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ABSTRACT

A significant challenge in representation learning is to capture latent semantics in
data mixing continuous, discrete, and even discretized observations (called mixed-
type data), encountering issues like inconsistent discoveries and redundant model-
ing. Recently, Bayesian flow networks (BFNs) offer a unified strategy to represent
such mixed-type data in the parameter space but cannot learn low-dimensional
latent semantics since BFNs assume the size of parameters being the same as
that of observations. This raises a new important question: how to learn latent
semantics in parameter spaces rather than in observation spaces of mixed-type
data? Accordingly, we propose a novel unified parameter space representation
learning framework, ParamReL, which extracts progressive latent semantics in
parameter spaces of mixed-type data. In ParamReL, a self-encoder learns latent
semantics from intermediate parameters rather than observations. The learned se-
mantics are then integrated into BFNs to efficiently learn unified representations
of mixed-type data. Additionally, a reverse-sampling procedure can empower
BFNs for tasks including input reconstruction and interpolation. Extensive ex-
periments verify the effectiveness of ParamReL in learning parameter space rep-
resentations for latent interpolation, disentanglement, time-varying conditional
reconstruction, and conditional generation. The code is available at https:
//anonymous.4open.science/r/ICLR25-F087/README.md.

1 INTRODUCTION

This work explores a new important question: How to learn latent semantics in parameter spaces
rather than in observation spaces of mixed-type data comprising continuous, discrete, and even dis-
cretized observations? We propose a novel unified parameter space representation learning frame-
work that utilizes the parameter spaces rather than the observation spaces for mixed-type data.

Representation learning (Bengio et al., 2013) aims to discover low-dimensional latent semantics
from high-dimensional observations, widely applied in areas including computer vision (Li et al.,
2023; Zhao et al., 2023a; Dong et al., 2023), and data analytics (Tonekaboni et al., 2022; Oublal
et al., 2024). While the main focus has been on continuous-valued data (Kim & Mnih, 2018; Chen
et al., 2018; Meo et al., 2024), it is more challenging to uncover semantics in discrete (Austin et al.,
2021; Chen et al., 2023) and even discretized (Van Den Oord et al., 2017; Razavi et al., 2019)
data. However, existing efforts often encounter issues like inconsistent discoveries and redundant
modeling (Zhou et al., 2023; Krishnan et al., 2018). Recently, Bayesian flow networks (BFNs)
(Graves et al., 2023; Song et al., 2024; Xue et al., 2024) emerged as a promising deep generative
model. BFNs use multiple steps similar to diffusion models (Ho et al., 2020; Song et al., 2021) to
refine parameters of an output distribution for reconstructing observations. Accordingly, BFNs offer
a unified strategy to handle mixed-type data while enabling fast sampling. However, they struggle
to capture low-dimensional latent semantics, raising the above open question.

Correspondingly, we propose a novel unified Parameter space Representation Learning framework,
ParamReL, which leverages the multi-step generative learning of BFNs for representation learning
on mixed-type data. ParamReL tackles this by performing representation learning in the parameter
space to extract high-level latent semantics. The key insight lies in progressively self-encoding the
intermediate parameters of BFNs, generating low-dimensional latent semantics step by step. Specif-
ically, ParamReL adopts an architecture similar to BFNs but with two significant innovations: (1)
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a self-encoder encodes intermediate parameters into lower-dimensional latent semantics, capturing
gradual semantic changes throughout the multi-step generation process; and (2) a conditional de-
coder, which conditions on latent semantics and intermediate parameters, and forms the parameters
of an output distribution for simulating observations. Additionally, ParamReL involves a reverse-
sampling procedure customized for tasks like image reconstruction and interpolation. Variational
inference method is used in learning ParamReL, where mutual information is used to promote dis-
entangled latent semantic learning, resulting in distinct and meaningful representations.

We evaluate ParamReL in learning meaningful high-level latent semantics from both discrete and
continuous-valued observations on benchmark data. The sampling and reverse-sampling mecha-
nisms of ParamReL successfully perform tasks such as latent interpolation, disentanglement, time-
varying conditional reconstruction, and conditional generation. Notably, the self-encoder reveals
progressive semantics throughout flow steps, enabling ParamReL to generate semantics with im-
proved clarity, while maintaining high quality of sample generation.

2 UNDERSTANDING BAYESIAN FLOW NETWORKS - AN ALTERNATIVE VIEW

Bayesian Flow Networks (BFNs) (Graves et al., 2023; Song et al., 2024; Xue et al., 2024) serve as
deep generative models with a primary objective to learn an output distribution for generating ob-
servations. The distribution’s parameters are learned by a neural network, which takes the posterior
parameters of observations of inputs. Here, we try to understand BFNs from an alternative parame-
ter perspective since these (posterior) parameters play a key role in BFNs. BFNs involves concepts
such as input distribution, sender distribution and receiver distribution, to introduce BFNs, making
it less accessible to readers unfamiliar with BFNs. Interested readers may refer to Appendix A.1 and
(Graves et al., 2023) for the original illustrations.

Figure 1 shows T steps of training and sample generation in BFNs, similar to diffusion models (Ho
et al., 2020; Song et al., 2021). To train BFNs, we minimize the divergence between the ground-truth
data distribution and the evolving output distributions over T steps. At each step t ∈ {T, . . . , 1},
an intermediate (posterior) parameter θt is first updated using a Bayesian update function h(·) as
θt = h(θt+1,xt+1), where xt+1 is the observation at step t+1. θt is then fed into a neural network
ψ(·) to form the parameters of output distribution, i.e., a decoder pO(xt|ψ(θt), for model training.
After training, these intermediate output distributions can be employed to simulate observations
during the sample generation process, replacing the actual observations at each step t.

By working in the parameter space, BFNs can uniformly model continuous, discrete, and discretized
observations. For example, BFNs can use the mean of Gaussian distributions as parameter θ to
model continuous data or use the event probabilities of categorical distributions as θ to study discrete
data (see detailed settings for distributions in Table 2). However, BFNs cannot produce meaningful

t=T t=T-1

...

...

Conditional
Decoder

t=0

Conditional
Decoder

Bayesian Update Function                   generate the (t-1)-step parameters         based on the t-step parameters       and  intermediate latents 

  Conditional Decoder                                 decoding  t-step parameters          to generate t-step  intermediate latents 

Figure 1: Our alternative understanding of BFNs. Each step consists of a conditional decoder
pO(xt|ψ(θt) (in blue rectangle) and a Bayesian update function h(·) (in peach rectangle). In training
BFNs, dashed arrows (between conditional decoder and {xt}Tt=1) are non-existent as {xt}Tt=1 refers
to observations. The dashed arrows become solid for sample generation, representing the decoder
generates xt in sample generation.
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latent semantics capturing high-level concepts in the mixed-type observations, such as hair colors in
portrait images.

3 PARAMREL: PARAMETER SPACE REPRESENTATION LEARNING

Here, we explain the framework of ParamReL and its main design mechanisms.

