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Abstract
Long-context models (LCMs) have demon-001
strated great potential in processing long se-002
quences, facilitating many real-world applica-003
tions. The success of LCMs can be attributed004
to their ability to locate implicit critical infor-005
mation within the context for further prediction.006
However, recent studies indicate that LCMs007
can be distracted by the context noise (irrele-008
vant information). In this paper, we conduct a009
fine-grained analysis of the context noise and010
propose an effective metric, i.e., IG score, for011
identifying noise information within the con-012
text. We also find that simply restraining the013
effect of noisy context can significantly boost014
the model’s attention on critical tokens. Based015
on this observation, we propose a simple yet016
effective training strategy, CDT (Context De-017
noising Training), which can simultaneously018
strengthen the model’s attention on critical to-019
kens and achieve a stronger connection be-020
tween these critical tokens and the model pre-021
diction. Experiments on both context window022
scaling and long-context alignment settings023
across 4 different tasks exhibit the superiority024
of CDT. With CDT, an open-source 8B model025
can achieve results (50.92 points) comparable026
to GPT4o (51.00 points)1.027

1 Introduction028

The ability to handle long input sequences has be-029

come a fundamental requirement for large language030

models (LLMs), with few cutting-edge models ca-031

pable of processing context lengths exceeding mil-032

lions of tokens (Team et al., 2024; MiniMax et al.,033

2025). This advancement eliminates the need for034

complex toolchains and intricate workflows, e.g.,035

RAG (Yu et al., 2024), and significantly enhances036

real-world applications, such as long-document037

summarization (Laban et al., 2024) and project038

code analysis (Fang et al., 2024a).039

1Our code is available at https://anonymous.4open.
science/r/context-denoising-training-D7DF

More Efficient

Figure 1: Comparative overview of model performance
on real-world long-context tasks and performance gain
per billion tokens among different training methods.
The bubble size indicates the training data volume.

Yet, recent studies have indicated that LCMs 040

frequently fail when handling with long-context 041

tasks (Hsieh et al., 2024; Kuratov et al., 2024; Tang 042

et al., 2024b; Bai et al., 2024c), and the open-source 043

community mitigates such an issue mainly by us- 044

ing sufficient high-quality synthetic long-context 045

data to post-train the model (Fu et al., 2024a; Chen 046

et al., 2024; Gao et al., 2024a). However, these 047

approaches are proven either inefficient or inef- 048

fective under limited resources. For example, as 049

shown in Figure 1, Prolong-64K-Base (Gao et al., 050

2024b) achieves significant performance but im- 051

proves by only 0.3 points per 1B tokens used. In 052

contrast, LongCE (Fang et al., 2024b) exhibits less 053

improvement but achieves nearly 13 points per 1B 054

tokens, demonstrating significantly higher training 055

efficiency. One of the possible reasons is that exist- 056

ing works overlook the fact that LCMs process long 057

input in a retrieval-then-generation manner, i.e., 058

first implicitly identifying key information within 059

the context and then performing generation with 060

the aggregated context (Liu et al., 2024b; Wu et al., 061

2024; Li et al., 2024a; Qiu et al., 2025), but the 062

critical tokens in the “retrieved-context” might be 063
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overwhelmed by excessive irrelevant context (Ye064

