

CHARACTERSHOT: CONTROLLABLE AND CONSISTENT 4D CHARACTER ANIMATION

Anonymous authors

Paper under double-blind review

Figure 1: Given any character image and a 2D pose sequence, **CharacterShot** synthesizes dynamic 3D characters with precise motion control and arbitrary viewpoint rendering, achieving both spatial-temporal and spatial-view consistency in 4D space.

ABSTRACT

In this paper, we propose **CharacterShot**, a controllable and consistent 4D character animation framework that enables any individual designer to create dynamic 3D characters (i.e., 4D character animation) from a single reference character image and a 2D pose sequence. We begin by pretraining a powerful 2D character animation model based on a cutting-edge DiT-based image-to-video model, which allows for any 2D pose sequence as controllable signal. We then lift the animation model from 2D to 3D through introducing dual-attention module together with camera prior to generate multi-view videos with spatial-temporal and spatial-view consistency. Finally, we employ a novel neighbor-constrained 4D gaussian splatting optimization on these multi-view videos, resulting in continuous and stable 4D character representations. Moreover, to improve character-centric performance, we construct a large-scale dataset Character4D, containing 13,115 unique characters with diverse appearances and motions, rendered from multiple viewpoints. Extensive experiments on our newly constructed benchmarks, CharacterBench and HumanBench, demonstrate that our approach outperforms current state-of-the-art methods. Code, models, and datasets will be publicly available.

1 INTRODUCTION

When people watch the scientific films such as *The Iron Man*¹ series, they are often amazed by the films' astonishing realism, which leads some to wonder whether such advanced flying suits actually exist in real life. Unfortunately, the answer is *no*, these characters are created by computer-generated imagery (CGI), which includes sophisticated technical chains-from professional 3D modeling and advanced motion capture to complex rigging and retargeting. This CGI pipeline is widely used in film, gaming, and the metaverse, and it requires specialized equipment and significant manual effort

¹[https://en.wikipedia.org/wiki/Iron_Man_\(2008_film\)](https://en.wikipedia.org/wiki/Iron_Man_(2008_film))

054 to build dynamic 3D characters—a process also known as 4D character animation. In this paper, we
 055 introduce CharacterShot, a novel framework that democratizes a low-cost CGI pipeline accessible
 056 to individual creators. As shown in Figure 1, CharacterShot supports diverse character designs and
 057 custom motion control (2D pose sequence), enabling 4D character animation in minutes and without
 058 specialized hardware.

059 With the remarkable progress in recent generative models (Nichol et al., 2022; Ho et al., 2020), 4D
 060 generation (Yin et al., 2023; Zeng et al., 2025; Jiang et al., 2024) has demonstrated the impressive
 061 effectiveness in synthesizing 4D content. These methods aim to generate 4D content from a single-
 062 view character video. However, they often fall short in practical scenarios—such as those involving
 063 hand-drawn or AI-generated characters—where a single-view video including custom motions may
 064 not be available. A natural solution is to firstly generate the single-view character video using the 2D
 065 character animation methods (Zhang et al., 2025; Ma et al., 2024), which excel at animating a char-
 066 acter based on the pose sequence extracted from a target motion video. Such a two-stage framework
 067 forms a 4D character animation baseline exhibiting many limitations: 1) Disjoint modeling of pose
 068 and view makes it difficult to maintain consistent appearance and motion across views; 2) These 4D
 069 methods are trained on general 3D objects from static 3D object datasets such as Objverse (Deitke
 070 et al., 2023), suffering from limited diversity in character representations and pose variations—both
 071 of which are crucial for generating compelling 4D character animations (Ling et al., 2024; Bahmani
 072 et al., 2024; Singer et al., 2023).

073 To address the above limitations, we propose **CharacterShot**, which is able to generate dynamic
 074 3D characters from a given reference character image and a 2D pose sequence. This flexible and
 075 robust 4D character animation requires the model to possess the ability to precisely express the given
 076 motion and preserve consistent character appearance across both time and views. To this end, we
 077 first enhance the DiT-based image-to-video (I2V) model CogVideoX (Yang et al., 2025c) by inte-
 078 grating pose conditions, enabling user-defined motion control for a given character image. Next,
 079 we extend the I2V model to a multi-view setting by introducing a dual-attention module and a cam-
 080 era prior, ensuring both spatio-temporal and cross-view consistency. Finally, we adopt neighboring
 081 3D points as groups with constrained inner-distances within a coarse-to-fine 4D Gaussian Splatting
 082 (4DGS) framework to generate a continuous and stable 4D representation from multi-view videos.
 083 With these components, CharacterShot produces high-quality and consistent 4D character anima-
 084 tion results aligned with the custom motion from 2D pose sequence. Furthermore, to address the
 085 scarcity of character-centric 4D animation datasets, we construct a large-scale 4D dataset **Char-**
 086 **acter4D**. Character4D contains 13,115 unique characters with varied appearances, building upon
 087 Wang et al. (2024b). Each character undergoes rigging and motion retargeting with diverse 3D mo-
 088 tion sequences, followed by multi-view rendering (up to 21 viewpoints), establishing large-scale
 089 character-centric 4D dataset specifically designed for 4D character animation.

090 Moreover, to address the lack of a benchmark for 4D character animation, we establish **Character-**
 091 **Bench**, a benchmark featuring diverse dynamic characters. Extensive qualitative and quantitative
 092 comparisons on CharacterBench and a real human benchmark **HumanBench** demonstrate that Char-
 093 acterShot outperforms existing state-of-the-art (SOTA) approaches and excels at generating spatial-
 094 temporal and spatial-view consistent 4D character animations conditioned on pose inputs. Addi-
 095 tionally, ablation studies validate the effectiveness of our framework and highlight its superiority,
 096 offering valuable insights to the community. The contributions are summarized as follows:

- 097 • To the best of our knowledge, **CharacterShot** is the first DiT-based 4D character animation
 098 framework capable of generating dynamic 3D characters from a single reference character
 099 image and a 2D pose sequence.
- 100 • We propose a novel dual-attention module, which effectively ensuring spatial-temporal and
 101 spatial-view consistency in generating multi-view videos.
- 102 • A novel neighbor-constrained 4DGS is proposed to enhance the robustness against outliers
 103 or noisy 3D points during 4D optimization, resulting in more continuous and stable 4D
 104 representations.
- 105 • A large-scale character-centric dataset containing 13k characters with high-fidelity appear-
 106 ances rendered with varied motions and viewpoints for 4D character animation.
- 107 • Extensive experiments demonstrate that CharacterShot has achieved SOTA performance
 108 compared to other methods.

108

2 RELATED WORK

109

2.1 CHARACTER ANIMATION

110 Recently, with the significant progress in image and video generation made by diffusion models
 111 (Ho et al., 2020; Nichol & Dhariwal, 2021; Nichol et al., 2022; Zhao et al., 2025; Li et al., 2024b),
 112 numerous character animation methods (Feng et al., 2023; Ma et al., 2024; Chan et al., 2019; Hu,
 113 2024; Zhang et al., 2025; Wang et al., 2025; Luo et al., 2025; Shao et al., 2024; Gan et al., 2025;
 114 Tan et al., 2025; Zhu et al., 2024) have exhibited remarkable performance. These works typically
 115 generate consistent animation results by using pose skeletons—extracted from off-the-shelf human
 116 pose detectors—as motion indicators, and further finetuning U-Net (Ronneberger et al., 2015) or
 117 diffusion transformers (DiT) based (Peebles & Xie, 2023) video generation models. In this paper,
 118 we build our CharacterShot on the powerful DiT-based image-to-video model CogVideoX (Yang
 119 et al., 2025c) to enable higher-quality character animation.
 120

121

2.2 3D GENERATION

122 Generating 3D content is essential and in high demand across real-world applications. Traditional
 123 methods typically rely on 3D supervision to learn 3D representations such as point clouds (Rückert
 124 et al., 2022; Kerbl et al., 2023), meshes (Wei et al., 2024; Liu et al., 2024b; Xu et al., 2024), and
 125 neural radiance fields (NeRFs) (Hong et al., 2024; Jiang et al., 2023; Tochilkin et al., 2024; Qu et al.,
 126 2024). Recent works (Poole et al., 2023; Tang et al., 2024; Shi et al., 2024a; Wang et al., 2024a;
 127 Li et al., 2024d; Weng et al., 2023; Pan et al., 2024a; Chen et al., 2024; Sun et al., 2024a; Sargent
 128 et al., 2024; Liang et al., 2024; Zhou et al., 2024; Guo et al., 2023; Yi et al., 2023; Yang et al., 2024a)
 129 borrow the prior information from 2D image diffusion models, using SDS loss (Poole et al., 2023) to
 130 optimize the 3D content from text or image. Other approaches (Liu et al., 2024a; 2023; 2024c; Long
 131 et al., 2024; Vozeli et al., 2025; Ye et al., 2024; Karnewar et al., 2023; Li et al., 2024a; Shi et al.,
 132 2024b; 2023; Wang & Shi, 2023) first generate multi-view images from diffusion models and then
 133 perform 3D reconstruction based on these views. In our work, we use the view images generated by
 134 a finetuned SV3D (Vozeli et al., 2025), as reference view images in the 4D generation stage.
 135

136

2.3 4D GENERATION

137 Similar to 3D generation, many methods (Yin et al., 2023; Zeng et al., 2025; Jiang et al., 2024;
 138 Zhao et al., 2023; Ren et al., 2023; Ling et al., 2024; Bahmani et al., 2024; Singer et al., 2023; Pang
 139 et al., 2025) utilize SDS-based optimization to generate 4D content by distilling pre-trained diffusion
 140 models in a 4D representation. However, optimizing SDS loss is often computationally intensive and
 141 time-consuming. Another line of work (Pan et al., 2024b; Yang et al., 2025b; Zeng et al., 2025; Xie
 142 et al., 2025; Sun et al., 2024b; Park et al., 2025; Yang et al., 2025a; Liu et al., 2025c; Hu et al.,
 143 2024) finetunes diffusion models to generate multi-view videos and further optimize 4D content.
 144 These methods are limited to single-view video-driven generation and often struggle to effectively
 145 control the motion specified by the user. Recently, Human4DiT (Shao et al., 2024) introduces SMPL
 146 model (Loper et al., 2023) for all views to enable controllable multi-view video generation. How-
 147 ever, it does not include 4D optimization stages, and the SMPL pipeline, which involves mesh vertex
 148 optimization and SMPL body rendering, is complex and computationally expensive, making it im-
 149 practical for real-world applications. In contrast, **CharacterShot** supports simple and convenient 2D
 150 pose conditions and is capable of generating spatial-temporal and spatial-view consistent 4D results.
 151

152

2.4 3D/4D CHARACTER GENERATION

153 Focusing on character-centric 3D/4D generation, many methods learn canonical 3D Gaussian (or
 154 mesh) representations with pose-driven deformations, either by optimizing them directly from
 155 monocular videos (Li et al., 2024c; Qian et al., 2024; Kocabas et al., 2024; Lei et al., 2024; Hu
 156 et al., 2024) or by predicting them in a feed-forward manner from one or a few images (Qiu et al.,
 157 2025a;b; Zhuang et al., 2025), in order to construct animatable human avatars by binding them to
 158 SMPL models. With the rapid development of large diffusion models, some works (Peng et al.,
 159 2024; Huang et al., 2025; Qiu et al., 2025c; Sim & Moon, 2025; Pang et al., 2025; Liu et al., 2025b)
 160 leverage multi-view or video diffusion priors to generate pose- and view-rich supervision for human
 161

