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Abstract

Long-context models (LCMs) have demon-
strated great potential in processing long se-
quences, facilitating many real-world applica-
tions. The success of LCMs can be attributed
to their ability to locate implicit critical infor-
mation within the context for further prediction.
However, recent studies indicate that LCMs
can be distracted by the context noise (irrele-
vant information). In this paper, we conduct a
fine-grained analysis of the context noise and
propose an effective metric, i.e., IG score, for
identifying noise information within the con-
text. We also find that simply restraining the
effect of noisy context can significantly boost
the model’s attention on critical tokens. Based
on this observation, we propose a simple yet
effective training strategy, CDT (Context De-
noising Training), which can simultaneously
strengthen the model’s attention on critical to-
kens and achieve a stronger connection be-
tween these critical tokens and the model pre-
diction. Experiments on both context window
scaling and long-context alignment settings
across 4 different tasks exhibit the superiority
of CDT. With CDT, an open-source 8B model
can achieve results (50.92 points) comparable
to GPT4o0 (51.00 points)'.

1 Introduction

The ability to handle long input sequences has be-
come a fundamental requirement for large language
models (LLMs), with few cutting-edge models ca-
pable of processing context lengths exceeding mil-
lions of tokens (Team et al., 2024; MiniMax et al.,
2025). This advancement eliminates the need for
complex toolchains and intricate workflows, e.g.,
RAG (Yu et al., 2024), and significantly enhances
real-world applications, such as long-document
summarization (Laban et al., 2024) and project
code analysis (Fang et al., 2024a).

'0ur code is available at https://anonymous.4open.
science/r/context-denoising-training-D7DF
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Figure 1: Comparative overview of model performance
on real-world long-context tasks and performance gain
per billion tokens among different training methods.
The bubble size indicates the training data volume.

Yet, recent studies have indicated that LCMs
frequently fail when handling with long-context
tasks (Hsieh et al., 2024; Kuratov et al., 2024; Tang
et al., 2024b; Bai et al., 2024c¢), and the open-source
community mitigates such an issue mainly by us-
ing sufficient high-quality synthetic long-context
data to post-train the model (Fu et al., 2024a; Chen
et al., 2024; Gao et al., 2024a). However, these
approaches are proven either inefficient or inef-
fective under limited resources. For example, as
shown in Figure 1, Prolong-64K-Base (Gao et al.,
2024b) achieves significant performance but im-
proves by only 0.3 points per 1B tokens used. In
contrast, LongCE (Fang et al., 2024b) exhibits less
improvement but achieves nearly 13 points per 1B
tokens, demonstrating significantly higher training
efficiency. One of the possible reasons is that exist-
ing works overlook the fact that LCMs process long
input in a retrieval-then-generation manner, i.e.,
first implicitly identifying key information within
the context and then performing generation with
the aggregated context (Liu et al., 2024b; Wu et al.,
2024; Li et al., 2024a; Qiu et al., 2025), but the
critical tokens in the “retrieved-context” might be
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overwhelmed by excessive irrelevant context (Ye
et al., 2024). Thus, the key to achieving better
long-context modeling is effectively detecting the
critical tokens and diminishing the effect of context
noise (irrelevant tokens).

In this paper, we conduct a fine-grained analy-
sis to investigate the impact of context noise on
long-context modeling. Specifically, we propose a
novel critical token detection metric, the IG score,
based on the concept of information flow (Wang
et al., 2023). Our approach achieves a remarkable
accuracy improvement in the critical token detec-
tion task compared to traditional attention-based
metrics. Then, we manually diminish context noise
by subtracting the gradients of token embeddings
in irrelevant contexts. We find that simply suppress-
ing context noise at the model input allows LCMs
to focus more effectively on critical tokens.

Built upon the above analysis, we propose a sim-
ple yet effective Context Denoising Training (CDT)
strategy, which performs denoising at the model
input, allowing the model to focus more effectively
on critical tokens to better establish the connection
between critical tokens and generation. Notably,
our CDT approach is analogous to the Signal De-
noising in the digital signal processing field (Kopsi-
nis and McLaughlin, 2009), where noise reduction
in the input sequence can enhance the model’s at-
tention to essential parts within the context. Ex-
periments on two essential long-context training
scenarios, i.e., context window scaling and long-
context alignments, across 4 different types of long-
context tasks (real-world tasks, language modeling,
synthetic tasks, and long-form reasoning tasks) ex-
hibit the superiority of our method. Our CDT can
consistently surpass the other methods with an aver-
age gain of 2 points on 12 real-world long-context
tasks in LongBench (Bai et al., 2024b) and 13 long
synthetic tasks in RULER (Hsieh et al., 2024). Ad-
ditionally, with CDT, an open-source 8B model
can achieve comparable results with GPT4o0 on
real-world tasks (50.92 points v.s. 51.00 points).

2 Related Work

2.1 Long-context Modeling

Generally, the purposes of long-context modeling
can be categorized into two types: context window
scaling and long-context alignment. For context
window scaling, many works have explored to post-
train the LLMs with minimal post-training, includ-
ing position extrapolation (Chen et al., 2023a; Peng

et al., 2023; Ding et al., 2024; Liu et al., 2024a;
Zhao et al., 2024a; Zhang et al., 2024c; Fu et al.,
2024b; Lu et al., 2024) and modifying the atten-
tion pattern (Chevalier et al., 2023; Chen et al.,
2023b; Xiao et al., 2024b; Bertsch et al., 2024).
Another line of work focuses on enhancing models
that already possess long-context window, aiming
to help LCMs capture critical information within
the context (Liu et al., 2024b; An et al., 2024; Gao
et al., 2024c; Xiong et al., 2024) and reducing mis-
alignment issues like hallucinations (Zhang et al.,
2024b; Tang et al., 2024a; Li et al., 2024b). In this
work, we rethink the long-context training from the
context denoising perspective and propose a CDT
strategy, aiming to improve training effectiveness.