et al., 2024). Thus, the key to achieving better065

long-context modeling is effectively detecting the066

critical tokens and diminishing the effect of context067

noise (irrelevant tokens).068

In this paper, we conduct a fine-grained analy-069

sis to investigate the impact of context noise on070

long-context modeling. Specifically, we propose a071

novel critical token detection metric, the IG score,072

based on the concept of information flow (Wang073

et al., 2023). Our approach achieves a remarkable074

accuracy improvement in the critical token detec-075

tion task compared to traditional attention-based076

metrics. Then, we manually diminish context noise077

by subtracting the gradients of token embeddings078

in irrelevant contexts. We find that simply suppress-079

ing context noise at the model input allows LCMs080

to focus more effectively on critical tokens.081

Built upon the above analysis, we propose a sim-082

ple yet effective Context Denoising Training (CDT)083

strategy, which performs denoising at the model084

input, allowing the model to focus more effectively085

on critical tokens to better establish the connection086

between critical tokens and generation. Notably,087

our CDT approach is analogous to the Signal De-088

noising in the digital signal processing field (Kopsi-089

nis and McLaughlin, 2009), where noise reduction090

in the input sequence can enhance the model’s at-091

tention to essential parts within the context. Ex-092

periments on two essential long-context training093

scenarios, i.e., context window scaling and long-094

context alignments, across 4 different types of long-095

context tasks (real-world tasks, language modeling,096

synthetic tasks, and long-form reasoning tasks) ex-097

hibit the superiority of our method. Our CDT can098

consistently surpass the other methods with an aver-099

age gain of 2 points on 12 real-world long-context100

tasks in LongBench (Bai et al., 2024b) and 13 long101

synthetic tasks in RULER (Hsieh et al., 2024). Ad-102

ditionally, with CDT, an open-source 8B model103

can achieve comparable results with GPT4o on104

real-world tasks (50.92 points v.s. 51.00 points).105

2 Related Work106

2.1 Long-context Modeling107

Generally, the purposes of long-context modeling108

can be categorized into two types: context window109

scaling and long-context alignment. For context110

window scaling, many works have explored to post-111

train the LLMs with minimal post-training, includ-112

ing position extrapolation (Chen et al., 2023a; Peng113

et al., 2023; Ding et al., 2024; Liu et al., 2024a; 114

Zhao et al., 2024a; Zhang et al., 2024c; Fu et al., 115

2024b; Lu et al., 2024) and modifying the atten- 116

tion pattern (Chevalier et al., 2023; Chen et al., 117

2023b; Xiao et al., 2024b; Bertsch et al., 2024). 118

Another line of work focuses on enhancing models 119

that already possess long-context window, aiming 120

to help LCMs capture critical information within 121

the context (Liu et al., 2024b; An et al., 2024; Gao 122

et al., 2024c; Xiong et al., 2024) and reducing mis- 123

alignment issues like hallucinations (Zhang et al., 124

2024b; Tang et al., 2024a; Li et al., 2024b). In this 125

work, we rethink the long-context training from the 126

context denoising perspective and propose a CDT 127

strategy, aiming to improve training effectiveness. 128

2.2 Retrieval-then-generation Mechanism of 129

Long-context Models 130

Existing research has demonstrated that LCMs han- 131

dle long-context in a retrieval-then-generation man- 132

ner, where LCMs first retrieve salient information 133

within the context and utilize these information to 134

generate responses (Wu et al., 2024; Tang et al., 135

2024b; Zhao et al., 2024b; Qiu et al., 2025). How- 136

ever, Liu et al. (2024b) observe the “lost-in-the- 137

middle” phenomenon of LCMs, which highlights 138

that LCMs exhibit a positional bias toward locat- 139

ing key information. Furthermore, Ye et al. (2024) 140

and Fang et al. (2024b) discover that excessive 141

irrelevant long-context can overwhelm critical in- 142

formation, thereby impairing the performance of 143

the model. To mitigate the above issue, some works 144

have explored solutions from various perspectives, 145

including model architecture improvements (Ye 146

et al., 2024; Xiao et al., 2024a), enhancements in in- 147

formation extraction mechanisms (Li et al., 2024a; 148

Zhang et al., 2024a), and optimization of training 149

objective (Fang et al., 2024b; Bai et al., 2024a). In 150

this paper, we revisit critical information location 151

from the context denoising aspect, helping model 152

establish better connections between salient tokens 153

and generation by achieving more accurate identi- 154

fying and effective diminishing of noise input. 155

3 Preliminary Study 156

In this section, we analyze the influence of con- 157

text noise, i.e., irrelevant tokens, on long-context 158

modeling. More concretely, we first design criti- 159

cal token detection metrics in §3.1 and study the 160

impact of context noise restraint on long-context 161

modeling in §3.2. We conduct experiments with the 162
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Fact 1: Daniel journeyed to the bathroom.
Fact 2: Daniel picked up the apple.
Fact 3: Daniel went to the garden.

Fact 4: Mary journeyed to the garden.
Fact 5: John went back to the bedroom.
Fact 6: Daniel took the milk.

"matata", "safari", "asante",
"fjörður", "ég", "við", "þetta"
! " # $ % & ' ( )

Supporting Facts Interference Facts Low-frequency Words

Where was the apple
before the garden?

Question

The apple was in
the bathroom.

Prediction

random injection among Irreverent Documents

Long Context

Fact 1 Fact 2 Fact 3Fact 4
Fact 5 Fact 6"% "ég" "við" …

What affects the model prediction? Integrated Gradient (IG) score & Fact Retrieval (FR) score

Figure 2: Task format of our preliminary study, which requires models to predict the final answer by reasoning
through multi-hop Supporting Facts and distinguishing from the Interference Facts. Simultaneously, the model
should resist the influence of Texts from Books and Low-Frequency Words. More details are shown in Appendix A.

Llama3.1-8B-Instruct (Meta, 2024) model, which163

owns a 128K context window size.164

Synthetic Task Format We design a synthetic165

long-form reasoning task for the following stud-166

ies. As shown in Figure 2, there are four types of167

tokens in our task: supporting facts, interference168

facts, low-frequency words, and texts from books.169

LCMs are tasked with predicting the correct answer170

(e.g., “bathroom”) by reasoning through multiple171

supporting facts within the long context. Notably,172

the interference facts are seemingly related to the173

answers and are randomly inserted into the con-174

text, aiming to distract the models from provid-175

ing the correct response. Therefore, LCMs should176

predict based on critical tokens2 while also pre-177

venting these two types of tokens from being over-178

whelmed by irrelevant tokens, including excessive179

irrelevant documents and low-frequency words .180

3.1 Critical Tokens Detection181

We start by comparing two metrics: FR score and182

IG score, on the critical tokens (including both183

supporting and interference facts) detection task.184

Given the input sequence X = {xi}ni=1 and the185

ground truth Y = {yj}mj=1, we define FR score186

and IG score as follows:187

Attention Distribution Metric: FR score Exist-188

ing works primarily identify critical tokens based189

on the attention distribution (Wu et al., 2024; Gema190

et al., 2024; Xiao et al., 2024a). Similarly, we de-191

sign the Fact Retrieval (FR) score for our synthetic192

task based on the attention distribution to quantify193

the model’s attention allocated to different types194

2Since these tokens are highly likely to be correlated with
the answers. However, LCMs should distinguish between
supporting facts and interference facts to predict accurately.

Critical Tokens

Irrelevant Tokens

(a) Attention distribution reflected by average FR score.

Critical Tokens

Irrelevant Tokens

(b) Information flow reflected by average IG score.

Figure 3: Comparison between attention distribution
and information flow on critical token location task.

of tokens. At each step of model prediction yj , 195

if the attention score of xi ranks within the top-k 196

across the entire sequence, we define xi as being 197

attended by an attention head. Let sj be the set of 198

tokens attended by an attention head at the genera- 199

tion step j, and Tr refers to the context token set of 200

type r ∈ {sup, inter, irr, low}, e.g., Tsup denotes 201

tokens of the supporting facts. The FR score FR(r)
h,l 202

of the h-th attention head in the l-th model layer 203

can be written as: 204

FR
(r)
h,l =

| sj ∩ Tr |
| Tr |

. 205

We average FR scores from all heads to reflect the 206

attention distribution of tokens in Tr. 207
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Figure 4: Attention distributions before and after man-
ual context denoising. After context denoising, attention
scores on critical tokens boost ×10 times.

Information Flow Metric: IG score To discover208

the attention interaction among tokens, i.e., infor-209

mation flow, we employ the integrated gradient (IG)210

technique (Wang et al., 2023) on the attention mod-211

ule. The IG score on the attention module from the212

l-th model layer can be defined as:213

IGl =
∑
h

| AT
h,l ⊙

∂Lθ(Y |X)

∂Ah,l
|, (1)214

where Lθ(Y |X) is the model prediction loss. We215

calculate IG scores between each xi ∈ X and yj ∈216

Y , i.e.,
∑

j IGl(i, j), and average these scores from217

all attention heads. A higher average IG score218

indicates a larger contribution from xi to Y .219

Observation For a clear comparison, we normal-220

ize the computed FR and IG scores, and plot them221

in Figure 3. We find that the IG score detects sig-222

nificantly less noise (irrelevant documents and low-223

frequency tokens) compared to the FR score on224

critical token detection. Specifically, as shown225

in Figure 3a, attention-based metrics reflect the226

distribution of tokens that the model focuses on227

during the generation process. When the model228

generates correct responses, its attention focuses229

more on supporting facts; when the model gener-230

ates wrong responses, its attention focuses more231

on interference tokens. Yet, in both cases, the FR232

score indicates that the model significantly focuses233

on irrelevant tokens. As for the IG score shown in234

Figure 3b, it reflects the contribution of each token235

to the final prediction based on the loss computed236

on generated results. Regardless of whether the237

response is correct or not, the IG score for critical238

tokens is significantly higher than that for irrelevant239

tokens. Therefore, we can effectively identify the240

critical tokens by leveraging the IG score and es-241

tablish a better connection between critical tokens242

and generation through subsequent training.243

Supporting Interference Irrelevant Low-frequency0.0
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Figure 5: Relationship between attention IG score and
L2 normalized embedding gradients on different types
of tokens. It shows a proportional correlation.