3.1 THE PARAMREL FRAMEWORK

The framework and workflow of ParamReL are shown in Figure 2. ParamReL leverages the
parameter space for representation learning by extracting low-dimensional latent semantics from
high-dimensional mixed-type data. Different from BFNs in approximating data distribution p(x0),
ParamReL learns the joint distribution over observation x0 and a series of latent semantics {zt}Tt=1,
with |zt| ≪ |x0|,∀t ∈ {1, . . . , T}. That is, ParamReL seeks to reconstruct x0 while obtaining
meaningful low-dimensional latent semantics {zt}Tt=1.

Building on BFNs, ParamReL consists of four main components:

(1) A self-encoder, conditioning on the intermediate (posterior) parameters θt to generate pro-
gressive latent semantics zt, described in Section 3.2.

(2) A conditional decoder, using a neural network on latent semantics zt and intermediate
parameters θt to form the output distribution for subsequent steps, detailed in Section 3.3.

(3) A sampling and reverse-sampling process, facilitating tasks such as image reconstruction
and interpolation, outlined in Section 3.4.

(4) A training and testing procedure, as discussed in Section 3.5, optimizing latent semantics
zt and ensuring effective model generalization.

Together, ParamReL forms a robust framework to capture and utilize latent semantics and to improve
the performance of tasks including unconditional image generation and reconstruction.

3.2 PARAMETER ENCODING THROUGH A SELF-ENCODER

The self-encoder, denoted as qϕ(zt|θt, t), progressively encodes intermediate parameters θt
into low-dimensional latent semantics zt, which facilitates representation learning from high-
dimensional, mixed-type data at each step t. (Baranchuk et al., 2021) has shown that upsampling

t=T t=T-1 t=0

...

...

...Conditional
Decoder

Conditional
Decoder

Self-Encoder Self-Encoder

  Self-Encoder                           encode t-step        and t-step parameters        to generate t-step low-dimensional latent semantics      

  Conditional Decoder                                 decoding  t-step parameters      and low-dimensional latent semantics         to generate t-step  intermediate latents 

Bayesian Update Function                   generate the (t-1)-step parameters         based on the t-step parameters       and  intermediate latents 

Figure 2: The framework of ParamReL. Each step consists of a self-encoder qϕ(zt|θt, t) (pink
rectangle), a conditional decoder pO(xt|ψ(zt,θt)) (blue rectangle), and Bayesian update h(·) (peach
rectangle). During the reverse-sampling stage, the self-encoder qϕ encodes intermediate parameters
θt into a time-specific latent semantic zt, and pO(xt|ψ(zt,θt)) generates xt.
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layers from a U-Net in pre-trained diffusion models (Rombach et al., 2022) may capture mean-
ingful semantic information. Inspiring from this discovery and in training ParamReL, we adopt
approaches similar to (Luo et al., 2024) to parameterize qϕ(zt|θt, t) (see Appendix C.1 for more de-
tails). Through qϕ(zt|θt, t), the intermediate parameter θt effectively encodes itself into zt, together
they form ψ(θt, zt) for the output distribution.

Ideally, the latent semantics zt should provide low-dimensional semantics distinct from the inter-
mediate parameters θt in BFNs but without compromising the data reconstruction process. To learn
high-quality latent semantics, a smooth, learnable latent space is necessary, which is ensured by inte-
grating the prior distribution p(zt) into a robust probabilistic framework, allowing efficient sampling
of x0. For simplicity and efficiency, we assume p(zt) follows a Gaussian distribution.

qϕ(zt|θt, t) differs from traditional auto-encoders qϕ(z|x0) in two key aspects:

• qϕ(zt|θt, t) is conditioned on the intermediate parameter θt, rather than being conditioned
on x0. This summarizes information from all previous steps to enable generating latent
semantic zt through all the T steps.

• The self-encoder generates a step-wise semantic zt, which is tailored to the dynamic be-
havior of variables over time t. This series of latent semantics {zt}Tt=1 are expected to ex-
hibit progressive semantic behaviors (such as gradual changes in age, smile, or skin color)
throughout the generation process (as illustrated in the right panel of Figure 13).

When observations x0 are unavailable, e.g. sample generation tasks, it is also worth noting that di-
rectly using regular auto-encoders like qϕ(z|x0) to generate latent semantics is infeasible. They may
require an additional module to generate latent semantics (Preechakul et al., 2022), while training
such modules would introduce computational overhead. However, in their case, not using auto-
encoders qϕ(z|x0) would lead to inefficient resource use.

3.3 CONDITIONAL DECODER

The conditional decoder refers to the output distribution pO(xt|ψ(θt, zt)) which conditions on latent
semantics zt and intermediate parameter θt to simulate xt. The condition ψ(θt, zt) explicitly in-
corporates zt as part of its conditioning mechanism. Following the settings in diffusion models (Ho
et al., 2020; Song et al., 2021), we use the U-Net architecture with the Cross-Attention in each layer
specified as

Cross-Attention(θt, zt) = softmax(
QK⊤
√
d

)V, where Q = WQθt,K = WKzt,V = WV zt

where WQ,WK ,WV are the query, key and value weight matrix, respectively. See the detailed
U-Net architecture in Appendix C.2.

Since zt works together with the corresponding intermediate parameter θt, it is expected that zt
aligns well with the progressively structured parameter θt. Lower-level intermediate latent xt (such
as hair texture) is progressively incorporated. The proposed self-encoder works consistently with
the conditional decoder here as both work on θt, see Figure 6 (b).

3.4 SAMPLING AND REVERSE-SAMPLING PROCESSES

After training ParamReL, the sampling and reverse-sampling processes play a crucial role in gener-
ating and reconstructing data, which is essential for tasks such as image generation and interpolation.
Generating samples begins with an initial guess of the intermediate parameters θT+1. From θT+1,
this sampling process sequentially generates xT ,xT−1, . . . ,x0. Specifically, given the parameter θt
at each step t, we have:

zt ∼ qϕ(zt|θt, t), xt ∼ pO(xt|ψ(θt, zt)), θt−1 = h(θt,xt). (1)
We use the trained encoder qϕ(zt|θt, t) to replace the prior p(zt) of zt for improving the sam-
pling quality. After θ0 is obtained, a sample can be generated as z0 ∼ qϕ(z0|θ0, 0),x0 ∼
pO(x0|ψ(θ0, z0)).

However, the reverse-sampling process, which transits the observation x0 through the intermediate
latents x1,x2, . . . ,xT−1 until xT , is not as straightforward as the sampling procedure. Without a

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Conditional
Decoder...

...

t=T t=1 t=0

  Conditional Decoder                             decoding  t-step parameters      and low-dimensional latent semantics     to generate t-step  intermediate latents 

Bayesian Update Function                     generate the (t-1)-step parameters         based on the t-step parameters       and  intermediate latents 

Figure 3: Reverse-sampling process in BFNs.

clearly defined reverse-sampling process, it would be challenging to perform tasks such as image
reconstruction and interpolation. In fact, by taking the inverse of the Bayesian update function h(·)
as θt = h−1(θt−1,xt−1), the intermediate latent xt−1 can transit to xt as:

θt = h−1(θt−1,xt−1), zt ∼ qϕ(zt|θt, t), xt ∼ pO(xt|ψ(θt, zt)). (2)

Given the straightforward definition of Bayesian update function h(·), its inverse operation is gener-
ally easy to derive. The details of such results can be found in Figure 14. Furthermore, this developed
reverse-sampling process can be naturally extended to BFNs. Transiting xt−1 to xt at time t can be
performed as θt = h−1(θt−1,xt−1), with xt sampled as xt ∼ pO(xt|ψ(θt)). With this approach,
BFNs can effectively perform tasks like image reconstruction and interpolation, which were diffi-
cult or even impossible by previous BFNs models. Figure 3 shows the reverse-sampling process of
BFNs. The ParamReL version is provided in Figure 7 in Appendix A.