2.2 Retrieval-then-generation Mechanism of
Long-context Models

Existing research has demonstrated that LCMs han-
dle long-context in a retrieval-then-generation man-
ner, where LCMs first retrieve salient information
within the context and utilize these information to
generate responses (Wu et al., 2024; Tang et al.,
2024b; Zhao et al., 2024b; Qiu et al., 2025). How-
ever, Liu et al. (2024b) observe the “lost-in-the-
middle” phenomenon of LCMs, which highlights
that LCMs exhibit a positional bias toward locat-
ing key information. Furthermore, Ye et al. (2024)
and Fang et al. (2024b) discover that excessive
irrelevant long-context can overwhelm critical in-
formation, thereby impairing the performance of
the model. To mitigate the above issue, some works
have explored solutions from various perspectives,
including model architecture improvements (Ye
et al., 2024; Xiao et al., 2024a), enhancements in in-
formation extraction mechanisms (Li et al., 2024a;
Zhang et al., 2024a), and optimization of training
objective (Fang et al., 2024b; Bai et al., 2024a). In
this paper, we revisit critical information location
from the context denoising aspect, helping model
establish better connections between salient tokens
and generation by achieving more accurate identi-
fying and effective diminishing of noise input.

3 Preliminary Study

In this section, we analyze the influence of con-
text noise, i.e., irrelevant tokens, on long-context
modeling. More concretely, we first design criti-
cal token detection metrics in §3.1 and study the
impact of context noise restraint on long-context
modeling in §3.2. We conduct experiments with the
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Figure 2: Task format of our preliminary study, which requires models to predict the final answer by reasoning
through multi-hop Supporting Facts and distinguishing from the Interference Facts. Simultaneously, the model
should resist the influence of Texts from Books and Low-Frequency Words. More details are shown in Appendix A.

Llama3.1-8B-Instruct (Meta, 2024) model, which
owns a 128K context window size.

Synthetic Task Format We design a synthetic
long-form reasoning task for the following stud-
ies. As shown in Figure 2, there are four types of
tokens in our task: supporting facts, interference
facts, low-frequency words, and texts from books.
LCMs are tasked with predicting the correct answer
(e.g., “bathroom”) by reasoning through multiple
supporting facts within the long context. Notably,
the interference facts are seemingly related to the
answers and are randomly inserted into the con-
text, aiming to distract the models from provid-
ing the correct response. Therefore, LCMs should
predict based on critical tokens® while also pre-
venting these two types of tokens from being over-
whelmed by irrelevant tokens, including excessive
irrelevant documents and low-frequency words .

3.1 Critical Tokens Detection

We start by comparing two metrics: FR score and
IG score, on the critical tokens (including both
supporting and interference facts) detection task.
Given the input sequence X = {x;}! ; and the
ground truth Y = {y;}7*,, we define FR score
and IG score as follows:

Attention Distribution Metric: FR score Exist-
ing works primarily identify critical tokens based
on the attention distribution (Wu et al., 2024; Gema
et al., 2024; Xiao et al., 2024a). Similarly, we de-
sign the Fact Retrieval (FR) score for our synthetic
task based on the attention distribution to quantify
the model’s attention allocated to different types

2Since these tokens are highly likely to be correlated with
the answers. However, LCMs should distinguish between
supporting facts and interference facts to predict accurately.
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(b) Information flow reflected by average IG score.

Figure 3: Comparison between attention distribution
and information flow on critical token location task.

of tokens. At each step of model prediction y;,
if the attention score of x; ranks within the top-k
across the entire sequence, we define x; as being
attended by an attention head. Let s; be the set of
tokens attended by an attention head at the genera-
tion step 7, and 7, refers to the context token set of
type r € {sup, inter, irr, low}, e.g., Tsyp denotes

tokens of the supporting facts. The FR score FR&L ;

of the h-th attention head in the [-th model layer
can be written as:

We average FR scores from all heads to reflect the
attention distribution of tokens in 7.
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Figure 4: Attention distributions before and after man-
ual context denoising. After context denoising, attention
scores on critical tokens boost x 10 times.

Information Flow Metric: 1G score To discover
the attention interaction among tokens, i.e., infor-
mation flow, we employ the integrated gradient (IG)
technique (Wang et al., 2023) on the attention mod-
ule. The IG score on the attention module from the
[-th model layer can be defined as:

IG, = Z|A

where Ly(Y|X) is the model prediction loss. We
calculate IG scores between each z; € X and y; €
Y,ie., > ;1G(4, j), and average these scores from
all attention heads. A higher average IG score
indicates a larger contribution from z; to Y.

3£9(Y\X)
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Observation For a clear comparison, we normal-
ize the computed FR and IG scores, and plot them
in Figure 3. We find that the IG score detects sig-
nificantly less noise (irrelevant documents and low-
frequency tokens) compared to the FR score on
critical token detection. Specifically, as shown
in Figure 3a, attention-based metrics reflect the
distribution of tokens that the model focuses on
during the generation process. When the model
generates correct responses, its attention focuses
more on supporting facts; when the model gener-
ates wrong responses, its attention focuses more
on interference tokens. Yet, in both cases, the FR
score indicates that the model significantly focuses
on irrelevant tokens. As for the IG score shown in
Figure 3b, it reflects the contribution of each token
to the final prediction based on the loss computed
on generated results. Regardless of whether the
response is correct or not, the IG score for critical
tokens is significantly higher than that for irrelevant
tokens. Therefore, we can effectively identify the
critical tokens by leveraging the IG score and es-
tablish a better connection between critical tokens
and generation through subsequent training.
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Figure 5: Relationship between attention IG score and
L2 normalized embedding gradients on different types
of tokens. It shows a proportional correlation.