3.2 Effect of Context Noise Restraint 244

Considering that directly suppressing context noise 245

in attention is very challenging, we aim to restrain 246

the noise from the input perspective. Given the 247

positions of irrelevant tokens, we subtract their 248

token embedding gradients to suppress the noise. 249

This is motivated by the fact that the model has 250

largely converged on these noisy tokens, resulting 251

in their gradients exhibiting low sensitivity. As 252

shown in Figure 4, we observe that after manual 253

context denoising, the attention scores on critical 254

tokens increase nearly ×10 times, while the atten- 255

tion scores on irrelevant contextual tokens exhibit 256

a slight decrease. It is worth noting that this opera- 257

tion can be analogized to denoising in the digital 258

signal processing field (Kopsinis and McLaughlin, 259

2009), as it reduces noise in the input sequence, 260

allowing the model to focus more effectively on 261

the under-fitting critical tokens. 262

4 Context Denoising Training 263

Based on the above observation, we propose a 264

simple yet effective Context Denoising Train- 265

ing (CDT) strategy, which suppresses context noise 266

during training to strengthen the model’s attention 267

on critical tokens and help establish a better connec- 268

tion between critical tokens and the final prediction. 269

CDT involves two key steps: (1) Critical Token 270

Detection and (2) Emphasizing Training. 271

4.1 Critical Token Detection 272

Intuitively, we can first apply IG score to detect the 273

critical tokens for the subsequent training. How- 274

ever, computing the IG score in long-context sce- 275

nario is highly GPU memory-intensive, as it re- 276

quires storing full attention gradients and weights 277

from every model layer across the entire sequence. 278

Even with 8×92GB GPUs (H20), the maximum 279

computable sequence length for the IG score is lim- 280

4



Information Flow
Critical Token Detection

back-propagation

Embedding

Transformer Block

Prediction Head
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back-propagation

back-propagation

'(() = −log." /|!!(#)
Emphasizing Training
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Context Denoising

Embedding Grad

Attention Distribution

critical token
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Improving
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training
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Embedding
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back-propagation

back-propagation
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#
Figure 6: Our proposed CDT (context denoising training) method. It consists of two steps: (1) detecting critical
tokens within the long context, and (2) utilizing the denoised context for further emphasizing training. Notably,
CDT can be understood as an Expectation Maximization (EM) process, where the model detects noise based on
information flow and improves the training by diminishing the noise, thereby enhancing the information flow.

ited to 12K, making it infeasible to generalize to a281

longer sequence. Therefore, we designed a simple282

alternative implementation, which approximates283

the IG score with token embedding gradients3. We284

derive a proportional relationship between the to-285

ken embedding gradient and the IG score, and visu-286

alize the results in Figure 5. A detailed derivation287

is provided in Appendix B. As shown in Figure 6,288

given the input sequence X = {xi}ni=1, label Y ,289

and the model fθ, we first freeze the model param-290

eters, keeping only the gradients of the input token291

embeddings Eϕ(X), where ϕ ⊂ θ. We then ob-292

tain the gradient of each token embedding through293

the computation of the cross-entropy (CE) loss fol-294

lowed by a loss back-propagation. To identify the295

critical tokens, we employ an identifier I(·) to de-296

tect tokens with large gradients, i.e., critical tokens,297

in the sequence. Specifically, we define the calcula-298

tion of the significance of each token as comparing299

its L2-normalized embedding gradient against the300

average of the computed gradients of all tokens.301

This detection process can be written as:302

t =
1

n

n∑
i=1

||∇Eϕ(xi)LCE(xi)||2,

I(xi) =

{
0, if ||∇Eϕ(xi)LCE(xi)||2 < t,

1, if ||∇Eϕ(xi)LCE(xi)||2 ≥ t,

303

where I(xi) = 1 means xi is the critical token;304

otherwise, it is irrelevant context (noise).305

3We choose token embeddings for three main reasons: (1)
they are easily accessible, (2) the gradients of embeddings are
directly associated with each token, and (3) they require sig-
nificantly less GPU memory compared to attention gradients.

4.2 Emphasizing Training 306

To suppress the context noise, we leverage the com- 307

puted gradients to manipulate the embeddings of 308

irrelevant tokens, leaving critical tokens unchanged. 309

More concretely, each irrelevant token embedding 310

can be denoised as: 311

Eϕ(xi)
′ = Eϕ(xi)− I(xi)∇Eϕ(xi) × lr × β, (2) 312

where lr is the learning rate and β is the hyper- 313

parameter controlling the denoising level. Then, 314

we unfreeze the model and use the denoised token 315

embeddings as the model input for further training, 316

which we refer to as Emphasizing Training. The 317

loss function can be formulated as: 318

LCDT (X,Y ) = LCE

(
fθ

(
Eϕ(X)′

)
, Y

)
. (3) 319

Remark Notably, the above process is conducted 320

online during training rather than pre-computed 321

offline. As shown in Figure 6, although this in- 322

troduces additional computational overhead, CDT 323

bootstraps the model’s long-context capabilities in 324

an Expectation-Maximization (EM) manner: the 325

model first identifies the critical tokens based on 326

information flow and improves the training by di- 327

minishing the noise, thereby ultimately enhancing 328

the information flow. In § 6.3, we will demon- 329

strate that, by training with CDT, the model can 330

continuously enhance its performance compared to 331

conventional training objectives. 332

5 Experiment 333

5.1 Settings 334

Evaluation We evaluate the model performance 335

on 4 different types of long-context tasks, includ- 336
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Models Type S-Doc QA M-Doc QA Summ Few-shot Code Avg.