3.5 TRAINING AND TEST WITH PARAMREL

Here, we outline the process of training and testing ParamReL by focusing on optimizing Param-
ReL to learn meaningful latent semantics while ensuring effective reconstruction of observations.
The training process involves variational inference to approximate the joint distribution of latent
variables, and a mutual information term is integrated into improving the quality of learned latent
semantics by strengthening the relationship between intermediate parameters and latent semantics.

Variational Inference for Intractable Joint Distribution In ParamReL, the joint distribu-
tion over x0, intermediate latents {xt}Tt=1 and latent semantics {zt}Tt=1 can be defined
as p(x0, {xt}Tt=1, {zt}Tt=1|−) = pO(x0|ψ(θ0, z0)) ·

∏T
t=1

[
p(zt)EpO(xt|ψ(θt,zt))[pS(xt−1|xt)]

]
,

where the output distribution pO(x0|ψ(θ0, z0)) at step 0 is used to model observation x0, and
EpO(xt|ψ(θt,zt))[pS(xt−1|xt)] follows the definition of BFNs to model intermediate latent xt−1,
and pS(xt−1|xt) is a noisy distribution of xt.

With qϕ(zt |θt, t) defined as the encoder for zt and pS(xt−1|xt) defined as the variational distribu-
tion for xt−1, the evidence lower bound (ELBO) on the marginal log-likelihood of observation x0 is
(see the full derivation in Appendix B):

log p(x0) ≥ −
T∑
t=1

EpF(θt|−)Eqϕ(zt|θt,t)

{
KL

[
pS (xt−1 |x0) ∥ EpO(xt|ψ(θt,zt))[pS(xt−1|xt)]

]
−KL [qϕ (zt |θt, t) ∥ p(zt)]}+ EpF (θ0|−)qϕ(z0|θ0,0) [ln pO(x0|ψ(θ0, z0))] := ELBO. (3)

Maximizing ELBO is equivalent to performing amortized inference (Kingma & Welling, 2014)
through encoders qϕ(zt|θt, t) and learning likelihood function through decoders (Zhao et al., 2019).
When the encodable posterior qϕ (zt|θt, t) is used to infer high-level semantics zt, those interme-
diate latents {xt}Tt=1 contain low-level information in generating the observations. In ParamReL,
the parameters of the output distribution are learned through iteratively proceeding the Bayesian
updating functions and a learned noise model ψ(θ, z) parameterized by neural networks ψ.
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Mutual Information Regularization Ideally, during the training phase, we want to acquire the
latent semantic zt by the self-encoder qϕ(zt|θt, t) and achieve high-quality reconstruction x̂0 by the
decoder (i.e., the output distribution pO(x0|ψ(θ0, z0))). However, there exists a trade-off between
inference and learning (Shao et al., 2020; Wu et al., 2024) coherent in optimizing the ELBO in Eq. (3).
In most cases, optimizing ELBO favours fitting likelihood rather than inference (Zhao et al., 2019).
Based on the rate-distortion theory (Alemi et al., 2018; Bae et al., 2023), the rate, represented by the
KL divergence term constrained by the encoders, compresses sufficient information to minimize the
distortion, or reconstruction error, while simultaneously limiting the informativeness to promote a
smooth latent space.

To remedy the insufficient representation learning during the inference stage, we want to increase the
dependence between intermediate parameters θt and latent semantics zt by maximizing their mutual
information I(θt, zt). We can rewrite the tractable learning object in ParamReL by adding the mu-
tual information maximization term as ELBO+ = ELBO + γ

T

∑
t Iq(θt; zt), where γ is the trade-off

parameter. Considering that we cannot optimize this object directly, we can rewrite it by factorizing
the rate term into mutual information and total correlation (TC), see details in Appendix B.

4 RELATED WORK

Recent advances have demonstrated that diffusion models (Ho et al., 2020; Song et al., 2021) are
capable of generating high-quality data. Nonetheless, compared to the autoencoder framework, the
intermediate outputs in diffusion stages are high-dimensional and lack smoothness, making them
unsuitable for representation learning. Contemporary research focuses on encoding a conditional
latent space to acquire low-dimensional semantic representations. However, those observations-
based models (Preechakul et al., 2022; Wang et al., 2023), such as VAEs and diffusion models,
exhibit limitations when applied to discrete data.

Deep hierarchical VAEs have seen progress in capturing latent dependence structures for encoding
an expressive posterior, statistically or semantically. VQVAE-based (Van Den Oord et al., 2017;
Razavi et al., 2019) models have local-to-global features-based explanatory hierarchies at the image
level, forming a codebook-based discrete posterior. In (Sønderby et al., 2016; Tomczak & Welling,
2018), recursive latent structures in multi-layer networks form an aggregated posterior. NVAE (Vah-
dat & Kautz, 2020) demonstrates that depth-wise hierarchies encoded by residual networks can ap-
proximate the posterior precisely despite using shallow networks. Unlike the observation-based
encoder, where the information flow between input and latent is maximized in encoding-decoding
pipelines in the sample space, ParamReL uses progressive encoders in the parameter space to capture
the dynamic semantics.

Pre-trained diffusion models (Rombach et al., 2022), (Baranchuk et al., 2021) have shown that the
upsampling features from a U-Net can capture semantic information useful for downstream tasks.
This discovery has sparked increasing research in leveraging these upsampling features of pre-
trained diffusion models across various applications, including classification (Xiang et al., 2023;
Mukhopadhyay et al., 2023), semantic segmentation (Baranchuk et al., 2021; Zhao et al., 2023b),
panoptic segmentation (Xu et al., 2023), semantic correspondence (Tang et al., 2023; Zhang et al.,
2024; Luo et al., 2024; Hedlin et al., 2024), and image editing (Tumanyan et al., 2023; Hertz et al.,
2022). In most of these approaches, identifying the optimal denoising step and upsampling layer
is crucial for achieving high predictive performance. These approaches do not suggest fundamental
changes to model architectures or training methodologies, leaving the specific architectural com-
ponents and techniques for learning useful semantic representations unclear. ParamReL uses these
discoveries to construct efficient self-encoders.

