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ABSTRACT

Knowledge distillation (KD) exploits a large well-trained t eacher neural network
to train a small student network on the same dataset for the same task. Treating
teacher’s feature as knowledge, prevailing methods train student by aligning
its features with the teacher’s, e.g., by minimizing the KL-divergence between
their logits or L2 distance between their features at intermediate layers. While it is
natural to assume that better feature alignment helps distill teacher’s knowledge,
simply forcing this alignment does not directly contribute to the student’s per-
formance, e.g., classification accuracy. For example, minimizing the L2 distance
between the penultimate-layer features (used to compute logits for classification)
does not necessarily help learn a better st udent-classifier. Therefore, we are mo-
tivated to regularize st udent features at the penultimate layer using teacher
towards training a better student classifier. Specifically, we present a rather
simple method that uses teacher’s class-mean features to align st udent fea-
tures w.r.t their direction. Experiments show that this significantly improves KD
performance. Moreover, we empirically find that student produces features
that have notably smaller norms than teacher’s, motivating us to regularize
student to produce large-norm features. Experiments show that doing so also
yields better performance. Finally, we present a simple loss as our main technical
contribution that regularizes st udent by simultaneously (1) aligning the direction
of its features with the teacher class-mean feature, and (2) encouraging it to
produce large-norm features. Experiments on standard benchmarks demonstrate
that adopting our technique remarkably improves existing KD methods, achieving
the state-of-the-art KD performance through the lens of image classification (on
ImageNet and CIFAR100 datasets) and object detection (on the COCO dataset).

1 INTRODUCTION

Knowledge distillation (KD) is a specific type of methodology in model compression that aims
to train a smaller model (called student) by distilling knowledge, i.e., what has been learned,
in a larger teacher model (Hinton et al.l|2015). Deploying the small st udent model reduces
inference computation (e.g., running time and memory use) compared against the original large
model. Compared to other model compression methodologies such as pruning (Ye et al., [2018)
and quantization (Han et al., 2015), KD has the flexibility of using different architectures of the
student, which is favored by specific real-world applications.

Status quo. Treating teacher features as knowledge, KD distills such knowledge to train
student by encouraging its features to be similar to the teacher’s. Through the lens of image
classification, prevailing methods can be categorized into two types: logit distillation (Fig [T}left), and
feature distillation (Fig [T}right). Logit distillation trains the student by minimizing the KL diver-
gence between its logits and the teacher’s (Hinton et al.l 2015; Zhao et al.| 2022). It assumes that,
if student can produce logits more similar to teacher’s, it should achieve better performance,
approaching teacher performance. However, logit distillation consider only the logit layer but
not other intermediate layers. To exploit such, feature distillation trains student by encouraging
its intermediate-layer features to be similar to the teacher’s, e.g., by minimizing the L2 distance
between their features (Chen et al., 2021; Zagoruyko & Komodakis, [2016a).
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Figure 1: Our main contribution is a simple loss, termed Lg;no, that regularizes the direction and norm of the
student features (details in Sec. @ Laino is applicable to different KD methods which can be categorized
into two types in the context of classification: (left) logit distillation that regularizes logits or softmax scores
(e.g., KD (Hinton et al.} 2015)) and DKD (Zhao et al.,[2022)), and (right) feature distillation that regularizes
features other than logits (e.g., ReviewKD (Chen et al., 2021)). In this work, we apply L4ino to the embedding
feature particularly at the penultimate layer (before logits). Experiments show that learning with £4;,, improves
existing KD methods, achieving the state-of-the-art benchmarking results for image classification (Table[I)) and
object detection (Table[3).

Motivation. Despite the promising results of logit distillation and feature distillation methods, we
note that forcing the student to produce similar logits or features to the teacher’s does not
directly serve the final task, e.g., classification. For example, minimizing the L2 distance between the
penultimate-layer features (used to compute logits for classification) does not necessarily help learn
a better student-classifier. Rather, student features are better regularized by the teacher to
facilitate learning a better student classifier. Therefore, we present a simple method that uses
teacher class-mean features to align student features to help learn its classifier. Moreover,
we empirically find that encouraging the student to produce large-norm features yields better
performance (Fig.2). This echoes other lines of work such as domain adaptation (Xu et al.,[2019) and
pruning (Ye et al.,|2018)). This motivates us to train the student to produce large-norm features.

Contributions. We make three main contributions. First, we take a novel perspective to improve
KD by regularizing student to produce features that (1) are aligned with class-means features
computed by the teacher, and (2) have sufficiently large norms. Second, we study multiple
baseline methods to achieve such regularizations. We show that when incorporating either or both,
existing KD methods yields better performance, e.g., classification accuracy and object detection
precision by the student. Third, we propose a novel and simple loss that simultaneously regularizes
feature direction and norm, termed dino-loss. Experiments demonstrate that additionally adopting
our dino-loss helps existing KD methods achieve better performance. For example, on the standard
benchmark ImageNet (Deng et al., |2009)), applying dino-loss to KD (Hinton et al., 2015) achieves
72.49% classification accuracy (Fig. |5|and Table , better than the original KD (71.35%), with
ResNet-18 and ResNet-50 architectures for student and teacher, respectively. This outperforms
recent methods ReviewKD (Chen et al.,[2021) (71.09%) and DKD (Zhao et al.| 2022) (71.85%).

