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Figure 1: Given any character image and a 2D pose sequence, CharacterShot synthesizes dynamic
3D characters with precise motion control and arbitrary viewpoint rendering, achieving both spatial-
temporal and spatial-view consistency in 4D space.

ABSTRACT

In this paper, we propose CharacterShet, a controllable and consistent 4D char-
acter animation framework that enables any individual designer to create dynamic
3D characters (i.e., 4D character animation) from a single reference character im-
age and a 2D pose sequence. We begin by pretraining a powerful 2D charac-
ter animation model based on a cutting-edge DiT-based image-to-video model,
which allows for any 2D pose sequnce as controllable signal. We then lift the ani-
mation model from 2D to 3D through introducing dual-attention module together
with camera prior to generate multi-view videos with spatial-temporal and spatial-
view consistency. Finally, we employ a novel neighbor-constrained 4D gaussian
splatting optimization on these multi-view videos, resulting in continuous and sta-
ble 4D character representations. Moreover, to improve character-centric perfor-
mance, we construct a large-scale dataset Character4D, containing 13,115 unique
characters with diverse appearances and motions, rendered from multiple view-
points. Extensive experiments on our newly constructed benchmarks, Charac-
terBench and HumanBench, demonstrate that our approach outperforms current
state-of-the-art methods. Code, models, and datasets will be publicly available.

1 INTRODUCTION

When people watch the scientific films such as The Iron Marﬂ series, they are often amazed by the
films’ astonishing realism, which leads some to wonder whether such advanced flying suits actually
exist in real life. Unfortunately, the answer is no, these characters are created by computer-generated
imagery (CGI), which includes sophisticated technical chains-from professional 3D modeling and
advanced motion capture to complex rigging and retargeting. This CGI pipeline is widely used in
film, gaming, and the metaverse, and it requires specialized equipment and significant manual effort

'"https://en.wikipedia.org/wiki/Iron_Man_ (2008_£film)
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to build dynamic 3D characters—a process also known as 4D character animation. In this paper, we
introduce CharacterShot, a novel framework that democratizes a low-cost CGI pipeline accessible
to individual creators. As shown in Figure[I} CharacterShot supports diverse character designs and
custom motion control (2D pose sequence), enabling 4D character animation in minutes and without
specialized hardware.

With the remarkable progress in recent generative models (Nichol et al.,|2022; Ho et al.| 2020), 4D
generation (Yin et al., 2023} |Zeng et al. [2025] Jiang et al [2024) has demonstrated the impressive
effectiveness in synthesizing 4D content. These methods aim to generate 4D content from a single-
view character video. However, they often fall short in practical scenarios—such as those involving
hand-drawn or Al-generated characters—where a single-view video including custom motions may
not be available. A natural solution is to firstly generate the single-view character video using the 2D
character animation methods (Zhang et al., [2025; Ma et al.,[2024), which excel at animating a char-
acter based on the pose sequence extracted from a target motion video. Such a two-stage framework
forms a 4D character animation baseline exhibiting many limitations: 1) Disjoint modeling of pose
and view makes it difficult to maintain consistent appearance and motion across views; 2) These 4D
methods are trained on general 3D objects from static 3D object datasets such as Objverse (Deitke
et al.|[2023), suffering from limited diversity in character representations and pose variations—both
of which are crucial for generating compelling 4D character animations (Ling et al.,|2024; Bahmani
et al.,[2024} [Singer et al.| 2023)).

To address the above limitations, we propose CharacterShot, which is able to generate dynamic
3D characters from a given reference character image and a 2D pose sequence. This flexible and
robust 4D character animation requires the model to possess the ability to precisely express the given
motion and preserve consistent character appearance across both time and views. To this end, we
first enhance the DiT-based image-to-video (I2V) model CogVideoX (Yang et al.| [2025c) by inte-
grating pose conditions, enabling user-defined motion control for a given character image. Next,
we extend the 12V model to a multi-view setting by introducing a dual-attention module and a cam-
era prior, ensuring both spatio-temporal and cross-view consistency. Finally, we adopt neighboring
3D points as groups with constrained inner-distances within a coarse-to-fine 4D Gaussian Splatting
(4DGS) framework to generate a continuous and stable 4D representation from multi-view videos.
With these components, CharacterShot produces high-quality and consistent 4D character anima-
tion results aligned with the custom motion from 2D pose sequence. Furthermore, to address the
scarcity of character-centric 4D animation datasets, we construct a large-scale 4D dataset Char-
acter4D. Character4D contains 13,115 unique characters with varied appearances, building upon
Wang et al.[(2024b). Each character undergoes rigging and motion retargeting with diverse 3D mo-
tion sequences, followed by multi-view rendering (up to 21 viewpoints), establishing large-scale
character-centric 4D dataset specifically designed for 4D character animation.

Moreover, to address the lack of a benchmark for 4D character animation, we establish Character-
Bench, a benchmark featuring diverse dynamic characters. Extensive qualitative and quantitative
comparisons on CharacterBench and a real human benchmark HumanBench demonstrate that Char-
acterShot outperforms existing state-of-the-art (SOTA) approaches and excels at generating spatial-
temporal and spatial-view consistent 4D character animations conditioned on pose inputs. Addi-
tionally, ablation studies validate the effectiveness of our framework and highlight its superiority,
offering valuable insights to the community. The contributions are summarized as follows:

¢ To the best of our knowledge, CharacterShot is the first DiT-based 4D character animation
framework capable of generating dynamic 3D characters from a single reference character
image and a 2D pose sequence.

* We propose a novel dual-attention module, which effectively ensuring spatial-temporal and
spatial-view consistency in generating multi-view videos.

* A novel neighbor-constrained 4DGS is proposed to enhance the robustness against outliers
or noisy 3D points during 4D optimization, resulting in more continuous and stable 4D
representations.

* A large-scale character-centric dataset containing 13k characters with high-fidelity appear-
ances rendered with varied motions and viewpoints for 4D character animation.

