcomings. Efficiency-wise, their memory usage grows cubically with the volume of
the 3D scenes. Even a moderately dense decomposition could impose severe memory bottleneck.
Scalability-wise, the regular gridding has difficulty scaling to high resolutions, limiting its expres-
siveness when dealing with intricate shapes with small and sharp geometric features (Figure 4).

We observe that most 3D shapes are typically
consisting of large smooth regions and small-
scale sharp features. In addition, the surface of
interest often consumes only a small portion of
the entire space, leading to an extremely sparse
space occupancy. Based on these observations,
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we propose a novel 3D representation called at depth 3

OctField, that introduces hierarchies to the or-

ganization of local implicit functions to achieve ) o

better memory efficiency and stronger model- Figure I: OctField utilizes an octree structure

ing capacity. As shown in Figure 1, OctField
leverages a hierarchical data structure, Octree,
to adaptively subdivide the 3D space accord-
ing to the surface occupancy and the richness
of geometrical details. In particular, regions
enclosing intricate geometries will be further

to achieve a hierarchical implicit representation,
where part geometry enclosed by an octant is rep-
resented by a local implicit function. OctField
achieves an adaptive allocation of modeling ca-
pacity according to the richness of surface geom-
etry. In particular, intricate parts such as jet en-

gines, tail-planes and the undercarriage are au-
tomatically subdivided to engage more implicit
kernels for higher modeling accuracy, while parts
with regular shapes on the fuselage is encoded us-
ing a coarser-level representation that suffices.

subdivided to allocate more implicit kernels for
higher modeling accuracy. In contrast, we stop
subdivision for octants containing smooth part
geometry as a single implicit kernel would suf-
fice for modeling. Further, we do not allocate
any implicit functions in the unoccupied regions. Hence, OctField could obtain significantly higher
representation accuracy with a slightly deeper octree subdivision, as the modeling capacity has been
adaptively optimized to accommodate the varying granularity of surface details.

As the octree structure is discrete and non-differentiable, it is non-trivial to directly employ octree in
a learning-based framework. We propose a novel hierarchical network that recursively encodes and
decodes both octree structure and geometry features in a differentiable manner. Specifically, at the
decoder side, we model the subdivision of octree cells as a probabilistic process to make the learning
of octree structure differentiable. We employ a classifier to predict whether to subdivide current
cell based on its enclosed geometry features. We validate the efficacy of our new representation
in a variety of tasks on shape reconstruction and modeling. Experimental results demonstrate the
superiority of OctField over the state-of-the-art shape representations in terms of both shape quality
and memory efficiency. Our contributions can be summarized as follows:

* A learnable hierarchical implicit representation for 3D learning, named OctField, that com-
bines the state-of-the-art hierarchical data structure with local implicit functions.

* A novel hierarchical encoder-decoder network that models the construction of octree as a
probabilistic process and is able to learn both discrete octree structure and surface geometry
in a differentiable manner.

* We achieve significantly higher surface approximation accuracy with reduced memory cost
in the 3D modeling related tasks by using our proposed representation.