2 RELATED WORK

Knowledge distillation (KD) aims to train a small st udent model by distilling knowledge of a well-
trained large teacher model. The knowledge is delivered by features produced by the teacher
for training data. Therefore, the key to KD is to align student features to the teacher’s. The
seminal KD method (Hinton et al.| 2015) propose to train student by aligning its logits with the
teacher’s, i.e., minimizing the Kullback-Leibler divergence (KL) between logits. Other works
improve KD by decoupling the KL loss into separate meaningful parts (Zhao et al.,[2022) or consider
logits rankings (Huang et al.l 2022). Distilling logit knowledge alone may not be sufficient as this
does not exploit intermediate-layer features. Hence, feature distillation propose to align more features
at other layers (Romero et al., 2014} [Zagoruyko & Komodakis, [2016a;|[Yim et al., 2017} |Heo et al.}
2019; Passalis & Tefas| [2018a; |Park et al.,[2019; [Tian et al.,[2019; |Chen et al.| 2021}, Beyer et al.,
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Figure 2: Regularizing feature direction and norm help knowledge distillation and improves student’s
performance. We train a Res56 teacher and use the KD method (Hinton et al.l [2015) to train a Res8
student on the CIFAR10 dataset. (a) We propose to regularize student by aligning its feature direction
with that of class-mean features computed by teacher. To do so, we adopt a simple cosine loss term on the
penultimate-layer features (Sec. [3.2-1). Results show that regularizing feature direction improves student’s
performance. (b-c) We train teacher and student to produce 2D features at the penultimate layer using
method KD (Hinton et al.|[2015)). We visualize them as 2D points, colored by class labels, and mark the class
center by x. Notably, the large teacher model produces large-norm features (b), while the small student
model produces small-norm features (c). (d) This motivates us to regularize student by encouraging it to
produce large-norm features (Sec.[3.2.2). To do so, we use the method SIFN (Xu et al} 2019). Results show that
properly regularizing feature norms improves st udent’s performance. Our technical contribution is a simple
loss that simultaneously regularize student feature direction and norm, so we call this loss dino-loss.

2022). In this work, we take a different perspective to improve KD by encouraging the student
to produce features (at the penultimate layer before logits) that are aligned with the direction of
teacher classifier and have large norms to improve generalization.

Constructing classifiers using off-the-shelf features. Off-the-shelf features extracted from a
well-trained model can be used to construct strong classifiers. One simple classifier is to compute
class-mean of training examples in the feature space, and uses such as the classifier (Donahue et al.|
2014; Sharif Razavian et al., 2014} |[Kong & Ramanan, [2021). On the other hand, recent literature
of pretrained large models (Radford et al.| [2021)) shows that using off-the-shelf features and cosine
similarity is a powerful classifier for zero-shot recognition. In this work, we propose to regularize
student features using class-mean of teacher features. We hypothesize that doing so helps learn
better student classifiers. Our experiments justify this hypothesis (Table ).

Learning large-norm features. Multiple lines of work find it important to learn large-norm features
or weight parameters. For example, domain adaptation (Xu et al.| [2019) reveals that the erratic
discrimination of the target domain mainly stems from its much smaller feature norms w.r.t that of the
source domain, and adopting a larger-norm constraint helps adapt a pretrained model (in the source
domain) to a new target domain. Moreover, model pruning finds that features with smaller norms play
a less informative role during the inference (Ye et al., 2018), so it is safe to remove weight parameters
that produce small-norm features without causing notable performance drop. In our work, we also
empirically find that a small-capacity model produces features that tend to collide in the small-norm
region (Fig. [Zk). Therefore, we are motivated to train student to produce large-norm features,
hypothesizing that doing so improves student performance. Our experiments empirically justify
this hypothesis (Fig. [2d, Table ).

3 IMPROVING KNOWLEDGE DISTILLATION BY REGULARIZING FEATURE
DIRECTION & NORM (DINO)

We describe notations and motivate our study of regularizing feature direction and norm to improve
KD. Then, we introduce baselines, followed by our proposed dino-loss.

3.1 NOTATIONS AND BACKGROUND

Notations. Without losing generality, we think of a classification neural network as two modules: a
feature extractor f(-; ©), and a classifier g(-; w), which are parameterized by © and w, respectively.
For the teacher, given input data x, we denote its embedding feature as f* = f%(x;©O?), and
the logits as z' = ¢'(f*; w'). Similarly, the student outputs the embedding features for x as
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§ = f9(x;0°%) and logits as z° = ¢°(f*;w*®). We compute softmax scores in a vector q° =
softmax(z'; 7), where 7 is a temperature (default value as 1). Given N training examples from C
classes, x; and its label y; (where 7 = 1, ..., N), we train a classification model (e.g., the teacher)
by minimizing the cross-entropy (CE) loss L., on all the training data.

Logit distillation trains the st udent by transferring the t eacher knowledge using both the CE
loss L., and a KD loss Lx4. The seminal work of KD (Hinton et al.,[2015]) uses KL divergence as

the KD loss Lyq, i.e., Lra = = Zf\il KL(q!, q3).

Feature distillation distills teacher knowledge by minimizing the difference of intermediate
features at more layers other than the logits (Zagoruyko & Komodakis), 2016a;|Yim et al., 2017} |Chen
et al.,[2021). A typical loss term is the L2 distance £, between student and teacher features
For example, over the embedding features at the penultimate layer (before logits), it applies the L.2

10ss Lra = & SN | Lo(£7, £}) in addition to the CE loss L.

107

The final loss for KD is £ = L. + aLyq, where « controls the significance of the KD loss Ly
depending on distillation choice: either logit distillation or feature distillation.

3.2 BASELINE METHODS OF REGULARIZING FEATURE DIRECTION AND NORM

Recall that we are motivated to regularize student features during training: aligning their direction
with teacher class-mean features, and encouraging them to be large in norm. We focus on the
embedding features £ at the penultimate layer, which are the direct input to a classifier. We compute
the class-mean of the k' class as ¢, = |T1k‘ > €Ty f where 7}, is the set of indices of training

examples belonging to class-k. We now introduce 31mple techniques to regularize st udent features
using ¢y, in terms of feature direction and norm.