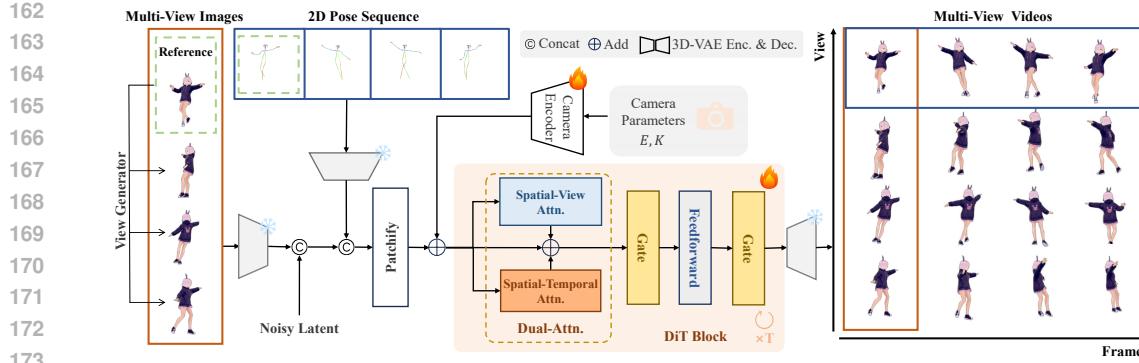


Figure 2: Overview of CharacterShot. Given a reference character image and a 2D pose sequence as custom motion input, our framework generates multi-view videos with spatio-temporal and cross-view consistency. Next CharacterShot apply a neighbor-constrained 4DGS to generate 4D content.

and character avatars, enabling the optimization of 3D/4D Gaussian representations with motions from rigged skeletons or bound SMPL models. However, these methods generate dynamic 3D characters by deforming static canonical avatars along pre-defined motion trajectories within a rigging and rendering pipeline that is complex, tightly coupled, and difficult for individual users. To provide a more user-friendly solution, we propose CharacterShot, which generates high-quality 4D character animation from only a single reference character image and a 2D pose sequence.

3 METHOD

Previous studies (Zeng et al., 2025; Xie et al., 2025) optimize 4D representations using single-view character video. However, generating this from a custom character image and corresponding motion control is complex and costly in real-world applications. To address this limitation, we propose CharacterShot, a novel framework that enables pose-controlled 4D character animation from a single reference character image with a 2D driving pose sequence. The overall framework of CharacterShot is illustrated in Figure 2, including pose-controlled 2D character animation (Section 3.2), multi-view videos generation (Section 3.3), and neighbor-constrained 4DGS optimization (Section 3.4). We also introduce the foundational concepts of the DiT model and the detailed illustration of our proposed dataset, Character4D, in Section 3.1 and Section 3.5, respectively.

3.1 PRELIMINARIES

In CharacterShot, we utilize a DiT-based image-to-video (I2V) model, CogVideoX (Yang et al., 2025c), as the base model. It consists of a 3D Variational Autoencoder (3D VAE) (Yu et al., 2024), a T5 text encoder (Raffel et al., 2020), and a denoising diffusion transformer (Peebles & Xie, 2023). CogVideoX finetunes a 3D VAE \mathcal{E} to compress both the spatial and temporal information of the input video with the shape $4f \times 8h \times 8w \times 3$ into a latent representation $\mathbf{z}_i = \mathcal{E}(\mathbf{I})$, where $\mathbf{z}_i \in \mathbb{R}^{f \times h \times w \times 16}$. To enable I2V generation, a reference latent $\mathbf{z}_r \in \mathbb{R}^{1 \times h \times w \times 16}$ is concatenated with \mathbf{z}_i along the channel dimension to form the final input $\mathbf{z}_0 \in \mathbb{R}^{f \times h \times w \times 32}$, where \mathbf{z}_r will be derived from the latent padding of the reference image. After that, a patchify module is applied to convert the latent \mathbf{z}_0 into video tokens $\mathbf{x}_0 \in \mathbb{R}^{f \times (\frac{h}{n} \times \frac{w}{n}) \times C}$, where $n = 2$ denotes the patch size and $C = 3072$ represents the output channel dimension. And the denoising diffusion transformer ϵ_θ is trained by minimizing the Mean Squared Error (MSE) loss \mathcal{L} at each time step t , as follows:

$$\mathcal{L} = \mathbb{E}_{\mathbf{x}_t, \epsilon \sim \mathcal{N}(0, \mathbf{I}), \mathbf{c}, t} \|\epsilon_\theta(\mathbf{x}_t, \mathbf{c}, t) - \epsilon_t\|^2,$$

where \mathbf{x}_t is the noisy latent at time step t , and the gaussian noise ϵ_t is added to the video latent \mathbf{z}_i before the patchify module. \mathbf{c} is the text condition.

3.2 POSE-CONTROLLED CHARACTER ANIMATION

To enable controllable generation on CogVideoX, we treat the pose information as an additional reference and perform 2D character animation pretraining as the base model for the next stage.

216 Specifically, we utilize 3D VAE to compress pose sequence $P \in \mathbb{R}^{4f \times 8h \times 8w \times 3}$ into pose latent $\mathbf{z}_p \in \mathbb{R}^{f \times h \times w \times 16}$. The pose latent \mathbf{z}_p is then concatenated with the video latent \mathbf{z}_i as a condition, and the reference latent \mathbf{z}_r and the corresponding pose latent $\mathbf{z}_{p'}$ of the reference image are concatenated to provide reference information as follows:

$$220 \quad \mathbf{z}_0 = \text{Concat}([\mathbf{z}_r, \mathbf{z}_i], [\mathbf{z}'_{p'}, \mathbf{z}_p]),$$

222 where $\mathbf{z}_0 \in \mathbb{R}^{(f+1) \times h \times w \times 32}$. During training, we exclude the loss from the reference frame and
223 only update the parameters of diffusion transformer. Moreover, to improve the model's robustness
224 to misaligned pose inputs during animation generation, we select the reference image and its corre-
225 sponding pose image—originally taken from the first frame of the input video—with those from a
226 randomly selected frame.

227 **3.3 MULTI-VIEW VIDEO GENERATION**

228 CharacterShot aims to generate
229 multi-view videos with the shape
230 $V \times (4f + 1) \times 8h \times 8w \times 3$ for
231 4D optimization, where V represents
232 the number of the target views.
233 We first expand the input latent \mathbf{z}_0
234 from 2D pretraining stage with an
235 additional view dimension:

$$236 \quad \mathbf{z}_0 \in \mathbb{R}^{V \times (f+1) \times h \times w \times 32},$$

237 where the reference images are taken
238 from different views of the same
239 character at the same time, and the
240 pose latent \mathbf{z}_p from a single view is
241 concatenated across all views to enable
242 more adaptive and robust controllable
243 generation. Following SV4D (Xie et al., 2025), the multi-view images are generated by a view generator SV3D (Voleti
244 et al., 2025). We finetune this view generator using our Character4D dataset to improve its per-
245 formance to characters. Additionally, we encode the camera prior $\pi = (E_v, K_v)_{v=1}^V$ into a camera
246 tokens \mathbf{x}_v and add it to the input tokens $\mathbf{x}_0 \in \mathbb{R}^{V \times (f+1) \times (\frac{h}{n} \cdot \frac{w}{n}) \times C}$ for each specific view v :

$$247 \quad \mathbf{x}_v = \text{rearrange} \left(\mathcal{E}_c(\phi_{\text{plücker}}(E_v, K_v)), \left(\frac{h}{n} \cdot \frac{w}{n} \right) \times C \right),$$

248 where E_v and K_v represent the intrinsic and extrinsic parameters, respectively; $\phi_{\text{plücker}}$ denotes the
249 Plücker embedding (He et al., 2025) with the shape $6 \times 8h \times 8w$; and the camera encoder \mathcal{E}_c encodes
250 the Plücker embedding derived from E_v and K_v into a feature map $C \times \frac{h}{n} \times \frac{w}{n}$.

251 Previous methods (Xie et al., 2025; Yang et al., 2025b) employ separated spatial, temporal and view
252 attention mechanisms, which are ineffective to learn the implicit transmission of visual information
253 (Yang et al., 2025c), as shown in Figure 3. To address this, we introduce a dual-attention module
254 that includes parallel 3D full attention blocks to model the coherent and consistent visual transmission
255 across spatial-temporal and spatial-view correlations. As shown in Figure 2, we rearrange the tokens
256 \mathbf{x}_0 with shapes $V \times ((f+1) \cdot \frac{h}{n} \cdot \frac{w}{n}) \times C$ and $(f+1) \times (V \cdot \frac{h}{n} \cdot \frac{w}{n}) \times C$ as the input to our dual-
257 attention module. We continue training from the 2D pretraining model on our Character4D dataset
258 and initialize the dual-attention module using the weights of its 3D full attention blocks. The synergy
259 of these components enables CharacterShot to generate smooth, spatial-temporal and spatial-view
260 consistent multi-view videos that follow the custom motion defined by the given pose sequences.

261 **3.4 NEIGHBOR-CONSTRAINED 4DGS OPTIMIZATION**

262 After obtaining multi-view videos, we apply the neighbor-constrained 4D Gaussian Splatting
263 (4DGS) to optimize the 4D representations. Specifically, we adopt a coarse-to-fine optimization
264 framework followed (Yang et al., 2025a) to model the 4D representations as deformable 3D Gaus-
265 sians along the temporal axis, with each Gaussian G at time t is represented as:

$$266 \quad G_t(\mathcal{X}) = G(\mathcal{X}) + F(\gamma(\mathcal{X}), \gamma(t)),$$

270 where $G(\mathcal{X})$ is the static 3D Gaussians. F is a deformation function and $\gamma(\cdot)$ is a positional encoding
271 function (Tancik et al., 2020).

