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Abstract

We demonstrate that architectures which traditionally are considered to be ill-suited
for a task can be trained using inductive biases from another architecture. We call
a network untrainable when it overfits, underfits, or converges to poor results even
when tuning their hyperparameters. For example, fully connected networks overfit
on object recognition while deep convolutional networks without residual connec-
tions underfit. The traditional answer is to change the architecture to impose some
inductive bias, although the nature of that bias is unknown. We introduce guidance,
where a guide network steers a target network using a neural distance function. The
target minimizes its task loss plus a layerwise representational similarity against the
frozen guide. If the guide is trained, this transfers over the architectural prior and
knowledge of the guide to the target. If the guide is untrained, this transfers over
only part of the architectural prior of the guide. We show that guidance prevents
FCN overfitting on ImageNet, narrows the vanilla RNN–Transformer gap, boosts
plain CNNs toward ResNet accuracy, and aids Transformers on RNN-favored tasks.
We further identify that guidance-driven initialization alone can mitigate FCN
overfitting. Our method provides a mathematical tool to investigate priors and
architectures, and in the long term, could automate architecture design.
Project website at https://untrainable-networks.github.io

1 Introduction

When creating neural networks, as a community, we follow recipes that select among a few archi-
tectures that are known to work for particular tasks [63, 12, 25]. Architecture is critical, encoding
essential inductive biases i.e. priors that profoundly impact their learning capabilities and perfor-
mance across various tasks. Convolutional nets revolutionized vision [47, 31], and Transformers
reshaped language [74, 20, 1]. Despite this, architecture design is a dark art because the precise
relationship between architectures and the priors they impose is poorly understood. For example,
there is discussion about exactly what the role of residual connections is [39]. This reflects a broader
challenge: we rarely understand exactly what inductive biases our architectures encode. Our lack
of understanding makes architecture design challenging. Given new application spaces for neural
networks with rising compute costs like inference-time scaling [56], this challenge has become even
more relevant.

Recent theorems [59] state that for each function which is efficiently Turing computable, there exists
a deep network that can approximate it well. Furthermore, a graph representing such a function is
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Figure 1: Guidance makes untrainable networks trainable via representational similarity. Given a target
which cannot be trained effectively on a task, we train this target with a layerwise representational-alignment
term against a fixed guide—trained or random—which remains unchanged during task training. This transfers
only the guide’s architectural bias, turning a network that would otherwise overfit or underfit into one that learns
effectively (e.g., a deep FCN guided by a random ResNet for image classification).

compositionally sparse, that is the nodes of the associated Directed Acyclic Graph (DAG) represent
constituent functions with a small effective dimensionality. A reasonable conjecture is that neural
networks with an architecture which is similar to the DAG of the unknown target function are
especially successful in learning it, as it is the case for convolutional networks for image recognition
and similar tasks. However, empirically testing or transferring those structural priors remains an
open challenge. Because we do not understand the relationship between the kinds of priors on the
target functions that different architectures impose, even simple questions have no known answer.
For example, can an FCN’s initialization be tailored to mimic a CNN’s inductive bias, despite their
distinct graphs?

To bridge this gap, we introduce a novel empirical tool, guidance. Given a target network, we guide
it with a guide network. In addition to the target’s original loss, the target attempts to match the
representation of its intermediate layers to those of the guide. We use a measure of representational
similarity [45, 17, 16], also termed a neural distance function, to compute the distance between
representations of two arbitrary layers. Neural distance functions are often used in neuroscience
to compare activity in networks and brains [68, 14, 71]. In light of recent work that shows that
networks of very different architectures have internal activity that is extremely similar to one another
[30, 14, 15], we repurpose this distance function as a means to transfer priors between networks
layer by layer. Surprisingly, even a randomly initialized guide—incapable of solving the task—yields
large performance gains, proving architectures alone encode powerful priors. This surprising finding
demonstrates that neural architectures alone, independent of parameter training, impose meaningful
inductive biases that are useful for downstream tasks.

We make the following contributions:

1. We develop guidance to transfer priors between networks using representational alignment
and investigate one representational alignment method, centered kernel alignment, CKA
[45].

2. We empirically differentiate between architectural and trained inductive biases, showing that
architectural priors alone can significantly improve network performance. This underscores
the intrinsic structural power of architectures independent of learned parameters.

3. We show that RNNs significantly improve their copy-and-paste accuracy when guided by a
Transformer. Transformers increase their parity accuracy when guided by an RNN. RNNs
close much of the gap to a Transformer on language modeling when guided by one.

4. We show that deep or wide fully connected networks stop overfitting when guided by a
ResNet. No-skip CNNs close much of the gap with ResNets when guided by a ResNet.
Fully-connected networks stop overfitting with guidance-only initialization schemes.

Our method provides a powerful empirical tool to further theoretical insights in architectural design.
Guidance enables systematic investigation of the structural foundations of successful architectures
and clarifies the distinction between architectural and trained inductive biases. Minimizing CKA lets
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you clamp any subset of a target network’s activations onto those of a frozen guide network, sweep
that clamp across architectures and priors, and observe what fails or succeeds. Guidance is a knob
you can turn to inject architectural priors at will, something one cannot do with cross-entropy or
weight-decay alone.