3.2.1 FEATURE DIRECTION REGULARIZATION

We present two simple methods below to regularize st udent w.r.t feature direction.

Cosine similarity. We use a simple cosine similarity based loss term to regularize the feature direction
of f7 according to its corresponding class-mean c:

La= CZ > (1 —cos(ff, cx)) M

| kl 1€Ly,

InfoNCE. Using the cosine similarity loss Eq.|l|considers only paired examples and their correspond-
ing class-mean. Inspired by InfoNCE (Oord et al.|[2018), we also consider inter-class examples and
class-means. Therefore, we train student by also minimizing:

L= z Z , Z B exp (cos(f;, cx)) - )

leI Z] 1 exp (cos(ff, c;

3.2.2 FEATURE NORM REGULARIZATION

We present two methods below to regularize student towards producing large-norm features.

L, distance. As shown by Fig. [2, the small-capacity st udent model produces features that have
notably smaller norm than the teacher’s. To train the student to produce larger-norm features,
perhaps a naive method is to increase st udent feature norm towards teacher’s. To this end, we
minimize the L2 distance between features of student and teacher:

Ln CZ ZHf* £7113 (3)
ZGI

While minimizing Eq.[3]is a common practice in feature distillation, it implicitly trains student to
produce features with norms approaching the corresponding larger-norm teacher features.

'When features of student and teacher have different dimensions, one can learn extra modules along
with student to project its features to the same dimension as teacher’s (Chen et al.| [2021).
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Stepwise increasing feature norms (SIFN). We now describe a loss to explicitly increase the norm
of the student features. Inspired by Xu et al.|(2019), we gradually increase the feature norm by
minimizing:

Z ['2 le previous) +, fs (Xi; @iurr'ent)) “4)

where ©7 ;0,5 and OF,,,.,..,,, are parameters of an early checkpoint and the current model being

optimized, respectively; r is a step size to increase the norm of student features during training.

3.3 THE PROPOSED DINO LOSS

For simplicity, we drop the subscript (i.e., the index of a training example or class ID). Let f*
and f? be the embedding features of an input example x computed by student and teacher,
respectively. Based on x’s ground-truth label y, we have its corresponding class-mean c. We compute
the projection of f¢ along the direction of c: p® = e||f*||2 cos(f?, c). We denote the unit vector
e = c¢/||c||2, and p* = e||f*||2. For physical meaning, please refer to Fig.

When the norm of f* is small, or its projection p° has small norm, ~< c
i.e., [|[p*ll2 < ||f!]|2, we encourage the student to output larger-
norm features and align them with the teacher class-mean by
minimizing ||p’ — p®||2. Because the feature norms of different
examples can vary by an order of magnitude (see Fig. 2k), naively
learning with the above can produce artificially large gradients from
specific training data and negatively affect training. Thus, we divide
the above by ||f?||2, which is equivalent to || p?||z:

Ip* = p°ll2 _ lIp'll2 — lIp°|l2 f°.e Figure 3: TIllustration of nota-

Laino = lI£¢]]2 - [I£7]]2 =1- II£t]|2 ) tions used in our dino-loss loss.

Minimizing Eq. [5|amounts to simultaneously (1) increasing the norm of f* and (2) reducing the
angular distance between f* and the class-mean c.

When the norm of f* is large, i.e., ||f*]|2 > ||f*||2, we only minimize the angular distance between
student feature and the class-mean defined by the teacher:
f°.e
[«dino =1— = (6)
[1£2]]2
The above loss means that the feature norm of st udent is no longer explicitly required to reach a
larger value if it is alreayd large enough; yet it is still allowed to increase freely during training. We

merge Eq. [5]and [6]and average over all training examples as our dino-loss (dropping constant 1):

ﬁ ino — 7
“ OZ |:fk 2 max{nfsnz,uftn 7 @

i€Ly,

Compatible with existing KD methods, our dino-loss £Lg;,, can be used altogether with CE loss L.
and KD loss L4 to train student:

L= Lee+ alrq~+ BLaino ¥
« and (5 are the weights for L4 and L4;,,, respectively. The definition of L4 depends on the
distillation method. Otherwise stated, we study Lg4;,,, With the seminal logit distillation method
KD (Hinton et al.,[2015)), so £,4 = KL.

Remark. The dino-loss simultaneously encourages student to output large-norm features (even
larger than teacher’s, as shown in Fig.[d), and directly minimizes the angular distance between
student features and the class-mean defined by the t eacher during training. This is a desired
property in terms of training the st udent to achieve better classification accuracy.

4 EXPERIMENTS

In this section, we explore the efficacy of the proposed regularization techniques, specifically fo-
cusing on their impact on feature direction and norms. Sec..T|describes datasets and part of the
implementation details. Sec..2] benchmarks our approaches and existing KD methods. Sec. 4.3
ablates our dino-loss with in-depth analyses.
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Table 1: Benchmarking results on the CIFAR100 dataset. Methods are reported with top-1 accuracy (%)
on test set. ++ means that we apply the proposed dino-loss to existing methods. Clearly, doing so improves
performance over the original KD methods and outperforms prior KD methods. We mark performance gains
using superscripts in blue.