3.2 Effect of Context Noise Restraint

Considering that directly suppressing context noise
in attention is very challenging, we aim to restrain
the noise from the input perspective. Given the
positions of irrelevant tokens, we subtract their
token embedding gradients to suppress the noise.
This is motivated by the fact that the model has
largely converged on these noisy tokens, resulting
in their gradients exhibiting low sensitivity. As
shown in Figure 4, we observe that after manual
context denoising, the attention scores on critical
tokens increase nearly x 10 times, while the atten-
tion scores on irrelevant contextual tokens exhibit
a slight decrease. It is worth noting that this opera-
tion can be analogized to denoising in the digital
signal processing field (Kopsinis and McLaughlin,
2009), as it reduces noise in the input sequence,
allowing the model to focus more effectively on
the under-fitting critical tokens.

4 Context Denoising Training

Based on the above observation, we propose a
simple yet effective Context Denoising Train-
ing (CDT) strategy, which suppresses context noise
during training to strengthen the model’s attention
on critical tokens and help establish a better connec-
tion between critical tokens and the final prediction.
CDT involves two key steps: (1) Critical Token
Detection and (2) Emphasizing Training.

4.1 Critical Token Detection

Intuitively, we can first apply IG score to detect the
critical tokens for the subsequent training. How-
ever, computing the IG score in long-context sce-
nario is highly GPU memory-intensive, as it re-
quires storing full attention gradients and weights
from every model layer across the entire sequence.
Even with 8x92GB GPUs (H20), the maximum
computable sequence length for the IG score is lim-
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Figure 6: Our proposed CDT (context denoising training) method. It consists of two steps: (1) detecting critical
tokens within the long context, and (2) utilizing the denoised context for further emphasizing training. Notably,
CDT can be understood as an Expectation Maximization (EM) process, where the model detects noise based on
information flow and improves the training by diminishing the noise, thereby enhancing the information flow.

ited to 12K, making it infeasible to generalize to a
longer sequence. Therefore, we designed a simple
alternative implementation, which approximates
the IG score with token embedding gradients®. We
derive a proportional relationship between the to-
ken embedding gradient and the IG score, and visu-
alize the results in Figure 5. A detailed derivation
is provided in Appendix B. As shown in Figure 6,
given the input sequence X = {x;}? ;, label Y,
and the model fy, we first freeze the model param-
eters, keeping only the gradients of the input token
embeddings E4(X), where ¢ C 6. We then ob-
tain the gradient of each token embedding through
the computation of the cross-entropy (CE) loss fol-
lowed by a loss back-propagation. To identify the
critical tokens, we employ an identifier I(-) to de-
tect tokens with large gradients, i.e., critical tokens,
in the sequence. Specifically, we define the calcula-
tion of the significance of each token as comparing
its L2-normalized embedding gradient against the
average of the computed gradients of all tokens.
This detection process can be written as:

1 n
t=— > Vi@ Lcr(@i)]f2,
i=1
o) — 0, if [[VE,@)Lor(@i)ll2 <t,
' L i [|Ve, @) Lop(zi)|lz > t,

where I(z;) = 1 means x; is the critical token;
otherwise, it is irrelevant context (noise).

3We choose token embeddings for three main reasons: (1)
they are easily accessible, (2) the gradients of embeddings are
directly associated with each token, and (3) they require sig-
nificantly less GPU memory compared to attention gradients.

4.2 Emphasizing Training

To suppress the context noise, we leverage the com-
puted gradients to manipulate the embeddings of
irrelevant tokens, leaving critical tokens unchanged.
More concretely, each irrelevant token embedding
can be denoised as:

Eg(xi) = Eg(x:) = 1(x:) Vg, @) X Ir x 8, (2)

where [r is the learning rate and f is the hyper-
parameter controlling the denoising level. Then,
we unfreeze the model and use the denoised token
embeddings as the model input for further training,
which we refer to as Emphasizing Training. The
loss function can be formulated as:

Lopr(X,Y) =Leg (fo (Bo(X)),Y). ()

Remark Notably, the above process is conducted
online during training rather than pre-computed
offline. As shown in Figure 6, although this in-
troduces additional computational overhead, CDT
bootstraps the model’s long-context capabilities in
an Expectation-Maximization (EM) manner: the
model first identifies the critical tokens based on
information flow and improves the training by di-
minishing the noise, thereby ultimately enhancing
the information flow. In § 6.3, we will demon-
strate that, by training with CDT, the model can
continuously enhance its performance compared to
conventional training objectives.

5 Experiment

5.1 Settings

Evaluation We evaluate the model performance
on 4 different types of long-context tasks, includ-



Models Type S-Doc QA M-Doc QA Summ Few-shot Code Avg.

ProLong-512K-Instruct (Gao et al., 2024b)  SFT 40.07 41.24 28.27 64.21 63.08 47.37

NExtLong-512K-Instruct (Gao et al., 2025)  SFT 43.47 43.21 29.88 60.87 4435 44.35

Llama-3.1-8B-SEALONG (Li et al., 2024b) DPO 49.45 44.69 30.96 61.54 57.85 48.90

GPT-40 (version: 2024-11-20) - 51.43 60.89 14.78 66.37 61.25 51.00

Results on Short-context Model (all SCMs share the same training data, 8 X context window scaling.)

Llama-3-8B-Base (8K) - 25.20 21.52 20.18 32.67 27.92  25.50
+ YaRN (Peng et al., 2023) - 24.37 19.86 24.32 29.99 31.67 26.04
+CE CWS 25.29 21.49 20.36 32.69 27.76  34.62
+ LongCE (Fang et al., 2024b) CWS 17.13 9.59 25.00 59.57 61.83 34.62
+ CDT (ours) CWS 17.03 24.87 26.61 61.89 66.14 39.31

Results on Long-context Base Model (all LCMs share the same training data.)

Llama-3.1-8B-Base - 18.20 13.19 21.13 63.80 69.32 37.13
+ CE LM 17.10 10.82 26.38 62.85 70.62 37.55
+ LongCE (Fang et al., 2024b) LM 19.14 10.87 28.63 59.63 66.24  36.90
+ CDT (ours) LM 19.15 13.01 29.23 63.63 69.44 38.89

Results on Long-context Instruct Model (all LCMs use same source data with different formats.)