Our work has a number of limitations. We aimed for coverage of many tasks instead of maximal
performance on any one task. This would have required us to carefully tune the hyperparameters
involved. We preferred to show how guidance works in general rather than in cherry picked and
carefully tuned settings. To that end, we also did not optimize networks to convergence, nor did
we attempt to experiment with other optimizers. Once we reproduced a well-known problematic
training phenomenon, we showed that it could be overcome. We consider a network trainable and a
problem to be overcome when the original problem disappears. For example, successfully training
fully connected networks for object recognition was hopeless because they immediately overfit; using
our guidance method they no longer do so. This does not mean that they are necessarily useful as
object recognizers at present. In the case of fully connected networks, their present performance
with guidance training is too low, but with additional work we believe their performance could
be substantially increased now that their train and test loss are moving in the right direction. In
some cases, by applying guidance, we do see large useful improvements, such as with RNNs and
Transformers, as well as deep CNNs, although much more remains to be exploited there too.

2 Related Work

Representational Distance: Our method builds on several metrics that measure distance between
high-dimensional activations extracted from neural networks or activity in the brain [44]. Some of
these distance metrics make comparisons based on kernel matrices [45, 17, 16] or relative distances
[46, 55] between sample representations in a set. Others compute linear [75, 68] or orthogonal
projections [5] from one set of representations to another. These metrics are designed based on a set
of desired invariant properties such as permutation invariance or invariance to linear transformations.

Such approaches have been commonly applied in neuroscience for measuring representational
distance of activations from networks and activity in the brain to understand which neural networks
are architecturally most similar to the brain [75, 14, 71, 24]. Under this context, Han et al. [30]
has shown the inability of current representational distance metrics – specifically the metric used
here, centered kernel alignment – to distinguish representations based on architecture. This paper
provides the foundation for our intuition that networks may have similar representations that allow
for transferring inductive biases from one network to another.

Untrainable Networks: This work examines RNNs and transformers for sequence modeling and
FCNs and plain CNNs for image classification. Prior work explored similar approaches but performed
poorly compared to the guide networks we leverage for improved training.

In sequence modeling, classical RNNs [69, 58, 13, 29] were constrained by vanishing and exploding
gradients [35], making them unsuitable for long sequence tasks requiring memorization [27]. Gradient
flow techniques were developed, but significant progress came from architectures like LSTMs [34]
and transformers [74]. Transformers, however, have been found untrainable on formal language tasks
requiring full-sequence reasoning, where RNNs succeed [8].

For image classification, small feed-forward networks with 3-5 hidden layers and fewer than 100
units per layer were trained on object recognition datasets [53, 6, 41, 57]. These efforts prioritized
training fit over generalization performance and achieved low results [53, 6]. Strategies to reduce
overfitting, such as topological structure [67] or early stopping [9], were hindered by complex designs
and hyperparameter tuning, leading to poor training fits. Further methods used alignment between
thin deep FCNs and wide shallow FCNs to prevent overfitting, an approach similar to our paper [64].
Deep convolutional networks were also applied to image classification [47, 7] but struggled with
vanishing gradients, limiting their depth.

Model Distillation: Guidance shares a resemblance with model distillation [33, 26, 66, 36]. Distilla-
tion transfers knowledge from a teacher model to a student model by introducing a new component
to the loss function that enforces the student model to behave like the teacher model [42, 76]. This
usually consists of penalizing the KL-divergence between the logit predictions of the student and
teacher model.
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Representation-based distillation [72, 10, 50] and alignment techniques have been proposed to im-
prove alignment between two networks. Certain works have proposed correlation congruence or
similarity preserving metrics [62] for aligning two networks, particularly as a way to do architecture
search between CNNs [4]. Methods have been proposed that use CKA as an alignment approach be-
tween representations of two networks or with representations in the brain with notable improvement
in network performance [65, 18].

We distinguish guidance from distillation. Guidance can use a smaller untrained guide instead of a
larger trained teacher. This is due to guidance operating over intermediate activations of the network
instead the output of the network probabilities or output features, like distillation does. Guidance
also operates at many levels at the same time, aligning many layers at once. This helps address the
credit assignment problem that gradient descent has when tuning weights early in a network. We
also consider many more networks for guidance than is traditional for distillation including networks
which have very different architectures like Transformers to RNNs. Distillation is usually carried out
between two closely related architectures. We apply guidance to do the opposite.

3 Methods

Guidance introduces a term in the loss of a target network, N T , to encourage representational
alignment with a guide network, NG. We update only the target’s parameters, θT , while keeping
the guide’s parameters, θG, frozen. On each minibatch, we compute a similarity metric M (e.g.,
CKA) between guide-layer activations AG

iG and matched target activations AT
iT . We refer to the

correspondence between layers of the guide {iG} and layers of the target {iT } as I . While this
correspondence, I , could be complex as any two architectures can form a guide/target pair, here we
choose architectures that make the correspondence obvious as is discussed later. For example, the
stacked RNNs and Transformers have the same number of layers in our experiments.