272 In the coarse stage, we optimize the static 3D Gaussians $G_{T/2}(\mathcal{X})$ using \mathcal{L}_1 loss at $T/2$ -th frame,
273 where T denotes the number of frames, to quickly build the initial 4D space first. In the fine stage,
274 we utilize a 4D progressive fitting (Yang et al., 2025a) to gradually refine the deformable Gaus-
275 sians at time t with the grid-based total variation loss \mathcal{L}_{TV} (Yang et al., 2025a) and image-space
276 reconstruction losses \mathcal{L}_1 and $\mathcal{L}_{\text{LPIPS}}$ from the entire multi-view videos. However, the synthesized
277 multi-view videos might have slight misalignments across views, which often lead to outliers and
278 noisy 3D points during optimization. As shown in Figure 8, previous 4D methods (Yang et al.,
279 2025a; Wu et al., 2024; Yang et al., 2024b; Liu et al., 2025a) results in suddenly disappear hands or
280 visible artifacts. To address this, we introduce a novel neighbor constraint in the fine stage to en-
281 force geometric consistency, which preserves the relative configuration between each 3D point and
282 its neighboring points over time, promoting local deformations, **where we select 20 nearest neigh-
283 bors for each point from the static 3D Gaussians based on the L2 distance**. Specifically, we calculate
284 the distances of each 3D point \mathbf{u}_i from the group center at frames t and $t - 1$ as:

$$285 \quad \mathbf{L}_i^t = \mathbf{u}_i^t - \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{u}_j^t, \quad \mathbf{L}_i^{t-1} = \mathbf{u}_i^{t-1} - \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{u}_j^{t-1},$$

288 where $\mathcal{N}(i)$ represents the neighbor points for \mathbf{u}_i . The neighbor loss $\mathcal{L}_{\text{neighbor}}$ is then defined as:

$$289 \quad \mathcal{L}_{\text{neighbor}} = \sum_{(i,j) \in E} \|\mathbf{L}_i^t - \mathbf{L}_j^{t-1}\|^2 \cdot w_{ij} \cdot m_{ij}, \quad (m_i = \|\mathbf{u}_i^t - \mathbf{u}_i^{t-1}\| > \tau, \quad m_{ij} = m_i \cdot m_j)$$

292 where τ is a predefined displacement threshold, m_{ij} is a binary gate that activates only when neigh-
293 boring points turn into outliers or noisy 3D points, and $w_{ij} = \|\mathbf{u}_i^{t-1} - \mathbf{u}_j^{t-1}\|$ is a spatial edge
294 weight. The full loss function in fine stage can be defined as:

$$296 \quad \mathcal{L}_{\text{fine}} = \lambda_1 \cdot \mathcal{L}_1 + \lambda_2 \cdot \mathcal{L}_{\text{LPIPS}} + \lambda_3 \cdot \mathcal{L}_{\text{neighbor}} + \lambda_4 \cdot \mathcal{L}_{\text{TV}},$$

297 where the coefficients $\lambda_1, \lambda_2, \lambda_3$, and λ_4 are the corresponding weighting factors.

3.5 CHARACTER4D

301 Current 4D character datasets (Yu et al., 2021b;
302 Cheng et al., 2023) only include a very small
303 variety of character types and motion types. To
304 enable a more generalized 4D character ani-
305 mation, we construct a large-scale 4D char-
306 acter dataset by filtering high-quality characters
307 from VRoidHub² (VRoid, 2022)—a platform
308 for sharing and showcasing 3D character mod-
309 els—and collect a total of 13,115 characters in
310 OBJ file format. First, we load the characters
311 into Blender³, a widely used 3D modeling soft-
312 ware, with an initial configuration: A-pose⁴ and
313 a centered camera positioned at a fixed height,
314 with the radius and field of view (FoV) set to
315 2.5 and 40°, respectively. After that, we bind
316 40 diverse motions (e.g., dancing, singing, and jumping) in skeletons collected from Mixamo⁵ (mix)
317 to these characters, following the data curation pipeline used in previous methods (Chen et al., 2023;
318 Peng et al., 2024; Wang et al., 2024b). Specifically, we assign one randomly selected motion to each
319 character (Wang et al., 2024b) using the automatic retargeting software Rokoko (rok). Binding motion
320 using skeletons helps the clothing swing naturally with the movements, allowing the model to

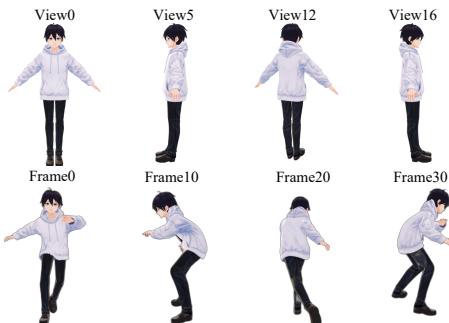


Figure 4: A character sample from our Character4D dataset shown across four views and frames.

²All the 3D avatars we used in our dataset clearly show the permission of usage in their individual websites.

³<https://www.blender.org/>

⁴A standard initial posture in which the character stands upright with arms slightly angled downward and outward, forming an “A” shape.

⁵An online platform by Adobe that provides automatic rigging and a large library of motions.

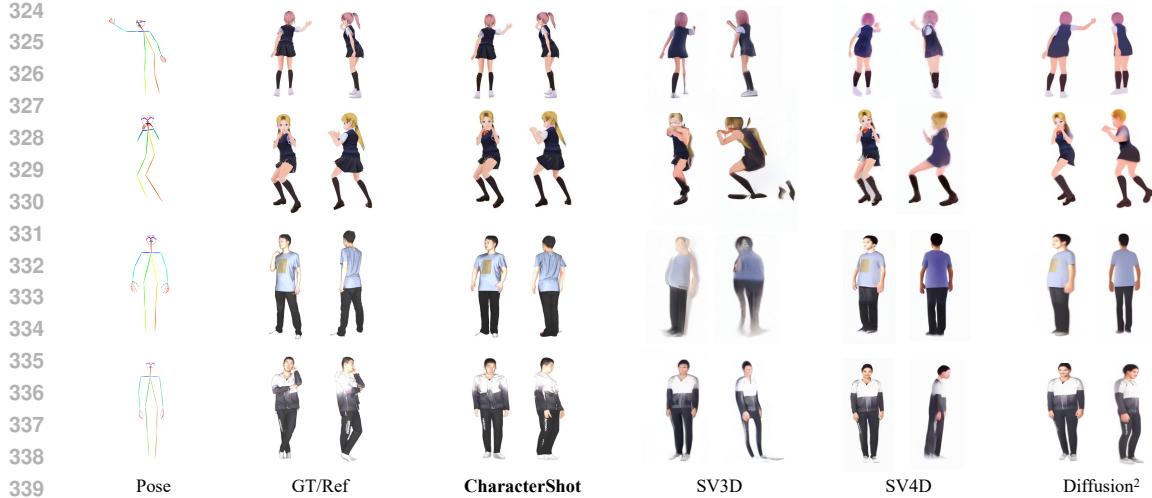


Figure 5: Visual comparison of multi-view videos synthesis. Rows 1–2 show characters from CharacterBench, with the ground-truth images in column 2. Rows 3–4 show humans from HumanBench, and the corresponding static reference images are also shown in column 2. CharacterShot generates high-quality character videos with both spatial-temporal and multi-view consistency, faithfully preserving the reference character image and driving pose.

Table 1: Quantitative comparison of multi-view videos synthesis on CharacterBench. The best result is marked in **bold**.

Methods	SSIM \uparrow	LPIPS \downarrow	CLIP-S \uparrow	FVD-F \downarrow	FVD-V \downarrow	FVD-D \downarrow	FV4D \downarrow
SV3D	0.873	0.241	0.864	1639.020	1471.051	1378.806	2078.984
Diffusion ²	0.889	0.135	0.878	1198.645	1044.424	994.202	1392.323
SV4D	0.891	0.138	0.856	1280.620	1537.853	1467.422	1477.972
CharacterShot	0.967	0.021	0.957	469.677	489.963	388.797	490.457

learn the principles of physical reality. Next, we generate 21 camera viewpoints along a horizontal static trajectory, following the setup used in SV3D (Voleti et al., 2025). Finally, we render frames of all characters from 21 viewpoints in the A-pose for view generator finetuning, and with various motions for diffusion transformer finetuning to generate spatial-temporal and spatial-view consistent multi-view videos from any reference character image and custom motion in pose sequence. We provide the visual examples of our Character4D dataset in Figure 4. The top row shows the character in the A-pose, while the bottom row depicts the character performing a specific motion.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Benchmarks. As with the dataset challenges faced by existing 4D generation methods, there is currently no character benchmark for evaluating 4D character animation. To address this, we introduce a new benchmark CharacterBench built from the test sets of Character4D (which comprise 23 characters disjoint from the training data), together with 10 characters that are curated from Mixamo. Characters in the A-pose are used to assess the view generator’s performance, while characters with motion are used to evaluate the effectiveness of 4D character animation. Moreover, we construct a HumanBench consisting of 48 real humans collected from the open-source People Snapshot (Alldieck et al., 2018) and THuman 2.1 (Yu et al., 2021a) datasets. Note that each person in HumanBench is provided only as a static 3D model and cannot be used to render multi-view videos as ground truth. Therefore, we animate these humans using the motions from CharacterBench and conduct a user study as a proxy for quantitative evaluation. To evaluate the generalization of CharacterShot, we also select characters that are out-of-Character4D, gathered additional examples from the Internet, and generated a suite of virtual characters using Flux (Labs, 2024), spanning 2D anime

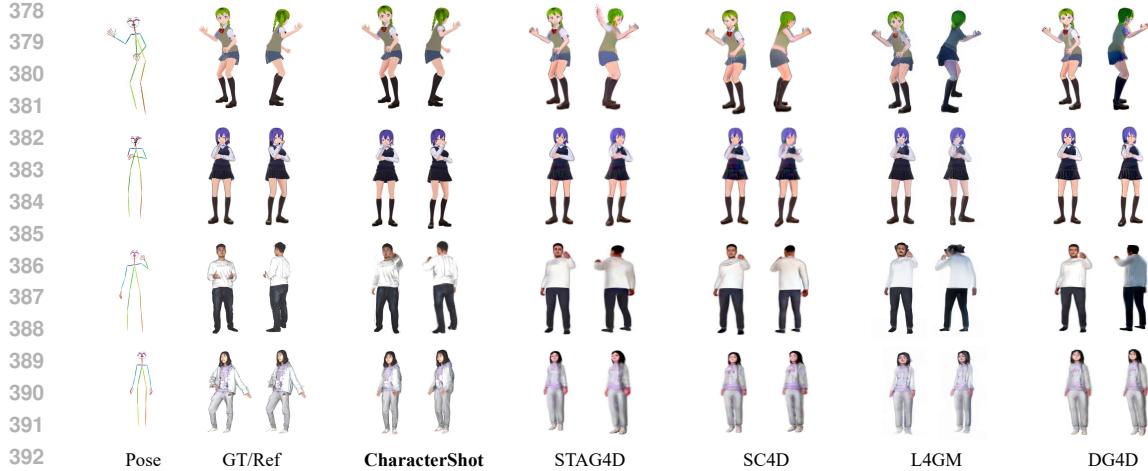


Figure 6: Visual comparison of 4D generation. Rows 1–2 show characters from CharacterBench, with the ground-truth images in column 2. Rows 3–4 show humans from HumanBench, and the corresponding static reference images are also shown in column 2. CharacterShot outperforms other methods in terms of texture and detail.

Table 2: Quantitative comparison of 4D generation on CharacterBench. The best result is marked in **bold**.

Methods	SSIM \uparrow	LPIPS \downarrow	CLIP-S \uparrow	FVD-F \downarrow	FVD-V \downarrow	FVD-D \downarrow	FV4D \downarrow
STAG4D	0.915	0.082	0.904	966.979	876.033	817.523	970.241
SC4D	0.907	0.089	0.907	961.941	849.578	813.812	995.497
L4GM	0.907	0.091	0.892	1056.498	889.114	846.307	1042.443
DG4D	0.888	0.116	0.897	1006.051	1200.049	1171.713	1059.921
CharacterShot	0.971	0.025	0.959	368.235	289.279	271.886	406.624

characters, real-world humans, and other distinct 3D models with diverse motions. Results of these out-of-Character4D test samples are presented in Section B.4 and Figure 14, Appendix.