2 Related Works

Representations for 3D Shape Learning. Various 3D representations have been extensively stud-
ied in 3D deep learning [28]. These surveys [2, 62] discuss various shape representations compre-
hensively. As the raw output of 3D scanning devices, point cloud [46, 47, 65, 49, 53] has received
much attention in recent years. Despite for its simplicity, generating dense point clouds with high
precision remains notoriously difficult. Unlike the other 3D representations, the convolutional net-
work can be directly employed on 3D voxels [36, 11, 20, 59, 60, 61, 64, 23, 10]. Due to the pro-
hibitive computational cost of generating voxels, recent works [55, 57, 56, 52, 32] have introduced
octree to the voxel representation to reduce memory cost. The polygon mesh is the another widely
used representation in modeling and surface reconstruction. However, current learning-based mesh
generation approaches [0, 54, 50, 24, 29, 21, 12, 43] mostly rely on deforming a template mesh,
limiting its scalability to shapes with arbitrary topologies. Recent advances in neural implicit func-
tions [44, 37, 7, , 63, 8, 45] have significantly improved the surface reconstruction accuracy
thanks to its ﬂex1b1hty of handling arbitrary topologies. More recently, [27, 4, 19] have introduced
shape decomposition and local implicit functions to further improve the modeling capacity by locally
approximating part geometry. [33] introduces implicit moving least-squares (IMLS) surface formu-
lation on discrete point-set to reconstruct high-quality surfaces. However, these methods mostly rely
on a regular decomposition and cannot account for sparse surface occupancy and the varying granu-
larities of geometry details, imposing memory bottleneck when dealing with moderately dense sub-
division. OpenVDB [42] incorporates B+ tree with implicit field to achieve hierarchical modeling.
However, the goal of OpenVDB is pursuing extremely fast modeling speed with constant time access
in 3D simulation. Hence, the B+ tree is non-differentiable and too complex to be incorporated into
a learning-based framework. In contrast, OctField is a learnable hierarchical implicit representation
that can be differentiably implemented in our hierarchical network. Further, our representation can
achieve higher modeling accuracy with even less memory compared to the previous local implicit
function approaches [27, 4, 19]. In a concurrent work NGLOD [51], it proposes a similar idea of
leveraging level of details to encode local SDFs hierarchically. A corresponding rendering algo-
rithm is proposed to render the neural SDFs in an interactive rate. However, NGLOD cannot learn
the hierarchical structure of the underlying octree. In contrast, our hierarchical encoder-decoder net-
work learns the non-differentiable structural information in differentiable manner via modeling it as
a probabilistic process. We believe the structural information is crucial for improving the modeling
accuracy and future applications(e.g. 3D semantic understanding, editing).

Learning-based Generative Models. The deep generative models, such as GAN [22] and
VAE [30], have shown promising ability of synthesizing realistic images in 2D domain. 3D learning
approaches have strived to duplicate the success of 2D generative models into 3D shape generation.
3D-GAN [60] pioneers at applying the GAN technology on the 3D voxels to learn a deep generator
that can synthesize various 3D shapes. Generative models on point cloud [, 15, 67] mainly lever-
age MLP layers but struggle to generate dense point sets with high fidelity due to the large memory
consumption and high computational complexity. Recent works on synthesizing 3D meshes either

rely on deforming an initial mesh using graph CNN [54, 58] or assembling surface patches [24, 13]
to achieve more flexible structure manipulation. To better model man-made objects composed of
hierarchical regular shapes, structural relationship has been considered in [18, 66, 17, , 39],

where the box-like primitives are used for initial shape to enhance shape regularity. To fully exploit
the modeling capacity of implicit surface generator, IM-Net [7] has experimented with both VAE
and GAN models to learn stronger shape priors. In a concurrent work, DeepSDF [44] proposes a
auto-decoder structure to train latent space and decoder without using a traditional shape encoder.
Recently, the local implicit methods [27, 4] combine regular space decomposition with local implicit
generators for modeling 3D scenes with fine geometric details. ACORN [35] introduces an adap-
tive multiscale neural scene representation for 2D and 3D complex scenes, which enables to fit the
targets faster and better in an optimized multiscale fashion. In our paper, we propose a hierarchical
implicit generative model for 3D modeling. Compared to other methods, our approach can generate
high-quality 3D surfaces with intricate geometric details in a memory-efficient manner.

