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ABSTRACT

In this paper we introduce SynaptoGen, a novel framework that aims to bridge
the gap between genetic manipulations and neuronal network behavior by simu-
lating synaptogenesis and guiding the development of neuronal networks capable
of solving predetermined computational tasks. Drawing inspiration from recent
advancements in the field, we propose SynaptoGen as a bio-plausible approach
to modeling synaptogenesis through differentiable functions. To validate Synap-
toGen, we conduct a preliminary experiment using reinforcement learning as a
benchmark learning framework, demonstrating its effectiveness in generating neu-
ronal networks capable of solving the OpenAI Gym’s Cart Pole task, compared
to carefully designed baselines. The results highlight the potential of Synapto-
Gen to inspire further advancements in neuroscience and computational model-
ing, while also acknowledging the need for incorporating more realistic genetic
rules and synaptic conductances in future research. Overall, SynaptoGen repre-
sents a promising avenue for exploring the intersection of genetics, neuroscience,
and artificial intelligence.

1 INTRODUCTION

Let’s imagine that, during brain development, h1. we are able to manipulate, before synapses are
formed, gene expression profiles of single neurons. And let’s imagine that h2. we know how to act
on these expression profiles in such a way as to guide synaptogenesis toward a specific neuronal
network topology. Maybe, h3. we are also able to obtain the optimal computational graph, ex-
pressed as a composition of functions that represent the behaviour of neurons, required to solve a
task of interest. Small living organisms, or organoids (Bhaduri et al., 2020), could be, in principle,
genetically programmed to fully develop with neuronal networks capable of solving pre-specified
tasks. Such technology would lead to impressive applications – e.g., extreme low-power computing,
micro-devices for the control of biological systems or therapies for disorders which are currently
intractable. To date, hypothesis h1. seems to be verified (Nishikawa et al., 2014) while for h3. we
can partially rely on spiking or non-spiking artificial neural networks and optimization techniques
(Kingma & Ba, 2015; Graves, 2014).

In this work, we take a step toward the realization of the joint technology conceptualized in h2.
and h3. by proposing SynaptoGen1, a model that links, by means of differentiable functions, vector
representations of gene expression profiles and genetic rules (i.e., interaction probabilities of protein
pairs) with the average number of synaptic connections between pairs of neurons and their synap-
tic conductances. We substantiate our work through theoretical development which hinge on novel
propositions and related mathematical proofs. SynaptoGen is compatible with backpropagation and
can be inserted in learning frameworks where optimization is performed through gradient descent,
enabling management of network sizes and task complexities beyond the capabilities of other opti-
mization techniques. Finally, SynaptoGen is designed with flexibility in mind, allowing practitioners
to choose which biological quantities to optimize (e.g., genetic rules, expression profiles or both).

1https://github.com/BoCtrl-C
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Related Work. The resurgence of interest in organoid production for computational purposes gained
momentum in 2022 with the unveiling of DishBrain (Kagan et al., 2022) by Cortical Labs. Dish-
Brain is a system that integrates in-vitro neural networks derived from human or rodent sources with
a simulated game world – “Pong” – through a high-density multielectrode array. The training ap-
proach employed by the DishBrain’s authors follows the free energy principle, positing that neural
networks learn to minimize the unpredictability of their sensory input by updating their beliefs and
interacting with the environment. While the neuron cultures in DishBrain demonstrated statistically
superior performance metrics in the game compared to controls defined by the authors, it remains
challenging to assert that the neuronal networks fully mastered the assigned task.