Homogeneous architectures Heterogeneous architectures
Methods ResNet-56 WRN-40-2 ResNet-32x4| ResNet-50 ResNet-32x4 ResNet-32x4
ResNet-20 WRN-40-1 ResNet-8 x4 |MobileNet-V2 ShuffieNet-V1 ShuffleNet-V2
teacher (T) 72.34 75.61 79.42 79.34 79.42 79.42
student (S) 69.06 71.98 72.50 64.60 70.50 71.82
Feature distillation methods
FitNet (Romero et al..72014) 69.21 72.24 73.50 63.16 73.59 73.54
RKD (Park et al.|[2019) 69.61 72.22 71.90 64.43 72.28 73.21
PKT (Passalis & Tefas|[2018b)| 70.34 73.45 73.64 66.52 74.10 74.69
OFD (Heo et al.|[2019) 70.98 74.33 74.95 69.04 75.98 76.82
CRD (Tian et al.|[2019) 71.16 74.14 75.51 69.11 75.11 75.65
ReviewKD (Chen et al.|[2021) | 71.89 75.09 75.63 69.89 77.45 77.78
) Logit distillation methods

‘KD (Hinton et al.[[2015) 70.66 73.54 73.33 67.65 74.07 74.45
DIST (Huang et al.}[2022) 71.78 74.42 75.79 69.17 75.23 76.08
DKD (Zhao et al.|[2022) 71.97 74.81 75.44 70.35 76.45 77.07
KD++ ) 72.53T1-87 74, 59+1.05 75 54+2.21 70.10+2:3% 75.45+11:38 76.42+197
DIST++ 72.52%0:7 75 00+0:58  76,13+0-34 69.8010-63 75.6010-37 76.6410-56
DKD++ 72.1670-19 75,0210-21 76,28 +0-84 70.821047 77.1110-66 77.4910-42
ReviewKD++ 72.057016 75,6610-57 76071044 70.45+0-56 77.6810-23 77.93+0-15

4.1 SETTINGS

We conduct experiments to validate the proposed regularization techniques on feature direction and
norms in the context of image classification and object detection, including:

CIFAR-100 (Krizhevsky et al.,2009) contains 50k training images and 10k testing images. For each
input image, 4 pixels are added as padding on each side, and a 32 x 32 cropping patch is randomly
selected from the padded images or their horizontally flipped counterparts.

ImageNet (Russakovsky et al.,|2015)) comprises 1.28 million training images and 50,000 validation
images spanning by 1,000 categories.

MS-COCO (Lin et al., [2014) consists of 80 object categories with 118k training images and 5k
validation images.

Our implementation adheres to the established conventions within the field, as in prior works such
as (Tian et al., 2019; [Chen et al., [2021; |Zhao et al., |[2022; |Huang et al., 2022). More details are
attached in Appendix [A|due to the page limit.

4.2 COMPARISONS WITH STATE-OF-THE-ART RESULTS

CIFAR-100 Classification. Table[I]showcases the performances of knowledge distillation on the
CIFAR-100 dataset. In this context, spanning homogeneous and heterogeneous architectures, we
undertake an extensive assessment over prominent feature distillation methods (e.g., FitNet (Romero
et al., [2014), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018b)), OFD (Heo et al., 2019),
CRD (Tian et al.;2019), ReviewKD (Chen et al., 2021))) and logits distillation methods(e.g., KD (Hin{
ton et al.l[2015), DIST (Huang et al.}[2022), DKD (Zhao et al}[2022)). The ++ signifies the integration
of our novel dino-loss into the preexisting methodologies. A salient conclusion from Table |1|is
that our proposed dino-loss manifests exceptional flexibility, which delivers advancements for both
feature and logits distillation methods, irrespective of the homogeneity or heterogeneity for network
architectures. This phenomenon underscores the robust generalization prowess exhibited by the
dino-loss within the realm of knowledge distillation.

ImageNet Classification. We delve deeper into the efficacy of the proposed dino-loss on the more
expansive ImageNet dataset. Table [2] provides supplementary evidence of the flexibility. Remarkably,
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Table 2: Benchmarking results on the ImageNet dataset. Methods are reported with top-1 accuracy (%). “T
— S” marks the architectures of teacher and student, short for knowledge distillation from the former to
the latter. R{18,34,50} are the ResNet18, ResNet34, and ResNet50, respectively. MV1 means MobileNet-V1.
Again, additionally using our dino-loss, methods such as KD, ReviewKD, and DKD obtain better performance
than their counterparts, achieving the state-of-the-art performance on this dataset.

TS  teacher student D _SRRL _ReviewKD _ KD DKD [y 13.+ ReviewKD++ DKD++
Tian et al.|Yang et al. |Chen et al. [Hinton et al.[Zhao et al.
R34— RI18 7331 69.76 71.17 71.73 71.62 70.66 7170 | 71.98 71.64 72.07
R50— MV1 76.16 68.87 71.37 72.49 72.56 70.50 72.05 |72.77 72.96 72.63

Table 3: Detection results (mAP in %) on the COCO val2017 using Faster R-CNN detector. Incorporating
our dino-loss, KD++ and ReviewKD++ obtain performance gains over their original counterparts, achieving the
state-of-the-art KD performance.

R101—R18 R101—R50 R50—+MV2
Method 50 75 50 75 50 75
mAP AP AP mAP AP AP mAP AP AP
teacher 42.04 6248 4588 | 42.04 6248 4588 | 4022 61.02 43.81
student 3326 53.61 3526 | 3793 5884 41.05 | 2947 48.87 30.90
KD (Hinton et al..72015) 3397 54.66 36.62 | 38.35 5941 41.71 | 30.13 50.28 31.35
FitNet (Romero et al.||2014) 3413 54.16 36.71 | 38.76 59.62 41.80 | 30.20 49.80 31.69
FGFI (Wang et al.|[2019) 3544 5551 38.17 | 39.44 6027 43.04 | 31.16 50.68 32.92
DKD (Zhao et al.|[2022) 35.05 56.60 37.54 | 39.25 60.90 4273 | 32.34 53.77 34.01
ReviewKD (Chen et al.|[2021) | 36.75 56.72 34.00 | 40.36 60.97 44.08 | 33.71 53.15 36.13
KD++ ) 36.12 56.81 37.64 | 39.86 61.07 4357 | 33.26 53.71 34.85
ReviewKD++ 3743 5796 40.15 | 41.03 61.80 4494 | 3451 5518 37.21

despite its inherent simplicity, our KD++ approach, which seamlessly integrates the dino-loss into
the naive KD framework, competes head-to-head with the SOTA results (KD++ vs. (ReviewKD,
DKD). Even, it surpasses the existing leading benchmarks on the extensive ImageNet dataset
(Table 2), achieving notable improvements (KD++pg34—, g1s: 71.98% vs. SRRL 34—, g1s: 71.73%,
KD++R50_>]W\/12 72.77% vs. ReVieWKDR50_>M\/1I 7256%)