» Extensive experiments demonstrate that CharacterShot has achieved SOTA performance
compared to other methods.
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2 RELATED WORK

2.1 CHARACTER ANIMATION

Recently, with the significant progress in image and video generation made by diffusion models

(Ho et al} 2020} [Nichol & Dhariwall 2021}, [Nichol et al., 2022} [Zhao et al, 2025} 2024b),
numerous character animation methods (Feng et al.| [2023; Ma et al.l 2024; |Chan et al., 2019; [Hul
2024} [Zhang et al., [2025; Wang et al.| [2025; [Luo et al., 2025} [Shao et al., 2024; |Gan et al., [2025;

Tan et al., [2025} [Zhu et al.l 2024) have exhibited remarkable performance. These works typically
generate consistent animation results by using pose skeletons—extracted from off-the-shelf human

pose detectors—as motion indicators, and further finetuning U-Net (Ronneberger et al 2015) or
diffusion transformers (DiT) based (Peebles & Xiel, [2023) video generation models. In this paper,
we build our CharacterShot on the powerful DiT-based image-to-video model CogVideoX
to enable higher-quality character animation.

2.2 3D GENERATION

Generating 3D content is essential and in high demand across real-world applications. Traditional
methods typically rely on 3D supervision to learn 3D representations such as point clouds
let all 2022; [Kerbl et al 2023), meshes 2024; [Liu et al.l 2024), and
neural radiance fields (NeRFs) (Hong et al.l 2024; Jiang et al.l 2023} Tochilkin et al.,[2024; [Qu et al.
2024). Recent works (Poole et al., [2023; [Tang et al., 2024; [Shi et al., [2024a; Wang et al., 2024a;
Li et al., 2024d; Weng et al., [2023; |Pan et al., 2024a; [Chen et al., 2024} Sun et al., 2024a; [Sargent

et al.,2024; [Liang et al., :[Zhou et al ,[2024;|Guo et al.,[2023}; Y1 et al.,[2023; [Yang et al.}[2024a)
borrow the prior information from 2D image diffusion models, using SDS loss (Poole et al.,[2023) to
optimize the 3D content from text or image. Other approaches 20242} 2023} [2024c;
et al, 2024} [Voleti et al., 2025}, [Ye et al.| 2024} [Karnewar et al., 2023} [Li et al.) 4al; |Shi et al.,
[2024b}, 2023}, [Wang & Shil, [2023) first generate multi-view images from diffusion models and then
perform 3D reconstruction based on these views. In our work, we use the view images generated by
a finetuned SV3D (Voleti et al.} [2025)), as reference view images in the 4D generation stage.

2.3 4D GENERATION

Similar to 3D generation, many methods (Yin et al., 2023}, [Zeng et al|, 2025] Jiang et al.| 2024
Zhao et al., 2023} [Ren et al., 2023 [Ling et al., 2024; Bahmani et al.l 2024 [Singer et al., 2023}, Pang
et al., 2025) utilize SDS-based optimization to generate 4D content by distilling pre-trained diffusion

models in a 4D representation. However, optimizing SDS loss is often computationally intensive and

time-consuming. Another line of work (Pan et al., 2024b; Zeng et al.
et al, [2025; [Sun et al, 2024b;, [Park et al., [2025} [Yang et al., [20254; [Liu et al., 2025¢; [Hu et al.)

2024)) finetunes diffusion models to generate multi-view videos and further optimize 4D content.
These methods are limited to single-view video-driven generation and often struggle to effectively
control the motion specified by the user. Recently, Human4DiT 2024) introduces SMPL
model (Loper et al.,[2023) for all views to enable controllable multi-view video generation. How-
ever, it does not include 4D optimization stages, and the SMPL pipeline, which involves mesh vertex
optimization and SMPL body rendering, is complex and computationally expensive, making it im-
practical for real-world applications. In contrast, CharacterShot supports simple and convenient 2D
pose conditions and is capable of generating spatial-temporal and spatial-view consistent 4D results.

2.4 3D/4D CHARACTER GENERATION

Focusing on character-centric 3D/4D generation, many methods learn canonical 3D Gaussian (or
mesh) representations with pose-driven deformations, either by optimizing them directly from
monocular videos (Li et al] [2024¢; [Qian et all 2024} [Kocabas et al. 2024} [Lei et all m
et al] 2024) or by predicting them in a feed-forward manner from one or a few images
2025afjb; [Zhuang et al} [2023)), in order to construct animatable human avatars by blndlng them to
SMPL models. With the rapid development of large diffusion models, some works
[2024} [Huang et al| 2025} [Qiu et al}, 2025¢} [Sim & Moon|, 2025} [Pang et al.| 2025} [Liu et a|.|, MB[)

leverage multi-view or video diffusion priors to generate pose- and view-rich supervision for human
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Figure 2: Overview of CharacterShot. Given a reference character image and a 2D pose sequence as
custom motion input, our framework generates multi-view videos with spatio-temporal and cross-
view consistency. Next CharacterShot apply a neighbor-constrained 4DGS to generate 4D content.

and character avatars, enabling the optimization of 3D/4D Gaussian representations with motions
from rigged skeletons or bound SMPL models. However, these methods generate dynamic 3D char-
acters by deforming static canonical avatars along pre-defined motion trajectories within a rigging
and rendering pipeline that is complex, tightly coupled, and difficult for individual users. To provide
a more user-friendly solution, we propose CharacterShot, which generates high-quality 4D character
animation from only a single reference character image and a 2D pose sequence.

3 METHOD

Previous studies (Zeng et al, 2025} [Xie et al.} 2025) optimize 4D representations using single-view
character video. However, generating this from a custom character image and corresponding motion
control is complex and costly in real-world applications. To address this limitation, we propose
CharacterShot, a novel framework that enables pose-controlled 4D character animation from a single
reference character image with a 2D driving pose sequence. The overall framework of CharacterShot
is illustrated in Figure 2] including pose-controlled 2D character animation (Section [3.2), multi-
view videos generation (Section [3.3), and neighbor-constrained 4DGS optimization (Section [3.4).
We also introduce the foundational concepts of the DiT model and the detailed illustration of our
proposed dataset, Character4D, in Section [3.1and Section [3.3] respectively.