ProLong-512K-Instruct (Gao et al., 2024b) SFT 40.07 41.24 28.27 64.21 63.08 47.37
NExtLong-512K-Instruct (Gao et al., 2025) SFT 43.47 43.21 29.88 60.87 44.35 44.35
Llama-3.1-8B-SEALONG (Li et al., 2024b) DPO 49.45 44.69 30.96 61.54 57.85 48.90
GPT-4o (version: 2024-11-20) - 51.43 60.89 14.78 66.37 61.25 51.00

Results on Short-context Model (all SCMs share the same training data, 8× context window scaling.)

Llama-3-8B-Base (8K) - 25.20 21.52 20.18 32.67 27.92 25.50
+ YaRN (Peng et al., 2023) - 24.37 19.86 24.32 29.99 31.67 26.04
+ CE CWS 25.29 21.49 20.36 32.69 27.76 34.62
+ LongCE (Fang et al., 2024b) CWS 17.13 9.59 25.00 59.57 61.83 34.62
+ CDT (ours) CWS 17.03 24.87 26.61 61.89 66.14 39.31

Results on Long-context Base Model (all LCMs share the same training data.)

Llama-3.1-8B-Base - 18.20 13.19 21.13 63.80 69.32 37.13
+ CE LM 17.10 10.82 26.38 62.85 70.62 37.55
+ LongCE (Fang et al., 2024b) LM 19.14 10.87 28.63 59.63 66.24 36.90
+ CDT (ours) LM 19.15 13.01 29.23 63.63 69.44 38.89

Results on Long-context Instruct Model (all LCMs use same source data with different formats.)

Llama-3.1-8B-Instruct - 48.58 45.19 30.30 61.73 57.26 48.61
+ SFT SFT 49.23 44.86 30.39 61.96 57.14 48.72
+ LOGO (Tang et al., 2024a) DPO 49.63 45.39 30.44 62.39 57.19 49.01
+ CDT (ours) SFT 50.11 46.04 30.34 62.49 65.64 50.92

Table 1: Evaluation results on LongBench-E benchmark. To ensure comparison fairness, we place existing works
that do not use the same training data with us in the top group. We implement our method under different settings,
including context-window scaling (CWS), language modeling (LM), SFT, and DPO.

ing real-world tasks (LongBench-E (Bai et al.,337

2024b), language modeling task (LongPPL (Fang338

et al., 2024b)), long-form reasoning task (Ba-339

bilong (Kuratov et al., 2024)), and synthetic340

tasks (RULER (Hsieh et al., 2024)). We com-341

pare CDT against existing widely-used methods342

on two types of models: (1) short-context mod-343

els (SCMs) that require context window scaling;344

(2) long-context models (LCMs) that require long-345

context alignment. In our main experiments, we se-346

lect Llama-3-8B-Base model as the SCM, of which347

context window size is scaled ×8 times. For LCMs,348

we select Llama-3.1-8B-Base as LCM-Base and349

Llama-3.1-8B-Instruct model as LCM-Instruct. We350

provide more evaluation details in Appendix C, and351

show more evaluation results such as generalizing352

to more models in Appendix D.353

Dataset Construction and Training Details For354

context window scaling training on SCM and post-355

training on LCM-Base, we apply PG-19 (Rae et al.,356

2019) as the training data. For each training sample,357

we organize it into 64K tokens and collect 10,000358

training samples. For long-context alignment on359

LCM-Instruct, we post-process the data sampled360

from LongMiT (Chen et al., 2024) and LongAl-361

paca (Chen et al., 2023c), two publicly available 362

long-context QA datasets. Finally, it contains 8,000 363

samples for long-context alignment training, cover- 364

ing context lengths from 16K to 128K. Empirically, 365

we set β = 5 in Equation 2 in all experiments. 366

More dataset processing and implementation de- 367

tails are shown in Appendix C 368

5.2 Results 369

Real-world Long-context Understanding Tasks 370

LongBench-E is a comprehensive benchmark suite 371

encompassing 12 real-world datasets and vari- 372

ous context lengths spread across 5 categories, 373

including Single Document QA (S-Doc QA), 374

Multi-Document QA (M-Doc QA), Summarization 375

(Summ), Few-shot, and Code. As shown in table 1, 376

we can observe that: (1) CDT achieves the best 377

performance among all the sub-tasks. For SCMs, 378

with the same training data, CDT achieved the best 379

performance, outperforming a competitive counter- 380

part (LongCE) by nearly 4.7 points on average. (2) 381

For LCM-Base models, we find when post-training 382

on the base model with language modeling training 383

objective, CDT is the only method that ensures no 384

significant performance drop across all subtasks, 385

and it even achieves some improvements. In con- 386
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Models RULER Language Modeling BABILong

32K 64K LongPPL PPL 4K 8k 16k 32k 64k Avg.

Llama-3-8B-Base 0 0 > 100 > 100 33.40 26.60 4.80 0.00 0.20 13.00
+ YaRN 39.58 31.46 3.55 5.60 35.20 29.80 24.40 20.20 17.60 25.44
+ CE 36.01 13.82 3.90 6.46 36.60 34.80 26.60 28.20 21.60 29.56
+ LongCE 84.02 71.50 3.55 5.60 36.00 34.80 34.60 32.60 29.40 33.48
+ CDT (ours) 84.76 73.40 3.04 5.40 38.40 34.60 34.80 31.40 29.60 33.76

Llama-3.1-8B-Base 89.99 81.96 3.22 4.79 35.00 33.20 27.80 28.00 25.20 29.84
+ CE 86.59 80.87 3.28 4.86 39.20 31.60 31.40 26.60 26.80 31.12
+ LongCE 87.65 81.79 3.24 5.28 37.80 33.40 33.60 32.60 27.60 33.00
+ CDT (ours) 90.36 82.23 2.10 5.19 38.80 36.60 33.20 29.40 28.20 33.24

Llama-3.1-8B-Instruct 92.49 85.98 4.05 5.52 46.60 49.60 42.40 38.80 37.00 42.88
+ SFT 92.49 86.22 3.31 5.51 47.00 49.40 43.60 41.20 37.40 43.72
+ LOGO 92.54 86.93 4.11 5.54 48.20 50.00 42.60 42.20 37.40 44.08
+ CDT (ours) 93.08 88.01 2.36 5.64 51.40 51.20 41.60 44.00 38.60 45.36

Table 2: Evaluation results on long synthetic tasks (RULER), language modeling, and long-form reasoning (BABI-
Long). For RULER, we report the average scores across 13 sampled sub-tasks. To calculate LongPPL, we apply
the Llama3-8B-Base model as the evaluator. For BABILong, we report the model reasoning capability from short
context (4K) to long context (64K). More evaluation results are shown in Appendix D.