5 EXPERIMENTS

We present two ParamReL variants operating in different parameter spaces: ParamReLd for discrete
input distributions (Section 5.2), and ParamReLc for continuous input distributions (Section 5.3), re-
spectively. We evaluate the representation learning capabilities of ParamReL in three reconstruction-
based tasks: latent interpolation, disentanglement, and time-varying conditional reconstruction. Ad-
ditionally, we evaluate the model for unconditional generation, where samples are generated only
from the decoder using a given prior.
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5.1 EVALUATION SETUP

We conduct a two-fold comparison to evaluate the performance of ParamReL variants. Firstly, we
compare our parameter-based models (ParamReLc and ParamReLd) with established sample-based
representation learning baselines, including AE and VAE-based models such as β-VAE (Higgins
et al., 2017), infoVAE (Zhao et al., 2019), and diffusion-based models such as DiffAE (Preechakul
et al., 2022) and InfoDiffusion (Wang et al., 2023). These models represent key advancements in
the field: β-VAE introduce disentanglement into VAE, infoVAE incorporates MMD for balancing
generation and representation, while DiffAE and InfoDiffusion explore the integration of AEs and
VAEs into diffusion models to learn encodable latents and disentangled representations, respectively.
Secondly, we compare the performance of ParamReLc and ParamReLd across various input distribu-
tions for continuous and discrete data, respectively. The discrete datasets include binarized versions
of MNIST (bMNIST) (Deng, 2012), FashionMNIST (bFashionMNIST) (Xiao et al., 2017), while
the continuous datasets include CelebA (Liu et al., 2015), CIFAR10 (Krizhevsky & Hinton, 2009),
and Shapes3D (Burgess & Kim, 2018)1. The detailed hyperparameter choices and experimental
configurations for each dataset are provided in Appendix C.3. This comparison allows for a detailed
examination of how different parameter space assumptions impact the representation learning of
discrete and continuous data.

5.2 SEMANTIC REPRESENTATION OF DISCRETE DATA BY PARAMRELD

Here, we measure the quality of the learned latent semantics z0 through the downstream classifi-
cation tasks. Since z0 locates at step 0, they should be general and transferable (Franceschi et al.,
2019). Various datasets by deep classifiers are assessed to ensure their universality. Specifically,
following the approach in Xiao & Bamler (2023), we train a classifier on labeled test sets for each
ParamReL model. We allocate 80% of the dataset for training a classifier and reserve the remain-
ing 20% for test purposes. The performance on the test set is evaluated based on AUROC. This
process is conducted in a 5-fold cross-validation manner, with the results reported as mean ± one
standard deviation. The results are shown in Figure 4 (a). Higher AUROC suggests that the learned
latent semantics z0 contain more information about data. In addition to assessing the representation
quality, we also compare the image reconstruction ability against baselines. From the FID values
in Figure 4 (a) and Figures 11, 12 in Appendix E.3, we can conclude that VAE-based models still
produce blurry reconstructions, while diffusion-based and parameter-based models can build near-
exact reconstructions. Refer to Figure 11 and Figure 12 in Appendix E.3 for the generated binary
images.

5.3 SEMANTIC REPRESENTATION OF CONTINUOUS DATA BY PARAMRELC

On continuous data, we evaluate ParamReLc for conditional generation, conditional reconstruction,
latent interpolation, and disentanglement.

High-level Representation Learning for Conditional Generation Figure 13 (a) in Appendix E.2
demonstrates that high-level semantic information is captured by the learned latent semantics
{zt}Tt=1 for image generation. This is illustrated by a set of latent-sample pairs < {zit}Tt=1,x

i,j
T >,

where {zit}Tt=1 are obtained by reverse-sampling from the i-th input image through the trained
ParamReL, and xi,jT is the j-th sample from N (0, I) corresponding to the i-th input image.
Concurrently, the low-level information, such as local attributes in images (e.g., Narrow Eyes,
Mouth Slightly Open, Blond Hair), are determined by xi,jT .

Time-varying Representation Learning for Conditional Reconstruction We design a new time-
varying reconstruction task to evaluate the effectiveness of the progressive latent semantics learned
by the self-encoder. A latent-sample pair < {zfixed

t }Tt=1,x
fixed
T > is first obtained by apply the

trained ParamReL’s reverse-sampling process on an image. Then, we use the latent semantics at
step t∗ to replace other steps’ ones and “reconstruct” the image as xt ∼ pO(xt|ψ(θt, zfixed

t∗ )),θt−1 =
h(θt,xt),∀t = T, . . . , 1. In that case, the attributes vary due to the semantics evolution encoded by
time-specific latent. Refer to Figure 4 (b), and Figure 13 (b) in Appendix E.2 for more explanation.

1For the discrete version, continuous data (k-bit images) can be discretized into 2k bins by dividing the data
range [−1, 1] into k intervals, each of length 2/k.
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Fixed ,  varying encoding

(b): Time-varying representation learning of ParamReL (a): Compar ison on discrete data by classification accuracy and generation per formance.

Figure 4: Quantitative representation learning comparison over generative models on discrete data
(a). ParamReL demonstrates competitive performance in capturing semantic information for classi-
fication, achieving approximately 0.84 AUROC for bFashionMNIST and 0.91 for bMNIST. Addi-
tionally, it shows robust generative capabilities, with FID values ranging from 0.5 to 0.6 for bMNIST
and around 5 for bFashionMNIST. Among the ParamReL-based models, ParamReLd with a cate-
gorical distribution is particularly effective in modelling discrete data distributions, yielding lower
FID values of 0.5 for bMNIST and 4.2 for bFashionMNIST. As shown in (b), the learned semantics
exhibit progressive, time-varying changes. By varying time encodes at 200, 300, 400 time steps,
more attributes will be influenced in the reconstruction stage: the Wavy hair, Brown hair,
Arched Eyebrows attributes in the first line, the Double Chin, Mustache, Goatee at-
tributes in the second line and the Young, High Cheekbones, Arched Eyebrows at-
tributes in the third line. Notations: [AUROC, FID]; [(•, bMNIST), (■, bFashionMNIST)]; [(−,
ParamReLd),(− · −, ParamReLc)].

Table 1: Comparison of representation learning algorithms on continuous data by disentanglement
performance (mean ± std) and classification. The quantitative results for each algorithm are averaged
over five trials. Notations: Modeling on data space D, parameter space P . Prior distributions:
Gaussian g , Categorical c, Delta d . ↑: higher better, ↓: lower better. Color: Top-1, Top-2.

Prior
on

Prior
type Methods CelebA Shapes3D CIFAR-10

T AD ↑ AT T RS ↑ FID ↓ AUROC ↑ DCI ↑ AUROC ↑ FID ↓ AUROC ↑

D

- AE 0.042 ±0.004 1.0 ±0.0 90.4±1.8 0.759 ±0.003 0.219 ±0.001 0.796±0.007 169.4±2.4 0.721±0.001
g VAE Kingma & Welling (2014) 0.000 ±0.000 0.0 ±0.0 94.3±2.8 0.770 ±0.002 0.276 ±0.001 0.799±0.002 177.2±3.2 0.743±0.002
g β-VAE Burgess et al. (2017) 0.088 ±0.051 1.6 ±0.8 99.8±2.4 0.699 ±0.001 0.281 ±0.001 0.801±0.001 183.3±3.1 0.769±0.003
g InfoVAE Zhao et al. (2019) 0.000 ±0.000 0.0 ±0.0 77.8±1.6 0.757 ±0.003 0.134 ±0.001 0.829±0.003 160.7±2.5 0.814±0.006
g DiffAE Preechakul et al. (2022) 0.155 ±0.010 2.0 ±0.0 22.7±2.1 0.799 ±0.002 0.196 ±0.001 0.899±0.001 32.1±1.1 0.859±0.002
g InfoDiffusion Wang et al. (2023) 0.299 ±0.006 3.0 ±0.0 23.8±1.6 0.848 ±0.001 0.342 ±0.002 0.882±0.001 32.4±1.8 0.886±0.004