3.1 PRELIMINARIES

In CharacterShot, we utilize a DiT-based image-to-video (12V) model, CogVideoX (Yang et all,
[2025¢), as the base model. It consists of a 3D Variational Autoencoder (3D VAE) (Yu et al.| 2024),
a T5 text encoder (Raffel et al.|[2020), and a denoising diffusion transformer (Peebles & Xie),[2023).
CogVideoX finetunes a 3D VAE £ to compress both the spatial and temporal information of the
input video with the shape 4f x 8h X 8w X 3 into a latent representation z; = £(I), where z; €
RS xhxwx16 Ty enable 12V generation, a reference latent z, € RIxhxwx16 i concatenated with
z; along the channel dimension to form the final input zg € RS Xhxwx32 where 7, will be derived
from the latent padding of the reference image. After that, a patchify module is applied to convert the
latent zg into video tokens xg € RS x (5 3) *C where n = 2 denotes the patch size and C' = 3072
represents the output channel dimension. And the denoising diffusion transformer ey is trained by
minimizing the Mean Squared Error (MSE) loss £ at each time step ¢, as follows:

2
L =By, con(0,1),c,tll€0(Xt, € 1) — €7,

where x; is the noisy latent at time step ¢, and the gaussian noise ¢; is added to the video latent z;

before the patchify module. c is the text condition.

3.2 POSE-CONTROLLED CHARACTER ANIMATION

To enable controllable generation on CogVideoX, we treat the pose information as an additional
reference and perform 2D character animation pretraining as the base model for the next stage.
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Specifically, we utilize 3D VAE to compress pose sequence P € R*/*8/x8wx3 inio pose latent z,, €
RFfxhxwx16 The pose latent zp, is then concatenated with the video latent z; as a condition, and the
reference latent z, and the corresponding pose latent zy, of the reference image are concatenated to
provide reference information as follows:

zo = Concat ([zy, 2], [z}, 2zp)])

where zo € RUFD>*hxwx32  Dyring training, we exclude the loss from the reference frame and
only update the parameters of diffusion transformer. Moreover, to improve the model’s robustness
to misaligned pose inputs during animation generation, we select the reference image and its corre-
sponding pose image—originally taken from the first frame of the input video—with those from a
randomly selected frame.

3.3 MULTI-VIEW VIDEO GENERATION

CharacterShot aims to generate

spatial attention view attention temporal attention
multi-view videos with the shape
Vx (4f +1) x 8h x 8w x 3 for e A | o fuenfon ]
4D optimization, where V represents | | noluent fon | 7 |

the number of the target views.

. 7 ‘
We first expand the input latent zg , 3
from 2D pretraining stage with an e et
additional view dimension: ransifiiSion e
7o € RVx(f+1)><h><w><32’
view j frame a view 1 frame a view 1 frame b

where the reference images are taken

from different views of the same Figure 3: The separated spatial, temporal and view attention
character at the same time, and the mechanisms are difficult to learn the implicit transmission
pose latent zj, from a single view is across views and time.

concatenated across all views to enable more adaptive and robust controllable generation. Follow-
ing SV4D (Xie et al.| [2025)), the multi-view images are generated by a view generator SV3D (Voleti
et al., [2025). We finetune this view generator using our Character4D dataset to improve its perfor-

L. . \ 72
mance to characters. Additionally, we encode the camera prior 7 = (E,, K,,),_, into a camera
h w

tokens x,, and add it to the input tokens xq € RV *(/+1)x (5 5)XC for each specific view v:

h w
T, = rearrange (gc(d)plﬁcker(Eva Kv))v (E : 5) X C) )
where E, and K, represent the intrinsic and extrinsic parameters, respectively; @pjicker denotes the
Pliicker embedding (He et al., 2025)) with the shape 6 x 8/ x 8w; and the camera encoder &. encodes
the Pliicker embedding derived from F,, and K, into a feature map C' x % X 2

Previous methods (Xie et al.|[2025; Yang et al.| 2025b) employ separated spatial, temporal and view
attention mechanisms, which are ineffective to learn the implicit transmission of visual information
(Yang et al.,2025c), as shown in FigureE} To address this, we introduce a dual-attention module that
includes parallel 3D full attention blocks to model the coherent and consistent visual transmission
across spatial-temporal and spatial-view correlations. As shown in Figure[2] we rearrange the tokens
xo with shapes V' x ((f + 1) - % ~2)x Cand (f+1)x (V- % -2} x (' as the input to our dual-
attention module. We continue training from the 2D pretraining model on our Character4D dataset
and initialize the dual-attention module using the weights of its 3D full attention blocks. The synergy
of these components enables CharacterShot to generate smooth, spatial-temporal and spatial-view
consistent multi-view videos that follow the custom motion defined by the given pose sequences.

3.4 NEIGHBOR-CONSTRAINED 4DGS OPTIMIZATION

After obtaining multi-view videos, we apply the neighbor-constrained 4D Gaussian Splatting
(4DGS) to optimize the 4D representations. Specifically, we adopt a coarse-to-fine optimization
framework followed (Yang et al.l [2025a) to model the 4D representations as deformable 3D Gaus-
sians along the temporal axis, with each Gaussian G at time ¢ is represented as:

Gi(X) = G(X) + F (v(X), (1)),
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where G(X) is the static 3D Gaussians. F'is a deformation function and +y(-) is a positional encoding
function (Tancik et al., 2020)).