The target and guide receive the same input. Per minibatch, we collect activations from intermediate
layers of both networks. Layers of guide network are mapped to layers of the target network; see
fig. 1. We formulate the loss in terms of minimizing the representational dissimilarity, M̄, i.e., the
complement of a representational similarity metric, between guide and target activations layer by
layer, summing the results. Here we use linear CKA, though any differentiable similarity metric
could plug into Eq. (1). Efficiency or incremental computation is much more important than it is
in traditional applications since this operation happens for every minibatch. We discuss details in
appendix B.1.

Given LT as the original loss of the target network, the guide network’s original loss function is
irrelevant. The guide could be pretrained on another task. In fact, it need not even have been trained at
all, only its architecture shapes the target. This latter setting is what allows transferring architectural
priors without transferring knowledge from the guide to the target, as there is none in a randomly
initialized guide. See eq. (1) for an overall loss. We discuss details in appendix B.

L(θT ) = LT (θ
T ) +

∑
i∈I

M̄(AT
iT (θ

T ),AG
iG(θ

G)) (1)

Equation (1) minimizes a task loss while increasing alignment between the target and guide networks
given the mapping between them. The mapping may be sparse; not every layer needs to be used. This
is important for guidance with transformers or stacked RNNs, as will be explained later. Note that
the guide’s parameters, θG, are constants, i.e., the guide is never updated.

Metrics like CKA can capture and encode inductive biases in neural network computations. For
instance, CKA is a measure that depends on second-order statistics, specifically pairwise sample
distance matrices. Architectural choices imprint distinct features on those statistics. For example,
consider local receptive fields in a convolutional layer. Units that cover neighboring pixels receive
correlated input, and this is reflected in our activations. Such correlations are reflected in our distance
matrices, and these can be transferred to distance matrices associated with FCN layers that lack local
correlations. Similarly, weight sharing, where the same kernel is applied at every spatial location,
will also be reflected in a distance matrix.

Layerwise Mapping We design a simple method for mapping guide layers to target layers as part
of providing supervision. The goal of this method is to make guide and target networks architecturally
agnostic i.e. we can supervise any target network with any guide network.
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Tasks Guide Networks Target Networks

Copy-Paste Transformer RNN

Parity RNN Transformer

Language Modeling (Small and Large) Transformer RNN

Image Classification
ResNet-18

Deep FCN
Wide FCN

ResNet-50 Deep ConvNet

Table 1: Guide and target networks across tasks. Our network designs include several untrainable target
networks and corresponding trainable guide networks.

As a simple approach, we evenly spread layer computations of our guide network over our target
network. For example, if we consider ResNet-18 and a 50-layer FCN, we would map every convo-
lutional ResNet layer to every second or third linear layer of the FCN. Intuitively, evenly spacing
guide-to-target matches encourages the target to approximate the guide’s compositional functions.
Through the design of evenly spreading layers of our ResNet-18, we are guiding the FCN to find a
function similar to the guide network.

For our mapping, we consider activations from all tunable-weight layers (convolutional, linear, or
RNN/LSTM). For multiple stacked RNNs, LSTMs, or transformers, we extract feature representations
from intermediate layers in the stack as well. Using all layers is useful for guidance as it provides
a strong signal to induce alignment between the target and guide networks during training. We
empirically find that more layers leads to stronger results. Skipping layers based on non-linear
transformations reduces memory overhead associated with storing representations per batch.

4 Experiments

We design several settings with different target and guide networks to thoroughly test our approach.
We include a range of image and sequence modeling tasks. In choosing target networks, we consider
a broad range of designs for networks that are not traditionally applied (e.g., a FCN in image
classification).

To systematically evaluate our approach, we incorporate two settings. (1) Untrainable Architec-
tures: Experiments where the target networks are difficult to train due to architectural limitations,
irrespective of the task. For example, memory incorporation in RNNs or overfitting in deep FCNs. (2)
Untrainable Tasks: Experiments where certain tasks are inherently challenging for specific architec-
tures, making them untrainable without additional supervision. For example, sequence classification
with transformers.

Tasks: We describe the task settings. We consider three sequence modeling tasks to allow for a
broader range of architectural settings. We first consider a task called copy-paste [27]. In this task,
we generate a sequence of numbers in the range of 1 − 10. The model is trained to recover the
same sequence in the output. In our setting, we consider sequence lengths that range from 20 to 40
values total (internal sequence and padding). We generate a copy-paste dataset, sampling sequences
containing numbers between 1 and 10. We generate a total of 100, 000 examples, training on 80, 000
examples, validating on 10, 000 examples, and testing on 10, 000 examples.

We also include the parity task, a binary classification task where a model is fed a bitstring and
outputs 1 when there is an even number of ones in the bitstring and 0 otherwise. We generate a series
of bitstrings with sequence lengths that range from 2 to 50 as done in prior work [8].

Finally, we consider a language modeling task using the WikiText-103 dataset [54] where models
must predict the next token given some context. This uses the train, validation and testing splits
defined by the WikiText dataset and for all experiments, we use a context length of 50. We tokenize
the text data using the GPT-2 [61] tokenizer.