trast, using standard CE or LongCE Loss leads to387

significant performance drops on some sub-tasks.388

For example, LongCE results in a nearly 4-point389

drop compared to the backbone model on the Few-390

shot subtask. (3) As for the LCM-Instruct mod-391

els (the bottom group), we find that, due to its re-392

markable performance, existing post-training meth-393

ods do not bring significant improvements. For in-394

stance, Llama-3.1-8B-SEALONG (48.90) achieves395

only around slight 0.3-point average improvement396

compared to Llama-3.1-8B-Instruct (49.61). How-397

ever, our CDT achieves an average improvement398

of more than 2 points compared to the backbone399

across all tasks.400

Long Synthetic Task and Language Modeling401

For the long synthetic task, we evaluate the model’s402

performance under 32K and 64K context lengths.403

We choose 13 sub-tasks from the RULER bench-404

mark and report the average results. For the405

language modeling task, we calculate both the406

LongPPL (Fang et al., 2024b) and PPL metrics407

on the GovReport dataset (Huang et al., 2021).408

More details are shown in Appendix C.2. As409

shown in Table 2, we can observe that our CDT410

method achieves the best model performance on411

the RULER benchmark on both 32K and 64K set-412

tings. For language modeling task, CDT exhibits413

the lowest LongPPL in language modeling tasks414

and demonstrates competitive results on the PPL415

metric. Notably, LongPPL can potentially reflect416

the model’s ability to locate salient tokens in the 417

long context, indicating the great potential of CDT. 418

Short-context & Long-form Reasoning Tasks 419

We evaluate the model’s long-form reasoning capa- 420

bilities, as well as its short-context capability, on 421

BABILong, a synthetic task that requires models 422

to reason through multiple supporting facts hidden 423

in contexts of varying lengths (from 4K to 64K). 424

As shown in Table 2, our CDT achieves the highest 425

overall score in each group. Besides, we observe 426

that our CDT does not compromise the model’s 427

performance on short-context tasks. For instance, 428

in the 4K and 8K lengths, CDT achieves either 429

the best or comparable results compared to other 430

methods and backbone models. 431

6 Ablation Study 432

In this section, we compare the accuracy of salient 433

token detection of CDT with other detection meth- 434

ods in §6.1. Then, we show the impact of token em- 435

bedding denoising on the training process in §6.2. 436

Finally, we elaborate on the training efficiency of 437

our CDT method in §6.3. 438

6.1 Comparison of Critical Token Detection 439

We compare three different detection methods, in- 440

cluding LongPPL, attention-based detection, and 441

our CDT, on our synthetic task (Figure 2). For 442

attention-based and our CDT methods, we treat 443

the tokens with the top-30 highest attention scores 444
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Figure 7: Comparison of critical token detection capa-
bility among different methods on our synthetic task.
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Figure 8: Impact of context denoising and comparison
of the effect of learning rate on attention scores assigned
to critical tokens in CDT.

and L2 normalized gradient of embedding as the445

detected tokens. As shown in Figure 7, we can446

observe that the attention-based method can de-447

tect a high proportion of supporting tokens and448

interference tokens, but it also detects a large num-449

ber of irrelevant tokens. On the other hand, while450

LongPPL can effectively suppress the detection of451

irrelevant tokens, it struggles to locate supporting452

tokens. Our CDT method not only identifies the453

largest number of critical tokens but also effectively454

suppresses the detection of irrelevant tokens.455

6.2 Impact of Context Denoising456

In this section, we visualize the changes in attention457

scores allocated to critical tokens during the CDT458

training process. As shown in Figure 8, we observe459

that after the context denoising step, the attention460

scores on critical tokens have already increased461

significantly. Furthermore, after the Emphasizing462

Training stage, there is an additional improvement.463

Besides, we find that a larger learning rate leads464

to a more pronounced improvement, as it further465

enhances the denoising of the context.466

6.3 Analysis of Training Efficiency467

In addition to the performance improvement468

brought by CDT, we also demonstrate the efficiency469

CDT
DPO

SFT

Continual 
Improvement

Figure 9: The performance improvement and training
duration for every interval of 50 steps.

of our method. In CDT, the noise detection step in- 470

troduces additional computation cost. We compare 471

CDT with SFT (single Forward-Backward) and 472

DPO (one batch contains pairwise samples) meth- 473

ods shown in Table 1. As shown in Figure 9, we 474

observe that although CDT brings additional cost, 475

i.e., approximately 0.5 hours in 8×A100 GPUs for 476

every 50 steps compared with vanilla SFT, it con- 477

sistently improves the model performance. With 478

the same training steps, DPO only yields marginal 479

improvements, while SFT even demonstrates a de- 480

cline in performance. We provide the total training 481

time in Appendix C. For each epoch, CDT takes 482

6.5 hours compared to SFT’s 4 hours, which is 483

acceptable given the performance improvements. 484

7 Conclusion 485

Existing work suggests that long-context mod- 486

els process long-context input in a retrieval- 487

then-generation manner and the “retrieval-context” 488

might be overwhelmed by excessive irrelevant to- 489

kens. This impairs the model’s performance. In 490

this paper, we conduct a fine-grained analysis of 491

the context noise. We propose an effective criti- 492

cal token detection metric, IG score, and observe 493

that models can better focus on critical tokens af- 494

ter restraining the context noise. Based on the 495

above findings, we propose a Context Denoising 496

Training (CDT) strategy, which can simultaneously 497

strengthen model’s attention on critical tokens and 498

establish a stronger connection between salient to- 499

kens and the model prediction. Experiments on 500

different models across 4 various task types demon- 501

strate the superiority of our proposed method. 502
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Limitation503

Due to the expectation maximization (EM) nature504

of CDT, it includes an additional context noise505

detection process, which introduces extra compu-506

tational costs during the training phase. Although507

we have demonstrated in Section 6.3 that these508

additional costs are negligible compared to the per-509

formance gains, theoretically, the noise detection510

cost will increase as the model size grows since511

it involves a complete forward-backward propaga-512

tion process. We leave this for future work, aiming513

to explore a simpler method for identifying the514

context noise or to develop more efficient model515

architectures. For example, designing specific net-516

work modules to handle noise, as proposed in Ye517

et al. (2024), could be a promising direction. Addi-518

tionally, we observe that the improvement brought519

by our method on complex reasoning tasks is not520

as significant as that on other tasks, and we are yet521

to understand the relationship between this and the522

training data or the training objective function. In523

the future, we aim to further investigate the impact524

of context noise on the model’s long-form reason-525

ing abilities, as well as the relationship between the526

CDT strategy and the enhancement of the model’s527

reasoning capabilities.528
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A Preliminary Study Details812