In the coarse stage, we optimize the static 3D Gaussians G5 (X) using £, loss at 7'/2-th frame,
where 1" denotes the number of frames, to quickly build the initial 4D space first. In the fine stage,
we utilize a 4D progressive fitting (Yang et al.| 2025a) to gradually refine the deformable Gaus-
sians at time ¢ with the grid-based total variation loss Lty (Yang et al., |20253) and image-space
reconstruction losses £1 and L pps from the entire multi-view videos. However, the synthesized
multi-view videos might have slight misalignments across views, which often lead to outliers and
noisy 3D points during optimization. As shown in Figure [§] previous 4D methods (Yang et all
2025a; [Wu et al.| 2024} |Yang et al.||2024b; [Liu et al.| 2025a) results in suddenly disappear hands or
visible artifacts. To address this, we introduce a novel neighbor constraint in the fine stage to en-
force geometric consistency, which preserves the relative configuration between each 3D point and
its neighboring points over time, promoting local deformations, where we select 20 nearest neigh-
bors for each point from the static 3D Gaussians based on the L2 distance. Specifically, we calculate
the distances of each 3D point u,; from the group center at frames ¢ and ¢ — 1 as:

t =1 _ -1
L’i = ui ‘N Z ]_lJ7 L ,' Z u )
JEN(4) JEN (i)
where N (i) represents the neighbor points for u;. The neighbor 10ss Lyeighvor 1S then defined as:
12 _
Licighbor = Z HLi - L§ 1“ Swig Mg, (M = ||uf - u’; 1|| > T, Mmi; =mg-my)
(4,5)EE

where 7 is a predefined displacement threshold, 11, is a binary gate that activates only when neigh-
boring points turn into outliers or noisy 3D points, and w;; = [[ul™' — u;fl || is a spatial edge
weight. The full loss function in fine stage can be defined as:

Liine = A1 - L1 + A2 - Lrpes + A3 - Lueighvor + Aa - Lrv,

where the coefficients A1, A2, A3, and A4 are the corresponding weighting factors.

3.5 CHARACTER4D

Current 4D character datasets (Yu et al., 2021b; Views Views View2 Viewls
Cheng et al [2023) only include a very small ~n “

variety of character types and motion types. To il

enable a more generalized 4D character ani- v J

mation, we construct a large-scale 4D charac- u

ter dataset by filtering high-quality characters

from VRoidHulﬂ (VRoid, |2022)—a platform l-nmw anuo Frame20 Frlmc3()
for sharing and showcasing 3D character mod- ~ )

els—and collect a total of 13,115 characters in :

OBJ file format. First, we load the characters

into Blende a widely used 3D modeling soft- p g \ 4
ware, with an initial configuration: A-pose[z_f] and

a centered camera positioned at a fixed height, Figure 4: A character sample from our Charac-
with the radius and field of view (FoV) set to terdD dataset shown across four views and frames.
2.5 and 40°, respectively. After that, we bind

40 diverse motions (e.g., dancing, singing, and jumping) in skeletons collected from MlxamcE] (mix)
to these characters, following the data curation pipeline used in previous methods (Chen et al., 2023
Peng et al.| 2024; [Wang et al.,2024b)). Specifically, we assign one randomly selected motion to each
character (Wang et al., 2024b)) using the automatic retargeting software Rokoko (rok). Binding mo-
tion using skeletons helps the clothing swing naturally with the movements, allowing the model to

2All the 3D avatars we used in our dataset clearly show the permission of usage in their individual websites.

*https://www.blender.org/

“A standard initial posture in which the character stands upright with arms slightly angled downward and
outward, forming an “A” shape.

> An online platform by Adobe that provides automatic rigging and a large library of motions.


https://www.blender.org/
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Figure 5: Visual comparison of multi-view videos synthesis. Rows 1-2 show characters from Char-
acterBench, with the ground-truth images in column 2. Rows 3—4 show humans from HumanBench,
and the corresponding static reference images are also shown in column 2. CharacterShot generates
high-quality character videos with both spatial-temporal and multi-view consistency, faithfully pre-
serving the reference character image and driving pose.

Table 1: Quantitative comparison of multi-view videos synthesis on CharacterBench. The best result
is marked in bold.

Methods SSIM+ LPIPS| CLIP-St FVD-F| FVD-V| FVD-D| FV4D |
SV3D 0.873  0.241 0.864  1639.020 1471.051 1378.806 2078.984
Diffusion? 0.889  0.135 0.878  1198.645 1044.424 994202 1392.323
SV4D 0.891  0.138 0.856  1280.620 1537.853 1467.422 1477.972

CharacterShot ~ 0.967 0.021 0.957 469.677 489.963  388.797  490.457

learn the principles of physical reality. Next, we generate 21 camera viewpoints along a horizontal
static trajectory, following the setup used in SV3D (Voleti et al., [2025). Finally, we render frames
of all characters from 21 viewpoints in the A-pose for view generator finetuning, and with various
motions for diffusion transformer finetuning to generate spatial-temporal and spatial-view consis-
tent multi-view videos from any reference character image and custom motion in pose sequence.
We provide the visual examples of our Character4D dataset in Figure ] The top row shows the
character in the A-pose, while the bottom row depicts the character performing a specific motion.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Benchmarks. As with the dataset challenges faced by existing 4D generation methods, there is
currently no character benchmark for evaluating 4D character animation. To address this, we intro-
duce a new benchmark CharacterBench built from the test sets of CharacterdD (which comprise 23
characters disjoint from the training data), together with 10 characters that are curated from Mix-
amo. Characters in the A-pose are used to assess the view generator’s performance, while characters
with motion are used to evaluate the effectiveness of 4D character animation. Moreover, we con-
struct a HumanBench consisting of 48 real humans collected from the open-source People Snapshot
(Alldieck et al 2018) and THuman 2.1 datasets. Note that each person in Hu-
manBench is provided only as a static 3D model and cannot be used to render multi-view videos
as ground truth. Therefore, we animate these humans using the motions from CharacterBench and
conduct a user study as a proxy for quantitative evaluation. To evaluate the generalization of Char-
acterShot, we also select characters that are out-of-Character4D, gathered additional examples from
the Internet, and generated a suite of virtual characters using Flux 2024), spanning 2D anime
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Figure 6: Visual comparison of 4D generation. Rows 1-2 show characters from CharacterBench,
with the ground-truth images in column 2. Rows 3—4 show humans from HumanBench, and the

corresponding static reference images are also shown in column 2. CharacterShot outperforms other
methods in terms of texture and detail.