P
c

ParamReL
(γ = 1, λ = 0.01) 0.261 ±0.01 5.0 ±0.0 22.6±1.2 0.846 ±0.009 0.477 ±0.002 0.901±0.007 31.8±1.1 0.892±0.004

d
ParamReL

(γ = 0.9, λ = 0.01) 0.302 ±0.005 4.0 ±0.0 22.1±1.6 0.850 ±0.006 0.567 ±0.005 0.902±0.001 31.2±1.1 0.901±0.001

d
ParamReL

(γ = 1, λ = 0.01) 0.368 ±0.005 3.0 ±0.0 21.6±1.1 0.865±0.004 0.485 ±0.009 0.931±0.001 31.1±1.1 0.911±0.002

Smooth Representation Learning for Latent Interpolation Latent space interpolation (Goodfel-
low et al., 2014; Higgins et al., 2017) is commonly used to validate the smoothness, continuity, and
semantic coherence of the learned latent semantics in generative models. Typically, two samples are
embedded into the latent space, and interpolating between the latent variables generates interpolated
representations. The reconstructed outputs produced by the sampling process reveal the semantic
richness of the latent space. Demonstration of the image interpolation is detailed in Appendix D.1.

As shown in Figure 14 in Appendix E.3, ParamReL achieves near-exact reconstruction, in contrast
to the downgraded performance of VAE variants such as (a) vanilla VAE, and (b) β-VAE. Compared
with diffusion models (c) DiffAE and (d) InfoDiffusion, ParamReL characterizes a smoother and
more consistent latent space with high-quality samples.

Disentanglement We perform latent traversals on the FFHQ and CelebA datasets to evaluate the
disentanglement properties of our trained ParamReL, as illustrated in Figure 5 and Figure 15 in
Appendix E.3. In this process, we modify one dimension of the learned latent semantics {zt}Tt=1
each step, and replace it with M evenly distributed numbers within a standardized range (e.g., −3
to +3), while keeping the other dimensions fixed. After decoding these adjusted latent semantics,
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(a) Mustache

(b) Brown_Hair

(c) Eyeglasses

Figure 5: Disentanglement of ParamReL on FFHQ-128. The interpretable traversal directions are
displayed by traversing the encodings ranging from [−3, 3].

we evaluate the generated samples for changes in specific attributes. Successful disentanglement
is verified when manipulating one single dimension alters only one distinguishable attribute, such
as age, while leaving all other attributes unchanged. As shown in Figure 5 and Figure 15 in the
Appendix, ParamReL effectively isolates and controls individual data attributes in both FFHQ and
CelebA. For example, on FFHQ, manipulating latent dimensions controls attributes like Mustache,
Brown Hair, and Eyeglasses, while other attributes remain constant. Similarly, on CelebA,
attributes such as Smiling, Pale Skin, and Big Nose are independently manipulated without
affecting others.

To provide a thorough and unbiased quantitative assessment of disentanglement, we utilize two met-
rics: 1) Disentanglement, Completeness, and Informativeness (DCI) (Eastwood & Williams, 2018),
which is a prediction-based indicator; and 2) Total AUROC Difference (TAD) (Yeats et al., 2022),
an intervention-based criterion. Additionally, we report the generation quality in Appendix E.3 and
conclude that ParamReL achieves near-exact reconstruction on CelebA (Figure 16 (a)), Shapes3D
(Figure 16 (b)), and CIFAR-10 (Figure 16 (c)). Both the qualitative latent traversal results and
the quantitative disentanglement metrics show that ParamReL effectively learns disentangled rep-
resentations, with visual traversals closely aligning with the attributes that the latent semantics are
intended to capture.

6 CONCLUSION AND LIMITATIONS

In this work, we introduce ParamReL, a novel unified parameter space representation learning
framework, as a unified strategy to handle continuous, discrete and even discretized data. Unlike
traditional encoder methods that map observations into static latent semantics, ParamReL employs a
self-encoder to derive progressively structured latent semantics from intermediate parameters at each
step of the generation process. This allows for more effective representation learning across different
data types. Our experiments on tasks including latent interpolation, disentanglement, time-varying
conditional reconstruction, and conditional generation validate the effectiveness of ParamReL. The
results demonstrate its superior ability to extract meaningful high-level semantics, leading to unified
representations and a clear semantic understanding of the underlying data.

While ParamReL shows promising results, our experiments reveal areas for potential expansion. (1)
The precision variables, which play a key role in the sampling process, could be further optimized to
reduce computational time and to improve efficiency. This was observed during the sampling stages
where slight inefficiencies in parameter updates are detected. (2) We noticed that employing a stan-
dard U-Net architecture without pre-training may limit the performance of ParamReL, particularly
in tasks involving complex data. Therefore, exploring the integration of a pre-trained U-Net model
into ParamReL could provide a significant boost in accuracy and representation quality. We will
investigate these in the future work.

9
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A PRELIMINARIES

A.1 BAYESIAN FLOW NETWORKS

In Graves et al. (2023), BFNs assume two types of distributions: a simple input distribution PI(·)
representing the initial belief about observations and an output distribution PO(·) simulating the
observation distribution. The parameters of input distribution are first updated through a Bayesian
inference scheme and then passed into a neural network ψ(·) to form the parameters of output dis-
tributions. The main objective of BFNs is to minimize the divergence between the ground-truth data
distribution and the output distribution, ensuring that the output distribution closely approximates
the ground-truth data distribution.

Following the notations in diffusion models, we denote x0 as the observations. There are T reverse
steps in BFNs which gradually reveals the information of x0 through {xT ,xT−1, . . . ,x1} to the
input distribution2. At each step t, xt is first noised through a sender distribution pS(x̂t |xt;αt),
with αt denoting the precision. Combined with input distribution pI(xt;θt+1), the posterior dis-
tribution of xt is obtained as p(xt;h(θt+1, x̂t, αt)) ∝ pI(xt;θt+1)pS(x̂t |xt;αt), where θt =
h(θt+1, x̂t, αt) is the Bayesian update function. By feeding this intermediate (posterior) param-
eter θt into a neural network ψ(·), xt’s output distribution pO(·) is parameterized as pO(xt;ψ(θt)).
Finally, a receiver distribution pR(·) is defined as the expectation of the sender distribution with
respect to the output distribution, i.e., pR(x̂t;ψ(θt), αt) := EpO(xt;ψ(θt))[pS(x̂t |xt;αt)]. See Fig-
ure 6 (a) for a visualization of the relationships between these distributions.