A.1 Preliminary Task Construction813

Task Selection We select 3-hop and 4-hop tasks814

based on qa3 tasks in the BABILong Benchmark to815

build our datasets, as these tasks generally pose sig-816

nificant challenges for LLMs. However, it is worth817

noting that the original BABILong qa4 samples818

do not truly require 4-hop reasoning to produce819

correct outputs. For example, a sample from this820

subset with 0k context is shown in Figure 10. In821

this case, the task only requires attention to a single822

fact, “The bedroom is west of the bathroom” to823

answer the question, while the first sentence serves824

as an interference fact. Even in terms of keywords,825

the model only needs to focus on three keywords:826

“bathroom”, “west”, and “bedroom” from the sec-827

ond sentence. Thus, we design our 4-hop dataset828

based on the BABILong qa3 source data, with one829

sample shown in Figure 11. By carefully arranging830

the order of facts and reducing the conditions of831

questions in the long context, we ensure that the832

model is required to search for all four supporting833

facts in sequence to produce the correct output.834

Controlled Evaluation Data Synthesis We use835

the 4-hop task with non-zero context as an example836

here. As shown in Table 3, all variables used for837

building data include the facts sample, the facts838

permutation, and the context length. Firstly, we839

select source samples from the BABILong official840

file “qa3_three-supporting-facts” as our base data.841

Then, we modify the original BABILong qa3 sup-842

porting facts following the pattern shown in Fig-843

ure 12. Afterward, we add interference to these844

four original facts while maintaining the relative or-845

der of the supporting facts. The process begins by846

selecting a noise context of the appropriate length847

and inserting the facts into it. Specifically, we di-848

vide the noise context into 10 equal-length chunks,849

leaving 10 candidate positions for the insertion of850

the 4 supporting facts (excluding the tail). Next, we851

randomly select five permutations from the full set852

of C4
10 candidate position permutations. After in-853

jecting noise, we randomly insert interference facts,854

i.e., facts that are similar to the supporting facts but855

irrelevant, among all sentences. We ensure that at856

least one interference fact is placed after the last857

supporting fact to test the model’s robustness. To858

ensure the correctness of the samples, we make859

sure that the objects appearing in the interference860

facts do not overlap with those in the supporting861

Hops Samples Permute Lengths

2 100 5 8K

3/4 R. R. 0k - 64k

Table 3: Variable settings, where R. denotes random.

One BABILong qa4 sample with 0k context

Input :

The bedroom is west of the office.
The bathroom is west of the bedroom.

Question:
What is west of the office?

Supporting Facts:
The bedroom is west of the office.

Ground truth:
bedroom

Figure 10: A BABILong qa4 sample with 0k context

facts. Additionally, we ensure that the number of 862

interference facts is between one and two times the 863

number of supporting facts to avoid making the 864

samples either too easy or too difficult. Finally, 865

for all samples with the same context length, we 866

use the same noise context to maintain consistency. 867

In the end, we randomly insert a few emojis into 868

the constructed context to test the sensitivity of the 869

model to low-frequency tokens. For the 3-hop task, 870

we directly use the original qa3 task format from 871

BABILong as the base, and the subsequent process- 872

ing follows a similar approach to the one described 873

above for the 4-hop task. 874

B Derivation of Relation between 875

Information Flow and Embedding 876

Gradients 877

In transformer-based models, the Information Flow 878

in attention is essentially the product of the at- 879

tention distribution and its corresponding gradi- 880

ent. Therefore, we can transform the derivation 881

into constructing the gradient relationship be- 882

tween the attention score distribution (A) and 883

the embedding (E(X)). This can be established 884

via the chain rule and implemented through the 885

specific computation steps of the attention mecha- 886

nism. Notably, in the following derivation, for sim- 887

plicity, we omit the activation layers in the model. 888

Additionally, considering that transformer-based 889
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One of our 4-hop samples with 0k context

Input :

Mary journeyed to the office.
Mike went to the office.
Mary got the apple.
Daniel picked up the football.
Daniel went back to the bedroom.
Mary journeyed to the bathroom.
Mary dropped the apple.
Jonh went to the bathroom.

Question:
Where was the apple’s location prior to the
place where the apple was discarded, left or
dropped?

Supporting Facts:
Mary journeyed to the office.
Mary got the apple.
Mary journeyed to the bathroom.
Mary dropped the apple.

Ground truth:
office

Figure 11: One of our 4-hop samples with 0k context

models are composed of multiple identical network890

blocks stacked together, one can easily extend the891

conclusions from a single layer to multiple layers.892

Therefore, we focus on proving the case with one893

embedding layer and one attention module.894

Given the basic definition of the attention mech-895

anism, we have:896 
Q = E(X)WQ, A = softmax

(
QKT
√
d

)
,

K = E(X)WK , O = A · V,
V = E(X)WV ,

897

where WQ,WK ,WV ∈ Rd×d are the model param-898

eters, O is the attention output, E(X) ∈ Rn×d is899

the input embedding matrix, n and d are sequence900

length and model dimension, respectively.901

Let the loss function be L. By the chain rule, the902

gradient of the loss with respect to E(X) is:903

∂L

∂E(X)
=

∂L

∂O

∂O

∂E(X)
=

∂L

∂A

∂A

∂E(X)
904

+
∂L

∂V

∂V

∂E(X)
. (4)905

Since we have ∂V
∂E(X) = W T

V and ∂O
∂V = A, the906

The pattern of our 4-hop sample

Supporting fact1: {x} {m} the {y1}
Supporting fact2: {x} {p} the {o}
Supporting fact3: {x} {m} the {y2}
Supporting fact4: {x} {d} the {o}

Question:
Where was the {o}’s location prior to the place
where the {o} was discarded, left or dropped?
Ground truth:
{y1}
Explanation:
{x} : a character name, selected from {Mary,
Daniel, Mike, ...}
{m} : a predicate indicating movement, selected
from {went to, journeyed to, travelled to, ...}
{y1}, {y2} : two different locations, selected
from {office, bedroom, bathroom, ...}
{p} : a predicate indicating picking up, selected
from {picked up, took, grabbed, ...}
{d} : a predicae indicating dropping, selected
from {dropped, put down, discarded, ...}
{o} : an object name, selected from {apple, foot-
ball, milk, ...}