Table 2: Quantitative comparison of 4D generation on CharacterBench. The best result is marked in
bold.

Methods SSIM+ LPIPS| CLIP-St FVD-F| FVD-V| FVD-D| FV4D |
STAG4D 0915  0.082 0.904 966979 876.033  817.523  970.241
SC4D 0.907  0.089 0.907  961.941 849.578  813.812  995.497
L4GM 0.907  0.091 0.892  1056.498 889.114  846.307 1042.443
DG4D 0.888  0.116 0.897  1006.051 1200.049 1171.713 1059.921

CharacterShot  0.971 0.025 0.959 368.235 289.279 271.886  406.624

characters, real-world humans, and other distinct 3D models with diverse motions. Results of these
out-of-Character4D test samples are presented in Section[B.4and Figure[I4] Appendix.

Evaluation Metrics. To verify the Table 3: User study on HumanBench comparing CharacterShot
effectiveness of our Character4D in with baselines. Methods at the top are multi-view video generation
improving the performance of fine- methods, and those at the bottom are 4D generation methods.

tuned view-generator, we follow the ™ ethods

Appearance T Pose! Time 1 View T

protocols of (Voleti et al., 2025 V3 TRT 975 1090 516
Liu et al} |_|;02 Xu et al, 202& ¥D : 7 : -
iffusion 25.42 27.88 22.80 29.94
Yang et all , and use PSNR =gy, 19.92 2322 2543 19.07
(Lim et all 2017), SSIM (Wang  cp,pciershot 42.51 3915 4087 4283
et al, 2004), and LPIPS (Zhang
et al.l 2018) to evaluate the quality SC4D 8.64 9.90 12.23 6.56
and similarity between the generated STAGAD 17.82 19.38 1843 14.80
.. . L4GM 23.98 16.10 19.67 15.61
view images and the ground-truth im- DGA4D 1621 17904 1448  20.16
ages from low-level. = Also, CLIP- cpapacierShot 33.35 36.68 3519  42.87

score (CLIP-S) and FID
are employed to evaluate
high-level semantic consistency. For multi-view video generation and 4D optimization, we follow
Sv4D 2025) and apply FV4D, FVD-F, FVD-V, and FVD-D to evaluate consistency
across frames and views. Visual quality is further evaluated using CLIP-S, LPIPS, and SSIM met-
rics. We also conduct a user study with 30 participants to assess the consistency of appearance, pose,
time, and view in the HumanBench evaluations on 20 samples. Specifically, we ask the volunteers
to rank all methods for each sample and assign weighted scores based on the resulting rankings.
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4.2 COMPARISON WITH SOTA METHODS

Multi-View Videos Synthesis. As mentioned in Section|l} previous 4D generation models require
single-view videos and are unable to be conditioned on custom motion such as pose sequences.
To enable a fair comparison, we
adopt a two-stage generation for

these methods by finetuning the
SOTA 2D character animation model
MimicMotion (Zhang et al.,[2025)) on

our collected high-quality 2D pose
driving dataset to generate single-

. . -
view videos based on each spec- xﬁ. -
ified character and corresponding I\ "‘
pose input. We then compare the “ 7 “ “
proposed CharacterShot with SOTA
Single-ViEW video-driven 4D genera- Ground Truth (a)Baseline  (b)+Camera Prior (c)+Dual Attn (d)w/ View Attn
tion methods, including SV3D (Vo-
leti et all, 2025), SV4D (Xie et al., Figure 7: Visualization from the baseline to variants incor-
2025) and Diffusion? (Yang et al., porating different model components.
2025b). We first present the qualita-
tive comparison in Figure |5} It is evident that Diffusion? and SV4D generate results with inconsis-
tent poses across different views (see rows 1, 2 and 3). Notably, all these baselines generate blurred
or incorrect details in both the facial and body regions. Thanks to our proposed dual-attention
module—which explicitly models both spatial-temporal and spatial-view consistency with camera
priors—CharacterShot generates more coherent results with consistent, high-quality details across
poses, frames and views in both characters and real-world humans. Quantitative results in Table |I|
further verify the effectiveness of the proposed CharacterShot. Specifically, CharacterShot achieves
the highest SSIM, LPIPS, and CLIP-S scores, demonstrating strong identity preservation and indi-
cating superior image quality. Additionally, the proposed dual-attention module contributes to the
best performance on FVD-F, FVD-V, FVD-D, and FV4D, highlighting its effectiveness in provid-
ing high-quality videos and maintaining spatial-temporal and spatial-view consistency. Also, the
user study in Table 3] demonstrates that CharacterShot generalizes well to these human inputs, out-
performing all baselines on HumanBench in terms of appearance, pose, time, and view consistency.
More results of unseen and out-of-Character4D test samples from Flux and Internet are presented
in Section [B.4]and Figure[T4] Appendix. Multi-view videos are shown in Supplementary Material.

4D Generation. We also present the
comparison between SOTA 4D gen-

eration methods, including STAG4D ‘ / \
(Zeng et al.| [2025), SC4D (Wu et al.| |-

2025), L4AGM (Ren et al., 2024), and
DG4D (Ren et al., 2023)—with our

CharacterShot by rendering images
in specific 9 views after 4D optimiza-
tion, while the optimization stage for
SV4D and Diffusion’ is not open J J J J J J

source. As the qualitative compari- . C Dot
g . Pseudo GT CharacterShot 4DG DG-Mesh D -GS WR4D
son shown in Figure[f] we notice that " aracterShot 4DGaussians et Teormabier

the results of STAG4D and SC4D ex- . . L. w
hibit inconsistent shapes and textures Figure 8: Visual comparison of 4D optimization. “Pseudo

(e.g., the left hand and clothing in row GT” refers to the multi-view videos produced in the preced-

1, 3 and 4), while DG4D suffers from 1ng stage.