In contrast to DishBrain, our research endeavors to “train” networks of neurons by influencing
synaptogenesis through genetic manipulations at the individual neuron level. The foundational prin-
ciples of our work trace back to (Barabási & Czégel, 2021; Barabási & Barabási, 2020), which
introduce methods for constructing networks based on genetic encodings inspired by the wiring
rules of the brain. These methods were further elaborated in the Connectome Model (CM) (Kovács
et al., 2020), where the authors decomposed the adjacency matrix of a connectome into the prod-
uct of three matrices representing specific genetic quantities. Another development was presented
in (Barabási et al., 2023), where the CM’s matrix entries were treated as learnable parameters, re-
sulting in the weight matrix of a Multilayer Perceptron (MLP) within the context of training neural
networks. While this methodology has proven effective in producing parameter-efficient neural net-
works, it maintains a notable distance from the biological intricacies of real neuronal networks. A
distinct generalization of the CM has also been proposed for the computational inference of synaptic
polarities (Harris et al., 2022).

Similarly, our work draws inspiration from the CM but is geared towards a more bio-plausible com-
putational modeling of synaptogenesis, with the novel elements extensively discussed in Section
2.

Figure 1: Overview of the SynaptoGen framework and related validation. Left: decomposition
of the weighted connectome (W ) introduced with the model’s core equation. Right: validation
performed on the Cart Pole reinforcement learning (RL) environment.

2 METHODS

In 2020, Kovács et al. proposed the CM, a novel strategy to link a brain’s connectome (B) to the
expression patterns of individual neurons (X) and existing biological mechanisms – or genetic rules
– O:

B = XOXT (1)

In the CM’s first interpretation, each row of X referred to a specific neuron while the i-th entry of the
row described the binary expression (1 – “expressed” – or 0 – “not expressed”) of gene i, one of the
genes involved in synapse formation. Matrix O, instead, represented interaction compatibility for
proteins translated from all gene pairs. Hence, X ∈ {0, 1}N×G and O ∈ {0, 1}G×G were defined
as binary matrices while the entries of B, of shape N ×N , belonged to Z+; with N and G denoting
the number of neurons and genes, respectively. When G ≪ N however, a very common scenario in
nature (Koulakov et al., 2022), not all possible connectomes can be decomposed through equation 1.
For this reason, the authors of the CM went on to relaxing the genetic rules matrix to O ∈ [0, 1]G×G,
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interpreting its entries as probabilities, and relying on the following approximation:

B ≃ XOXT , (2)

O = argmin
O′

||B −XO′XT ||2 (3)

where, in this context, || • || is intended as the Frobenius norm.

In this paper, we formulate a more general alternative to this framework. We build a model which
takes into account synaptic conductances. While we start from equation 1, we design two novel
interpretations tightly linked to the formalism with which the quantities of interest (i.e., the num-
ber of synapses between neurons and their conductances) have been represented. Our theoretical
framework is as follows.

Let the number of synaptic connections between two neurons be represented by the following ran-
dom variable:

B =
∑
i,j

Bij (4)

where Bij is a binomial random variable that expresses the contribution of the (i, j) gene pair to the
total synaptic count:

Bij = Bin(nij , pij) (5)

And let x ∈ R+G and y ∈ R+G be vector representations of gene expression in the pre- and
post-synaptic neurons, respectively.

Proposition 1. If the product between the i-th entry of x and the j-th entry of y denotes the number
of independent experiments that characterizes Bij – i.e., xiyj = nij – and entry Oij corresponds to
probability pij , then the expected number of synapses between two neurons can be calculated as:

E[B] = xTOy (6)

Proof. From probability theory,
E[Bij ] = nijpij

and due to the linearity of expectation we have

E[B] =
∑
i,j

nijpij

On the other hand,

xTOy = xT [. . . ,
∑
j

yjOij , . . . ]
T

=
∑
i

xi

∑
j

yjOij

=
∑
i,j

xiyjOij

Recalling that xiyj = nij and Oij = pij , the proof is concluded.