Llama-3.1-8B-Instruct - 48.58 45.19 30.30 61.73 57.26 48.61
+ SFT SFT 49.23 44.86 30.39 61.96 57.14 48.72
+ LOGO (Tang et al., 2024a) DPO 49.63 45.39 30.44 62.39 57.19 49.01
+ CDT (ours) SFT 50.11 46.04 30.34 62.49 65.64 50.92

Table 1: Evaluation results on LongBench-E benchmark. To ensure comparison fairness, we place existing works
that do not use the same training data with us in the top group. We implement our method under different settings,
including context-window scaling (CWS), language modeling (LM), SFT, and DPO.

ing real-world tasks (LongBench-E (Bai et al.,
2024b), language modeling task (LongPPL (Fang
et al., 2024b)), long-form reasoning task (Ba-
bilong (Kuratov et al., 2024)), and synthetic
tasks (RULER (Hsieh et al., 2024)). We com-
pare CDT against existing widely-used methods
on two types of models: (1) short-context mod-
els (SCMs) that require context window scaling;
(2) long-context models (LCMs) that require long-
context alignment. In our main experiments, we se-
lect Llama-3-8B-Base model as the SCM, of which
context window size is scaled x 8 times. For LCMs,
we select Llama-3.1-8B-Base as LCM-Base and
Llama-3.1-8B-Instruct model as LCM-Instruct. We
provide more evaluation details in Appendix C, and
show more evaluation results such as generalizing
to more models in Appendix D.

Dataset Construction and Training Details For
context window scaling training on SCM and post-
training on LCM-Base, we apply PG-19 (Rae et al.,
2019) as the training data. For each training sample,
we organize it into 64K tokens and collect 10,000
training samples. For long-context alignment on
LCM-Instruct, we post-process the data sampled
from LongMiT (Chen et al., 2024) and LongAl-

paca (Chen et al., 2023c), two publicly available
long-context QA datasets. Finally, it contains 8,000
samples for long-context alignment training, cover-
ing context lengths from 16K to 128K. Empirically,
we set 5 = 5 in Equation 2 in all experiments.
More dataset processing and implementation de-
tails are shown in Appendix C

5.2 Results

Real-world Long-context Understanding Tasks
LongBench-E is a comprehensive benchmark suite
encompassing 12 real-world datasets and vari-
ous context lengths spread across 5 categories,
including Single Document QA (S-Doc QA),
Multi-Document QA (M-Doc QA), Summarization
(Summ), Few-shot, and Code. As shown in table 1,
we can observe that: (1) CDT achieves the best
performance among all the sub-tasks. For SCMs,
with the same training data, CDT achieved the best
performance, outperforming a competitive counter-
part (LongCE) by nearly 4.7 points on average. (2)
For LCM-Base models, we find when post-training
on the base model with language modeling training
objective, CDT is the only method that ensures no
significant performance drop across all subtasks,
and it even achieves some improvements. In con-



Models RULER | Language Modeling | BABILong

32K 64K | LongPPL PPL | 4K 8k 16k 32k 64k  Avg.
Llama-3-8B-Base 0 0 > 100 >100 | 3340 2660 4.80 0.00 020 13.00
+ YaRN 39.58 31.46 3.55 560 |3520 29.80 2440 2020 17.60 25.44
+CE 36.01 13.82 3.90 6.46 | 36.60 3480 26.60 2820 21.60 29.56
+ LongCE 84.02 71.50 3.55 560 | 36.00 34.80 34.60 32.60 29.40 33.48
+ CDT (ours) 84.76  73.40 3.04 540 | 3840 3460 34.80 31.40 29.60 33.76
Llama-3.1-8B-Base 89.99 81.96 3.22 479 |3500 3320 27.80 28.00 2520 29.84
+CE 86.59 80.87 3.28 486 | 3920 31.60 3140 26.60 26.80 31.12
+ LongCE 87.65 81.79 3.24 528 |37.80 33.40 33.60 32.60 27.60 33.00
+ CDT (ours) 90.36 82.23 2.10 519 | 3880 36.60 3320 29.40 28.20 33.24
Llama-3.1-8B-Instruct  92.49  85.98 4.05 552 | 4660 49.60 4240 38.80 37.00 42.88
+ SFT 9249 86.22 3.31 551 | 47.00 4940 43.60 4120 3740 43.72
+LOGO 92.54 86.93 4.11 554 | 4820 50.00 42.60 4220 3740 44.08
+ CDT (ours) 93.08 88.01 2.36 564 | 51.40 5120 41.60 44.00 38.60 45.36

Table 2: Evaluation results on long synthetic tasks (RULER), language modeling, and long-form reasoning (BABI-
Long). For RULER, we report the average scores across 13 sampled sub-tasks. To calculate LongPPL, we apply
the Llama3-8B-Base model as the evaluator. For BABILong, we report the model reasoning capability from short
context (4K) to long context (64K). More evaluation results are shown in Appendix D.

trast, using standard CE or LongCE Loss leads to
significant performance drops on some sub-tasks.
For example, LongCE results in a nearly 4-point
drop compared to the backbone model on the Few-
shot subtask. (3) As for the LCM-Instruct mod-
els (the bottom group), we find that, due to its re-
markable performance, existing post-training meth-
ods do not bring significant improvements. For in-
stance, Llama-3.1-8B-SEALONG (48.90) achieves
only around slight 0.3-point average improvement
compared to Llama-3.1-8B-Instruct (49.61). How-
ever, our CDT achieves an average improvement
of more than 2 points compared to the backbone
across all tasks.