COCO Object Detection. We verify the efficacy of the proposed dino-loss in knowledge dis-
tillation for object detection tasks on the COCO dataset, as shown in Table [3] Specifically, the
ReviewKD++ yields a significant improvement in performance, outperforming state-of-the-art results
with a remarkable margin.

4.3 ABLATION STUDY

In this subsection, we first investigate the ablation experiments on CIFAR-100 pertaining to feature
norm and direction regularization. Subsequently, we perform a visual analysis of the impact before
and after applying dino-loss. Finally, we conduct intriguing experiments on ImageNet and observe
that our approach accrues advantages from employing larger teacher models.

The isolation of feature direction and norm regularization. Recall that Sec.[3.2.T]and Sec.[3.2.2]
explore the concrete instantiation of feature direction and norm regularization separately. Owing to
space limitations, we present only simple test results for £o (Eq.[3) and SIFN (Eq. ) on CIFAR-100
in Table b} Yet additional offline experiments substantiate that SIFN outperforms L regularization
in terms of performance and consistently affirm that large student feature norms encapsulate
more teacher knowledge. Similarly, Table #a] demonstrates the superior gains of cosine (Eq. [I)
compared to InfoNCE (Eq. [2), further underscoring the significance of feature direction constraints.

DINO loss yields better results. We discuss the benefits of the independent amalgamation of
feature norm and direction regularization. Table |4c| consolidates feature direction regularization
(cosine, InfoNCE) and feature norm (L5, SIFN), unveiling that the optimal setting (cosine + SIFN)
leads to superior performance (69.07%) among all combinations. Nevertheless, upon meticulous
scrutiny, it becomes apparent that directly integrating feature direction with norm regularization can
prove deleterious, as it engenders lower results than separate regularization. For instance, (cosine +
L) or (cosine + SIFN) reduces accuracy from 69.18% to 68.62% (-0.56%) and 69.07% (-0.11%),
respectively. Similarly, (SIFN + cosine) or (SIFN + InfoNCE) results in a substantial decline from
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Table 4: Analysis of feature direction and norm regularization. We train teacher (ResNet-50) and
student (MobileNet-V2) models on the CIFAR100 dataset and report accuracy (%) on its test-set. We use
KD (Hinton et al.l 2015) as the baseline, which is a logit distillation method. From (a-b), we see that applying
either direction or norm regularization on st udent features improves KD as shown by the increased student
accuracy. While combining both outperforms baseline (c), using dino-loss achieves the best (d).

(a) Regularizing feature direc- (b) Regularizing fea- (¢) Regularizing both fea-(d) The proposed dino-loss

tion only. ture norm only. ture norm and direction. ~ works the best.

case R50-MV2 R56-R20  case acc. case acc.  case acc.
baseline  67.65 70.66 baseline 67.65 cosine + Lo 68.62 CE + KL (baseline) 67.65
cosine 69.18 71.75 Lo 69.05 cosine + SIFN  69.07 CE + DINO 68.78
InfoNCE  69.06 70.73 SIFN  69.32 InfoNCE + £L> 68.47 KL + DINO 68.68

InfoNCE + SIFN 68.71 CE + KL + DINO 70.10

Table 5: Comparison of using teacher’s classifier weights (dubbed “w/ weights™) versus per-class mean
features (dubbed “w/ class-mean”) in our dino-loss. We study them with the KD method (Hinton et al.||2015) on
the CIFAR-100 dataset. Results show that using per-class mean features outperforms classifier weights.

Homogeneous architectures Heterogeneous architectures

Methods ResNet-56 WRN-40-2 ResNet-32x4| ResNet-50 ResNet-32x4 ResNet-32x4
ResNet-20 WRN-40-1 ResNet-8 x4 |MobileNet-V2 ShuffleNet-V1 ShuffleNet-V2

teacher 72.34 75.61 79.42 79.34 79.42 79.42

student 69.06 71.98 72.50 64.60 70.50 71.82

KD (Hinton et al.[2015)|  70.66 73.54 73.33 67.65 74.07 74.45

L2 of cls weights 70.54 73.61 73.76 66.81 73.62 74.13

w/ weights 71.73 73.97 75.06 69.76 75.24 75.61

w/ class-mean 72.53 74.59 75.54 70.10 75.45 76.42

69.32% to 69.07% (-0.25%) and 68.71% (-0.61%), respectively. In contrast, the proposed dino-loss
exploits both strategies, yielding the best performance at 70.10% accuracy (Table [4d).

Class-mean vs. classifier weights. We perform a quantitative analysis of the classifier weights and
per-class feature centers. We adopt the classifier weights that are derived from teacher as centers
in our dino-loss to train st udent models (dubbed “w/ weights”). In comparison, we utilize per-class
feature centers, denoted as “w/ class-mean” (which is our proposed method). The results presented in
Table [5] clearly demonstrate that the utilization of per-class feature centers surpasses the performance
achieved by using teacher’s classifier weights. Additionally, we have implemented an alternative
approach that employs an L2 loss to guide the student to output classifier weights similar to
those of the teacher (referred to as “L2 of cls weight”). However, this approach consistently
underperforms our “w/ class-mean” method and even lags behind the baseline KD method (Hinton
et al., 2015)) in most experimental settings. These findings provide strong evidence for the superiority
of employing class-mean features over the teacher’s classifier weights.