In different terms, if the hypotheses of Proposition 1 are verified, gene expression in a pair of genes
tells us how many attempts we can make to place a synapse between a pre- and a post-synaptic
neuron; the genetic rule, instead, describes the probability of success, conditioned on the interaction
between the proteins translated from the considered genes, of each attempt. It is worth noting that
equation 6 represents the average number of links between two specific nodes of the connectome.
Keeping in mind that genetic rules are shared across neurons, the equation can easily be generalized
to the whole connectome:

B̄ = E[B] = XOXT (7)

where X has been obtained by stacking the expression profiles of all neurons (e.g., XT =
[. . . ,x, . . . ,y, . . . ]).
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In order to model synaptic conductances, instead, a slightly more complex formalism is required.
We restrict ourselves to chemical synapses, which are the result of the interplay between neuro-
transmitters released by pre-synaptic neurons and receptors in post-synaptic neurons. According to
recent studies, a chemical synapse can also have an excitatory or inhibitory effect depending on the
nature of the receptor that receives a specific neurotransmitter (Fenyves et al., 2020; Harris et al.,
2022). The way in which synapses work in our framework is described by the following equation:

Iv =
∑
u

GuvVu (8)

where Iv is the current injected into post-synaptic neuron v while Vu is an input voltage from pre-
synaptic neuron u; Guv , is the equivalent conductance that takes care of all the synapses formed
between u and v. To model the possibility of having the mentioned synapses characterized by
different neurotransmitter-receptor pairs, we rely again on random variables as follows.

Let T be a multinomial random variable representing the process of randomly picking, from u, a
synaptic vesicle filled with a specific neurotransmitter. And let R be a multinomial random vari-
able representing the process of randomly selecting a specific receptor from the membrane of v.
We define vectors q ∈ [0, 1]L and r ∈ [0, 1]M as the probability distributions associated to T and
R; where L denotes the total number of neurotransmitters while M the number of receptors. We
also define A ∈ {−1, 0, 1}L×M as the polarity matrix (for further details, refer to Appendix A)
and K ∈ R+L×M as the conductance matrix. In detail, entry Aij tells us the polarity of synapses
derived from the interaction of the i-th neurotransmitter with the j-th receptor (Aij = 0 if the con-
sidered neurotransmitter and receptor are not compatible) while Kij stores its linked conductance.
We finally set G = f(T ,R), with f(i, j) = AijKij . In other words, G represents the “signed”
conductance of a synapse randomly selected from the ones which connect neurons u and v.
Proposition 2. If T and R are independent (i.e., the distribution of receptors in the post-synaptic
neuron does not depend on the neurotransmitters synthesized by the pre-synaptic neuron), the ex-
pected “signed” conductance of a randomly picked synapse can be calculated as:

E[G] = qT (A⊙K)r (9)

Proof. By expanding the matrix multiplications in equation 9, we have:

qT (A⊙K)r = qT [. . . ,
∑
j

rjAijKij , . . . ]
T

=
∑
i

qi
∑
j

rjAijKij

=
∑
i,j

qirjAijKij

Thanks to the independence hypothesis:

P[T = i,R = j] = qirj

where P[•] stands for “probability of”. Hence,

qT (A⊙K)r =
∑
i,j

P[T = i,R = j]f(i, j)

that corresponds exactly to the definition of E[G].

As for equation 7, also equation 9 can be generalized by stacking the neurotransmitter distributions
of all pre-synaptic neurons in Q = [. . . , q, . . . ]T and the receptor distributions of post-synaptic
neurons in R = [. . . , r, . . . ]T :

Ḡ = E[G] = Q(A⊙K)RT (10)

As a next step, equation 7 and equation 10 can be inserted into the core equation of our model, which
follows:

W̄ = B̄ ⊙ Ḡ (11)

= (XOXT )⊙ (Q(A⊙K)RT )
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Summarizing, through equation 11 we are able to express the average equivalent conductance be-
tween all pairs of neurons as a differentiable function of their gene expression profiles and distri-
butions of synthesized neurotransmitters and receptors, which, in turn, depend on gene expression.
Furthermore, thanks to the adopted formalism, synaptogenesis can be simulated by sampling from
the random variables introduced. For instance, the simplest approximation of synaptogenesis can be
obtained as follows:

W = B̃ ⊙ Ḡ (12)
with

B̃ ∼ B =

[
. . . . . . . . .
. . . Buv . . .
. . . . . . . . .