Evaluation Metrics. To verify the effectiveness of our Character4D in improving the performance of fine-tuned view-generator, we follow the protocols of (Voleti et al., 2025; Liu et al., 2023; Xu et al., 2024; Yang et al., 2024a) and use PSNR (Lim et al., 2017), SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) to evaluate the quality and similarity between the generated view images and the ground-truth images from low-level. Also, CLIP-score (CLIP-S) and FID (Heusel et al., 2017) are employed to evaluate high-level semantic consistency. For multi-view video generation and 4D optimization, we follow SV4D (Xie et al., 2025) and apply FV4D, FVD-F, FVD-V, and FVD-D to evaluate consistency across frames and views. Visual quality is further evaluated using CLIP-S, LPIPS, and SSIM metrics. We also conduct a user study with 30 participants to assess the consistency of appearance, pose, time, and view in the HumanBench evaluations on 20 samples. Specifically, we ask the volunteers to rank all methods for each sample and assign weighted scores based on the resulting rankings.

Table 3: User study on HumanBench comparing CharacterShot with baselines. Methods at the top are multi-view video generation methods, and those at the bottom are 4D generation methods.

Methods	Appearance \uparrow	Pose \uparrow	Time \uparrow	View \uparrow
SV3D	12.15	9.75	10.90	8.16
Diffusion ²	25.42	27.88	22.80	29.94
SV4D	19.92	23.22	25.43	19.07
CharacterShot	42.51	39.15	40.87	42.83
SC4D	8.64	9.90	12.23	6.56
STAG4D	17.82	19.38	18.43	14.80
L4GM	23.98	16.10	19.67	15.61
DG4D	16.21	17.94	14.48	20.16
CharacterShot	33.35	36.68	35.19	42.87

432 4.2 COMPARISON WITH SOTA METHODS
433
434
435

436 **Multi-View Videos Synthesis.** As mentioned in Section 1, previous 4D generation models require
437 single-view videos and are unable to be conditioned on custom motion such as pose sequences.

438 To enable a fair comparison, we
439 adopt a two-stage generation for
440 these methods by finetuning the
441 SOTA 2D character animation model
442 MimicMotion (Zhang et al., 2025) on
443 our collected high-quality 2D pose-
444 driving dataset to generate single-
445 view videos based on each speci-
446 fied character and corresponding
447 pose input. We then compare the
448 proposed CharacterShot with SOTA
449 single-view video-driven 4D genera-
450 tion methods, including SV3D (Vo-
451 letti et al., 2025), SV4D (Xie et al.,
452 2025) and Diffusion² (Yang et al.,
453 2025b). We first present the qualita-
454 tive comparison in Figure 5. It is evident that Diffusion² and SV4D generate results with in-
455 consistent poses across different views (see rows 1, 2 and 3). Notably, all these baselines generate blurred
456 or incorrect details in both the facial and body regions. Thanks to our proposed dual-attention
457 module—which explicitly models both spatial-temporal and spatial-view consistency with camera
458 priors—CharacterShot generates more coherent results with consistent, high-quality details across
459 poses, frames and views in both characters and real-world humans. Quantitative results in Table 1
460 further verify the effectiveness of the proposed CharacterShot. Specifically, CharacterShot achieves
461 the highest SSIM, LPIPS, and CLIP-S scores, demonstrating strong identity preservation and indi-
462 cating superior image quality. Additionally, the proposed dual-attention module contributes to the
463 best performance on FVD-F, FVD-V, FVD-D, and FV4D, highlighting its effectiveness in provid-
464 ing high-quality videos and maintaining spatial-temporal and spatial-view consistency. Also, the
465 user study in Table 3 demonstrates that CharacterShot generalizes well to these human inputs, out-
466 performing all baselines on HumanBench in terms of appearance, pose, time, and view consistency.
467 More results of unseen and out-of-Character4D test samples from Flux and Internet are presented
468 in Section B.4 and Figure 14, Appendix. Multi-view videos are shown in Supplementary Material.

469 **4D Generation.** We also present the
470 comparison between SOTA 4D gen-
471 eration methods, including STAG4D
472 (Zeng et al., 2025), SC4D (Wu et al.,
473 2025), L4GM (Ren et al., 2024), and
474 DG4D (Ren et al., 2023)—with our
475 CharacterShot by rendering images
476 in specific 9 views after 4D optimiza-
477 tion, while the optimization stage for
478 SV4D and Diffusion² is not open
479 source. As the qualitative compari-
480 son shown in Figure 6, we notice that
481 the results of STAG4D and SC4D ex-
482 hibit inconsistent shapes and textures
483 (e.g., the left hand and clothing in row
484 1, 3 and 4), while DG4D suffers from
485 flickering artifacts. L4GM generates clearer details compared to these three SDS loss-based meth-
486 ods, but it has some black artifacts. In contrast, our CharacterShot generates consistent and con-
487 tinuous high-quality 4D contents by applying dual-attention module and neighbor-constrained 4DGs.
488 The quantitative experiments in Table 2 and user study in Table 3 further demonstrate that our
489 method consistently outperforms the baselines across all metrics. Videos of 4D contents are shown
490 in Supplementary Material.

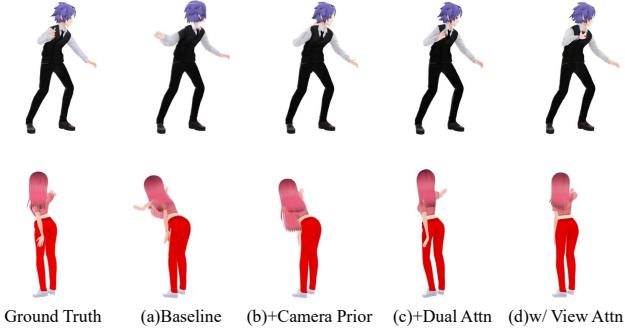


Figure 7: Visualization from the baseline to variants incorporating different model components.

491 It is evident that Diffusion² and SV4D generate results with in-
492 consistent poses across different views (see rows 1, 2 and 3). Notably, all these baselines generate blurred
493 or incorrect details in both the facial and body regions. Thanks to our proposed dual-attention
494 module—which explicitly models both spatial-temporal and spatial-view consistency with camera
495 priors—CharacterShot generates more coherent results with consistent, high-quality details across
496 poses, frames and views in both characters and real-world humans. Quantitative results in Table 1
497 further verify the effectiveness of the proposed CharacterShot. Specifically, CharacterShot achieves
498 the highest SSIM, LPIPS, and CLIP-S scores, demonstrating strong identity preservation and indi-
499 cating superior image quality. Additionally, the proposed dual-attention module contributes to the
500 best performance on FVD-F, FVD-V, FVD-D, and FV4D, highlighting its effectiveness in provid-
501 ing high-quality videos and maintaining spatial-temporal and spatial-view consistency. Also, the
502 user study in Table 3 demonstrates that CharacterShot generalizes well to these human inputs, out-
503 performing all baselines on HumanBench in terms of appearance, pose, time, and view consistency.
504 More results of unseen and out-of-Character4D test samples from Flux and Internet are presented
505 in Section B.4 and Figure 14, Appendix. Multi-view videos are shown in Supplementary Material.

Figure 8: Visual comparison of 4D optimization. “Pseudo GT” refers to the multi-view videos produced in the preceding stage.

506 The “Pseudo GT” refers to the multi-view videos produced in the preceding stage.
507 The “CharacterShot” refers to the results generated by our proposed dual-attention module and neighbor-constrained 4DGs.
508 The “4DGaussians” refers to the results generated by the 4DGaussians method.
509 The “DG-Mesh” refers to the results generated by the DG-Mesh method.
510 The “Deformable-GS” refers to the results generated by the Deformable-GS method.
511 The “WR4D” refers to the results generated by the WR4D method.
512 The “CharacterShot” consistently outperforms the baselines across all metrics, including SSIM, LPIPS, and CLIP-S.
513 The “CharacterShot” also outperforms the baselines on FVD-F, FVD-V, FVD-D, and FV4D.
514 The “CharacterShot” also outperforms the baselines on HumanBench in terms of appearance, pose, time, and view consistency.
515 The “CharacterShot” also outperforms the baselines on the user study in Table 3.
516 The “CharacterShot” also outperforms the baselines on the unseen and out-of-Character4D test samples from Flux and Internet.
517 The “CharacterShot” also outperforms the baselines on the multi-view videos shown in the Supplementary Material.

486
487

4.3 ABLATION STUDIES

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

Contribution Decomposition of Model Components. We finetune our pretrained 2D character animation model on Character4D and generate videos for each view separately as a single-view baseline, then investigate the impact of our proposed components in the following analysis. As shown in Figure 7(a), the baseline struggles to transform the pose sequence accurately across different viewpoints, leading to noticeable distortions. By incorporating the camera prior, the single-view model achieves more accurate viewpoint-aware pose alignment, resulting in more reasonable position (see Figure 7(b)). The visual results in Figure 7(c) effectively follow the reference’s appearance and pose, demonstrating the necessity of simultaneously generating multi-view videos and the effectiveness of our dual-attention module. Moreover, to further verify the importance of modeling implicit spatial-view information—rather than treating view information separately—we compare the spatial-view attention with a separate view-attention mechanism. As shown in Figure 7 (c)(d), our dual-attention module with spatial-view attention achieves better performance, demonstrating its superiority in enhancing spatial-view consistency. The experiments in Table 4 further support the visual observations and demonstrate the effectiveness of each component in our framework.

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

4DGS Optimization. To verify neighbor-constrained 4DGS’ effectiveness, we compare it with SOTA 4DGS methods 4DGaussians (Wu et al., 2024), WR4D (Yang et al., 2025a), Deformable-GS (Yang et al., 2024b) and DG-Mesh (Liu et al., 2025a). For a fair comparison, we optimize the 4D representations of these methods using our generated multi-view videos (as pseudo ground truth). As shown in Figure 8, sudden hand disappearance can be observed in the first row for 4DGaussians, Deformable-GS, and DG-Mesh. In addition, outlier and noisy 3D points also result in blurring and artifacts on the face and body for these methods. In contrast, CharacterShot produces continuous and stable 4D content by applying the neighbor constraint. The quantitative results in Table 5 further validate the effectiveness of our proposed neighbor-constrained 4DGS method.

526
527
528

5 CONCLUSION

529
530
531
532
533
534
535
536
537
538
539

In this work, we propose CharacterShot, a controllable and consistent 4D character animation framework that generates dynamic 3D characters from just a single reference image and a 2D pose sequence. By leveraging the powerful DiT-based I2V model CogVideoX, CharacterShot first constructs a pose-controlled 2D character animation. Subsequently, CharacterShot introduces a dual-attention module to model implicit visual transmission across views and time, along with a camera prior to help transform pose positions. Finally, a neighbor-constrained 4DGS is employed to generate continuous and stable 4D representations. To further enhance character performance, we construct a large-scale dataset, Character4D, containing 13,115 high-quality characters with corresponding diverse motions. Extensive experiments on CharacterBench and HumanBench demonstrate the advantages of our method in capturing character and human details and achieving both spatial-temporal and spatial-view consistency. We hope that CharacterShot, along with its models and datasets, will contribute valuable and affordable resources to any individual creator and researcher to advance 4D character animation.