¥

—90 —60 =30 O 30 60 90 40 20 0 20 40 40 20 0 20 40 —90 —60 =30 0 30 60 90
(a) teacher (b) naive small model (c) student by KD (d) student by KD++

Figure 4: Visualization of 2D embedding features. (a) Features computed by teacher (ResNet-50) are well
separated at class label; note the purple class pointed by red arrow. (b) a small-capacity model (ResNet-18) fails
to separate this class, which is occluded by others. (c¢) Even using KD (Hinton et al.|[2015)) to train ResNet-18
student cannot reveal this purple class. (d) Using our dino-loss along with KD, i.e., KD++, achieves better
separation of the points and reveals purple class. This attributes to the feature direction regularization using
teacher class-means. Moreover, student features in (d) have larger-norms than the teacher in (a).
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Figure 5: DINO can benefit from larger teachers. With the teacher capacity increasing, our method, KD++,
DKD++ and ReviewKD++ (red) is able to learn better distillation results, even though the original distillation
methods (blue) suffers from degradation problems. The student is ResNet-18, with scaling up the teacher
from ResNet-34 to ResNet-152, and reported the Top-1 accuracy (%) on the ImageNet validation set. All results
are the average over 5 trials.

KD++ as a stronger baseline. Table [4d| illustrates the impacts of different losses in canonical
knowledge distillation. By incorporating dino-loss into conventional KD framework (Hinton et al.,
2015), KD++ (i.e., CE+KL+DINO) achieves a stunning result (KD (67.65%)— KD++ (70.10%)).
Interestingly, combining dino-loss alone with CE or KL can also boost the accuracy by about 1%
compared to classical KD. It is worth noting that KD++ introduces virtually no additional parameters
and minimal computational overhead, making it a stronger baseline for knowledge distillation (more
validations can be gleaned from the results presented in Table [T&2}&3).

In addition, we visually examine the feature with a learnable dimension reduction approach (Wen
et al.,[2016), as shown in Fig. @] First, as indicated in Fig. , KD++ demonstrates notably amplified
feature norms, surpassing even those of the teacher depicted in Fig. 4. Furthermore, the direction
in KD++ align well with the teacher (Fig. B vs. Fig.[dd, thereby maintaining consistent relative
margins among categories. Another observation is that both the naive student (Fig.[dp) and the
conventional KD (Fig. k) exhibit direct failures in classifying the purple category, whereas our
approach, KD++ (Fig. [dd), effectively reattends to the "disappeared” category.

Benefit from larger teacher models. Since previous experiments highlight that consistent direction
with a larger norm for student can better facilitate the assimilation of knowledge from teacher,
we further investigate whether our approach exhibits monotonic incremental gains when faced with
larger teacher. As shown in Fig. E], it is evident that for KD (Hinton et al.| [2015), DKD (Zhao
et al.}2022) and ReviewKD (Chen et al., 2021) show a degradation or fluctuation trend when scaling
up the teacher from ResNet-34 to ResNet-152. Surprisingly, upon incorporating our dino-loss, the
results showcase a consistent improvement (e.g., KD++: 71.99% — 72.49% — 72.54% — 72.59%).
In addition, we also experimented with distilling from Transformer (Dosovitskiy et al., 2020) to
ResNet in Appendix [B.5] and studied the effect of increasing the size of the student on knowledge
distillation in Table B3| These results show that KD++ consistently outperforms its competitors
by a significant margin across fifferent settings, including: larger teacher, larger student, and
heterogeneous architectures. This is a desired property that simple distillation methods outperform
sophisticated ones.

5 DISCUSSION AND CONCLUSION

Broader Impacts and Limitations. As our work falls in the area of knowledge distillation, we do not
see any new potential societal impacts other than those already known, e.g., student models might
learn bias and unfairness delievered by the teacher. Our work has some visible limitations, e.g.,
we apply dino-loss to the penultimate layer only, and we do not study how to distill large pretrained
models (e.g., language models). Addressing these are important and future work.

Conclusion. We study feature regularization w.r.t norm and direction when training student
models for better knowledge distillation (KD). Indeed, experiments demonstrate that doing so with
our explored simple methods and the proposed dino-loss helps existing KD methods achieve better
performance. We expect the proposed dino-loss to be a plug-in in future KD methods.
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Appendix

A MORE IMPLEMENTATION DETAILS

For fair comparisons, our implementation adheres to the previous methodologies outlined in (Tian
et al., 2019;Chen et al., 2021}, |Zhao et al., 2022} Huang et al., [2022). The hyperparameters « and
are determined through an exhaustive search conducted within a predefined range, aligning with the
established practices in prior studies.

CIFAR-100 (Krizhevsky et al.,2009) contains 50k training images and 10k testing images. For each
input image, 4 pixels are added as padding on each side, and a 32 x 32 cropping patch is randomly
selected from the padded images or their horizontally flipped counterparts. We employ weight
initialization as described in|He et al.|(2015)), training all st udent networks from scratch, while the
teachers load the publicly available weights from [Tian et al.|(2019)). The student networks are
trained using a mini-batch size of 128 over 240 epochs (with a linear warmup for the first 20 epochs),
employing SGD with a weight decay of Se-4 and momentum of 0.9. We set the initial learning rate of
0.1 for ResNet (He et al.,2016) and WRN (Zagoruyko & Komodakis, 2016b) backbones, and 0.02
for MobileNet (Sandler et al.,|[2018)) and ShuffleNet (Ma et al.,2018) backbones, decaying it with a
factor of 10 at 150th, 180th, and 210th. The temperature is empirically set to 4.