]
(13)

where ∼ stands for “sampled from”.

3 EXPERIMENTS

To validate the proposed framework and assess its applicability in real-world scenarios, we con-
ducted a preliminary experiment that involved simulating synaptogenesis in small populations of
neurons (Figure 1). In simple terms, we simulated the formation of synapses in in-vitro neuron
populations where genes and gene expression were manipulated at the level of individual neurons.
These manipulations followed the genetic rules and expression profiles optimized by our model
with the aim of enabling the resulting fully-developed neuronal networks to perform effectively in a
pre-specified task.

Our approach began with a simplified setup, where a neuronal population comprised spatially-
separated layers. We assumed that neurons in one layer could only attempt to form synapses with
neurons in adjacent layers. This restriction allowed us to focus on multipartite network topologies
and implement SynaptoGen as a customized MLP. The MLP’s weight matrices have been indeed
decomposed according to equation 11, with genetic rules shared across layers.

Regarding the task for our proof-of-concept experiments, we chose reinforcement learning (RL) as a
bio-plausible benchmark. Our goal was to create a virtual neural agent capable of solving the control
task defined by the CartPole-v1 environment from the OpenAI Gym library (Brockman et al.,
2016). In this environment, a pole is attached to a cart, which moves along a frictionless track. The
objective is to balance the pole by applying forces to the left and right on the cart.

Initially, we trained2 SynaptoGen (128 genes and 3 neurotransmitters), with a neuronal population
size of 4 + 128 + 2, on the Cart Pole environment (observation of dimension 4, 2 actions) using
the DQN algorithm (Mnih et al., 2015). The training provided the genetic rules, gene expression
profiles, neurotransmitter and receptor distributions, and synaptic conductances that enabled the
agent to successfully solve the task with a mean reward of 500. Notably, this agent is built on the
average equivalent conductances introduced in equation 10, and can be interpreted as an average
agent which reflects the effects of the underlying genetically-derived quantities.

Hence, we sampled 10 neural networks from the trained SynaptoGen model, simulating the develop-
ment, based on the computed synaptogenesis rules, of multiple populations of in-vitro neurons into
neuronal networks. We then measured their performance and compared the obtained metrics with
those from two carefully designed baselines. The first baseline (baseline 1) involved randomly
initializing3 all matrices of SynaptoGen, akin to letting neurons randomly express genes with trans-
lated proteins following random interaction rules. The second baseline (baseline 2) leveraged
the SynaptoGen’s biology, utilizing the optimized genetic rules O and conductance matrix K, while
still initializing gene expression profiles, neurotransmitter and receptor distributions randomly. We
sampled 10 neuronal networks from each baseline.

Results, depicted in Figure 2, show the reward distribution for each investigated model family. As
expected, networks sampled from the baselines maintained the pole upright for approximately 10
time units, coinciding with the time taken for the pole to exceed the Cart Pole termination an-
gle without effective control. Conversely, networks directly sampled from the trained SynaptoGen

2Hyperparameters from https://github.com/DLR-RM/rl-baselines3-zoo/blob/
master/hyperparams/dqn.yml.

3Initialization from (Barabási et al., 2023).
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Figure 2: Mean reward distributions from the tested model families. Each scatterplot point repre-
sents the mean reward, averaged over 10 episodes, obtained by a specific agent. The y-axis is shown
on a logarithmic scale.

exhibited significantly better performance, with the majority controlling the pole for a substantial
duration. Remarkably, 1 out of 10 networks achieved perfect task resolution, maintaining the pole
upright for the entire duration of the game (500 time units – Appendix B). This outcome suggests
the successful generation of a fully functioning neuronal network after manipulating the genetics of
just 10 neuronal populations.