Figure 12: The pattern of our 4-hop sample

gradient relationship between A and E(X) is: 907

∂L

∂E(X)
∝ ∂L

∂A

∂A

∂E(X)
(5) 908

To eliminate the influence of the Softmax(·) func- 909

tion, we can further decompose equation 5 into: 910
S =

QKT

√
d

,

∂L

∂E(X)
≈ ∂L

∂A
·
(
∂A

∂S
· ∂S

∂E(X)

)
,

(6) 911

where ∂A
∂S is the Jacobian of Softmax(·) func- 912

tion, with elements Aij (δik −Aik)
4. 913

For each element Sij =
QiK

T
j√
d

∈ S, the gradient 914

with respect to E(X) can be written as: 915

∂Sij

∂E(X)
=

∂
(
(E(X)iWQ)(E(X)jWK)T√

d

)
∂E(X)

=
1√
d

(
W T

Q ·Kj · δik +W T
K ·Qi · δjk

)
.

(7) 916

4δik is the Kronecker delta function. If i equals to k,
δik = 1, else δik = 0. We can also rewrite this equation into
Aij (1−Aij).
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Based on equation 6 and equation 7, we can917

summary that:918

∂L

∂E(X)i
∝ ∂L

∂Aij︸ ︷︷ ︸
Sensitivity of L to A

× Aij(1−Aij)︸ ︷︷ ︸
Derivation from Softmax

× ∂Sij

∂E(X)︸ ︷︷ ︸
Linear Transformation

.

(8)919

Based on equation 8, we can derive that when920

Aij increases, indicating higher attention between921

token i and token j, the sensitivity of L to A ( ∂L
∂Aij

)922

also increases. This results in larger derivatives923

on the embeddings. Additionally, if Aij becomes924

excessively large, approaching 1, the value of925

Aij(1− Aij) might tend toward 0. However, this926

is often not an issue in long-context scenarios, as927

the attention scores are unlikely to approach val-928

ues near 0.5 due to the long context. Even if they929

exceed 0.5 (possibly for some special tokens), the930

increase in the first term ( ∂L
∂Aij

) helps mitigate this931

effect.932

C Implementation Details933

C.1 Training Details934

For all experiments, we utilize the open-source935

training framework OpenRLHF5 (Hu et al., 2024),936

Ring-flash-attention6 (Liu et al., 2023) and Deep-937

Speed (Rajbhandari et al., 2020). For LongCE938

training (Fang et al., 2024b), we set the sliding939

context window size as 8192 and employ the rec-940

ommended hyper-parameters in the official code 7.941

Context Window Scaling To scale the context942

window size of the Llama-3-8B-base model from943

8K to 64K (8×), we adjust the RoPE base from944

500,000 to 20,000,000 and directly train the model.945

We provide training configurations in Table 4.946

Language Modeling Post-training and Long-947

context SFT The language modeling post-948

training and long-context SFT are directly ap-949

plied to the Llama3.1-8B-base and Llama3.1-8B-950

Instruct, respectively, which already have 128K951

context window size. We provide the training con-952

figurations in Table 5 and Table 6 respectively.953

5https://github.com/OpenRLHF/OpenRLHF.git
6https://github.com/zhuzilin/

ring-flash-attention.git
7https://github.com/PKU-ML/LongPPL.git

Context Window Scaling Training Setting

Backbone Llama-3-8B-base
Training Objective Language modeling
RoPE base 20,000,000
Context window size 8K → 64K
Data seq-length 64,000
Deepspeed Zero2
Global batch size 64
Epoch 2
Training Steps 160
Ring-attention size 4
Learning-rate 1e-5
LR-scheduler cosine_with_min_lr
Optimizer Adam (β1 = 0.9, β2 = 0.95)
GPUs A100 (80GB) × 8
Training time ≈8h / epoch
Training data PG19 (Rae et al., 2019)
Total consumed tokens 0.65B

Table 4: Configuration of context window scaling.

C.2 Evaluation Details 954

We conduct long-context evaluation mainly based 955

on the open-source evaluation framework8. 956

LongBench-E LongBench-E is a variant of 957

LongBench (Bai et al., 2024b) designed specifi- 958

cally for long-context real-world tasks. We chose 959

LongBench-E because it shares the same test 960

dataset distribution as LongBench while covering 961

a wider range of context lengths. For the Llama3- 962

8B-base model, we truncate the input to 8K tokens, 963

whereas for other models, we truncate the input to 964

32K tokens. 965

Language Modeling For the language modeling 966

task, we calculate both LongPPL and PPL met- 967

rics on the GovReport dataset (Huang et al., 2021), 968

which consists of long sequences from government 969

reports. We sample 50 documents from GovReport, 970

each with a context length of up to 32K tokens. 971

RULER RULER (Hsieh et al., 2024) is a com- 972

prehensive synthetic dataset that includes 6 differ- 973

ent testing categories to evaluate a model’s long- 974

context understanding capabilities. We utilize all 975

test categories, with each category containing 50 976

test samples covering lengths of 32K and 64K. We 977

post the testing configuration of RULER in Table 8. 978

Long-form Reasoning We evaluate the long- 979

form reasoning capability of models on selected 980

tasks from BABILong (Kuratov et al., 2024). 981

8https://github.com/ZetangForward/
Long-context-Eval.git
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Language Modeling Post-training Setting

Backbone Llama-3.1-8B-base
Training Objective Language modeling
RoPE base 500,000
Context window size 128K
Data seq-length 64,000
Deepspeed Zero2
Epoch 2
Global batch size 32
Training Steps 320
Ring-attention size 4
Learning-rate 5e-6
LR-scheduler cosine_with_min_lr
Optimizer Adam (β1 = 0.9, β2 = 0.95)
GPUs A100 (80GB) × 8
Training time ≈8.5h / epoch
Training data PG19 (Rae et al., 2019)
Total consumed tokens 0.65B

Table 5: Configuration of language modeling.