In BFNs, the joint distribution over the observation x0 and the intermediates {xt}t is defined as
p(x0, {xt}t|−) := pO(x0;ψ(θ0))

∏T
t=1 pR(x̂t;ψ(θt), αt). This intractable joint distribution can

be approximated under the variational inference framework as follows:

log p(x0) ≥ EpF(θ1:T |−)pS({xt}t|−)

[
log

pO(x0;ψ(θ0))
∏T
t=1 pR(x̂t;ψ(θt), αt)∏T

t=1 pS(x̂t |xt;αt)

]

= −
T∑
t=1

EpF (θt|−)KL [pS (x̂t |x0;αT :t) ∥ pR (x̂t;ψ(θt), αt)]︸ ︷︷ ︸
LR

t (x)

+EpF (θ0|−) ln pO(x0;ψ(θ0))︸ ︷︷ ︸
LD(x)

,

(4)

where pF(θt|−) is the distribution of θt (see Appendix A.2 for a detailed calculation). Maximizing
Eq. 4 equals minimizing the discrepancy LR

t (x) between the sender and receiver distributions and
penalizing Distortion LD(x) to maximize the likelihood distribution over data.

Table 2: Examples of detailed distribution formats in BFNs. θt+1 = {µt+1, ρ
−1
t+1}). cate: categori-

cal distribution.
Data type pI(xt|θt+1) pS(x̂t|xt;αt) θt = h(θt+1, x̂t, αt)

Continuous data N (xt;µt+1, ρ
−1
t+1) N (x̂t;x, α

−1
t ) µt =

αtx̂t+ρt+1µt+1

αt+ρt+1

Discrete data Cat(xt; 1
K · 1) N (x̂t;αtKext

− αt, αtKI) θt =
ex̂tθt+1∑

k e
xt−1,kθt+1,k

Data type pO(xt|θt) pR(x̂t|ψ(θt), αt)
Continuous data δ(xt − ψ(θt)) N (x̂t;ψ(θt), α

−1
t )

Discrete data Cat(softmax(ψ(θt)))
∑
k pO(k;ψ(θt))N (x̂t;αtKek − αt, αtKI)

2It is noted that the index t is used reversely in Graves et al. (2023). We make such changes to be consistent
with the diffusion model settings Ho et al. (2020); Song et al. (2021).
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(a) Bayesian network of BFNs (b) Bayesian network of ParamReL

Figure 6: The relationships between distributions in BFNs (a) and ParamReL (b).

Self-Encoder

...

...

t=T t=1 t=0

...

Conditional
Decoder

Bayesian Update Function                    generate the (t-1)-step parameters         based on the t-step parameters       and  intermediate latents 

  Self -Encoder                           encode t-step        and t-step parameters        to generate t-step low-dimensional latent semantics      

  Conditional Decoder                                 decoding  t-step parameters      and low-dimensional latent semantics         to generate t-step  intermediate latents 

Figure 7: The reverse-sampling process in ParamReL.

A.2 BAYESIAN FLOW DISTRIBUTION

Bayesian flow distribution pF(· | x; t) is the marginal distribution over input parameters at time t,
given prior distribution, accuracy schedule α and Bayesian update distribution pU (· | θ,x;α), as
follows:

pF(θ | x; t) = pU (θ | θ0,x;β(t)) . (5)

A.3 GENERATIVE LATENT VARIABLE MODELS FOR REPRESENTATION LEARNING

Latent Variable Models (LVMs) Everett (2013) which aim at learning the joint distribution p(x, z)
over data x and latent variables z present efficient ways for uncovering hidden semantics. In LVMs,
the joint distribution p(x, z) is usually decomposed as p(x, z) = p(x | z)p(z), where p(z) represents
prior knowledge for inference Tschannen et al. (2018), thus facilitating learning the conditional
distribution p(x | z). Among LVMs, Variational AutoEncoders (VAEs) Kingma & Welling (2014)
and diffusion models Ho et al. (2020); Song et al. (2021) are two representative approaches Kwok
& Adams (2012).

In VAEs, latent variables z is obtained through an encoder network qϕ(z |x), whereas observations
are reconstructed through a decoder network pθ(x | z), with ϕ and θ being the encoder and decoder
parameters.

The dimensions of z are usually much smaller than those of x, denoted as |z| ≪ |x|, such that
redundant information is effectively removed and the most semantically meaningful factors are ab-
stracted Louizos et al. (2016). VAEs are popular for downstream tasks like disentanglement Higgins
et al. (2017); Yang et al. (2022); Hwang et al. (2023); Esmaeili et al. (2023), classification Takahashi
et al. (2022); Tonekaboni et al. (2022), and clustering Jiang et al. (2016); Xu et al. (2021).

On the other hand, diffusion models Ho et al. (2020); Song et al. (2021) first use T diffusion steps
to transform observation x into a white noise xT and then use T denoising steps to reconstruct the
observation. Diffusion models have obtained impressive performance in the fidelity and diversity
of generation tasks. However, they might be unable to obtain meaningful latent semantics since the
dimensions of x and xT are the same as |x| = |xT |. Preechakul et al. (2022); Wang et al. (2023)
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have attempted to integrate a decodable auxiliary variable z to enable diffusion models to obtain
low-dimensional latent semantics. However, they have not overcome issues like the slow training
speed inherent to the diffusion and reverse processes.

A.4 ILLUSTRATION OF PARAMETER SPACE OPTIMIZATION

Figure 8 illustrates the optimal data distribution learned in the parameter space. The plot presents
stochastic parameter trajectories for the input distribution mean (indicated by white lines) overlaid
on a Bayesian flow distribution logarithmic heatmap.

x0
0

0 0.2 0.4 0.6 0.8 1
Time (t)

Figure 8: This figure illustrates optimization in the parameter space after t iterations.

B PROOFS

B.1 DERIVATION OF ELBO FOR PARAMREL

We derive the ELBO of ParamReL defined in Eq. (3).

log p(x0)

= log

∫
{zt}t

∫
{xt}t

p (x0, {xt}t, {zt}t |θ0, α) d{zt}td{xt}t

= log

∫
{θt}t

∫
{zt}t

∫
{xt}t

p({θt}t|−)pO(x0;ψ(θ0, z0))

1∏
t=T

p(zt)EpO(xt;ψ(θt,zt))[pS(xt−1 |xt;αt)]

d{zt}td{xt}td{θt}t

= log

∫
{zt}t

∫
{xt}t

∫
{θt}t

p({θt}t|−)
pO(x0;ψ(θ0, z0))

∏1
t=T p(zt)EpO(xt;ψ(θt,zt))[pS(xt−1 |xt;αt)]∏T

t=1 pS(xt−1 |xt;αt)qϕ(zt|θt, t)

·
T∏
t=1

pS(xt−1 |xt;αt)qϕ(zt|θt, t)d{zt}td{xt}td{θt}t

≥ E∏T
t=1 pS(xt−1 |xt;αt)qϕ(zt|θt,t)p(θt|−)

[
log

pO(x0;ψ(θ0, z0))
∏1
t=T p(zt)EpO(xt;ψ(θt,zt))[pS(xt−1 |xt;αt)]∏T

t=1 pS(xt−1 |xt;αt)qϕ(zt|θt, t)

]

=

T∑
t=1

EpF (θt|−)Eqϕ(zt)

{
EpS(xt−1 |x0;αT :t)

[
log

pS (xt−1 |x0;αT :t)

pR (xt−1;ψ(θt, zt), αt)

]
−Eqϕ(zt | θt)

[
log

qϕ (zt |θt)
p(zt)

]}
+ Eqϕ(z0,θ0) [ln pO(x0;ψ(θ0, z0))]

= −
T∑
t=1

EpF (θt|−)Eqϕ(zt) {KL [pS (xt−1 |x0;αT :t) ∥ pR (xt−1;ψ(θt, zt), αt)]

−KL [qϕ (zt |θt) ∥ p(zt)]}+ Eqϕ(z0,θ0) [ln pO(x0;ψ(θ0, z0))] := LParamReL (6)
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B.2 MUTUAL INFORMATION LEARNING

LParamReL+ = −
T∑
t=1

EpF(θt|−)Eqϕ(zt) {KL [pS (xt−1 |x0;αT :t) ∥ pR (xt−1;ψ(θt, zt), αt)]

−1− γ

T
KL [qϕ (zt |θt) ∥ p(z)]− γ + λ− 1

T
KL [qϕ (zt) ∥ p(z)]

}
+Eqϕ(z0,θ0) [ln pO(x0;ψ(θ0, z0))] .