3 Method

Overview. OctField combines the good ends of both localized implicit representation and the hi-
erarchical data structure. By adaptively allocating local implicit functions according to the surface



occupancy and the richness of geometry, OctField is able to achieve high modeling accuracy with a
low memory and computation budget. In particular, we decompose the 3D space into hierarchical
local regions using octree structure, where the finest octant encodes the partial shape within its en-
closed space using a learned implicit function. Our decomposition protocol not only considers the
surface occupancy but also the richness of geometry. As show in Figure 2, the octants that carry
an embedded implicit kernel will only be allocated around the surface. Moreover, only the octants
containing intricate geometries will be further divided. This ensures an adaptive memory and com-
putation allocation that the richer surface details will be captured with more local implicit functions
— hence with higher modeling accuracy. In contrast, the unoccupied regions will not be allocated
with any implicit kernels to save the memory and computational budget.

The octree itself is a non-differentiable discrete data structure. We propose a novel differentiable
hierarchical encoder-decoder network that learns both the octree structure and the geometry features
simultaneously. In particular, we formulate the construction of octree as a probabilistic process
where the probability of subdividing an octant is predicted by a MLP layer. This makes it possible to
learn discrete octree structure in a fully differentiable manner. In addition, we train our network in a
VAE manner such that the trained latent space and decoder can be used for a variety of downstream
applications including shape reconstruction, generation, interpolation, single-view reconstruction,
etc. We provide detailed description of the OctField representation and the proposed network in
Section 3.1 and 3.2 respectively.
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Figure 2: 2D illustration of our hierarchical OctField network. We propose a novel recursive
encoder-decoder structure and train the network in a VAE manner. We use the voxel 3D CNN to
encode the octants’ geometry, and recursively aggregate the structure and geometry features using a
hierarchy of local encoder {&;}. The decoding is implemented using a hierarchy of local decoders
{D;} with a mirrored structure with respect to the encoder. Both the structure and geometry infor-
mation are recursively decoded and the local surfaces are recovered using the implicit octant decoder
within each octant.

3.1 OctField Representation

Octree Construction. To build an octree for the input model, we first uniformly scale the 3D
shape into an axis-aligned bounding box and then recursively subdivide the bounding region into
child octants in a breadth-first order. The octant to be subdivided has to satisfy two requirements
simultaneously: (1) the octant encloses the surface of interest; and (2) its enclosed geometry needs
to have sufficient complexity that is worth subdividing. We use the normal variance of the surface as
an indicator of its geometric complexity. Specifically, we formulate the normal variation of a surface
patch S as follows:

V(S) = Ei(V({n.}) + V({n}}) + V({nl})) (1)

where the n, n! ,n’ are the x,y, z-component of the normal vector n* at the i-th sampling point
on the surface; {n’} denotes the collection of n’; V (-) calculates the variations of the input while
E; (-) returns the expectation. In our experiments, we perform regular sampling on the surface where
the sampling points are pre-computed. We repeat the decomposition until the pre-defined depth d is
reached or V(.9) is smaller than a pre-set threshold 7. We set 7 = 0.1 throughout our experiments.

Local Implicit Representation. The implicit function associated with each octant is designed to
model only part of the entire shape. This enables more training samples and eases the training as
most 3D shapes share similar geometry at smaller scales. At each octant, the enclosed surface is



continuously decoded from the local latent code. However, as the finest octant may have differ-
ent sizes, when querying for the value of the local implicit function, we normalize the input world
coordinate x against the center of the octant x;. Formally, we encode the surface occupancy as:
f(ei,x) = Dy, (c;, N(x—x;)), where Dy, is the learned implicit decoder with trainable parameter
04, c; is the local latent code and N (-) normalizes the input coordinate into the range of [—1,1]
according to the bounding box of the octant. To prevent the discontinuities across the octant bound-
aries, we propose to enlarge each octant such that it overlaps with its neighboring octant at the same
level. In our implementation, we let each octant has 50% overlap along the axis direction with
its neighbors. When the implicit value at the overlapping regions is queried, we perform tri-linear
interpolation over all the octants that intersect with this query position.