Table 4: Quantitative results on model components. “w/ View-Attention” indicates that we use separate view attention as a replacement for our spatial-view attention in dual-attention module.

Methods	SSIM \uparrow	LPIPS \downarrow	FVD-F \downarrow	FV4D \downarrow
Baseline	0.956	0.032	614.010	639.733
+ Camera Prior	0.961	0.029	545.662	570.046
+ Dual-Attention	0.967	0.021	469.677	490.457
w/ View-Attention	0.964	0.025	491.865	520.737

Table 5: Quantitative comparison of 4D optimization on CharacterBench. Ground truths are the multi-view videos produced in the preceding stage.

Methods	SSIM \uparrow	LPIPS \downarrow	FVD-F \downarrow	FV4D \downarrow
4DGaussians	0.984	0.017	89.726	66.962
WR4D	0.985	0.015	80.651	59.509
Deformable-GS	0.979	0.025	194.451	198.861
DG-Mesh	0.980	0.023	154.596	168.652
CharacterShot	0.987	0.015	73.284	55.472

540
541 ETHICS STATEMENT

542 In developing CharacterShot, a controllable and consistent 4D character animation framework that
 543 enables any individual designer to create dynamic 3D characters (i.e., 4D character animation) from
 544 a single reference character image and a 2D pose sequence, we are dedicated to upholding ethical
 545 standards and promoting responsible AI use. During building Character4D dataset, we strictly fol-
 546 low the data curation pipeline of HumanVid (Wang et al., 2024b), and the assets used in Character4D
 547 explicitly state permission for use on their respective websites. Our code, model and dataset will
 548 be publicly released to encourage responsible use in areas like entertainment and education, while
 549 discouraging unethical practices, including misinformation and harassment. We also advocate for
 550 continued research on safeguards and detection mechanisms to prevent misuse and ensure adherence
 551 to ethical guidelines and legal frameworks.

552
553 REPRODUCIBILITY STATEMENT
554

555 To facilitate replication, we provide additional technical details in Appendix A, including the base
 556 models and training parameters used at each stage. The data curation pipeline of the proposed
 557 Character4D is described in Section 3.5. All code, models, and datasets will be released publicly.

558
559 REFERENCES
560

561 Mixamo. <https://www.mixamo.com>.

562 rokoko. <https://www.rokoko.com/>.

564 Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-Moll. Video
 565 based reconstruction of 3d people models. In *IEEE/CVF Conference on Computer Vision and*
 566 *Pattern Recognition (CVPR)*, pp. 8387–8397, Jun 2018. ISBN 978-1-5386-6420-9. doi: 10.1109/
 567 {CVPR}.2018.00875. CVPR Spotlight Paper.

568 Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gordon Wetzstein, Leonidas Guibas, Peter
 569 Wonka, Sergey Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, and David B Lindell. 4d-fy:
 570 Text-to-4d generation using hybrid score distillation sampling. In *Proceedings of the IEEE/CVF*
 571 *Conference on Computer Vision and Pattern Recognition*, pp. 7996–8006, 2024.

573 Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance now. In *Pro-
 574 ceedings of the IEEE/CVF international conference on computer vision*, pp. 5933–5942, 2019.

575 Shuhong Chen, Kevin Zhang, Yichun Shi, Heng Wang, Yiheng Zhu, Guoxian Song, Sizhe An, Janus
 576 Kristjansson, Xiao Yang, and Matthias Zwicker. Panic-3d: Stylized single-view 3d reconstruction
 577 from portraits of anime characters. In *Proceedings of the IEEE/CVF Conference on Computer*
 578 *Vision and Pattern Recognition*, pp. 21068–21077, 2023.

579 Zilong Chen, Feng Wang, Yikai Wang, and Huaping Liu. Text-to-3d using gaussian splatting. In
 580 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 21401–
 581 21412, 2024.

583 Wei Cheng, Ruixiang Chen, Siming Fan, Wanqi Yin, Keyu Chen, Zhongang Cai, Jingbo Wang, Yang
 584 Gao, Zhengming Yu, Zhengyu Lin, et al. Dna-rendering: A diverse neural actor repository for
 585 high-fidelity human-centric rendering. In *Proceedings of the IEEE/CVF International Conference*
 586 *on Computer Vision*, pp. 19982–19993, 2023.

587 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
 588 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
 589 tated 3d objects. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 590 *Recognition*, pp. 13142–13153, 2023.

592 Mengyang Feng, Jinlin Liu, Kai Yu, Yuan Yao, Zheng Hui, Xiefan Guo, Xianhui Lin, Haolan Xue,
 593 Chen Shi, Xiaowen Li, et al. Dreamoving: A human video generation framework based on
 diffusion models. *arXiv e-prints*, pp. arXiv–2312, 2023.

594 Qijun Gan, Yi Ren, Chen Zhang, Zhenhui Ye, Pan Xie, Xiang Yin, Zehuan Yuan, Bingyue Peng,
 595 and Jianke Zhu. Humandit: Pose-guided diffusion transformer for long-form human motion video
 596 generation. *arXiv preprint arXiv:2502.04847*, 2025.

597

598 Pengsheng Guo, Hans Hao, Adam Caccavale, Zhongzheng Ren, Edward Zhang, Qi Shan, Aditya
 599 Sankar, Alexander G Schwing, Alex Colburn, and Fangchang Ma. Stabledreamer: Taming noisy
 600 score distillation sampling for text-to-3d. *arXiv preprint arXiv:2312.02189*, 2023.

601 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang.
 602 Cameractrl: Enabling camera control for video diffusion models. In *The Thirteenth International
 603 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Z4evOUYrk7>.

604

605 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 606 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 607 neural information processing systems*, 30, 2017.

608

609 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 610 neural information processing systems*, 33:6840–6851, 2020.

611

612 Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
 613 Trung Bui, and Hao Tan. LRM: Large reconstruction model for single image to 3d. In *The Twelfth
 614 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=s11U8vvsFF>.

615

616 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
 617 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 618 pp. 8153–8163, 2024.

619

620 Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
 621 Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
 622 animatable 3d gaussians. In *Proceedings of the IEEE/CVF conference on computer vision and
 623 pattern recognition*, pp. 634–644, 2024.

624

625 Yangyi Huang, Ye Yuan, Xuetong Li, Jan Kautz, and Umar Iqbal. Adahuman: Animatable detailed
 626 3d human generation with compositional multiview diffusion. *arXiv preprint arXiv:2505.24877*,
 627 2025.

628

629 Hanwen Jiang, Zhenyu Jiang, Yue Zhao, and Qixing Huang. Leap: Liberate sparse-view 3d model-
 630 ing from camera poses. *arXiv preprint arXiv:2310.01410*, 2023.

631

632 Yanqin Jiang, Li Zhang, Jin Gao, Weiming Hu, and Yao Yao. Consistent4d: Consistent
 633 360° dynamic object generation from monocular video. In *The Twelfth International Confer-
 634 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=SPUrdFGepF>.

635

636 Animesh Karnewar, Niloy J Mitra, Andrea Vedaldi, and David Novotny. Holofusion: Towards
 637 photo-realistic 3d generative modeling. In *Proceedings of the IEEE/CVF International Confer-
 638 ence on Computer Vision*, pp. 22976–22985, 2023.

639

640 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 641 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

642

643 Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel, Oncel Tuzel, and Anurag Ranjan. Hugs:
 644 Human gaussian splats. In *Proceedings of the IEEE/CVF conference on computer vision and
 645 pattern recognition*, pp. 505–515, 2024.

646

647 Black Forest Labs. Flux: Official inference repository for flux.1 models, 2024. URL <https://github.com/black-forest-labs/flux>.

648

649 Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian
 650 articulated template models. In *Proceedings of the IEEE/CVF conference on computer vision and
 651 pattern recognition*, pp. 19876–19887, 2024.

648 Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
 649 Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view gen-
 650 eration and large reconstruction model. In *The Twelfth International Conference on Learning
 651 Representations*, 2024a. URL <https://openreview.net/forum?id=21DQLiH1W4>.

652 Jiaxing Li, Hongbo Zhao, Yijun Wang, and Jianxin Lin. Towards photorealistic video colorization
 653 via gated color-guided image diffusion models. In *Proceedings of the 32nd ACM International
 654 Conference on Multimedia*, pp. 10891–10900, 2024b.

655 Mengtian Li, Shengxiang Yao, Zhifeng Xie, and Keyu Chen. Gaussianbody: Clothed human recon-
 656 struction via 3d gaussian splatting. *arXiv preprint arXiv:2401.09720*, 2024c.

657 Weiyu Li, Rui Chen, Xuelin Chen, and Ping Tan. Sweetdreamer: Aligning geometric priors in 2d
 658 diffusion for consistent text-to-3d. In *The Twelfth International Conference on Learning Re-
 659 presentations*, 2024d. URL <https://openreview.net/forum?id=extpNXo6hB>.

660 Yixin Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, and Yingcong Chen. Luciddreamer:
 661 Towards high-fidelity text-to-3d generation via interval score matching. In *Proceedings of the
 662 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6517–6526, 2024.

663 Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep resid-
 664 ual networks for single image super-resolution. In *Proceedings of the IEEE conference on com-
 665 puter vision and pattern recognition workshops*, pp. 136–144, 2017.

666 Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, and Karsten Kreis. Align your
 667 gaussians: Text-to-4d with dynamic 3d gaussians and composed diffusion models. In *Proceedings
 668 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8576–8588, 2024.

669 Isabella Liu, Hao Su, and Xiaolong Wang. Dynamic gaussians mesh: Consistent mesh reconstruc-
 670 tion from dynamic scenes. In *The Thirteenth International Conference on Learning Representa-
 671 tions*, 2025a. URL <https://openreview.net/forum?id=LuGHbK8qTa>.

672 Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen,
 673 Chong Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast single image to 3d objects with
 674 consistent multi-view generation and 3d diffusion. In *Proceedings of the IEEE/CVF Conference
 675 on Computer Vision and Pattern Recognition*, pp. 10072–10083, 2024a.

676 Minghua Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang,
 677 Zhaoning Wang, Xiaoshuai Zhang, Isabella Liu, et al. Meshformer: High-quality mesh gener-
 678 ation with 3d-guided reconstruction model. *Advances in Neural Information Processing Systems*,
 679 37:59314–59341, 2024b.

680 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 681 Zero-1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF international
 682 conference on computer vision*, pp. 9298–9309, 2023.

683 Shaowei Liu, Chuan Guo, Bing Zhou, and Jian Wang. Ponimator: Unfolding interactive pose for
 684 versatile human-human interaction animation. In *Proceedings of the IEEE/CVF International
 685 Conference on Computer Vision*, pp. 12068–12077, 2025b.