(7)

Unlike the rest of the terms that can be optimized directly using reparameterization tricks, the TC
term cannot be directly optimized due to intractable marginal distribution qϕ(zt). Here, we fol-
low the guidance in Zhao et al. (2019) to replace the TC term with any strict divergence D,
where D (qϕ(z)∥p(z)) = 0 iff qϕ(z) = p(z). We implement the Maximum-Mean Discrepancy
(MMD) Zhao et al. (2019) from the divergence family. MMD is a statistical measure that quanti-
fies the difference between two probability distributions by comparing their mean embeddings in a
high-dimensional feature space. By defining the kernel function κ(·, ·), DMMD is denoted as:

DMMD (q(·)∥p(·)) = Ep(z),p(z′) [κ (z, z
′)]− 2Eq(z),p(z′) [κ (z, z

′)] + Eq(z),q(z′) [κ (z, z
′)] . (8)

C TECHNICAL DETAILS AND EXPERIMENTAL SETUP

C.1 ENCODER ARCHITECTURE

In our proposed encoder architecture, the self-encoder qϕ(zt|θt, t) also conditions on step (t +
1)’s upsampling layers {ut+1,l}Ll=1, where L is the number of layers in the U-Net architec-
ture. For the l-th upsampling layer ut+1,l at step t + 1, we upsample it to the size of xt,
update by the Bayesian update function, and pass through a bottleneck layer Bl(·) (He et al.,
2016) to the low-dimensional size. As a result, the self-encoder is defined as qϕ(zt|θt, t) =
N

(
zt; gµ(θt, {ut+1,l}Ll=1, t), gσ(θt, {ut+1,l}Ll=1, t)

2
)
, where gµ(·), gσ(·) use the same structure as:

gµ(θt, {ut+1,l}Ll=1, t), gσ(θt, {ut+1,l}Ll=1, t) :=

L∑
l=0

ωl ·Bl(h(xt,ut+1,l)) + ωL+1 ·BL+1(θt)

where ωl is the mixing weight of the l-th layer.

C.2 BFN ARCHITECTURE

Similar to the diffusion-based representation learning model, we update the U-Net architecture based
on Residual Blocks and Attention Modules. However, unlike previous approaches Ho et al. (2020);
Song et al. (2021); Preechakul et al. (2022); Wang et al. (2023), we use shallower layers in the upper
and down modules while incorporating an additional attention mechanism in the bottleneck module
to achieve significant representations. Figure 9 illustrates the specific structural differences.

C.3 HYPERPARAMETERS

Table 3 presents the hyperparameter settings for training ParamReL. Different bin values are pro-
vided for various continuous datasets. All models are trained for 50 epochs. ”Channel mult” denotes
the channel shapes in each ResNet block within the U-Net architecture.

D EXPERIMENT DETAILS

D.1 INTERPOLATION

The latent space interpolation can be described as follows. Firstly, we noise source images to gen-
erate latent pairs by sender distribution, < x1

1,x
2
1 >, where x1

1 ∼ q(· | x1
N ) and x2

1 ∼ q(· | x2
N ).
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(a) InfoDiffusion (b) ParamReL

Figure 9: U-Net comparisons of InfoDiffusion (a) and ParamReL (b). We apply the Attention
module in the bottleneck layer, shallower than the InfoDiffusion’s U-Net.

Table 3: Hyperparameters for training Bayesian Flow Networks, U-Net architecture, training pro-
tocols, and devices. The training configuration of ParamReL is based on Preechakul et al. (2022);
Dhariwal & Nichol (2021).

Hyperparameter CelebA Shapes3D CIFAR-10 FFHQ

Encoder

Encoder base channels 64 64 64 128
Encoder attention resolution [16] [16] [16] [16]
Encoder channel multipliers [1,2,4,8,8] [1,1,2,3,4,4] [1,1,2,3,4,4] [1,1,2,3,4,4]
Latent code z dimension 512 512 512 512

Decoder

Base channels 64 64 64 128
Channel multipliers [1,2,4,8] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4]
Attention resolution [16] [16] [16] [16]
Images trained 130M 130M 130M 130M
Batch size 128 128 128 128
Learning rate 1e-4)
Optimizer Adam (no weight decay)
EMA rate 0.9999
Training T 1000
Diffusion loss MSE with noise prediction ϵ
Diffusion var. Not important for DDIM

Device GPU H100 H100 H100 H100

Then, we implement two methods from Shoemake (1985) to generate four interpolated latent pairs
x̄1:4, i.e., linear interpolation, and spherical interpolation:

x̄i = (1− λ)x1
0 + λx2

0,

x̄i =
sin((1− α)θ)

sin(θ)
x1
0 +

sin(αθ)

sin(θ)
x1
0,

(9)

where λ is the scale coefficient, α ∈ [0, 1] denotes the interpolation steps, and θ =

arccos

(
(x1

0)
⊤
x2
0

∥x1
0∥∥x2

0∥

)
is the angle between x1

0 and x2
0.
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Table 4: Comparison of representation learning algorithms on continuous data by disentanglement
performance (mean ± std) and classification. The quantitative results for each algorithm averaged
over five trials. (Modeling on data space D, parameter space P; Prior distribution specify: Gaussian
g , Categorical c, Delta d ; ↑ higher is better, ↓ lower is better; [Top-1, Top-2, Top-3]).