3.2 Hierarchical OctField Network

To enable a differentiable framework for learning the octree structure and its encoded geometry, we
propose a novel hierarchical encoder-decoder network that organizes local encoders and decoders in
a recursive manner. We embed both the octree structure information and the geometry feature into
the latent code of each octant. As shown in right part of Figure 2, the latent code e; = (g;, a;, 3;)
for octant O; is a concatenation of three parts: (1) a geometry feature g; that encodes the local 3D
shape; (2) a binary occupancy indicator «; that indicates whether the octant encloses any 3D surface;
and (3) a binary geometry subdivision indicator 3; that denotes whether the enclosed geometry is
intricate enough that needs further subdivision. We will show in the following subsections that
how this configuration of latent vector guides the recursive decoding and encoding in our network.
Note that, unlike the prior tree structure-based generative models [66, 38, 31], our approach does
not require a manually labeled part hierarchy, e.g. the PartNet [41] dataset, for training, and can
generate the hierarchical structure automatically using our octree construction algorithm.

3.2.1 Hierarchical Encoder

As shown in Figure 2, the encoder E of our / Hierarchical Encoder&, o p I
network is composed of a hierarchy of local en- @B, 9, mo
I — hidden g
coders {&; } that encodes local geometry feature o vector 9
. . n FC —o—mmmm FC T
and octree structure into the latent code. While : max
\ o — pooling /
our framework supports general geometry en-
coders, we employ a 3D voxel CNN V for eX-  Hicrarchical Decoder D ™
tracting geometry features due to its simplicity B g
of implementation. After constructing the oc- 9, — o
tree for input model, we voxelize the surface — | FC :5 L - :
enclosed in each octant in a resolution of 323. Em—— o
hidden vector % | o I:Iﬁ{.‘
The encoding process starts from the octants at - Z

the finest level in a bottom-up manner. For each ) . )
octant O;, we first compute its binary indicators Figure 3: The architecture of hierarchical encoder

(vi, B;) according to its enclosed geometry. In & and decoder Dy. &) gathers the structure
particular, «; is set to 1 if there exist surfaces (7 ﬁ?j) and geometry g.; feature of child oc-
inside O; and 0 if otherwise; [3; is set to 1 if tants tq its parent octant k£ by a MLP, max-pooling
O,’s enclosed geometry (if a; = 1) satisfies the operation, and another MLP, where ¢; € C}. Dj,
subdivision criteria as detailed in Section 3.1 decodes the parent octant feature gi to fgatures
and 0 if otherwise. We then extract O;’s ge- {gc,} and two indicators Gy, Be, of its child oc-
ometry feature g; by passing its enclosed vox- Fants by two MLPs and classifiers. Two indicators
elized geometry G; to the voxel CNN V. When infer the probability of sqrfage occupancy and the
proceeding to a higher level, our network will Decessity of further subdivision, respectively.
aggregate the children’s latent features to its parent octant. In particular, for a parent octant Oy, we
denote the octant features of its children as {ecj = (gc 51O Be j) lc; € Ci}, where C; represents
the child octants of Oy. Its encoder &, then aggregates the latent features of Oy,’s child octants into
Oy’s geometry feature gy, :

gk:5k(660,ecl,"' 7607)‘ (2)
We then obtain Oy’s latent feature by concatenating gy with Oy’s structure features (aug, Bx). We
perform the recursive feature encoding and aggregation until the root node has been processed.
Specifically, the encoder &; consists of a multi-layer perceptron (MLP), one max pooling layer and
another MLP for output. At the end of encoder, we leverage the VAE re-parameterization technique



to encourage the distribution of the latent space to fit a normal distribution. Note that all the local
encoders &; share its parameters to leverage the similarity of local geometries and to reduce the
network parameters.