Long Synthetic Task and Language Modeling
For the long synthetic task, we evaluate the model’s
performance under 32K and 64K context lengths.
We choose 13 sub-tasks from the RULER bench-
mark and report the average results. For the
language modeling task, we calculate both the
LongPPL (Fang et al., 2024b) and PPL metrics
on the GovReport dataset (Huang et al., 2021).
More details are shown in Appendix C.2. As
shown in Table 2, we can observe that our CDT
method achieves the best model performance on
the RULER benchmark on both 32K and 64K set-
tings. For language modeling task, CDT exhibits
the lowest LongPPL in language modeling tasks
and demonstrates competitive results on the PPL
metric. Notably, LongPPL can potentially reflect

the model’s ability to locate salient tokens in the
long context, indicating the great potential of CDT.

Short-context & Long-form Reasoning Tasks
We evaluate the model’s long-form reasoning capa-
bilities, as well as its short-context capability, on
BABILong, a synthetic task that requires models
to reason through multiple supporting facts hidden
in contexts of varying lengths (from 4K to 64K).
As shown in Table 2, our CDT achieves the highest
overall score in each group. Besides, we observe
that our CDT does not compromise the model’s
performance on short-context tasks. For instance,
in the 4K and 8K lengths, CDT achieves either
the best or comparable results compared to other
methods and backbone models.

6 Ablation Study

In this section, we compare the accuracy of salient
token detection of CDT with other detection meth-
ods in §6.1. Then, we show the impact of token em-
bedding denoising on the training process in §6.2.
Finally, we elaborate on the training efficiency of
our CDT method in §6.3.

6.1 Comparison of Critical Token Detection

We compare three different detection methods, in-
cluding LongPPL, attention-based detection, and
our CDT, on our synthetic task (Figure 2). For
attention-based and our CDT methods, we treat
the tokens with the top-30 highest attention scores
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Figure 7: Comparison of critical token detection capa-
bility among different methods on our synthetic task.
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Figure 8: Impact of context denoising and comparison
of the effect of learning rate on attention scores assigned
to critical tokens in CDT.

and L2 normalized gradient of embedding as the
detected tokens. As shown in Figure 7, we can
observe that the attention-based method can de-
tect a high proportion of supporting tokens and
interference tokens, but it also detects a large num-
ber of irrelevant tokens. On the other hand, while
LongPPL can effectively suppress the detection of
irrelevant tokens, it struggles to locate supporting
tokens. Our CDT method not only identifies the
largest number of critical tokens but also effectively
suppresses the detection of irrelevant tokens.

6.2 Impact of Context Denoising

In this section, we visualize the changes in attention
scores allocated to critical tokens during the CDT
training process. As shown in Figure 8, we observe
that after the context denoising step, the attention
scores on critical tokens have already increased
significantly. Furthermore, after the Emphasizing
Training stage, there is an additional improvement.
Besides, we find that a larger learning rate leads
to a more pronounced improvement, as it further
enhances the denoising of the context.

6.3 Analysis of Training Efficiency

In addition to the performance improvement
brought by CDT, we also demonstrate the efficiency
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Figure 9: The performance improvement and training
duration for every interval of 50 steps.

of our method. In CDT, the noise detection step in-
troduces additional computation cost. We compare
CDT with SFT (single Forward-Backward) and
DPO (one batch contains pairwise samples) meth-
ods shown in Table 1. As shown in Figure 9, we
observe that although CDT brings additional cost,
i.e., approximately 0.5 hours in 8 x A100 GPUs for
every 50 steps compared with vanilla SFT, it con-
sistently improves the model performance. With
the same training steps, DPO only yields marginal
improvements, while SFT even demonstrates a de-
cline in performance. We provide the total training
time in Appendix C. For each epoch, CDT takes
6.5 hours compared to SFT’s 4 hours, which is
acceptable given the performance improvements.

7 Conclusion

Existing work suggests that long-context mod-
els process long-context input in a retrieval-
then-generation manner and the “retrieval-context”
might be overwhelmed by excessive irrelevant to-
kens. This impairs the model’s performance. In
this paper, we conduct a fine-grained analysis of
the context noise. We propose an effective criti-
cal token detection metric, IG score, and observe
that models can better focus on critical tokens af-
ter restraining the context noise. Based on the
above findings, we propose a Context Denoising
Training (CDT) strategy, which can simultaneously
strengthen model’s attention on critical tokens and
establish a stronger connection between salient to-
kens and the model prediction. Experiments on
different models across 4 various task types demon-
strate the superiority of our proposed method.



Limitation

Due to the expectation maximization (EM) nature
of CDT, it includes an additional context noise
detection process, which introduces extra compu-
tational costs during the training phase. Although
we have demonstrated in Section 6.3 that these
additional costs are negligible compared to the per-
formance gains, theoretically, the noise detection
cost will increase as the model size grows since
it involves a complete forward-backward propaga-
tion process. We leave this for future work, aiming
to explore a simpler method for identifying the
context noise or to develop more efficient model
architectures. For example, designing specific net-
work modules to handle noise, as proposed in Ye
et al. (2024), could be a promising direction. Addi-
tionally, we observe that the improvement brought
by our method on complex reasoning tasks is not
as significant as that on other tasks, and we are yet
to understand the relationship between this and the
training data or the training objective function. In
the future, we aim to further investigate the impact
of context noise on the model’s long-form reason-
ing abilities, as well as the relationship between the
CDT strategy and the enhancement of the model’s
reasoning capabilities.
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A Preliminary Study Details

A.1 Preliminary Task Construction

Task Selection We select 3-hop and 4-hop tasks
based on qa3 tasks in the BABILong Benchmark to
build our datasets, as these tasks generally pose sig-
nificant challenges for LLMs. However, it is worth
noting that the original BABILong qa4 samples
do not truly require 4-hop reasoning to produce
correct outputs. For example, a sample from this
subset with Ok context is shown in Figure 10. In
this case, the task only requires attention to a single
fact, “The bedroom is west of the bathroom™ to
answer the question, while the first sentence serves
as an interference fact. Even in terms of keywords,
the model only needs to focus on three keywords:
“bathroom”, “west”, and “bedroom” from the sec-
ond sentence. Thus, we design our 4-hop dataset
based on the BABILong ga3 source data, with one
sample shown in Figure 11. By carefully arranging
the order of facts and reducing the conditions of
questions in the long context, we ensure that the
model is required to search for all four supporting
facts in sequence to produce the correct output.