flickering artifacts. L4GM generates clearer details compared to these three SDS loss-based meth-
ods, but it has some black artifacts. In contrast, our CharacterShot generates consistent and contin-
uous high-quality 4D contents by applying dual-attention module and neighbor-constrained 4DGS.
The quantitative experiments in Table [2] and user study in Table 3] further demonstrate that our
method consistently outperforms the baselines across all metrics. Videos of 4D contents are shown
in Supplementary Material.

o

\
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4.3 ABLATION STUDIES

Contribution Decomposition of Model Components. = We finetune our pretrained 2D
character animation model on Character4D and generate videos for each view separately
as a single-view baseline, then investigate the impact of our proposed components in
the following analysis. ~ As shown in Figure [7[(a), the baseline struggles to transform
the pose sequence accurately across different viewpoints, leading to noticeable distortions.
By incorporating the camera prior,
the single-view model achieves more
accurate viewpoint-aware pose align-
ment, resulting in more reasonable
position (see Figure [7(b)). The vi-

113

Table 4: Quantitative results on model components. “w/
View-Attention” indicates that we use separate view atten-
tion as a replacement for our spatial-view attention in dual-
attention module.

sual results in Figure [J[c) effec- _Methods SSIMT LPIPS| FVD-F| FV4D|
tively follow the reference’s appear-  Baseline 0.956 0.032 614.010  639.733
ance and pose, demonstrating the ne- + Camera Prior 0.961 0.029 545.662  570.046

cessity of simultaneously generating 4 pual-Attention ~ 0.967  0.021  469.677  490.457
multi-view videos and the effective-  w/ View-Attention  0.964 0.025 491.865  520.737
ness of our dual-attention module.
Moreover, to further verify the importance of modeling implicit spatial-view information—rather
than treating view information separately—we compare the spatial-view attention with a separate
view-attention mechanism. As shown in Figure [/| (c)(d), our dual-attention module with spatial-
view attention achieves better performance, demonstrating its superiority in enhancing spatial-view
consistency. The experiments in Table [ further support the visual observations and demonstrate the
effectiveness of each component in our framework.

4DGS Optimization.  To verify Table 5: Quantitative comparison of 4D optimization on
neighbor-constrained 4DGS’ effec- CharacterBench. Ground truths are the multi-view videos

tiveness, we compare it with SOTA  produced in the preceding stage.
4DGS methods 4DGaussians (Wu

ot al) D024, WRAD (Yang cf af, _Methods SSIM| LPIPS| FVD-F| FV4D|
20254), Deformable-GS (Yang et al.| 4DGaussians 0.984 0.017 89.726 66.962
007 and DG-Mesh (U of al} B0 oo 00 0028 1oidsi 1ok sel
. . crormable- . . . .
2025a). For a fair comparison, we op- jo/ v 0980 0023 154596 168.652

timize the 4D representations of these
methods using our generated multi-
view videos (as pseudo ground truth). As shown in Figure [§] sudden hand disappearance can be
observed in the first row for 4DGaussians, Deformable-GS, and DG-Mesh. In addition, outlier
and noisy 3D points also result in blurring and artifacts on the face and body for these methods.
In contrast, CharacterShot produces continuous and stable 4D content by applying the neighbor
constraint. The quantitative results in Table [5] further validate the effectiveness of our proposed
neighbor-constrained 4DGS method.

CharacterShot 0.987 0.015 73.284 55.472

5 CONCLUSION

In this work, we propose CharacterShot, a controllable and consistent 4D character animation frame-
work that generates dynamic 3D characters from just a single reference image and a 2D pose se-
quence. By leveraging the powerful DiT-based 12V model CogVideoX, CharacterShot first con-
structs a pose-controlled 2D character animation. Subsequently, CharacterShot introduces a dual-
attention module to model implicit visual transmission across views and time, along with a cam-
era prior to help transform pose positions. Finally, a neighbor-constrained 4DGS is employed to
generate continuous and stable 4D representations. To further enhance character performance, we
construct a large-scale dataset, CharacterdD, containing 13,115 high-quality characters with corre-
sponding diverse motions. Extensive experiments on CharacterBench and HumanBench demon-
strate the advantages of our method in capturing character and human details and achieving both
spatial-temporal and spatial-view consistency. We hope that CharacterShot, along with its mod-
els and datasets, will contribute valuable and affordable resources to any individual creator and
researcher to advance 4D character animation.
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ETHICS STATEMENT

In developing CharacterShot, a controllable and consistent 4D character animation framework that
enables any individual designer to create dynamic 3D characters (i.e., 4D character animation) from
a single reference character image and a 2D pose sequence, we are dedicated to upholding ethical
standards and promoting responsible Al use. During building Character4D dataset, we strictly fol-
low the data curation pipeline of HumanVid (Wang et al.,[2024b), and the assets used in Character4D
explicitly state permission for use on their respective websites. Our code, model and dataset will
be publicly released to encourage responsible use in areas like entertainment and education, while
discouraging unethical practices, including misinformation and harassment. We also advocate for
continued research on safeguards and detection mechanisms to prevent misuse and ensure adherence
to ethical guidelines and legal frameworks.

REPRODUCIBILITY STATEMENT

To facilitate replication, we provide additional technical details in Appendix [A] including the base
models and training parameters used at each stage. The data curation pipeline of the proposed
Character4D is described in Section @ All code, models, and datasets will be released publicly.
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APPENDIX

A IMPLEMENTATION DETAILS

In the pose-controlled 2D character animation pretraining stage, we initialize our DiT model weights
using the pretrained image-to-video model CogVideoX-I2V-5B (Yang et al.| [2025c)). The pretrain-
ing dataset comprises 21,000 dancing videos collected from the Internet, which are processed into
336,000 video clips, each containing 25 frames at a resolution of 480 x 720. Next, we apply the
widely used pose detector DWpose (Yang et al.l [2023) to extract pose images. We follow the full
training script from CogVideoX, using a learning rate of 2e-5, and train this stage for 11,000 steps
on eight A8OO GPUs. In the multi-view video generation stage, we continue finetuning the model
on Character4D with dual-attention module and a camera encoder, starting from the checkpoint ob-
tained in the first stage. During training, we set V' = 5 and randomly sample views from the view
pool. This stage is trained for 1,500 steps on 16 A800 GPUs with a learning rate of 5e-5. We also
finetune the view generator from SV3D using the Character4D dataset with A-pose, training for
20,000 iterations on eight A800 GPUs at a resolution of 768x768, with each sample consisting of
21 frames. Please note that the view-generator is a plugin component that allows us to seamlessly
replace SV3D with any more powerful view-generator at no additional cost.