3.2.2 Hierarchical Decoder

The hierarchical decoder D aims to decode the octree structure and local octant codes from the
input global feature. It consists of a hierarchy of local decoders {D;} with a mirrored structure with
respect to the encoder E. On the contrary to E, the decoding process starts from the root node and
recursively decodes the latent code of its child octants in a top-down manner. Specifically, for a
parent octant Oy, with geometry feature gi, we decode the geometry features of its child octants
using the decoder Dy:

(eC07ecla"' 3607):D/€ (gk)7 (3)
where ¢; € Cj, denotes the child octant of Oy, and e, = (gcj , Qe s [36].) stands for the geometric
feature and two indicators of the child octant O,. The two indicators provide the probability of
whether the child octants need to be decoded or subdivided. Note that we decode all the 8 child
octants at one time.

In particular, Dy, consists of two MLPs and two classifiers (see Figure 3). We first decode gy, into
hidden vectors v, for all 8 child octants by a MLP. To decode the structure information, we apply
two classifiers Z, and 7, to infer the probability of surface occupancy and the necessity of further
subdivision, respectively. For child octant Oc]., we feed its hidden vector Ve, into Z, and Zj, and
calculate ct.; = Zy(v,,) and B.; = Zj(v,, ). For predicting the g, we apply the other MLP on v, .
If a.; < 0.5, it indicates that O, does not contain any geometry and will not be further processed.
If ac; > 0.5, it means that O, is occupied by the surface and we will further check the value of Be; -
If ﬁcj < 0.5, we will not further subdivide the octant and will infer its enclosed surface using the
implicit octant decoder G and the geometric feature ge;- If B¢; > 0.5, we will proceed to subdivide
the octant by predicting the latent features of its child octants with the same procedure. We repeat
this process until no octants need to be subdivided.

Implicit Octant Decoder. We use a local implicit decoder G to reconstruct the 3D surface within

the octant. For octant O;, we feed its latent geometry feature g; and the 3D query location x to

the implicit decoder G for occupancy prediction. We train G with binary cross entropy loss on the
ep Le @), F (T5)) w;

Z]EP (gz(fep ;U)j (z5))w; , where ]_-()
returns the ground-truth label (inside/outside) for input point, L. (-,-) is the binary cross entropy
loss, P denotes the set of sampling points, w; describes the inverse of sampling density near x; for
compensating the density change as proposed in [7]. Note that G is pre-trained on all the local shape
crops to encode stronger shape prior.

point samples. The training loss for octant O; is: Lge, =

In order to obtain stronger supervision, we strive to recover the local geometry of all the octants
that are occupied by the surface regardless if it belongs to the finest level. Hence, the total loss for
training our hierarchical encoder-decoder network is formulate as follows:

Liotal = Eo,c0[Mgeo + Ly + L1 + BLK L], )
where £, and £ denote the binary cross entropy loss of classifying whether the octant contains
geometry and needs to be subdivided, respectively, L, is the KL divergence loss, and E[-] returns

the expected value over the set of all octants O that enclose surface geometry. We set A = 10.0, 8 =
0.01 throughout our experiments.

4 Experiments

In the section, we will first introduce our data preparation process and then evaluate our approach in
a variety of applications, including shape reconstruction, shape generation and interpolation, scene
reconstruction and shape completion. We also provide ablation study, more comparisons and imple-
mentation details in the supplemental materials.

4.1 Data Preparation

Our network is trained and evaluated on the five biggest and commonly used object categories in
the ShapeNet dataset [5]: chair, table, airplane, car, and sofa. For fair comparison, we use the



officially released training and testing data splits. All the shapes are normalized to fit a unit sphere
and converted into watertight meshes [26] for computing ground-truth signed distance field. We
first build the octree for each model according to the protocol defined in Section 3.1. To account
for the sparse occupancy of surfaces, we apply importance sampling to sample more points near the
surface and exponentially decrease the point density as the distance to surface increases. We sample
10000 points in total for each octant, and calculate its corresponding signed distance to surface. To
deploy 3D CNN, we adaptively voxelize the part shape in each octant to ensure it maintains the 323
resolution regardless the size of the host octant. We use the voxelization code provided by [25].

Metrics. We follow the commonly used reconstruction metrics: Chamfer distance (CD) [3] and
Earth Mover’s Distance (EMD) [48] for quantitative evaluation and comparison with prior methods.