Controlled Evaluation Data Synthesis We use
the 4-hop task with non-zero context as an example
here. As shown in Table 3, all variables used for
building data include the facts sample, the facts
permutation, and the context length. Firstly, we
select source samples from the BABILong official
file “qa3_three-supporting-facts™ as our base data.
Then, we modify the original BABILong qa3 sup-
porting facts following the pattern shown in Fig-
ure 12. Afterward, we add interference to these
four original facts while maintaining the relative or-
der of the supporting facts. The process begins by
selecting a noise context of the appropriate length
and inserting the facts into it. Specifically, we di-
vide the noise context into 10 equal-length chunks,
leaving 10 candidate positions for the insertion of
the 4 supporting facts (excluding the tail). Next, we
randomly select five permutations from the full set
of C{, candidate position permutations. After in-
jecting noise, we randomly insert interference facts,
i.e., facts that are similar to the supporting facts but
irrelevant, among all sentences. We ensure that at
least one interference fact is placed after the last
supporting fact to test the model’s robustness. To
ensure the correctness of the samples, we make
sure that the objects appearing in the interference
facts do not overlap with those in the supporting
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Hops Samples Permute Lengths
2 100 5 8K
3/4 R. R. Ok - 64k

Table 3: Variable settings, where R. denotes random.

One BABILong qa4 sample with Ok context

Input :

The bedroom is west of the office.
The bathroom is west of the bedroom.
Question:

What is west of the office?

Supporting Facts:
The bedroom is west of the office.

Ground truth:
bedroom

Figure 10: A BABILong qa4 sample with Ok context

facts. Additionally, we ensure that the number of
interference facts is between one and two times the
number of supporting facts to avoid making the
samples either too easy or too difficult. Finally,
for all samples with the same context length, we
use the same noise context to maintain consistency.
In the end, we randomly insert a few emojis into
the constructed context to test the sensitivity of the
model to low-frequency tokens. For the 3-hop task,
we directly use the original ga3 task format from
BABILong as the base, and the subsequent process-
ing follows a similar approach to the one described
above for the 4-hop task.

B Derivation of Relation between
Information Flow and Embedding
Gradients

In transformer-based models, the Information Flow
in attention is essentially the product of the at-
tention distribution and its corresponding gradi-
ent. Therefore, we can transform the derivation
into constructing the gradient relationship be-
tween the attention score distribution (A4) and
the embedding (£(X)). This can be established
via the chain rule and implemented through the
specific computation steps of the attention mecha-
nism. Notably, in the following derivation, for sim-
plicity, we omit the activation layers in the model.
Additionally, considering that transformer-based



One of our 4-hop samples with Ok context
Input :

Mary journeyed to the office.

Mike went to the office.

Mary got the apple.

Daniel picked up the football.

Daniel went back to the bedroom.

Mary journeyed to the bathroom.

Mary dropped the apple.

Jonh went to the bathroom.

Question:

Where was the apple’s location prior to the
place where the apple was discarded, left or
dropped?

Supporting Facts:

Mary journeyed to the office.
Mary got the apple.

Mary journeyed to the bathroom.
Mary dropped the apple.

Ground truth:
office

Figure 11: One of our 4-hop samples with Ok context

models are composed of multiple identical network
blocks stacked together, one can easily extend the
conclusions from a single layer to multiple layers.
Therefore, we focus on proving the case with one
embedding layer and one attention module.
Given the basic definition of the attention mech-
anism, we have:
) )

QK"
Vd

Q= E(X)Wg, A=softmax (
K=EX)Wk, O=A-V,
V= B(X)Wy,

where Wq, Wi, Wy € R¥*? are the model param-
eters, O is the attention output, £(X) € R"*% is
the input embedding matrix, n and d are sequence
length and model dimension, respectively.

Let the loss function be L. By the chain rule, the
gradient of the loss with respect to F(X) is:

oL 9L 90  JL 9A
OE(X)  000E(X) 0AJE(X)
oL 0V
tovarx) @Y

. oV T 00 __
Since we have B = Wy and v = A, the
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The pattern of our 4-hop sample

Supporting factl: {x} {m} the {y1}
Supporting fact2: {x} {p} the {o}
Supporting fact3: {x} {m} the {y2}
Supporting fact4: {x} {d} the {o}

Question:

Where was the {0}’s location prior to the place
where the {0} was discarded, left or dropped?
Ground truth:

{y1}

Explanation:

{x} : a character name, selected from {Mary,
Daniel, Mike, ...}

{m} : a predicate indicating movement, selected
from {went to, journeyed to, travelled to, ...}
{y1}, {y2} : two different locations, selected
from {office, bedroom, bathroom, ...}

{p} : a predicate indicating picking up, selected
from {picked up, took, grabbed, ...}

{d} : a predicae indicating dropping, selected
from {dropped, put down, discarded, ...}

{o} : an object name, selected from {apple, foot-
ball, milk, ...}

Figure 12: The pattern of our 4-hop sample

gradient relationship between A and E(X) is:

OL 9L 04
IE(X) - 9AJE(X)

®)

To eliminate the influence of the Softmax(-) func-
tion, we can further decompose equation 5 into:

QK"
S:

Vi (6)
oL oL (04 oS
OE(X)  0A \0S 0E(X))’

where % is the Jacobian of Softmax(-) func-

tion, with elements A;; (0;; — Ai)*.

KT .
For each element S;; = QTdJ € S, the gradient
with respect to £/(X) can be written as:

(E(X)iWQ)(E(X);Wk)™
OSZ B 8( Q\/E WK )
0E(X) OE(X)
1
:ﬁ(Wg-Kj-5ik+W§-Qi~5jk).