686 Tianqi Liu, Zihao Huang, Zhaoxi Chen, Guangcong Wang, Shoukang Hu, Liao Shen, Huiqiang
 687 Sun, Zhiguo Cao, Wei Li, and Ziwei Liu. Free4d: Tuning-free 4d scene generation with spatial-
 688 temporal consistency. *arXiv preprint arXiv:2503.20785*, 2025c.

689 Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
 690 Syncdreamer: Generating multiview-consistent images from a single-view image. In *The Twelfth
 691 International Conference on Learning Representations*, 2024c. URL <https://openreview.net/forum?id=MN3yH2ovHb>.

692 Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
 693 Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
 694 using cross-domain diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 695 and Pattern Recognition*, pp. 9970–9980, 2024.

702 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
 703 A skinned multi-person linear model. In *Seminal Graphics Papers: Pushing the Boundaries, Volume 2*, pp. 851–866. 2023.

704

705 Yuxuan Luo, Zhengkun Rong, Lizhen Wang, Longhao Zhang, and Tianshu Hu. Dreamactor-m1:
 706 Holistic, expressive and robust human image animation with hybrid guidance. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 11036–11046, 2025.

707

708

709 Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran Chen, Xiu Li, and Qifeng Chen. Follow
 710 your pose: Pose-guided text-to-video generation using pose-free videos. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 4117–4125, 2024.

711

712 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 713 In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.

714

715 Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
 716 McGrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and
 717 editing with text-guided diffusion models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 718 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International
 719 Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 720 pp. 16784–16804. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/nichol22a.html>.

721

722 Zijie Pan, Jiachen Lu, Xiatian Zhu, and Li Zhang. Enhancing high-resolution 3d generation through
 723 pixel-wise gradient clipping. In *The Twelfth International Conference on Learning Representations*,
 724 2024a. URL <https://openreview.net/forum?id=ukidfm168f>.

725

726 Zijie Pan, Zeyu Yang, Xiatian Zhu, and Li Zhang. Fast dynamic 3d object generation from a single-
 727 view video. *arXiv preprint arXiv:2401.08742*, 2024b.

728

729 Hui En Pang, Shuai Liu, Zhongang Cai, Lei Yang, Tianwei Zhang, and Ziwei Liu. Disco4d: Disen-
 730 tangled 4d human generation and animation from a single image. In *Proceedings of the Computer
 Vision and Pattern Recognition Conference*, pp. 26331–26344, 2025.

731

732 Jangho Park, Taesung Kwon, and Jong Chul Ye. Zero4d: Training-free 4d video generation from
 733 single video using off-the-shelf video diffusion model. *arXiv preprint arXiv:2503.22622*, 2025.

734

735 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

736

737 Hao-Yang Peng, Jia-Peng Zhang, Meng-Hao Guo, Yan-Pei Cao, and Shi-Min Hu. Charactergen:
 738 Efficient 3d character generation from single images with multi-view pose canonicalization. *ACM
 Transactions on Graphics (TOG)*, 43(4), 2024. doi: 10.1145/3658217.

739

740 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 741 diffusion. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 742 <https://openreview.net/forum?id=FjNys5c7Vyy>.

743

744 Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar: Ani-
 745 matable avatars via deformable 3d gaussian splatting. In *Proceedings of the IEEE/CVF conference
 on computer vision and pattern recognition*, pp. 5020–5030, 2024.

746

747 Lingteng Qiu, Xiaodong Gu, Peihao Li, Qi Zuo, Weichao Shen, Junfei Zhang, Kejie Qiu, Weihao
 748 Yuan, Guanying Chen, Zilong Dong, et al. Lhm: Large animatable human reconstruction model
 749 from a single image in seconds. *arXiv preprint arXiv:2503.10625*, 2025a.

750

751 Lingteng Qiu, Peihao Li, Qi Zuo, Xiaodong Gu, Yuan Dong, Weihao Yuan, Siyu Zhu, Xiaoguang
 752 Han, Guanying Chen, and Zilong Dong. Pf-lhm: 3d animatable avatar reconstruction from pose-
 753 free articulated human images. *arXiv preprint arXiv:2506.13766*, 2025b.

754

755 Lingteng Qiu, Shenhao Zhu, Qi Zuo, Xiaodong Gu, Yuan Dong, Junfei Zhang, Chao Xu, Zhe Li,
 756 Weihao Yuan, Liefeng Bo, et al. Anigs: Animatable gaussian avatar from a single image with
 757 inconsistent gaussian reconstruction. In *Proceedings of the Computer Vision and Pattern Recog-
 758 nition Conference*, pp. 21148–21158, 2025c.

756 Zefan Qu, Ke Xu, Gerhard Petrus Hancke, and Rynson WH Lau. Lush-nerf: lighting up and sharp-
 757 ening nerfs for low-light scenes. In *Proceedings of the 38th International Conference on Neural*
 758 *Information Processing Systems*, pp. 109871–109893, 2024.

759

760 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 761 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 762 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

763

764 Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, and Ziwei Liu. Dream-
 765 gaussian4d: Generative 4d gaussian splatting. *arXiv preprint arXiv:2312.17142*, 2023.

766

767 Jiawei Ren, Cheng Xie, Ashkan Mirzaei, Karsten Kreis, Ziwei Liu, Antonio Torralba, Sanja Fidler,
 768 Seung Wook Kim, Huan Ling, et al. L4gm: Large 4d gaussian reconstruction model. *Advances*
 769 *in Neural Information Processing Systems*, 37:56828–56858, 2024.

770

771 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 772 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18*, pp. 234–241. Springer, 2015.

773

774 Darius Rückert, Linus Franke, and Marc Stamminger. Adop: Approximate differentiable one-pixel
 775 point rendering. *ACM Transactions on Graphics (ToG)*, 41(4):1–14, 2022.

776

777 Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang,
 778 Eric Ryan Chan, Dmitry Lagun, Li Fei-Fei, Deqing Sun, et al. Zeronvs: Zero-shot 360-degree
 779 view synthesis from a single image. In *Proceedings of the IEEE/CVF Conference on Computer*
 780 *Vision and Pattern Recognition*, pp. 9420–9429, 2024.

781

782 Ruizhi Shao, Youxin Pang, Zerong Zheng, Jingxiang Sun, and Yebin Liu. 360-degree human video
 783 generation with 4d diffusion transformer. *ACM Transactions on Graphics (TOG)*, 43(6):1–13,
 2024.

784

785 Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
 786 Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
 787 model. *arXiv preprint arXiv:2310.15110*, 2023.

788

789 Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li, and Xiao Yang. MVDream: Multi-view
 790 diffusion for 3d generation. In *The Twelfth International Conference on Learning Representations*,
 2024a. URL <https://openreview.net/forum?id=FUgrjq2pbB>.

791

792 Yukai Shi, Jianan Wang, He CAO, Boshi Tang, Xianbiao Qi, Tianyu Yang, Yukun Huang, Shilong
 793 Liu, Lei Zhang, and Heung-Yeung Shum. TOSS: High-quality text-guided novel view synthesis
 794 from a single image. In *The Twelfth International Conference on Learning Representations*,
 2024b. URL <https://openreview.net/forum?id=9ZUYJpvIys>.

795

796 Geonhee Sim and Gyeongsik Moon. Persona: Personalized whole-body 3d avatar with pose-driven
 797 deformations from a single image. In *Proceedings of the IEEE/CVF International Conference on*
 798 *Computer Vision*, pp. 12670–12680, 2025.

799

800 Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual, Iurii Makarov, Filippos Kokkinos, Naman
 801 Goyal, Andrea Vedaldi, Devi Parikh, Justin Johnson, et al. Text-to-4d dynamic scene generation.
 802 In *Proceedings of the 40th International Conference on Machine Learning*, pp. 31915–31929,
 2023.

803

804 Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen Liu, Zhenda Xie, and Yebin Liu. Dream-
 805 craft3d: Hierarchical 3d generation with bootstrapped diffusion prior. In *The Twelfth Interna-*
 806 *tional Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=DDX1u29Gqr>.

807

808 Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, and Yikai Wang.
 809 Dimensionx: Create any 3d and 4d scenes from a single image with controllable video diffusion.
arXiv preprint arXiv:2411.04928, 2024b.

810 Shuai Tan, Biao Gong, Xiang Wang, Shiwei Zhang, DanDan Zheng, Ruobing Zheng, Kecheng
 811 Zheng, Jingdong Chen, and Ming Yang. Animate-x: Universal character image animation with
 812 enhanced motion representation. In *The Thirteenth International Conference on Learning Repre-*
 813 *sentations*, 2025. URL <https://openreview.net/forum?id=1IuwdoI4Zb>.

814

815 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 816 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 817 high frequency functions in low dimensional domains. *Advances in neural information processing*
 818 *systems*, 33:7537–7547, 2020.

819

820 Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Genera-
 821 tive gaussian splatting for efficient 3d content creation. In *The Twelfth International Confer-*
 822 *ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=UyNXMqnN3c>.

823

824 Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan Huang, Adam Letts, Yangguang Li, Ding
 825 Liang, Christian Laforte, Varun Jampani, and Yan-Pei Cao. Tripors: Fast 3d object reconstruction
 826 from a single image. *arXiv preprint arXiv:2403.02151*, 2024.

827

828 Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski,
 829 and Sylvain Gelly. Fvd: A new metric for video generation. 2019.

830

831 Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Chris-
 832 tian Laforte, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and 3d
 833 generation from a single image using latent video diffusion. In *European Conference on Com-*
 834 *puter Vision*, pp. 439–457. Springer, 2025.

835

836 VRoid. VRoid hub. <https://vroid.com/>, 2022.

837

838 Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
 839 *arXiv preprint arXiv:2312.02201*, 2023.

840

841 Xiang Wang, Shiwei Zhang, Longxiang Tang, Yingya Zhang, Changxin Gao, Yuehuan Wang, and
 842 Nong Sang. Unianimate-dit: Human image animation with large-scale video diffusion trans-
 843 former. *arXiv preprint arXiv:2504.11289*, 2025.

844

845 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
 846 lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
 847 *Advances in Neural Information Processing Systems*, 36, 2024a.

848

849 Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang, Yuwei Guo, Wenran Liu, Jing Tan, Kai
 850 Chen, Tianfan Xue, Bo Dai, et al. Humanvid: Demystifying training data for camera-controllable
 851 human image animation. *Advances in Neural Information Processing Systems*, 37:20111–20131,
 852 2024b.

853

854 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 855 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 856 612, 2004.

857

858 Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli,
 859 Hao Su, and Zexiang Xu. Meshlrm: Large reconstruction model for high-quality meshes. *arXiv*
 860 *preprint arXiv:2404.12385*, 2024.

861

862 Haohan Weng, Tianyu Yang, Jianan Wang, Yu Li, Tong Zhang, CL Chen, and Lei Zhang.
 863 Consistent123: Improve consistency for one image to 3d object synthesis. *arXiv preprint*
 864 *arXiv:2310.08092*, 2023.

865

866 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
 867 and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings*
 868 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 20310–
 869 20320, June 2024.

864 Zijie Wu, Chaohui Yu, Yanqin Jiang, Chenjie Cao, Fan Wang, and Xiang Bai. Sc4d: Sparse-
 865 controlled video-to-4d generation and motion transfer. In *European Conference on Computer*
 866 *Vision*, pp. 361–379. Springer, 2025.