4.2 Shape Reconstruction

In this section, we evaluate the performance

on shape reconstruction and compare with g
the following state-of-the-art approaches that !
are closely related with our method: IM- ]

Net [7], OccNet [37], Local Implicit Grid
(LIG) [27], ConvOccNet [45], Adaptive O-
CNN (AOCNN) [57], and OGN [52]. In partic-
ular, IM-Net and OccNet use a global implicit ~
function to depict the the entirety of 3D shape .

while LIG decomposes the input shape into reg-

ular grid and levelr)ages local ?mplici{)kernels %o @ ® @ @ & 6 @ O

approximate part geometry. AOCNN and OGN Figure 4: Shape reconstruction comparison with

also utilizes the octree structure. However, in- .
’ the basel thod Input, (b) AOCNN
stead of using local implicit functions, AOCNN ( c? Oa(s}illr[le r?e( d;) LSI((EIE? n]pu( é)( O) c cl(\)lgt [ ][ (%)’

uses a single plane to approximate the local ge- ConvONet IM-Net d () O
ometry enclosed in each octant. OGN predicts onvONet [43]. (g) et[7], and (h) Ours).

occupancy in octant without further local geometric feature. We show the visual comparisons in
Figure 4. While IM-Net and OccNet are capable of reconstructing the global shape of the object,
they fail to reconstruct detailed structures. LIG can recover some of the fine-scale geometries but
has difficulty in modeling sharp and thin structures as shown in the second row. Since AOCNN only
uses a primitive plane to approximate local geometry, it suffers from the discrepancy between adja-
cent octants and cannot recover complex local structures due to its limited approximation capability.
In comparison, our approach achieves the best performance in all categories and is able to faithfully
reconstruct intricate geometry details, such as the slats of chair backs, the hollowed bases of the
tables and and the wheels of the cars.

v

We report the result of quantitative compar-

isons in Table 2, 1. Our approach outper- Method IM-Net OccNet LIG  Ours
forms the alterpatlve approaches over all cate- mloUT  79.9 8 7136 8628 87.96
gories and achieves the best mean accuracy in F1t 0.83 0.70 093  0.94

terms of CD, EMD, mloU, and F1 score met-
rics. In particular, our reconstruction accuracy lable 1: Quantitative evaluation on shape recon-
is significantly higher than IM-Net, OccNet and ~ struction, we report mloU and F1 score.

AOCNN over all categories.

Computational Cost. In Table 3, we com-

pare the computational cost with the local im- level 1 2 3 4

plicit approach using regular decomposition — LIG 8 64 512 409
LIG [27]. We show the consumption of local =~ Numberofcells Qurs 8 30 200 1000

implicit cells/octants used for surface modeling LG 01 06 5 0
and the computation memory with an increas- Memory (GB)  Ours 02 12 48 23
ing decomposition level. Thanks to our adap- i i i

tive subdivision, our approach consumes signif- - Typle 3: Comparisons of computational cost with
icantly less local kernels compared to LIG to |G [27]. We show the consumption of the local

achieve similar or even better modeling accu- |15 and memory with respect to different levels
racy. This leap becomes more prominent with ¢ decomposition.



IM-Net Occ-Net LIG AOCNN ConvOccNet OGN Ours
Dataset “cp  EMD (D EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Plane 421 339 562 346 250 257 690 426 3.03 382 743 461 229 247
Car 15.14 446 1354 493 546 408 1661 563 1004 566 1624 623 484 279
Chair 699 377 787 416 237 218 1080 6.76 398 319 1077 565 219 213
Table 8.03 316 747 334 281 227 915 478 383 3.04 903 388 253 171
Sofa 795 251 8.6 281 323 206 939 349 403 285 879 432 3.02 184