Specifically, we select tasks that involve multiple982

supporting facts, as well as QA1, as the testing983

dataset. The BABILong testing configurations are984

shown in Table 10.985

D More Evaluation Results986

D.1 Generalizing CDT to Longer Context987

Length988

We generalize the long-context evaluation to989

128K context size on RULER (128K) and BABI-990

Long (128K) benchmarks. As shown in Table 9,991

we can find that our CDT method still outperforms992

other methods and strong LCMs.993

D.2 Generalizing CDT to More Models994

We apply our CDT method to more LLMs, includ-995

ing Qwen2.5-7B-Instruct (Yang et al., 2024) and996

Mistral-V0.3-Instruct (Jiang et al., 2023). We eval-997

uation the model performance on real-world long-998

context tasks, long synthetic tasks, and long-form999

reasoning tasks. We report the model performance1000

in Table 7, where we can observe that our CDT can1001

significantly improve the model performance on1002

different models. For instance, the Mistral-V0.3-1003

Instruct model obtains more than 30 points on the1004

long-form reasoning task.1005

E Error Analysis1006

In this section, we analyze the error pattern of par-1007

tial model predictions on real-world long-context1008

tasks. As shown in Table 11, we use colored text1009

Long-context Alignment Training Setting

Backbone Llama-3.1-8B-Instruct
Training Objective Supervised fine-tuning
RoPE base 500,000
Context window size 128K
Data seq-length 4,000∼128,000
Deepspeed Zero2
Global batch size 32
Epoch 2
Training Steps 250
Ring-attention size 4
Learning-rate 5e-6
LR-scheduler cosine_with_min_lr
Optimizer Adam (β1 = 0.9, β2 = 0.95)
GPUs A100 (80GB) × 8
Training time ≈6.5h / epoch

Training data
LongMIT (Chen et al., 2024),
LongAlpaca (Chen et al., 2023c)

Total consumed tokens 0.53B

Table 6: Configuration of long-context SFT training.

to highlight the correct and incorrect parts of the 1010

model’s predictions. 1011
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Models LongBench-E BABILong

Type S-Doc QA M-Doc QA Summ Few-shot Code Avg. Avg.

Qwen2.5-7B-Instruct - 44.54 46.29 28.15 56.03 16.52 38.30 43.32
+ CDT SFT 44.93 47.29 28.65 57.33 19.18 39.48 47.56

Mistral-V0.3-Instruct - 44.89 40.76 20.52 67.11 47.04 44.06 22.36
+ CDT SFT 45.01 41.79 26.08 67.75 57.27 47.58 53.84

Table 7: Evaluation results of two more LLMs on real-world long-context tasks and long-form reasoning tasks.

Evaluation Configuration of RULER

Question Answering qa_1, qa_2
Single NIAH niah_single_1,

niah_single_2,
niah_single_3

Multi-keys NIAH niah_multikey_1,
niah_multikey_2,
niah_multikey_3

Multi-values NIAH niah_multiquery
Multi-queries NIAH niah_multivalue
Others common words extraction (CWE),

frequent words extraction (FWE),
variable tracking (VT)

Length 32K, 64K
Num samples/task 50

Table 8: Testing configuration of RULER

Models RULER BABILong

ProLong-512K-Instruct 72.13 21.00
NExtLong-512K-Instruct 76.89 22.00
Llama-3.1-8B-SEALONG 86.63 31.00

Llama-3.1-8B-Base 81.96 24.40
+ CE 80.87 19.40
+ LongCE 81.79 24.60
+ CDT (ours) 82.23 28.20

Llama-3.1-8B-Instruct 85.98 29.60
+ SFT 86.22 30.40
+ LOGO 86.93 31.60
+ CDT (ours) 88.01 38.60

Table 9: Model performance on tasks with 128K context
length.

Task Num Supporting
Fact

Interference
Fact

QA1 100 1 1∼9
QA2 100 2 1∼66
QA3 100 3 1∼317
QA7 100 1∼10 1∼42
QA8 100 1∼8 1∼42

Table 10: Testing configuration of BABILong
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Code Completion Task

Question: Completing the code based on
the context: [ · · · ]\n self.interface
= self.interface.replace(’ ’,
”).lower() \n self.param_type =
None \n self.if_type = None \n
# state \n self.results = dict()
\n [ Completion ] self.result =
dict() \n def check_params(self):
\n """Check all input params"""
\n if not self.interface: \n
self.module.fail_json(msg=’Error:
Interface name cannot be empty.’)[ · · · ]

Llama3.1-8B-Instruct: for (int i
= 0; i < s.length(); i++) {if
(!Character.isDigit(s.charAt(i)) &&
s.charAt(i) != ’,’) }
Llama3.1-8B-CD (ours): if self.interface ==
’all’:\n self.param_type = INTERFACE_ALL\n
GPT4o: if self.interface.lower()
== ’all’:\n self.param_type =
INTERFACE_ALL\n elif ’/’ in self.interface
or self.interface.isdigit():\n
self.param_type = INTERFACE_FULL_NAME\n
else:\n self.if_type =
get_interface_type(self.interface)\n
Golden Answer : if self.interface ==
’all’:\n

Long-context Multi-hop Reasoning Task

Question: What did M. King Hubbert’s
employer announce it was in the process
of doing in April 2010? [ · · · ] In
April 2010 Shell announced that the
corporation is in process of trying
to find a potential buyer for all of
its operations in Finland and is doing
similar market research concerning
Swedish operations. [ · · · ]

Llama3.1-8B-Instruct: Shell announced the
sale of some of its assets, including its
liquefied petroleum gas (LPG) business, to
meet the cost of a planned $28
Llama3.1-8B-CD (ours): trying to find a
potential buyer for all of its operations
in Finland and is doing similar market
research concerning Swedish operations.
GPT4o: MV Miralda’s owner announced it
was in the process of trying to find a
potential buyer for all of its operations
in Finland and in doing similar market
research concerning.
Golden Answer : trying to find a potential
buyer for all of its operations in Finland

Single-QA Long-context Task

Question: What metrics are used in
evaluation? [ · · · ] Figure FIGREF22
shows the results of these experiments
wherein we are able to maintain the
precision on the subset of the training
set used for testing while reducing its
recall and thus generalising the model.
The fact that the model is generalizing
on a dissimilar dataset is confirmed by
the increase in the development set. F1
score. [ · · · ]

Llama3.1-8B-Instruct:
Macro-averaged F-score.
Llama3.1-8B-CD (ours):
macro-averaged F-score, precision, recall,
F1 score.
GPT4o:
Macro-averaged F-score.
Golden Answer :
precision, recall , F1 score

Table 11: Generation samples of Llama3.1-8B-Instruct, Llama3.1-8B-Instruct-CD (ours), and GPT4o on real-world
long-context tasks. We can observe that the Llama3.1-8B-Instruct model fails to generate the correct answers
across the three long-context tasks. In contrast, both GPT4o and our method successfully cover the correct answers,
although they may include some irrelevant content.
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