ImageNet (Russakovsky et al.,[2015)) comprises 1.28 million training images and 50,000 validation
images spanning by 1,000 categories. We employ SGD with a mini-batch size of 512 for a total
of 100 epochs (with a linear warmup for the first 5 epochs). The initial learning rate is set to 0.2
and is reduced by a factor of 10 every 30 epochs. Besides, the weight decay and momentum are
set to le-4 and 0.9, respectively. The pre-trained weights for teachers come from PyTorcl‘E] and
TIMM (Wightman), |2019) for fair comparisons. The temperature for knowledge distillation is set to 1.

COCO 2017 (Lin et al., [2014) consists of 80 object categories with 118k training images and 5k
validation images. We utilize Faster R-CNN (Ren et al.} [2015) with FPN (Lin et al., 2017)) as
the feature extractor, and employ the dino-loss on the R-CNN head, wherein both teacher and
student models adopt ResNet (He et al., 2016). In addition, MobileNet-V2 (Sandler et al., 2018))
is used as a heterogeneous student model. All student models are trained with 1x scheduler,
following Detectron2 El

Our proposed dino-loss function regularizes the norm and direction of the st udent features at the
penultimate layer before logits. The embedding features of the student and teacher models
may have different dimensions. This can be addressed by learning a fully connected layer (followed
by Batch Normalization) with the student to project its features to the same dimension as the
teacher’s.

B ADDITIONAL ABLATION STUDIES

B.1 THE IMPACT OF HYPER-PARAMETERS & AND f3

In the Eq. (8] we introduce the KD++ loss function as £ = L. + aLxrq + BL4ino- As elucidated
in the experiment details, the values of « and 3 are acquired through an exhaustive search within
a predefined range. To substantiate the efficacy of the proposed dino-loss, we conduct extensive
experiments aiming at probing the sensitivities of the hyperparameters « and 3, as depicted in Fig.
The dashed lines illustrate the standard KD loss (corresponding to specific setting(a = 1 and 5 =
0)) in Fig. [ATh. Evidently, our proposed dino-loss consistently surpasses the scenario devoid of
dino-loss as 3 ranges from 0.5 to 4.0 (the solid line always surpasses the dashed line for the same
color). Furthermore, in Fig. , when the optimal (3 value is fixed, the distilled performance exhibits
consistent enhancement compared to the baseline as « varies. These results compellingly attest
to the overarching efficacy of the proposed dino-loss in our experiments, with the sensitivity of
hyperparameters merely influencing the magnitude of improvement.

Zhttps://pytorch.org/vision/stable/models.html
3https://github.com/facebookresearch/detectron2
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Figure Al: The impact of hyper-parameters o and 3. The dashed lines illustrate the performance based on
standard KD loss (corresponding to the specific setting (o = 1 and 8 = 0)). (a). « is set to 1, then evaluate the
impact of 3. (b). keep best (3 fixed, assessing the impact of a.

Certainly, an alternative approach worth contemplating for acquiring optimal parameters entails
performing a grid search within the hyperplane spanning by « and 3. Nevertheless, such an approach
incurs heightened intricacy and computational demands. The goal of this study, however, resides in
substantiating the efficacy of the proposed dino-loss, thereby necessitating the demonstration that
outcomes attained with non-zero 3 surpass those achieved through the conventional KD setting (a=1
and $=0). In practical scenarios pertaining to knowledge distillation tasks, it becomes feasible to
ascertain the optimal « and (8 parameter pairs by undertaking a grid search across the o — (3 parameter
space, while judiciously considering the facet of actual performance augmentation.

72.21
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5714 ReviewKD 57159 OFD
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(a) ResNet-34—ResNet-18 (b) ResNet-50—MobileNet-V1

Figure A2: Wall-clock time per training iteration vs. accuracy on the ImageNet validation set. left:
homogeneous architectures, right: heterogeneous architectures. Enlarged circles correspond to a higher demand
for parameters.

B.2 COMPLEXITY COMPARISONS

In this subsection, we present simple comparisons for mainstream knowledge distillation methods,
as illustrated in Fig.[A2] Fig.[AZp and Fig.[AZb showcase examples of homogeneous distillation
(ResNet-34 — ResNet-18) and heterogeneous distillation (ResNet-50 — MobileNet-V1) on the
ImageNet dataset. We measure the average time cost per batch iteration over the entire dataset as
the horizontal axis and the Top-1 accuracy as the vertical axis. The varying sizes of circular markers
representing different methods are proportional to the actual model parameter sizes. It is clear that our
approach (KD++) delivers better performance with a small amount of time expense. It is important to
highlight that in heterogeneous knowledge distillation tasks, there is typically a disparity in feature
dimensions. Consequently, the inclusion of a bridging linear dimension transformation layer becomes
imperative, attributing to the marginal increment in parameterization observed in our method, KD++,
as compared to the classical KD approach.
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Figure A3: Embedding features visualization on CIFAR-10. Teacher and student are ResNet-56 and
ResNet-20, respectively. The same color belongs to the same category. x mean that class centers.

B.3 MORE VISUALIZATION OF EMBEDDING FEATURES

Although PCA [1901) or t-SNE (Maaten & Hinton| 2008) have proven to be effective
nonlinear dimensionality reduction techniques, we still adhere to the common practice of providing
a more intuitive understanding. Therefore, we follow the approach of (Wen et al., 2016}, Xu et al.}

and introduce a 2-dimensional learnable feature output at the feature layer for visual analysis.
We select the feature statistics of 10 classes from the teacher and student models on CIFAR-10
and visualize their 2D features, as shown in Fig.[A3] Our approach, KD++, clearly demonstrates
more intuitive results.