Mean 846 345 862 374 327 263 1057 498 498 3712 1045 494 297 219

Table 2: Quantitative evaluation on shape reconstruction. In this table, we report the CD (x107%)
and EMD (x 10~2) scores (smaller is better) on five categories. OctField can achieve the best perfor-
mance on average score and each category by comparing to six baselines (IM-Net [7], OccNet [37],
Local Implicit Grids [27], Adaptive O-CNN [57], ConvOccNet [45] and OGN [52]).

the increasing level of decomposition. As OctField requires additional memory to maintain octree
structure, at low decomposition level, our memory cost is slightly higher than LIG. However, with a
finer subdivision, our memory consumption drops significantly and becomes much lower than that
of LIG. It indicates an increasing advantage of our method in modeling intricate geometry in higher
resolution.

4.3 Shape Generation & Interpolation

As we train our network in a VAE manner, our
model is able to generate diversified 3D shapes
by feeding our pre-trained decoder with random
noise vectors sampled from a normal distribu-
tion. Our network learns a smooth latent space
that captures the continuous shape structures
and geometry variations. To generate novel
3D shapes, we randomly sample a latent vector
in our learned latent space, and decode it into
shape space by extracting its zero-isosurface using MarchingCubes [34]. In Figure 5, we show the
generated results on chair and table categories respectively. Despite the random sampling, our ap-
proach is still able to synthesize high-quality 3D shapes with complex structure and fine geometric
details, e.g. the second and the fourth table in the second row.

Figure 5: Shape Generation. We show the results
generated by randomly sampling the latent codes
in the latent space.

Another approach to synthesize new shapes is

to interpolate between the given shapes in the

latent space. For two input shapes, we inter-

polate their latent codes linearly and feed the

obtained latent vectors to the pre-trained de-

coder for shape interpolation. Figure 6 shows

the interpolated results on the chair and table (a) (b) (c) (d) (e) )
categories. Our approach can achieve smooth

and continuous interpolation even between two Figure 6: Shape Interpolation. The figure shows
highly diversified objects with distinct struc- two interpolated results in two categories: table
tures. In addition, the sharp geometry features, and chair. (a) is source shape, (f) is target shape.
e.g. the six-square-grid base of the table in the

first row, can be well maintained during the interpolation. This indicates that our network is capable
of learning a smooth manifold to generate novel shapes in high fidelity.

4.4 Scene Reconstruction

Compared with a single object, our representation is more advantageous when dealing with large
scenes. Our representation can obtain better reconstruction details while saving computational over-
head. In this section, we illustrate the superiority of OctField on large scene dataset 3D-Front [16].
Further, we compare it with local implicit approach using regular decomposition — LIG [27], convo-
lutional occupancy network [45], NGLOD [51] and ACORN [35] quantitatively and qualitatively.
In Figure 7, we present two camera views in a large scene from 3D-Front [16] dataset.



From the visualization results, we can
observe that our results is capable
of capturing more fine-grained geo- LIG 7.1 36.1

Method CDx10~* EMDx10-2

metric and structure details compared ConvOccNet 10.5 223

to LIG. The other two methods that igégg 171 '73 ;Z é

introduce hierarchical structure also ) )
Ours 6.4 21.1

perform well. It is worth mention-
ing that high-quality visualized re-  Table 4: Quantitative evaluation on scene reconstruction.
sults can be generated by rendering

directly from the SDF of NGLOD[5|]. However, extracting the mesh from the implicit field could
cause loss of reconstruction accuracy. Table 4 shows quantitative comparison results. Our approach
outperforms the alternative approaches over the large scene models and achieves the best perfor-
mance in terms of CD and EMD metrics.

0 o 0O o L 0o 0 o O o

(a) Input Scene (b) LIG (c) COccNet (d) NGLOD (e) ACORN (f) Ours
Figure 7: Scene Reconstruction and Comparison. In this figure, some large scene reconstruction and
comparison with Local Implicit Grid [27], convolutional occupancy network (Conv OccNet) [45],
NGLOD [51] and ACORN [35] are presented. We show that our method can provide more accurate
reconstruction of geometric and structural details of large scenes. The experiment are performed on
3D-Front [16].