(N

45: is the Kronecker delta function. If i equals to k,
dir = 1, else d;x = 0. We can also rewrite this equation into
Aij (1= Agj).



Based on equation 6 and equation 7, we can
summary that:
oL

— o X

OE(X);

oL
0A;;
——
Sensitivity of L to A
Aij(1 — Ag)
——
Derivation from Softmax
85y
OE(X)
——

Linear Transformation

X

®)

Based on equation 8, we can derive that when
A;; increases, indicating higher attention between
token 7 and token j, the sensitivity of L to A (88TL”-)
also increases. This results in larger derivatives
on the embeddings. Additionally, if A;; becomes
excessively large, approaching 1, the value of
A;;(1 — A;;) might tend toward 0. However, this
is often not an issue in long-context scenarios, as
the attention scores are unlikely to approach val-
ues near 0.5 due to the long context. Even if they
exceed 0.5 (possibly for some special tokens), the
increase in the first term (86TLZ-]-) helps mitigate this
effect.

C Implementation Details

C.1 Training Details

For all experiments, we utilize the open-source
training framework OpenRLHF> (Hu et al., 2024),
Ring-flash-attention® (Liu et al., 2023) and Deep-
Speed (Rajbhandari et al., 2020). For LongCE
training (Fang et al., 2024b), we set the sliding
context window size as 8192 and employ the rec-
ommended hyper-parameters in the official code .

Context Window Scaling To scale the context
window size of the Llama-3-8B-base model from
8K to 64K (8x), we adjust the RoPE base from
500,000 to 20,000,000 and directly train the model.
We provide training configurations in Table 4.

Language Modeling Post-training and Long-
context SFT The language modeling post-
training and long-context SFT are directly ap-
plied to the Llama3.1-8B-base and Llama3.1-8B-
Instruct, respectively, which already have 128K
context window size. We provide the training con-
figurations in Table 5 and Table 6 respectively.

5https://github.com/OpenRLHF/OpenRLHF.git

https://github.com/zhuzilin/
ring-flash-attention.git

"https://github.com/PKU-ML/LongPPL.git
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Context Window Scaling Training Setting

Backbone Llama-3-8B-base
Training Objective Language modeling
ROPE base 20,000,000
Context window size 8K — 64K

Data seq-length 64,000
Deepspeed Zero2

Global batch size 64

Epoch 2

Training Steps 160
Ring-attention size 4

Learning-rate le-5

LR-scheduler cosine_with_min_Ir

Optimizer Adam (81 = 0.9, 83 = 0.95)
GPUs A100 (80GB) x 8

Training time ~8h / epoch

Training data PG19 (Rae et al., 2019)
Total consumed tokens 0.65B

Table 4: Configuration of context window scaling.

C.2 Evaluation Details

We conduct long-context evaluation mainly based
on the open-source evaluation framework?.

LongBench-E LongBench-E is a variant of
LongBench (Bai et al., 2024b) designed specifi-
cally for long-context real-world tasks. We chose
LongBench-E because it shares the same test
dataset distribution as LongBench while covering
a wider range of context lengths. For the Llama3-
8B-base model, we truncate the input to 8K tokens,
whereas for other models, we truncate the input to
32K tokens.

Language Modeling For the language modeling
task, we calculate both LongPPL and PPL met-
rics on the GovReport dataset (Huang et al., 2021),
which consists of long sequences from government
reports. We sample 50 documents from GovReport,
each with a context length of up to 32K tokens.

RULER RULER (Hsieh et al., 2024) is a com-
prehensive synthetic dataset that includes 6 differ-
ent testing categories to evaluate a model’s long-
context understanding capabilities. We utilize all
test categories, with each category containing 50
test samples covering lengths of 32K and 64K. We
post the testing configuration of RULER in Table 8.

Long-form Reasoning We evaluate the long-
form reasoning capability of models on selected
tasks from BABILong (Kuratov et al., 2024).

8https://github.com/ZetangForward/
Long-context-Eval.git


https://github.com/OpenRLHF/OpenRLHF.git
https://github.com/zhuzilin/ring-flash-attention.git
https://github.com/zhuzilin/ring-flash-attention.git
https://github.com/PKU-ML/LongPPL.git
https://github.com/ZetangForward/Long-context-Eval.git
https://github.com/ZetangForward/Long-context-Eval.git

Language Modeling Post-training Setting

Backbone Llama-3.1-8B-base
Training Objective Language modeling
ROPE base 500,000

Context window size 128K

Data seq-length 64,000

Deepspeed Zero2

Epoch 2

Global batch size 32

Training Steps 320

Ring-attention size 4

Learning-rate Se-6

LR-scheduler cosine_with_min_Ir

Optimizer Adam (81 = 0.9, 52 = 0.95)
GPUs A100 (80GB) x 8

Training time ~8.5h / epoch

Training data PG19 (Rae et al., 2019)
Total consumed tokens 0.65B

Table 5: Configuration of language modeling.

Specifically, we select tasks that involve multiple
supporting facts, as well as QA1, as the testing
dataset. The BABILong testing configurations are
shown in Table 10.

D More Evaluation Results

D.1 Generalizing CDT to Longer Context
Length

We generalize the long-context evaluation to
128K context size on RULER (128K) and BABI-
Long (128K) benchmarks. As shown in Table 9,
we can find that our CDT method still outperforms
other methods and strong LCMs.

D.2 Generalizing CDT to More Models

We apply our CDT method to more LLMs, includ-
ing Qwen2.5-7B-Instruct (Yang et al., 2024) and
Mistral-V0.3-Instruct (Jiang et al., 2023). We eval-
uation the model performance on real-world long-
context tasks, long synthetic tasks, and long-form
reasoning tasks. We report the model performance
in Table 7, where we can observe that our CDT can
significantly improve the model performance on
different models. For instance, the Mistral-V0.3-
Instruct model obtains more than 30 points on the
long-form reasoning task.