B.4 DOES THE MAGNITUDE OF TEACHER NORM MATTER ?

In earlier sections, we discover that improving the student’s norm benefits knowledge distillation.
Therefore, a natural question arises: does increasing the t eacher norm also contribute to improving
student performance? To investigate this, we conduct simple experiments where we introduce a
scaling factor, denoted as m, to the norm of the teacher in Eq.[7]as follows:

f? €L
E ino — L 9
dino =G Z |Ik| Z S (6 e £ 2 (L1 )} ®

Interestingly, our experimental results (Table [BI) indicate that in the context of homogeneous
knowledge distillation, altering the norm of the teacher, whether increasing or decreasing it, does
not lead to better improvement in student performance compared to maintaining the original
norm of the teacher. However, in the case of heterogeneous knowledge distillation, there may be
benefits in appropriately increasing the norm of the teacher features. It is worth noting that since
this experiment has not been tested on a large-scale dataset, we cannot definitively conclude whether
a larger teacher norm will always result in improvements. Nonetheless, this presents a promising
direction for future exploration, where joint constraints on the norm size and direction can be applied
to both teacher and student.

Table B1: Altering the norm of the teacher mode with a scaling factor m. Classification accuracy on the
CIFAR-100 test set. The gray background indicates the default setting.

m -0.5 -0.1 0.0 0.1 0.5 0.7 1.0 1.5 2.0
R56— R20 | 71.57 | 72.19 | 72.53 | 71.76 | 71.86 | 71.64 | 71.79 | 71.74 | 71.92
R50— MV2 | 69.46 | 69.43 | 70.10 | 70.17 | 70.23 | 69.68 | 69.72 | 68.49 | 69.44

B.5 EXPERIMENTS WITH LARGER TEACHER AND LARGER STUDENT

Fig. 5] clearly shows that our method can benefit from larger teachers. We report the mean top-1
accuracy on the validation with standard deviation over five runs, and the results of distillation from
ViT (Dosovitskiy et al.,[2020) to ResNet in Table[B2] KD++ consistently outperforms the competi-
tions. Nonetheless, owing to the architectural differences, specifically the contrasting characteristics
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Table B2: Our method could benefit from larger teachers. Methods are reported with top-1 accuracy
(%) on the ImageNet validation set. With teacher capacity increasing, student models (trained with our
dino-loss) achieve better classification results. Yet, previous KD methods do not necessarily obtain better results
by distilling larger teachers. * represents our implementation based on the official code. All results are the
average over 5 trials. We mark standard deviation using superscripts in blue.

student teacher student teacher|— KD ReviewKD DKD KD++ ReviewKD++ DKD++
Hinton et al.| |Chen et al.| Zhao et al.
ResNet-34 7331 170.68 0095 71.62°0051 717750072 [71.0970-052 7] 6550051 72.,080-017
ResNet-50 76.16 71_351('.1)1»2 71‘09:() 047 71.85:“ 054 72'49:1\ 093 71_731{1.01\ 72_[[1(!.()12
ResNet-18 ResNet-101 69.76 77.37 71.09L[).H‘}3 70.95711 050 72408*” 063 72.54,(! 036 71.79LH.UM 72.29LU.111»(;
ResNet-152 7831 |71.1310:057 71,39+0.044 71 g7+0.060 |72 59+0.056 71 g6+0.051 72 47+0.065
ViT-S 74.64 |71.32+0:061 n/a 71.2170:068171,46+0-052 n/a 713310013
ResNet-18 69.76 B . . .
e VIT-B 7800 [71.63°00°0 71620071 (718470050 71691007

of global attention in Transformer and local receptive fields in Convolution, the benefits are not as
conspicuous as in cases with homogeneous architectures.

We used KD++ to study the effect of increasing the size of the student on knowledge distillation,
and set the teacher as ResNet-152. The results are shown in the Table [B3] and demonstrate
that increasing the capacity of the st udent can significantly improve the distillation results, even
surpass the teacher, such as ResNet-152 distilled to ResNet-101: 78.31% — 79.15%.

Table B3: Larger students get better distillation. The teacher is ResNet-152 (top-1 acc, 78.31%), and
reported with top-1 accuracy (%) on the ImageNet validation set.

student ResNet-18 ResNet-34 ResNet-50 ResNet-101
naive (He et al.,72016) 69.76 73.31 76.16 77.37
KD (Hinton et al.|[2015) 70.66 74.84 76.93 78.04
KD++ 71.98 75.53 77.48 79.15

B.6 THE SAMPLE SELECTION STRATEGY FOR CLASS MEAN

For small-scale datasets such as CIFAR, we compute the mean of the embedded features of samples
in the entire training set as the class centers. In practice, these models often suffer from overfitting,
achieving close to 100% accuracy on the training set. Therefore, using all samples does not affect the
class centers. However, for large-scale datasets like ImageNet, the models exhibit lower accuracy on
the training set (e.g., 73.31% for ResNet-34). In such cases, using all training samples to evaluate class
centers would inevitably impact the distribution of each class center. We investigate two methods for
computing class centers on ImageNet: (1) utilizing all samples and (2) only considering the correctly
predicted samples by the teacher model. It is important to note that all samples are derived from
the training set. The teacher and student models are ResNet-34 and ResNet-18. We found that
the result (72.01%) by only the correctly predicted samples by the t eacher slightly outperforms
using all samples (71.98%). This confirms the existence of this issue in large-scale datasets; however,
the impact is insignificant. Therefore, we default to using all samples for computing class centers.
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