867 Yiming Xie, Chun-Han Yao, Vikram Voleti, Huaiyu Jiang, and Varun Jampani. SV4d: Dynamic 3d
 868 content generation with multi-frame and multi-view consistency. In *The Thirteenth International*
 869 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tJOS2d0Onf>.

870 Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. Instantmesh:
 871 Efficient 3d mesh generation from a single image with sparse-view large reconstruction models.
 872 *arXiv preprint arXiv:2404.07191*, 2024.

873 Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Chong-Wah Ngo, and Tao Mei.
 874 Hi3d: Pursuing high-resolution image-to-3d generation with video diffusion models. In *Proceed-
 875 ings of the 32nd ACM International Conference on Multimedia*, pp. 6870–6879, 2024a.

876 Ling Yang, Kaixin Zhu, Juanxi Tian, Bohan Zeng, Mingbao Lin, Hongjuan Pei, Wentao Zhang,
 877 and Shuicheng Yan. Widerange4d: Enabling high-quality 4d reconstruction with wide-range
 878 movements and scenes. *arXiv preprint arXiv:2503.13435*, 2025a.

879 Zeyu Yang, Zijie Pan, Chun Gu, and Li Zhang. Diffusion^{~2\$}: Dynamic 3d content generation
 880 via score composition of video and multi-view diffusion models. In *The Thirteenth Interna-
 881 tional Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=factsEG2GU>.

882 Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
 883 two-stages distillation. In *Proceedings of the IEEE/CVF International Conference on Computer
 884 Vision*, pp. 4210–4220, 2023.

885 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 886 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 887 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
 888 an expert transformer. In *The Thirteenth International Conference on Learning Representations*,
 889 2025c. URL <https://openreview.net/forum?id=LQzN6TRFg9>.

890 Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
 891 3d gaussians for high-fidelity monocular dynamic scene reconstruction. In *Proceedings of the*
 892 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 20331–20341, 2024b.

893 Jianglong Ye, Peng Wang, Kejie Li, Yichun Shi, and Heng Wang. Consistent-1-to-3: Consistent im-
 894 age to 3d view synthesis via geometry-aware diffusion models. In *2024 International Conference
 895 on 3D Vision (3DV)*, pp. 664–674. IEEE, 2024.

896 Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and
 897 Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussian splatting with point
 898 cloud priors. *arXiv preprint arXiv:2310.08529*, 2023.

899 Yuyang Yin, Dejia Xu, Zhangyang Wang, Yao Zhao, and Yunchao Wei. 4dgen: Grounded 4d content
 900 generation with spatial-temporal consistency. *arXiv preprint arXiv:2312.17225*, 2023.

901 Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
 902 Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, Boqing Gong, Ming-Hsuan
 903 Yang, Irfan Essa, David A Ross, and Lu Jiang. Language model beats diffusion - tokenizer is
 904 key to visual generation. In *The Twelfth International Conference on Learning Representations*,
 905 2024. URL <https://openreview.net/forum?id=gzqrANCF4g>.

906 Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d:
 907 Real-time human volumetric capture from very sparse consumer rgbd sensors. In *IEEE Confer-
 908 ence on Computer Vision and Pattern Recognition (CVPR2021)*, June 2021a.

909 Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d:
 910 Real-time human volumetric capture from very sparse consumer rgbd sensors. In *Proceedings of
 911 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5746–5756, 2021b.

918 Yifei Zeng, Yanqin Jiang, Siyu Zhu, Yuanxun Lu, Youtian Lin, Hao Zhu, Weiming Hu, Xun Cao, and
 919 Yao Yao. Stag4d: Spatial-temporal anchored generative 4d gaussians. In *European Conference*
 920 *on Computer Vision*, pp. 163–179. Springer, 2025.

921 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 922 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 923 *computer vision and pattern recognition*, pp. 586–595, 2018.

924 Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, and Fang Yuan Zou.
 925 Mimicmotion: High-quality human motion video generation with confidence-aware pose guid-
 926 ance. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=0YXxh8WALf>.

927 Hongbo Zhao, Jiaxing Li, Peiyi Zhang, Peng Xiao, Jianxin Lin, and Yijun Wang. Colorsurge: Bring-
 928 ing vibrancy and efficiency to automatic video colorization via dual-branch fusion. In *Proceed-
 929 ings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference
 930 Conference Papers*, pp. 1–11, 2025.

931 Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhenguo Li, and Gim Hee Lee. Animate124:
 932 Animating one image to 4d dynamic scene. *arXiv preprint arXiv:2311.14603*, 2023.

933 Linqi Zhou, Andy Shih, Chenlin Meng, and Stefano Ermon. Dreampropeller: Supercharge text-to-
 934 3d generation with parallel sampling. In *Proceedings of the IEEE/CVF Conference on Computer*
 935 *Vision and Pattern Recognition*, pp. 4610–4619, 2024.

936 Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Zilong Dong, Yinghui Xu, Xun Cao, Yao Yao,
 937 Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d
 938 parametric guidance. In *European Conference on Computer Vision*, pp. 145–162. Springer, 2024.

939 Yiyu Zhuang, Jiaxi Lv, Hao Wen, Qing Shuai, Ailing Zeng, Hao Zhu, Shifeng Chen, Yujiu Yang,
 940 Xun Cao, and Wei Liu. Idol: Instant photorealistic 3d human creation from a single image.
 941 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26308–26319,
 942 2025.

943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 APPENDIX
973974 A IMPLEMENTATION DETAILS
975

976 In the pose-controlled 2D character animation pretraining stage, we initialize our DiT model weights
977 using the pretrained image-to-video model CogVideoX-I2V-5B (Yang et al., 2025c). The pretrain-
978 ing dataset comprises 21,000 dancing videos collected from the Internet, which are processed into
979 336,000 video clips, each containing 25 frames at a resolution of 480×720 . Next, we apply the
980 widely used pose detector DWpose (Yang et al., 2023) to extract pose images. We follow the full
981 training script from CogVideoX, using a learning rate of 2e-5, and train this stage for 11,000 steps
982 on eight A800 GPUs. In the multi-view video generation stage, we continue finetuning the model
983 on Character4D with dual-attention module and a camera encoder, starting from the checkpoint ob-
984 tained in the first stage. During training, we set $V = 5$ and randomly sample views from the view
985 pool. This stage is trained for 1,500 steps on 16 A800 GPUs with a learning rate of 5e-5. We also
986 finetune the view generator from SV3D using the Character4D dataset with A-pose, training for
987 20,000 iterations on eight A800 GPUs at a resolution of 768×768 , with each sample consisting of
988 21 frames. Please note that the view-generator is a plugin component that allows us to seamlessly
989 replace SV3D with any more powerful view-generator at no additional cost.

990 We finetune MimicMotion on our 2D pretrained dataset to improve its performance on characters,
991 and we only update the parameters of temporal layers and pose guider at ($lr=1e-4$, batch size=8,
992 $gpus=8$, resolution=1024, num frames=15, training steps=30000). For neighbor-constrained 4DGS,
993 both the coarse stage and each progressive step (Yang et al., 2025a) in the fine stage are trained
994 for 3000 iterations. In the coarse stage, we select the video frame at time step $T/2$ to optimize a
995 static Gaussian representation. In the fine stage, we utilize the full multi-view video sequence for
996 progressive optimization. For the $\mathcal{L}_{neighbor}$, we define the local neighborhood of a point as its 20
997 nearest neighbors in the static 3D Gaussians. For loss weighting, we set $\lambda_2 = 0.01$, while all other
998 coefficients $\lambda_{1,3,4} = 1$. The learning rate is 1.6e-4.

999 **Metrics.** Following, SV4D (Xie et al., 2025), for FV4D, we compute the Fréchet Video Distance
1000 (FVD) (Unterthiner et al., 2019) over all images, which are traversed in a bidirectional raster pat-
1001 tern. In addition, we employ three specialized FVD variants to evaluate video coherence at a more
1002 granular level: FVD-F, which computes FVD across frames within each view; FVD-V, which com-
1003 putes FVD across views for each frame; and FVD-D, which computes FVD across the diagonal
1004 elements of the view-frame matrix. Specifically, we generate 21 views for evaluating the view gen-
1005 erator. FV4D, FVD-F, FVD-V, and FVD-D are computed from a 9×9 multi-view video matrix,
1006 which consists of nine viewpoints and nine frames.

1007 B EXPERIMENTS
10081009 B.1 DIFFERENT SETTINGS ON 4D OPTIMIZATION
1010

1011 In this subsection, we conduct an
1012 ablation study on our neighbor loss
1013 and its corresponding binary gate
1014 in neighbor-constrained 4DGS. As
1015 shown in Table 6, without the full
1016 neighbor loss leads to a notable drop

1017 Table 6: Ablation study for our neighbor-constrained 4DGS.

Methods	SSIM \uparrow	LPIPS \downarrow	FVD-F \downarrow	FV4D \downarrow
w/o Binary Gate	0.987	0.015	78.218	57.284
w/o Neighbor Loss	0.986	0.017	83.421	61.324
Full setting	0.987	0.015	73.284	55.472

1018 in performance metrics, with FV4D and FVD-F suffering the most, showing over 10% degradations.
1019 Moreover, only removing the binary gate in the neighbor loss also results in performance degra-
1020 dation, whereas using the full setting achieves the best results across all metrics.

1021 B.2 CHARACTERSHOT VS. TWO-STAGE 4D GENERATION
1022

1023 Experiments in Section 4.2 have demonstrated that CharacterShot significantly outperforms
1024 other single-view video-driven 4D generation methods (Xie et al., 2025; Yang et al., 2025b;
1025 Zeng et al., 2025). To comprehensively explore the advantages of CharacterShot over existing
1026 4D methods in two-stage generation, we extend the single-view videos from the original
1027 MimicMotion and the ground truth for comparison and conduct the ablation study on L4GM.

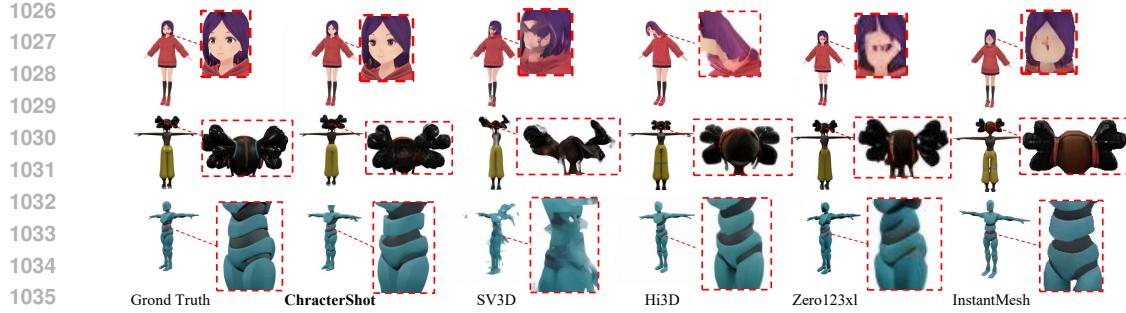


Figure 9: Visual comparison of 3D multi-view image synthesis. Finetuning SV3D on the Character4D dataset, our view generator generates novel character views that are vivid and more detail-oriented.