4.5 Shape Completion

We evaluate our method in the task of i _—
shape completion. Furthermore, We
compare with the IF-Net [9] and and
demonstrate that our method achieves
more robust completion performance

with less artifacts in Figure 8. Specif- ;
ically, we first voxelize the partial i

point cloud and then map it to the
latent space of OctField representa- (@ Input  (b)IF-Net (c) O-CNN  (d) Ours () GT

tign via a 3DCNN encoder. Th? I€~ Figure 8: Shape Completion and Comparison with IF-
trieved latent code is fed to our hierar-  Ne¢ [9] and O-CNN [56]. Our method is able to recover

chical decoder for reconstructing the complete and faithful 3D shapes only from partial point
octree structure, as well as the geo-  (|ouds.

metric surface. For IF-Net, we also
adopt same voxelization and map the partial voxels to the complete shape by its shape completion
model.

Shape completion results (see Figure 8 and
Table 5) on the table category show that our Method IF-Net  O-CNN  Ours
method achieves more robust completion per- a4

formance with less artifacts. Compared to an- CD(x1077) 4.9 12.1 44
other octree-based method [56], our method
predicts the complete mesh of partial input
rather than dense point cloud.

Table 5: Quantitative evaluation on shape comple-
tion.

4.6 Shape Editing

With the proposed differential octree generative model, our framework enables some potential ap-
plications, such as part editing that modifies or replaces only part of the target geometry. In order



to realize parting edit, we re-parameterize the latent code of the partial local shape, introducing the
local VAE to modify and replace the local geometric shape. In Figure 9, we show the results of the
part editing of our method comparing with a naive method of directly blending two implicit fields
from the source and target shapes. Our approach can generate a smooth transition even between two
distinct structures while the naive blending method cannot guarantee a continuous connection for
local shape editing.

5 Conclusions and Discussions

We have proposed a novel hierarchical implicit

representation for 3D surfaces, coded OctField.

OctField takes advantages of the sparse voxel

octree representation to adaptively generate lo-

cal supporting regions around the surface of in-

terest. By associating a local implicit function

with each octant cell, OctField is able to model

large-scale shape with fine-level details using

compact storage. To accommodate the non-

differentiable nature of octree, we further pro-

pose a novel hierarchical network that models (a) (b) (©)

the octree construction as a probabilistic pro-

cess and recursively encodes and decodes both  Figure 9: Part editing. The figure shows two
structural and geometry information in a differ- edited chairs using our network. ((a) source, (b)
entiable manner. The experimental results have blending the SDF directly, (c) our result)

shown superior performance of OctField over

the alternative approaches in a variety of tasks related to shape modeling, reconstruction, and edit-
ing. In the future, we would like to incorporate semantic meaning into the organization of octree
to encode structural information and enable flexible editing of part-level geometry. In addition, it
is also an interesting avenue to explore adaptive length of local latent code such that local implicit
functions with higher modeling capacity are only dealing with geometries with more intricate de-
tails.

6 Broader Impact

The proposed OctField can serve as a fundamental representation of 3D geometry and thus can
have a positive impact in a broad range of research fields, including computer vision, computer
graphics, and human-computer interaction, etc. Specifically, due to the cost-effective nature of our
representation, our method can reduce the economic cost of 3D environment acquisition from raw
scanning, while maintaining a high-fidelity modeling performance. This could benefit a number of
real-world applications, including modeling large-scale 3D scenes, compressing and transmitting
high-quality 3D models for telecommunication and telepresence. Our generative model can also be
used for low-cost 3D shape generation without the need of performing actual 3D scanning and post
processing, which are expensive and time-consuming. However, at the same time, special care must
be taken not to violate the privacy and security of the private scene owners during the process of
data collection for our model training.
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