For an image-based task, we focus on image classification and use the ImageNet-1K dataset [19] for
training and testing. We use the splits defined by the dataset. We report accuracy on the validation set
for all experiments.
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Architectures: For all tasks, we describe our target untrainable architectures for each task separately
as well as the guide networks that are employed to make the untrainable network trainable. We give
an overview in table 1. We provide further details in appendix C.

Sequence Modeling: For our copy-paste task, we use a vanilla, 4-layer RNN as our target network. In
copy-paste, architectural and algorithmic limitations make RNNs an untrainable architecture. For
our language modeling task, we include two settings with a small (4 layer) and large (6 layer, larger
hidden dimension) RNN. In this setting, vanishing gradients and limited context incorporation make
RNNs an untrainable architecture as the training loss saturates. For the parity task, we use a 1-layer
transformer encoder architecture, similar to prior work [8, 28]. For the copy-paste task, we train a
guide network, 4-layer transformer decoder model which achieves 96.90% accuracy. Similarly, for
language modeling, we train a 4-layer transformer decoder guide network with a context window of
256. Our final perplexity is 34.15 for the small language modeling setting and 33.10 for the large
language modeling setting. For the parity task, we train a 1-layer vanilla RNN as a guide network
which achieves 100% accuracy as reported by [8].

Image Classification: We use three target networks: Deep FCN, Wide FCN, and Deep ConvNet.
Deep FCN is a fully-connected network with 50 blocks consisting of feedforward layers followed
by non-linearities. This network is an untrainable architecture, lacking inductive biases to prevent
overfitting and having vanishing gradients. Wide FCN is a fully connected network with 3 blocks
with feedforward layers that have 8192 units. This is categorized as an untrainable task due to a
saturation in the training performance. Deep ConvNet is the same architecture as ResNet-50 [31], but
without residual connections. This is categorized as an untrainable architecture due to the vanishing
gradient problem. We use two guide networks: ResNet-18 and ResNet-50. ResNet-18/50 is a deep
convolutional network with 18/50 convolutional blocks and residual connections. We refer to He et al.
[31]. We supervise the Deep FCN and Wide FCN with ResNet-18 and supervise the Deep ConvNet
with ResNet-50.

Training: For each setting, we train the base target network and perform an experiment where both a
trained and untrained guide network supervises the base target network. All networks are trained
with cross-entropy loss, without loss of generality. For all sequence modeling tasks, i.e. copy-paste,
parity, and language modeling we use AdamW [52]. For language modeling, we also incorporate
gradient clipping due to unstable training with long sequences. When training networks for image
classification using ImageNet-1K, we use the Adam [43] optimizer.

To ensure consistency of comparisons across learning curves, we use a consistent batch size of 256.
Representational similarity metrics are affected by the number of samples in the calculation, where
more samples allows for the metric to approximate representational distance better. We use 256 as
a proxy, dependent on GPU memory, although more memory would allow for bigger batch sizes
with potentially better results. Due to the large number of training settings, we employ several
different learning rates. We tune the learning rate carefully for baseline training to ensure maximal
performance. We sweep the parameter across 5 different values and choose the results with the lowest
validation loss. This ensures we are choosing the training with the best performance.

After choosing the optimal learning rate, we then train all networks and settings for 100 epochs with
5 random seeds to compute error bars. Our error bars are associated with the standard error across
each step across all seeds. We choose the seed-based average test accuracy associated with the epoch
with the lowest seed-based average validation loss.

5 Results

Sequence Modeling: On the copy-paste task, guiding a 4-layer RNN with a Transformer improves
copy-paste accuracy by over 25%. See fig. 2 and table 2 Previous studies blamed RNN failures on
vanishing gradients and memorization limits. Our results show a potential optimization scheme for
RNNs that is applicable for sequence memorization. Remarkably, a random (untrained) Transformer
guide outperforms a trained one, suggesting pure architectural bias drives gains. We believe this is
because optimization with randomly initialized networks is easier due to the degrees of freedom in
CKA. See appendix E. We plan to explore this more thoroughly in further analyses. These gains
persist under our layerwise ablations and metrics; see appendix K and appendix G.

On the parity task, a 1-layer Transformer guided by an RNN improves its test accuracy by 7%. This
is a complementary result to copy-paste and language modeling where the guide network was a
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Experiment Copy-Paste
Accuracy (↑)

Parity
Accuracy (↑)

Language Modeling
(Small) Perplexity(↓)

Language Modeling
(Large) Perplexity (↓)

RNN 14.35 ± 0.01 100 69.19 ± 1.89 89.13 ± 2.00
Untrained RNN — 2.32 ± 0.41 — —
Transformer 96.98 71.98 ± 3.16 34.15 33.10
Untrained Transformer 1.04 ± 0.81 — 5.19e5 ± 90.44 5.19e5 ± 90.44

RNN → Transformer — 78.49 ± 2.16 — —
Untrained RNN → Transformer — 70.38 ± 4.17 — —
Transformer → RNN 23.27 ± 1.02 — 40.01 ± 1.54 36.91 ± 1.04
Untrained Transformer → RNN 42.56 ± 1.51 — 59.61 ± 2.33 47.17 ± 2.50

Table 2: Guidance improves performance for sequence modeling. RNN performance improves dramatically
when aligning with the representations of a Transformer for copy and paste, as well as for language modeling
with small and large RNN architectures. RNNs close most of the gap to Transformers for language modeling
and are likely competitive with further scale. Transformers in turn, improve parity performance when aligning
with an RNN. Guidance is able to transfer priors between networks.