We finetune MimicMotion on our 2D pretrained dataset to improve its performance on characters,
and we only update the parameters of temporal layers and pose guider at (Ir=1e-4, batch size=8,
gpus=8, resolution=1024, num frames=15, training steps=30000). For neighbor-constrained 4DGS,
both the coarse stage and each progressive step (Yang et al., [2025a)) in the fine stage are trained
for 3000 iterations. In the coarse stage, we select the video frame at time step 7'/2 to optimize a
static Gaussian representation. In the fine stage, we utilize the full multi-view video sequence for
progressive optimization. For the Lycighvor » We define the local neighborhood of a point as its 20
nearest neighbors in the static 3D Gaussians. For loss weighting, we set Ao = 0.01, while all other
coefficients A1 3 4 = 1. The learning rate is 1.6e-4.

Metrics. Folloing, SV4D (Xie et al., 2025), for FV4D, we compute the Fréchet Video Distance
(FVD) (Unterthiner et al., 2019) over all images, which are traversed in a bidirectional raster pat-
tern. In addition, we employ three specialized FVD variants to evaluate video coherence at a more
granular level: FVD-F, which computes FVD across frames within each view; FVD-V, which com-
putes FVD across views for each frame; and FVD-D, which computes FVD across the diagonal
elements of the view—frame matrix. Specifically, we generate 21 views for evaluating the view gen-
erator. FV4D, FVD-F, FVD-V, and FVD-D are computed from a 9 x 9 multi-view video matrix,
which consists of nine viewpoints and nine frames.

B EXPERIMENTS

B.1 DIFFERENT SETTINGS ON 4D OPTIMIZATION

In this subsection, we conduct an
ablation study on our neighbor loss

Table 6: Ablation study for our neighbor-constrained 4DGS.

) ; ¢ Methods SSIMt LPIPS| FVD-F| FV4D|

and its corresponding binary gate

in neighbor-constrained 4DGS. As w/o Binary Gate 0.987 0.015 78.218 57.284
. : w/o Neighbor Loss  0.986 0.017 83.421 61.324

shown in Table [ without the full g/ & 0987 0015 73284 55472

neighbor loss leads to a notable drop

in performance metrics, with FV4D and FVD-F suffering the most, showing over 10% degradation.
Moreover, only removing the binary gate in the neighbor loss also results in performance degrada-
tion, whereas using the full setting achieves the best results across all metrics.

B.2 CHARACTERSHOT VS. TWO-STAGE 4D GENERATION

Experiments in Section have demonstrated that CharacterShot significantly outperforms
other single-view video-driven 4D generation methods (Xie et al., |2025; Yang et al.l [2025b;
Zeng et al.| 2025). To comprehensively explore the advantages of CharacterShot over exist-
ing 4D methods in two-stage generation, we extend the single-view videos from the original
MimicMotion and the ground truth for comparison and conduct the ablation study on L4GM.
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Figure 9: Visual comparison of 3D multi-view image synthesis. Finetuning SV3D on the Charac-
terdD dataset, our view generator generates novel character views that are vivid and more detail-
oriented.

As shown in Table[7] LAGM achieves Table 7: Experiments on different types of single-view video in-
better evaluation scores when given puts for LAGM. “Original” and “Finetuned” refer to single-view
ground-truth single-view video as video inputs generated using the original or finetuned MimicMo-
input.  However, producing such tion models, respectively, while “Ground-Truth” refers to the input

high-quality and coherent single- ground-truth single-view video.

view videos through 3D modeling or ~ Methods SSIM1+ LPIPS| FVD-F| FV4D|
manual creation is time-consuming g oin.) 0.904 0.099  1198.655 1258.118
and labor-intensive. ~ In contrast,  Finetuned 0907 0091 1056498 1042.443

CharacterShot achieves significantly  Ground-Truth ~ 0.916 0.081 901.819  922.767

superior performance using only a =~ ottt TG T 0005 368035 406.624
single reference character and a pose

sequence, demonstrating its flexible

and effective 4D character animation capability. We also observe that the finetuned MimicMotion
outperforms the original model, although it still falls short of the ground-truth videos, demonstrating
the fairness of our comparison using the finetuned MimicMotion.

B.3 CHARACTER DATASETS

We evaluate the effectiveness of our Table 8: Experiments of view images generation on Char-

proposed Character4D by comparing  acterBench between SOTA methods and our finetuned view
our finetuned view generator with generator.

the base model SV3D
[2025) and other SOTA methods such :
s Zerol 23X L A N R T T
InstantMesh 2024), and  InsancMesh  17.011  0.878 0087  76.623  92.824
Hi3D (Yang et al| 2024ad). Visual-  SV3D 17340 0906  0.153  103.543  88.499
izations in Figure lg demonstrate that  CharacterShot ~ 21.098 0.945 0.054 71.656 94.513
our view generator achieves superior performance in preserving character details for different
views—such as facial features, hair, and body structure—compared to other baselines. Experi-
ments in Table[8]also highlights the necessity of the character-centric dataset for multi-view images
generation.