Prior
on

Prior
type Methods CelebA 3DShapes CIFAR-10

T AD ↑ AT T RS ↑ FID ↓ AUROC ↑ DCI ↑ AUROC ↑ FID ↓ AUROC ↑

D

- AE 0.042 ±0.004 1.0 ±0.0 90.4±1.8 0.759 ±0.003 0.219 ±0.001 0.796±0.007 169.4±2.4 0.721±0.001
g VAE Kingma & Welling (2014) 0.000 ±0.000 0.0 ±0.0 94.3±2.8 0.770 ±0.002 0.276 ±0.001 0.799±0.002 177.2±3.2 0.743±0.002
g β-VAE Burgess et al. (2017) 0.088 ±0.051 1.6 ±0.8 99.8±2.4 0.699 ±0.001 0.281 ±0.001 0.801±0.001 183.3±3.1 0.769±0.003
g InfoVAE Zhao et al. (2019) 0.000 ±0.000 0.0 ±0.0 77.8±1.6 0.757 ±0.003 0.134 ±0.001 0.829±0.003 160.7±2.5 0.814±0.006
g DiffAE Preechakul et al. (2022) 0.155 ±0.010 2.0 ±0.0 22.7±2.1 0.799 ±0.002 0.196 ±0.001 0.899±0.001 32.1±1.1 0.859±0.002
g InfoDiffusion Wang et al. (2023) 0.299 ±0.006 3.0 ±0.0 23.8±1.6 0.848 ±0.001 0.342 ±0.002 0.882±0.001 32.4±1.8 0.886±0.004

P

c
ParamReL

(γ = 0.9, λ = 0.1) 0.221±0.032 3.0 ±0.0 23.8±1.7 0.841 ±0.006 0.453 ±0.002 0.871±0.007 33.6±2.3 0.857±0.005

c
ParamReL

(γ = 0.9, λ = 0.01) 0.286 ±0.001 4.0 ±0.0 24.7±1.3 0.848 ±0.002 0.477 ±0.002 0.892±0.006 33.2±0.6 0.871±0.002

c
ParamReL

(γ = 1, λ = 0.1) 0.256 ±0.008 3.0 ±0.0 22.5±1.2 0.839 ±0.003 0.417 ±0.002 0.891±0.001 31.9±1.1 0.868±0.003

c
ParamReL

(γ = 1, λ = 0.01) 0.261 ±0.01 5.0 ±0.0 22.6±1.2 0.846 ±0.009 0.477 ±0.002 0.901±0.007 31.8±1.1 0.892±0.004

d
ParamReL

(γ = 0.9, λ = 0.1) 0.299 ±0.005 3.0 ±0.0 24.1±1.1 0.844 ±0.012 0.482 ±0.001 0.891±0.002 34.7±0.9 0.882±0.005

d
ParamReL

(γ = 0.9, λ = 0.01) 0.302 ±0.005 4.0 ±0.0 22.1±1.6 0.850 ±0.116 0.567 ±0.005 0.902±0.001 31.2±1.1 0.901±0.001

d
ParamReL

(γ = 1, λ = 0.1) 0.287 ±0.005 3.0 ±0.0 23.6±1.7 0.821 ±0.006 0.441 ±0.008 0.887±0.002 32.8±2.1 0.877±0.002

d
ParamReL

(γ = 1, λ = 0.01) 0.368 ±0.005 3.0 ±0.0 21.6±1.1 0.865±0.004 0.485 ±0.009 0.931±0.001 31.1±1.1 0.911±0.002

E ADDITIOANL RESULTS

E.1 SENSITIVITY ANALYSIS

The coefficient in the Eq. 7 will regulate the information flow under the variational bottleneck guid-
ance Burgess et al. (2017); Shao et al. (2020); Wu et al. (2024), resulting in the tradeoff between
generation and representation learning.

Figure 10 depicts the generation and representation tradeoff in discrete datasets under the different
coefficient sets (γ = {0.9, 1}, λ = {0.01, 0.1}). When disentanglement pressure is applied (), the
AUROC increases.

Table 4 depicts the generation and representation tradeoff in continous datasets under the different
coefficient sets (γ = {0.9, 1}, γ = {0.1, 0.01}). ParamReL consistently scores highest on average,
with moderate variance.

Figure 10: Effect of γ, and λ by different representation learning metrics over ParamReLd
and ParamReLc. Notations: [AUROC, FID]; [(•, bMNIST), (■, bFashionMNIST)]; [(−,
ParamReLd),(− · −, ParamReLc)].

E.2 LOW RESOLUTION REPRESENTATION LEARNING

We illustrate the representation learning ability in CelebA for high-level representation learning in
Figure 13 (a), time-varying representation learning in Figure 13 (b), latent interpolation in Figure 14
and disentanglement in Figure 15.
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E.3 UNCONDITIONAL GENERATION

Figure 12 illustrates the unconditional generation quality on bMNIST. Images sampled from VAE-
based model are blurry, as shown in Figure 12 (b). We implement two sampling strategies in the
Diffusion-based model Wang et al. (2023), and both can only sample grey-scale images. Figure
12 (c) is sampled from the DDIM sampler, and Figure 12 (d) is sampled from a two-phased sam-
pling procedure: form timesteps T to T/2, denoise and sample using a pre-trained vanilla denoising
diffusion model. For timesteps ranging from T/2 to 0, proceed with sampling utilizing the InfoDif-
fusion model. Figure 12 (e) is images generated from our ParamReLc model. We can conclude that
ParamReL can be sampled from the discrete distribution where the image value is binarized.

(a) : Generated samples of ParamReL on binaryMNIST (b) : Generated samples of ParamReL on binaryFashionMNIST

Figure 11: Samples reconstructed from our trained ParamReL on dataset Binary-MNIST.

(a) Binary-Mnist (b) VAE (c) infoDiffusion (e) ParamReL(d) infoDiffusion(twoStage)

Figure 12: Samples generated from our trained ParamReL.
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Fixed ,  varying encoding

Image Reconstruction(d,e,f) by time varying encoding  and fixed  

Input

Image Generation (a,b,c) by stochastic       and deterministic encoding

(b)

Fixed varyingencoding

(a)

(c)

(d)

(e)

(f)

Figure 13: The left panel (a-b) shows high-level latent semantic captured by zsem from ParamReL’s
encoders. By fixing zsem, the global characters of the images are invariant. By varying the stochastic
xT , the local attributes in the corresponding generated images may vary, such as the Narrow Eyes
attribute in (a), the Blond Hair attribute in (b), and the Mouth Slightly Open attribute in
(c). The right panel (d-f) illustrates the time-varying changes that ParamReL’s progressive encodes
interfaced. By varying time encodes at 100, 200, 300 time steps, more attributes will be influenced
in the reconstruction stage: the Big Lips, Pointy Nose attributes in (d), the Blond Hair,
Bald attributes in (e) and the Wavy Hair, High Cheekbones attributes in (f).

(a) VAE

(c) DiffusionAE

(d) InfoDiffusion

(e) ParamReL

(b) beta-VAE

ImageBImageA

Sample Based Generative Models

Parameter Space Based Generative Model

Figure 14: Comparisons of latent space interpolation among sample-based models and parameter-
based models on dataset CelebA. Only our ParamReL model (e) can learn a continuous, smooth
latent space while ensuring near-exact image reconstruction. Specifically, while sample-based gen-
erative models can learn a continuous but unsmooth latent space, this leads to incomplete recon-
structions. For example, in (a-d), the attribute of eyeglasses is frequently omitted. Moreover, VAEs
(a,b) tend to produce blurry images. Additionally, it is observable that sample-based models often
compromise reconstruction in favour of representation learning, as evidenced by the failure of dif-
fusion model variants (c-d) to accurately reconstruct background characters in imageB.
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(a) Smiling

(b) Pale Skin

(c) Big Nose

- +

Figure 15: Disentanglement of ParamReL on CelebA. The interpretable traversal directions are
displayed by traversing the encodings ranging from [−3, 3].

(a) : CelebA (b) : 3DShapes (c ):CIFAR-10

Figure 16: Generated samples trained ParamReL on CelebA (a), Shapes3D (b), CIFAR-10 (c).
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