4 CONCLUSIONS

In this paper we introduce SynaptoGen, a novel framework capable of simulating synaptogenesis and
guiding a simulated neuronal population towards the formation of a neuronal network proficient in
solving a predetermined computational task. Our approach involves framing synaptogenesis within
the formalism of random variables and modeling their parameters through differentiable functions
of matrices representing gene expression and protein interaction rules.

The validation of the framework was carried out by optimizing synapse formation in populations of
4 + 128 + 2 neurons on a RL control task. During validation, the majority of networks exhibited a
reduced loss of performance, with 1 out of 10 networks demonstrating an extraordinary absence of
performance loss, perfectly solving the designated task.

Despite the success achieved in validation, it is crucial to acknowledge certain disparities with bio-
logical reality. Firstly, our model relies on a simplified conductance-based synapse model. Addition-
ally, SynaptoGen has been implemented for multipartite networks consisting of standard artificial
neurons. Regarding topology, this corresponds to genetically inhibiting, through an additional set
of genes, all synapses that compatible neurons in non-adjacent layers could form, or employing an
external posterior removal process.

Future plans involve extending the implementation of SynaptoGen to arbitrary feedforward networks
by integrating its code with 4Ward (Boccato et al., 2024), a tool recently developed for converting
arbitrary directed acyclic graphs into neural networks trainable with backpropagation. The neuron
model used, instead, can be easily enhanced, for instance, by incorporating spiking neurons from the
snnTorch library (Eshraghian et al., 2023) while maintaining overall compatibility with backpropa-
gation.

It is important to note that our framework would benefit from a more realistic validation incorpo-
rating genetic rules that closely mirror those guiding synaptogenesis in nature. In this regard, also
injecting synaptic conductances resulting from specific neurotransmitter-receptor interactions based
on experimental data could be beneficial. Although data currently available for integration into our
framework is limited, numerous research groups have made significant strides in developing meth-
ods aligning with this direction (Taylor et al., 2021; Kovács et al., 2020; Fenyves et al., 2020; Harris
et al., 2022).

Despite the mentioned limitations, we firmly believe that SynaptoGen will serve as inspiration for
novel methodologies and experiments, propelling the neuroscience community towards the creation
of biological neuronal networks ready for deployment in a variety of cutting-edge applications.
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Dániel L. Barabási and Dániel Czégel. Constructing graphs from genetic encodings. Scientific
Reports, 11(1):13270, December 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-92577-2.
URL http://www.nature.com/articles/s41598-021-92577-2.
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A THE POLARITY MATRIX

As outlined in (Fenyves et al., 2020), synapse polarity in C. elegans, a well-studied small nematode,
is elucidated by the interplay among 3 neurotransmitters – glutamate, acetylcholine, and GABA
– and their corresponding receptors. Specifically, each neurotransmitter can be associated with
receptors capable of exerting both excitatory and inhibitory effects on synaptic connections. This
relationship can be represented, abstractly, through a 3× (2 · 3) polarity matrix:

A =

[
1 −1 0 0 0 0
0 0 1 −1 0 0
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(14)

Here, each neurotransmitter synthesized in pre-synaptic neurons can be bind to either a positive
(+) or negative (-) receptor in post-synaptic neurons. The 0s in the matrix signify that receptors
attuned to a specific neurotransmitter are incapable of receiving different ones. This formalism
readily extends to accommodate an arbitrary number of neurotransmitters by setting M = 2L and
expanding A to an L × 2L block diagonal matrix, where each block is represented as [1,−1]. It
is worth noting that, in the experiments of Section 3, the entries of A do not belong to the set of
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B A CART POLE’S EPISODE

We show in Figure 3 some frames captured from an example episode played by the best agent
generated with SynaptoGen. In the reported case, the agent obtained a final reward of 500, and the
pole was kept in balance throughout the entire duration of the episode.

Figure 3: Frames captured from a Cart Pole episode. Frames are arranged in chronological order.
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