Experiment ImageNet Top-5 Validation Accuracy (↑)

ResNet-18 89.24
Untrained ResNet-18 0.24 ± 0.043
ResNet-50 92.99
Untrained ResNet-50 0.54 ± 0.029

Deep FCN 1.65 ± 1.21
ResNet-18 → Deep FCN 7.50 ± 1.51
Untrained ResNet-18 → Deep FCN 13.10 ± 0.72

Wide FCN 34.09 ± 0.91
ResNet-18 → Wide FCN 43.01 ± 0.92
Untrained ResNet-18 → Wide FCN 39.47 ± 0.31

Deep ConvNet 70.02 ± 1.52
ResNet-50 → Deep ConvNet 78.91 ± 2.16
Untrained ResNet-50 → Deep ConvNet 68.17 ± 2.54

Table 3: Guidance improves performance for image classification. Alignment with a ResNet dramatically
improves a deep FCN, particularly with an untrained ResNet. Significant gains are seen with a wide FCN as
well. Deep CNNs without residuals gain only with a trained ResNet. Across all settings, guidance can help train
architectures that were otherwise considered unsuitable.

transformer and our target network was a RNN. This improves over results from several prior papers
[8] that have pointed out fundamental limitations of transformers to perform formal language tasks.

Unlike copy-paste, the performance improves when using a trained RNN as the guide network. This
could be due to the wide gap in performance between an untrained RNN and trained RNN on parity.
Parity uniquely benefits from learned positional encodings in the trained RNN, which the Transformer
lacks. This information is likely crucial to the transformer, which has limited sequence pooling
capacity and fewer degrees of freedom.

On language modeling, similar to copy-paste, guided RNNs halve the perplexity from ~70 points
to 35 points on WikiText-103, closing in on Transformer baselines. While performance generally
saturates for the 4-layer RNN, guidance continuously improves the RNN performance by over 30
points for text perplexity for both trained and randomly initialized guide networks. Scaling up to a
6-layer RNN further cuts perplexity by 10 points, indicating guidance scales with model size. This
implies that information from the transformer can be transferred to the RNN. We also believe that
this has exciting implications for scaling laws with RNNs. We see a similar trend with a randomly
initialized transformer as the guide network, implying that architectural priors in the transformer are
driving improvement in guided network performance.

Image Classification: Guidance boosts validation accuracy by 5–10% across our Deep FCN, Wide
FCN, and Deep ConvNet; see table 3. We also observe significantly better loss curves from a better fit
with the training loss and reduced overfitting with the validation loss. An untrained ResNet-18 guide
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Figure 2: Training and validation under guidance for all experiments reported in table 1. For every result
in Table 3 and Table 2, we show the training and validation loss with error bars across multiple runs, although
these are often too small to see. Note that often the best results occur with the untrained guide.
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Figure 3: Guidance aligns error consistency. The relationship between the guide networks is mirrored in that
of the guided networks, even when the target is entirely unlike the guides initially. This is additional evidence
that guidance doesn’t just improve performance arbitrarily; the target becomes more like the guide.

outperforms its trained counterpart on Deep FCN, underscoring pure architectural priors like with
copy-paste. For example, the Deep FCN results in the top left of fig. 2 are significantly better with a
randomly initialized ResNet-18 as the guide network instead of a trained ResNet-18. This trend also
occurs with Wide FCN. We show results with other neural distance functions in appendix J.

The Deep ConvNet (no skips) gains only from a trained ResNet-50 guide—implying residual con-
nections require learned weights to shape representation. This explanation provides an additional
interpretation for the role of residual connections and their influence on the representation space.
This indicates that residual connections must be trained to have an influence on the representation
space. This aligns with prior studies of residual connections [39, 32].

Error Consistency: Guided FCNs mirror the ResNet–ViT error overlap, proving they inherit the
guide’s decision patterns. Using Deep FCN as our target model, we guide it with a ResNet-18 or a
ViT-B-16 [21]. We then measure the error consistency [23] between all of the networks; see fig. 3.
The error consistency between the initial FCNs is entirely unlike the ResNet-18 or ViT-B. Guidance
creates two FCNs which have the same relationship to one another. The ResNet-18-guided FCN
and ViT-B-guided FCN have the same error consistency with respect to one another as ResNet-18
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Figure 4: Initializing fully connected networks with guidance can overcome overfitting. First, we align a
Deep FCN to a random ResNet-18 on noise for 300 steps, then train normally. This two-stage scheme mirrors
full guidance, and leads to a similar performance improvement. This suggests that FCNs have guidance-inspired
initializations that avoid overfitting.

and ViT-B do. It’s not just that the FCN gets generically better; it adopts a prior from the original
architecture. We provide further details of the error consistency metric in appendix F.