As shown in Table 7, L4GM achieves better evaluation scores when given ground-truth single-view video as input. However, producing such high-quality and coherent single-view videos through 3D modeling or manual creation is time-consuming and labor-intensive. In contrast, CharacterShot achieves significantly superior performance using only a single reference character and a pose sequence, demonstrating its flexible and effective 4D character animation capability. We also observe that the finetuned MimicMotion outperforms the original model, although it still falls short of the ground-truth videos, demonstrating the fairness of our comparison using the finetuned MimicMotion.

B.3 CHARACTER DATASETS

We evaluate the effectiveness of our proposed Character4D by comparing our finetuned view generator with the base model SV3D (Voleti et al., 2025) and other SOTA methods such as Zero123XL (Liu et al., 2023), InstantMesh (Xu et al., 2024), and Hi3D (Yang et al., 2024a). Visualizations in Figure 9 demonstrate that our view generator achieves superior

Table 7: Experiments on different types of single-view video inputs for L4GM. ‘‘Original’’ and ‘‘Finetuned’’ refer to single-view video inputs generated using the original or finetuned MimicMotion models, respectively, while ‘‘Ground-Truth’’ refers to the input ground-truth single-view video.

Methods	SSIM \uparrow	LPIPS \downarrow	FVD-F \downarrow	FV4D \downarrow
Original	0.904	0.099	1198.655	1258.118
Finetuned	0.907	0.091	1056.498	1042.443
Ground-Truth	0.916	0.081	901.819	922.767
CharacterShot	0.971	0.025	368.235	406.624

and effective 4D character animation capability. We also observe that the finetuned MimicMotion outperforms the original model, although it still falls short of the ground-truth videos, demonstrating the fairness of our comparison using the finetuned MimicMotion.

Table 8: Experiments of view images generation on CharacterBench between SOTA methods and our finetuned view generator.

Methods	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID \downarrow	CLIP-S \uparrow
Hi3D	18.279	0.922	0.073	77.351	94.184
Zero123xl	15.704	0.889	0.112	78.855	93.149
InstantMesh	17.011	0.878	0.087	76.623	92.824
SV3D	17.340	0.906	0.153	103.543	88.499
CharacterShot	21.098	0.945	0.054	71.656	94.513

performance in preserving character details for different views—such as facial features, hair, and body structure—compared to other baselines. Experiments in Table 8 also highlights the necessity of the character-centric dataset for multi-view images generation.

B.4 USER STUDY ON OUT-OF-CHARACTER4D TEST SAMPLES

To evaluate the CharacterShot’s generalize ability to characters that are out-of-Character4D (OOC), we construct a test set, which includes characters sourced from the Internet and Flux, spanning 2D anime characters, real-world humans, and other distinct 3D models with diverse motions, to compare CharacterShot with the 4D baselines. Since ground-truth

Table 9: User Study on characters that are OOC.

Methods	Appearance \uparrow	Pose \uparrow	Time \uparrow	View \uparrow
SC4D	21.79	19.99	21.04	20.77
STAG4D	18.80	16.50	17.10	19.59
L4GM	12.22	17.76	17.41	12.29
DG4D	7.91	16.77	14.15	10.30
CharacterShot	39.24	29.01	30.33	37.05

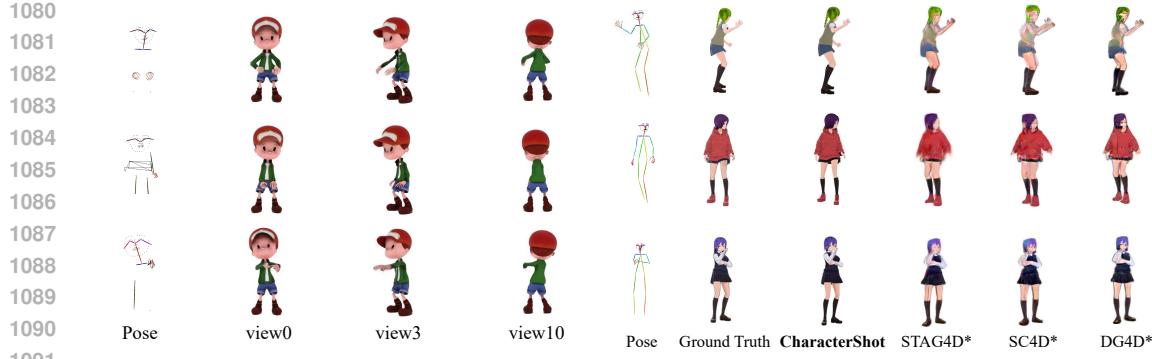


Figure 10: Visualization when CharacterShot meets inaccurate poses.

Figure 11: Visual comparison with finetuned baselines (represents as *).

multi-view videos aren't available for these OOC characters, we conduct a user study with 30 volunteers to assess consistency in appearance, pose, time, and view in Table 9. CharacterShot generalizes well to these OOC characters and motions, outperforming all baselines on the OOC test set. Multi-view videos and 4d demos are shown in Supplementary Material.

B.5 INFERENCE COST

CharacterShot requires 20 or 40 minutes and 37 GB or 8 GB of VRAM to generate multi-view videos on a single H800 GPU, depending on whether CPU-offload is used. The 4DGS stage takes 30 minutes for optimization. While a standard CGI pipeline—including 3D modeling, motion capture, rigging, and more—typically takes several weeks, CharacterShot offers a low-cost CGI solution for individual creators on consumer-grade GPUs.

C LIMITATION

Although CharacterShot improves robustness to varied pose sequences through confidence-aware pose guidance, which uses the brightness of keypoints and limbs to encode pose-estimation confidence. As shown in Figure 10, CharacterShot performs well and produces robust, stable results in cases where poses disappear (row 1), are disrupted (row 2), or overlap (row 3), thanks to its confidence-aware pose-guidance strategy. However, animating with significantly inaccurate poses remains challenging, highlighting direction for future exploration.

D FINETUNE BASELINES ON CHARACTER4D

In this section, we finetune the baseline methods, STAG4D, SC4D, and DG4D, on our Character4D dataset by training the prior diffusion models Zero123-XL and stable-Zero123 (Liu et al., 2023) used in these baselines. First, the results in Table 10 show that the finetuned Zero123-XL achieve superior performance on characters compared to their raw versions. Next, we evaluate the baseline methods built on these finetuned prior diffusion models and report the qualitative and quantitative results on the CharacterBench in Figure 11 and Table 11.

Table 10: Quantitative results for finetuned Zero123xl and Stable-Zero123 on CharacterBench (* represents finetuned models).

Methods	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID \downarrow
Zero123xl	15.704	0.889	0.112	78.855
Stable-Zero123	16.462	0.893	0.010	104.043
Zero123xl*	22.049	0.931	0.005	50.076
Stable-Zero123*	20.632	0.942	0.004	45.268

Table 11: Quantitative comparison between finetuned baseline methods and CharacterShot on CharacterBench (* represents finetuned models).

Methods	SSIM \uparrow	LPIPS \downarrow	FVD-F \downarrow	FV4D \downarrow
SC4D*	0.914	0.090	1072.756	1093.035
STAG4D*	0.919	0.084	1028.930	985.809
DG4D*	0.918	0.081	950.306	866.897
CharacterShot	0.971	0.025	368.235	406.624

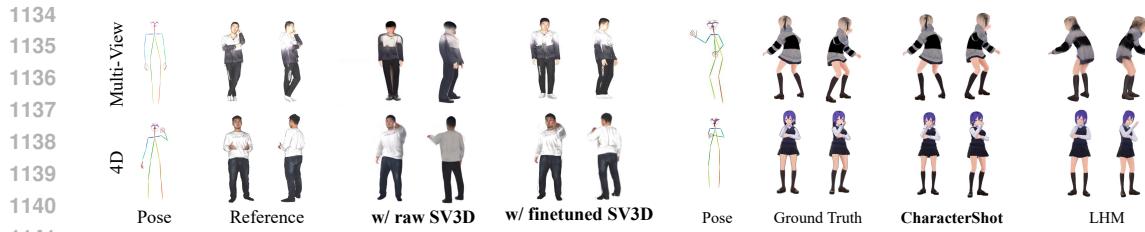


Figure 12: Visualization for CharacterShot with raw SV3D or finetuned SV3D.

Figure 13: Visual comparison with animatable 3DGS method LHM.

CharacterShot outperforms all baselines when they are also finetuned on our Character4D dataset. We also conduct evaluations on the real-human datasets People-Snapshot and THuman 2.1 using CharacterShot with and without finetuned SV3D in Figure 12, CharacterShot with the raw SV3D produces results with blurred details in both the facial and body regions, whereas finetuning SV3D yields more consistent and higher-quality results.

E COMPARISON WITH ANIMATABLE 3DGS

In this section, we compare CharacterShot with recent animatable 3DGS method LHM (Qiu et al., 2025a) on our CharacterBench. As shown in Figure 13, CharacterShot achieves more precise pose alignment and higher-quality facial and body details across different views. The quantitative results in Table 12 further demonstrate that CharacterShot outperforms LHM on all metrics. Animatable 3DGS methods such as LHM require less computation time but sacrifice motion accuracy and fine-grained reconstruction of human details. In contrast, our 4DGS pipeline leverages the powerful generative capability of diffusion models to achieve more precise and flexible motion control, and optimizes more consistent, higher-quality 4DGS representations from multi-view videos that provide rich geometric, appearance, and motion information, while incurring higher computational cost than animatable 3DGS methods. We would like to clarify that 4DGS and animatable 3D are two distinct approaches to 4D animation. Moreover, 4DGS remains valuable for applications such as the metaverse, camera production, and city reconstruction, and we should not discontinue exploring it solely because of its current drawbacks (e.g., it is more time-consuming than animatable 3DGS), as these limitations are likely to be addressed by future advances in algorithms and hardware.

F THE USE OF LARGE LANGUAGE MODELS (LLMs)

We use large language models (LLMs) solely for the limited purpose of checking grammar and polishing the overall writing style of our texts. Their role is restricted to improving readability, fluency, and correctness, rather than contributing to the generation of new ideas or altering the substance of our work. By focusing only on surface-level language refinement, we ensure that the originality, logical structure, and core arguments of the content remain entirely authored by us. In this way, LLMs serve as supportive tools for linguistic clarity, not as creators or co-authors of intellectual contributions.

Table 12: Quantitative comparison between animatable 3DGS method LHM and CharacterShot on CharacterBench.

Methods	SSIM \uparrow	LPIPS \downarrow	FVD-F \downarrow	FV4D \downarrow
LHM	0.933	0.072	883.416	847.143
CharacterShot	0.971	0.025	368.235	406.624

Figure 14: Visual results of multi-view videos generation for characters from Flux and Internet, which are out-of-Character4D. Specifically, Iron Man, Spider-Man, and Tifa (from Final Fantasy) in rows 1–4 are characters from modern games or movies. Rows 5–7 show real-world humans, and rows 8–10 show 2D anime characters.