Methods PSNR1 SSIMt LPIPS| FID| CLIP-St

B.4 USER STUDY ON OUT-OF-CHARACTER4D TEST SAMPLES

To evaluate the CharacterShot’s generalize abil- Table 9: User Study on characters that are OOC.
ity to characters that are out-of-CharacterdD e
(00C), we construct a test set, which in-

Appearance T Pose? Time T View 1

SC4D 21.79 19.99  21.04 2077
cludes characters sourced from the Internet  staG4D 18.80 1650 1710  19.59
and Flux, spanning 2D anime characters, real-  L4GM 12.22 1776 1741 1229
world humans, and other distinct 3D models _PS*D 791 1677 1415  10.30
with diverse motions, to compare Character- _CharacterShot 39.24 29.01 3033 37.05

Shot with the 4D baselines. Since ground-truth
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Figure 10: Visualization when Character- Figure 11: Visual comparison with finetuned base-
Shot meets inaccurate poses. lines (represents as *).

multi-view videos aren’t available for these OOC characters, we conduct a user study with 30 volun-
teers to assess consistency in appearance, pose, time, and view in Table[§] CharacterShot generalize
well to these OOC characters and motions, outperforming all baselines on the OOC test set. Multi-
view videos and 4d demos are shown in Supplementary Material.

B.5 INFERENCE COST

CharacterShot requires 20 or 40 minutes and 37 GB or 8 GB of VRAM to generate multi-view
videos on a single HS800 GPU, depending on whether CPU-offload is used. The 4DGS stage takes 30
minutes for optimization. While a standard CGI pipeline—including 3D modeling, motion capture,
rigging, and more—typically takes several weeks, CharacterShot offers a low-cost CGI solution for
individual creators on consumer-grade GPUs.

C LIMITATION

Although CharacterShot improves robustness Table 10: Quantitative results for finetuned
to varied pose sequences Fhrough conﬁdepce— Zerol23xl and Stable-Zero123 on Character-
aware pose guidance, which uses the bright-  Bench (* represents finetuned models).
ness of ke.ypomts and limbs to ;nche Methods PSNR 1 SSIM| LPIPS| FID |
pose-estimation confidence. As shown in Fig-

Zero123x1 15704 0889  0.112  78.855
ure [T0] CharacterShot performs well and pro-  guplezero123 16462 0893 0010 104043
dpces robust, stable results. in cases where poses  —— - 22009 0931 0005 50076
disappear (row 1), are disrupted (row 2), or  Sable-Zerol23*  20.632  0.942  0.004  45.268
overlap (row 3), thanks to its confidence-aware
pose-guidance strategy. However, animating with significantly inaccurate poses remains challeng-
ing, highlighting direction for future exploration.

D FINETUNE BASELINES ON CHARACTER4D

In this section, we finetune the base- Table 11: Quantitative comparison between finetuned baseline
line methods, STAG4D, SC4D, and methods and CharacterShot on CharacterBench (* represents fine-
DG4D, on our Character4dD dataset tuned models).

by training the prior diffusion mod-  pfethods SSIMT LPIPS| FVD-F| FV4D|
els Zerol123-XL and stable-Zerol23 SCiD* 0914 0.090 1072756 1093.035
é?zigsfgsﬁt;h?;e ?;‘;Te STAG4D* 0919 0084 1028930  985.809

: ’ DG4D* 0.918 0.081 950.306 866.897

show that the finetuned Zero123-
XL achieve superior performance on ~_ CharacterShot 0.971 0.025 368.235  406.624

characters compared to their raw ver-
sions. Next, we evaluate the baseline methods built on these finetuned prior diffusion models and
report the qualitative and quantitative results on the CharacterBench in Figure [T1] and Table [T1]
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Figure 12: Visualization for CharacterShot with raw Figure 13: Visual comparison with animat-
SV3D or finetuned SV3D. able 3DGS method LHM.

CharacterShot outperforms all baselines when they are also finetuned on our Character4D dataset.
We also conduct evaluations on the real-human datasets People-Snapshot and THuman 2.1 using
CharacterShot with and without finetuned SV3D in Figure [I2] CharacterShot with the raw SV3D
produces results with blurred details in both the facial and body regions, whereas finetuning SV3D
yields more consistent and higher-quality results.

E COMPARISON WITH ANIMATABLE 3DGS

In this section, we compare Char- Table 12: Quantitative comparison between animatable 3DGS
acterShot with rencent animatable method LHM and CharacterShot on CharacterBench.

3DGS method LHM (Quu_et all o g SSIM| LPIPS| FVD-F| FV4D |
[2025d) on our CharacterBench. As
shown in Figure [T CharacterShot _LHM 0933 0072 883416 847.143

achieves more precise pose alignment  CharacterShot ~ 0.971 0.025 368.235  406.624
and higher-quality facial and body
details across different views. The
quantitative results in Table[I2]further demonstrate that CharacterShot outperforms LHM on all met-
rics. Animatable 3DGS methods such as LHM require less computation time but sacrifice motion
accuracy and fine-grained reconstruction of human details. In contrast, our 4DGS pipeline leverages
the powerful generative capability of diffusion models to achieve more precise and flexible mo-
tion control, and optimizes more consistent, higher-quality 4DGS representations from multi-view
videos that provide rich geometric, appearance, and motion information, while incurring higher
computational cost than animatable 3DGS methods. We would like to clarify that 4DGS and an-
imatable 3D are two distinct approaches to 4D animation. Moreover, 4DGS remains valuable for
applications such as the metaverse, camera production, and city reconstruction, and we should not
discontinue exploring it solely because of its current drawbacks (e.g., it is more time-consuming than
animatable 3DGS), as these limitations are likely to be addressed by future advances in algorithms
and hardware.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models (LLMs) solely for the limited purpose of checking grammar and
polishing the overall writing style of our texts. Their role is restricted to improving readability,
fluency, and correctness, rather than contributing to the generation of new ideas or altering the
substance of our work. By focusing only on surface-level language refinement, we ensure that the
originality, logical structure, and core arguments of the content remain entirely authored by us.
In this way, LLMs serve as supportive tools for linguistic clarity, not as creators or co-authors of
intellectual contributions.
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Figure 14: Visual results of multi-view videos generation for characters from Flux and Internet,
which are out-of-Character4D. Specifically, Iron Man, Spider-Man, and Tifa (from Final Fantasy)

in rows 1-4 are characters from modern games or movies. Rows 5—7 show real-world humans, and
rows 8—10 show 2D anime characters.
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