Network Initialization: Is guidance needed throughout training, or is the effect of the guide to move
the target into a regime where the two are aligned and the target can be optimized further without
reference to the guide? The answer to this question can shed light on whether the guide is telling
us that better initializations are likely to exist for the target. To answer this question, we minimize
the representational dissimilarity between our target and guide network for a nominal number of
training steps, 300. Then we apply task training on the resulting target network with no guidance.
Pre-aligning FCN layers to a random guide for 300 steps stops overfitting entirely—no ongoing
guidance needed; see fig. 4. Furthermore, while preventing overfitting, we have lower training loss
from guidance, indicating a better fit. This implies that there exists a better initialization for FCNs.

Guidance vs Distillation: We include a comparison between guidance and knowledge distillation [33]
in fig. 5. We find that guidance improves significantly over distillation, particularly when the teacher
network is untrained. This is significant, demonstrating that guidance can exploit untrained networks
for transferring inductive biases. This indicates that matching internal representations provides a
much stronger signal over just matching output behavior. We discuss further in appendix H.

6 Conclusion

We demonstrated that guidance eliminates the failure modes of networks previously considered unsuit-
able or ineffective for specific tasks. Aligning with another network overcomes these shortcomings
by transferring inductive biases—either architectural and knowledge-based, or solely architectural
when using an untrained guide. This allows guidance to distinguish tasks and architectures that are
dependent on architectural biases rather than learned biases. We provide further explanations and
intuition for guidance in appendix I. There are many potential aspects that may distinguish between
the effects of architectural and inductive biases in improving performance of these architectures,
which we aim to explore in future work.

This also opens the door to many applications. Our method can be used to study representational
and functional design of neural networks in new ways to reanalyze prior theory of neural network
optimization. For example, we can understand distances between architectural components based on
which target networks are easier to guide with a particular guide network. We also refine this notion
to include a narrow channel through which guidance can occur, the representational similarity. This
can serve as a kind of probe.
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Figure 5: Guidance outperforms distillation: We include a comparison between guidance and distillation for
all settings with trained and untrained guide networks/teacher networks. We find that guidance outperforms
distillation in all settings, highlighting that, unlike guidance, distillation fails in settings with an untrained
teacher.

We believe guidance also reveals a new conceptual lens on inductive biases and architectures. When
we use an untrained guide network, we reveal what an architecture by itself brings to the table.
Guidance with a trained guide reveals how much learned representations can change performance.
These are different phenomena whose root causes are not understood at present but that could
elucidate the relationship between priors and architectures.

Our results suggest practical applications by significantly narrowing the performance gap between
vanilla stacked RNNs and Transformers and showing signs of scaling, albeit in small-scale exper-
iments with 150M parameters or fewer. Given that stacked RNNs are equivalent to single-layer
RNNs, most directly to delayed RNNs [73], this implies that complex modifications to RNNs may be
unnecessary for language modeling. For other networks, like fully connected ones, we only overcame
the initial obstacle. Further research is needed to refine these into effective vision models, as they
avoid immediate overfitting. In the future, we hope to find methods for making these networks
competitive with their guide networks.

Guidance also proved to be a tool with which to discover the possibility of new initializations. At the
moment, no known method exists to find better initializations for networks. In some cases as with the
FCNs for vision, guidance can be disconnected after a nominal number of steps, but still goes on to
regularize the target network. This strongly implies that an initialization regime for that target with
the same regularization exists. This is all that guidance could do in that case. We now need tools to
go backwards, given networks which are correctly initialized and networks which are not, discover
what that initialization is. This is a much better place to be in. A systematic sweep of targets and
guides to look for better initializations should be carried out.

Looking into the long-term future, guidance invites us to treat architecture itself as a trainable prior
added directly to a generic network’s loss. Because guidance can rescue models that previously
overfit or underfit, we can revisit designs abandoned during neural architecture search. These threads
demonstrate the major possibility for future work in this space. Guidance is a tool, not a finished and
well-understood theory or doctrine. Tools are useful for enabling more discoveries. We believe that
these discoveries will allow the community to more easily pursue questions that training difficulties
might have prevented in the past, especially with regard to understanding the relationships between
architectures.
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A Appendix Overview

We present additional details of guidance, experiments and analysis, as well as additional results.
In Appendix B, we provide additional details for our guidance approach, with a full explanation of
centered kernel alignment. In Appendix C, we provide additional details on our architectural designs
and network training. In Appendix D, we introduce a new experiment where we feed noise to our
guide network rather than real data and compute representational alignment, leading to similarly
improved results. This further establishes a transfer of a prior rather than knowledge. In Appendix E,
we show visualizations of the representational dissimilarity loss over training to give context of
dynamics over training and show additional explanations for results with trained and randomly
initialized guides. In Appendix F, we provide further explanation of error consistency as a measure
of functional similarity between networks. In Appendix G, we provide test accuracy metrics over
training as a complementary of network performance over training outside of cross-entropy loss. In
Appendix H, we provide a comparative baseline to guidance, distillation [33]. We find that basic
distillation performs worse in comparison. In Appendix I, we provide an interpretation and analysis of
guidance to better characterize and understand results based on changes in the internal geometry of a
network before and after guidance. In Appendix J, we apply guidance with additional neural distance
functions including RSA [46] and ridge regression. We find a correlation between the success of
our approach and degrees of freedom of a particular distance function. In Appendix K, we provide
additional ablations over guidance such as guiding a certain number of layers or guiding specific
layers of a network.