E Error Analysis

In this section, we analyze the error pattern of par-
tial model predictions on real-world long-context
tasks. As shown in Table 11, we use colored text
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Long-context Alignment Training Setting

Backbone Llama-3.1-8B-Instruct
Training Objective Supervised fine-tuning
ROPE base 500,000

Context window size 128K

Data seq-length 4,000~128,000
Deepspeed Zero2

Global batch size 32

Epoch 2

Training Steps 250

Ring-attention size 4

Learning-rate Se-6

LR-scheduler
Optimizer
GPUs
Training time

cosine_with_min_Ir

Adam (81 = 0.9, 2 = 0.95)
A100 (80GB) x 8

~26.5h / epoch

LongMIT (Chen et al., 2024),
LongAlpaca (Chen et al., 2023c)
0.53B

Training data

Total consumed tokens

Table 6: Configuration of long-context SFT training.

to highlight the correct and incorrect parts of the
model’s predictions.



LongBench-E

BABILong

Models
Type S-Doc QA M-Doc QA Summ Few-shot Code Avg. Avg.
Qwen2.5-7B-Instruct - 44.54 46.29 28.15 56.03 16.52 38.30 4332
+ CDT SFT 44.93 47.29 28.65 57.33 19.18 39.48 47.56
Mistral-V0.3-Instruct - 44.89 40.76 20.52 67.11 47.04 44.06 22.36
+ CDT SFT 45.01 41.79 26.08 67.75 57.27 47.58 53.84

Table 7: Evaluation results of two more LLMs on real-world long-context tasks and long-form reasoning tasks.

Evaluation Configurati

on of RULER

Question Answering qa_1,qa_2

Single NIAH

niah_single_1,

niah_single_2,
niah_single_3
Multi-keys NIAH niah_multikey_1,
niah_multikey_2,
niah_multikey_3
Multi-values NIAH  niah_multiquery
Multi-queries NIAH  niah_multivalue
Others common words extraction (CWE),
frequent words extraction (FWE),
variable tracking (VT)

Length 32K, 64K
Num samples/task 50

Table 8: Testing configuration of RULER

Models RULER BABILong
ProLong-512K-Instruct 72.13 21.00
NExtLong-512K-Instruct 76.89 22.00
Llama-3.1-8B-SEALONG 86.63 31.00
Llama-3.1-8B-Base 81.96 24.40
+CE 80.87 19.40
+ LongCE 81.79 24.60
+ CDT (ours) 82.23 28.20
Llama-3.1-8B-Instruct 85.98 29.60
+ SFT 86.22 30.40
+LOGO 86.93 31.60
+ CDT (ours) 88.01 38.60

Table 9: Model performance on tasks with 128K context

length.
Supporting Interference
Task  Num Fact Fact
QA1 100 1 1~9
QA2 100 2 1~66
QA3 100 3 1~317
QA7 100 1~10 1~42
QA8 100 1~8 1~42

Table 10: Testing configuration of BABILong
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Code Completion Task

Question: Completing the code based on
the context: [::--1\n self.interface
= self.interface.replace(’ 7,
7). lower () \n self.param_type =
None \n self.if_type = None \n
# state \n self.results = dict()

\n [ Completion ] self.result =

dict() \n def check_params(self):
\n """Check all input params”"”
\n if not self.interface: \n

self.module.fail_json(msg="Error:
Interface name cannot be empty.’)[--: ]

Llama3.1-8B-Instruct: for (int i
= 0 i < s.length(); i++)  {if
(!Character.isDigit(s.charAt(i)) &&
s.charAt(i) != 7,’) }

Llama3.1-8B-CD (ours): if self.interface ==
’all’ :\n self.param_type = INTERFACE_ALL\n
GPT4o: if self.interface.lower()
== ’all’:\n self.param_type =
INTERFACE_ALL\n elif ’/’ in self.interface
or self.interface.isdigit():\n
self.param_type = INTERFACE_FULL_NAME\n
else:\n self.if_type =
get_interface_type(self.interface)\n
Golden Answer: if self.interface ==
’all’ :\n

Long-context Multi-hop Reasoning Task

Question: What did M. King Hubbert’s
employer announce it was in the process
of doing in April 2010? [---]1 1In
April 2010 Shell announced that the
corporation is in process of trying
to find a potential buyer for all of
its operations in Finland and is doing
similar market research concerning
Swedish operations. [-:: ]

Llama3.1-8B-Instruct: Shell announced the
sale of some of its assets, including its
liquefied petroleum gas (LPG) business, to
meet the cost of a planned $28
Llama3.1-8B-CD (ours): trying to find a
potential buyer for all of its operations
in Finland and is doing similar market
research concerning Swedish operations.
GPT4o0: MV Miralda’s owner announced it
was in the process of trying to find a
potential buyer for all of its operations
in Finland and in doing similar market
research concerning.

Golden Answer : trying to find a potential
buyer for all of its operations in Finland

Single-QA Long-context Task

Question: What metrics are used in
evaluation? [---1 Figure FIGREF22
shows the results of these experiments
wherein we are able to maintain the
precision on the subset of the training
set used for testing while reducing its

recall and thus generalising the model.

The fact that the model is generalizing
on a dissimilar dataset is confirmed by
the increase in the development set. F1
score. [--- ]

Llama3.1-8B-Instruct:

Macro-averaged F-score.

Llama3.1-8B-CD (ours):

macro-averaged F-score, precision, recall,
F1 score.

GPT4o:

Macro-averaged F-score.

Golden Answer :

precision, recall , F1 score

Table 11: Generation samples of Llama3.1-8B-Instruct, Llama3.1-8B-Instruct-CD (ours), and GPT4o on real-world
long-context tasks. We can observe that the Llama3.1-8B-Instruct model fails to generate the correct answers
across the three long-context tasks. In contrast, both GPT40 and our method successfully cover the correct answers,
although they may include some irrelevant content.
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