B Methods Overview

We give an overview of guidance in algorithm 1 and highlight crucial changes to base neural network
training in either red or blue. We use blue to indicate the collection of network activations and red to
indicate the layerwise mapping and representational alignment using a distance metric. This gives
an overview of our layer mapping between the target and guide network. Crucially, we find that the
simplest layer mapping where we evenly distribute guide network layers across target network layers
for supervision obtains strong results.

Algorithm 1 Guidance: Guide Network Representational Alignment

Require: Target network; N T with parameters θT ; Guide network NG; Dataset D = {(xi, yi)}Nj=1; Repre-
sentational Distance Metric M̄; Loss function LT

1: for j = 1→ N do
2: # Base training with vanilla loss function
3: outputs← N T (xj)
4: loss← LT (outputs, yj | θT )
5: # collect layer activations

6: {AT
iT }

t
iT=1 ← activations(N T (xj))

7: {AG
iG}

l
iG=1 ← activations(NG(xj))

8: # Get step size between the number of layers between the two networks for layer mapping.
9: if l > 1 then

10: step← (t− 1)/(l − 1)
11: else
12: step← 1
13: end if
14: # Map the layers and add up layer-wise representational distance
15: total← 0
16: for i = 1→ l do
17: index← min(round(i× step), t− 1)

18: rep←M(AT
index,A

G
index)

19: total← total + rep
20: end for
21: loss← loss + total
22: end for
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B.1 Centered Kernel Alignment

To compare representations, we use a representation similarity metric, M, which corresponds to
centered kernel alignment (CKA) [45, 16, 17] in our setting. We specifically consider linear CKA.

CKA uses kernel functions on mean-centered representations to compute representational similarity
matrices, which are then compared via the Hilbert-Schmidt Independence Criterion (HSIC). More
specifically, suppose we have two sets of representations R ∈ Rb×d1 and R′ ∈ Rb×d2 . We first
compute the Gram matrices for each set of representations

K = RRT ,L = R′R′T (2)

We center the Gram matrices by introducing a matrix, H , where H = Ib − 1
n11

T .

K̃ = HKH, L̃ = HLH (3)

We compute the HSIC on the Gram matrices.

HSIC(K,L) = tr(K̃, L̃) (4)

Finally, we define our linear CKA metric as:

M(R,R′) := CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) ∗HSIC(L,L)
(5)

In our setting, we consider representational dissimilarity and aim to minimize the dissimilarity
between representations from our target network and guide network. We define this as:

M̄(R,R′) = 1−M(R,R′) (6)

Linear CKA ranges from 0 (identical representations) to 1 (very different representations). Because
of this, we take the complement by subtracting the linear CKA from 1 to represent dissimilarity.

B.2 Methodology Limitations

Our guide network supervision through representational alignment has one primary limitation due
to increased memory usage during training. Due to saving activations across several layers of the
two networks, GPU memory usage increases dramatically. Moreover, our methodology works better
as batch size increases since this allows for better approximation of representational similarity,
increasing memory usage even more. Furthermore, including more layers for supervision leads to
improved results.

In this paper, we introduce simple techniques to handle memory constraints such as gradient ac-
cumulation and gradient checkpointing [51]. In practice, more memory optimization techniques
may become necessary to consider larger untrainable networks. Further work could consider using
stronger representational alignment strategies to reduce the number of samples necessary to achieve a
strong fit.

C Architecture and Training Details

C.1 Architectural Design Details

For all tasks, we describe our target untrainable architectural designs for each task separately as well
as the guide networks that are employed to make the untrainable network trainable.
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C.1.1 Copy-Paste

Target Networks

RNN: We design a 4-layer RNN with a hidden dimension of 768 units, followed by a fully connected
layer. In copy-paste, architectural and algorithmic limitations make RNNs an untrainable architecture
for the task. Specifically, RNNs must memorize the input sequence which is difficult, particularly
with a padding token. RNNs are generally considered to be inapplicable to the copy-paste task.

Guide Networks

Transformer: We consider a 4 layer transformer decoder architecture with a hidden dimension of
768 units across 12 transformer heads. The transformer is well-suited for copy-paste as the attention
mechanism can act as a routing mechanism for the sequence. We train the transformer guide from
scratch, as with language modeling and achieve 96.90% accuracy on the task.

C.1.2 Parity

Target Networks

Transformer: Similar to Bhattamishra et al. [8], we design a 1 layer transformer encoder network
with a hidden dimension of 64 units across 4 attention heads. Transformers have lower accuracy on
formal language tasks that require reasoning over a sequence in comparison to traditional sequence
models [28]. Due to the enormous gap in performance and saturation of performance, we categorize
the transformer as untrainable.

Guide Networks

RNN: We include a 1 layer vanilla RNN with a hidden dimension of 64 units. Similar to Bhattamishra
et al. [8], we achieve 100% accuracy on the task.

C.1.3 Language Modeling

We include two language model settings to test scaling in RNNs. The first setting uses small networks,
which we refer to as Small RNN and small Transformer. The other uses a large RNN and large
Transformer.

Target Networks

Small RNN: We design a 4 layer vanilla RNN with a hidden dimension of 512 and with a ReLU
activation function. We train this on sequences with a context length of 75. This makes the
network untrainable due to problems associated with exploding and vanishing gradients during
backpropagation through time.

Large RNN: We design a 6 layer vanilla RNN with a hidden dimension of 1024 and with a ReLU
activation function. We train this on sequences with a context length of 128. Prior work has
demonstrated that larger RNNs are difficult to train in practice [49].

Guide Networks:

Small Transformer: We design a 4 layer transformer decoder network with 16 attention heads and a
hidden dimension of 512. We train the transformer on WikiText-103 with a context length of 256 and
achieve a final test perplexity of 34.15.

Large Transformer: We design a 4 layer transformer decoder network with 16 attention heads and a
hidden dimension of 1024. We train the transformer on WikiText with a context length of 256 and
achieve a final test perplexity of 33.10.

C.1.4 Image Classification

Target Networks

Deep FCN: We design a fully-connected network consisting of 50 blocks. Each block contains a
feedforward linear layer, a batch normalization, and a ReLU nonlinear activation. The intermediate
feedforward linear layers contain 2048 units. This network is untrainable due to vanishing gradients
since the network is very deep and due to overfitting.
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Tasks Experiment Learning Rate

Copy-Paste

RNN 1× 10−4

Transformer 1× 10−4

Transformer → RNN 1× 10−4

Untrained Transformer → RNN 1× 10−4

Parity

Transformer 1× 10−3

RNN 1× 10−2

RNN → Transformer 1× 10−3

Untrained RNN → Transformer 1× 10−3

Language Modeling

Small RNN 1× 10−4

Small Transformer 1× 10−4

Small Transformer → Small RNN 1× 10−4

Untrained Small Transformer → Small RNN 1× 10−4

Large RNN 1× 10−4

Large Transformer 1× 10−4

Large Transformer → Large RNN 1× 10−4

Untrained Large Transformer → Large RNN 1× 10−4

Image Classification

Deep FCN 1× 10−4

Wide FCN 1× 10−4

Deep ConvNet 1× 10−3

ResNet-18 → Deep FCN 5× 10−5

Untrained ResNet-18 → Deep FCN 5× 10−5

ResNet-18 → Wide FCN 1× 10−4

Untrained ResNet-18 → Wide FCN 1× 10−4

ResNet-50 → Deep ConvNet 1× 10−3

Untrained ResNet-50 → Deep ConvNet 1× 10−3

Table 4: Learning rates for network training. For all networks, we sweep over 5 learning rate values before
choosing the learning rate with the lowest validation loss for training. Our training does not use any learning rate
scheduling such as a warm-up scheduler although such techniques may improve results.

Wide FCN: We design a network similar to Deep FCN but only containing 3 blocks where each
feedforward linear layer contains 8192 units. This network is considered untrainable due to a
saturation on the training performance.

Deep ConvNet: We design a deep convolutional network with the same architecture as ResNet-50
(convolutional layers followed by batch normalization) but remove the residual connections. This
makes the network untrainable due to the vanishing gradient problem as observed in He et al. [31],
causing saturation of the loss.

Guide Networks

ResNet-18/50: A deep convolutional network with 18/50 convolutional blocks and residual connec-
tions. We refer to He et al. [31].

We supervise the Deep FCN and Wide FCN with ResNet-18 and supervise the Deep ConvNet with
ResNet-50.

C.2 Training

In Table 4, we show the different learning rate settings we converged to in each experiment. For each
experiment, we did a grid search over 5 different learning rate parameters to ensure optimal learning
rate setting. We did careful tuning of all training of target networks to ensure maximum performance.
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Figure 6: Feeding noise prevents overfitting. We introduce an additional experiment where we feed noise
to our guide network rather than the same batch during each training step with guide network guidance. We
sample noise from a Gaussian distribution with a mean of 0 and a standard deviation of 1. We find that despite
having no information about the images in the batch, the guide network still provides an inductive bias to prevent
overfitting. While this noise increase the training loss, this shows a true transfer of an inductive bias that is not
driven by pure distillation of similar features.

For all image classification tasks, we used the Adam optimizer [43], in-line with prior work [31].
For all sequence modeling tasks, we use AdamW [52], which has been useful in training sequence
models like RNNs and Transformers [61].

The training experiments in this paper were completed across 4 H100s and 4 A100 GPUs for 3
weeks in total. GPU optimization techniques were taken such as gradient accumulation and gradient
checkpointing and some language modeling experiments used mixed-precision training.

D Representational Regularization: Guidance with Noise

We also aim to understand the role of the guide network as in guidance. In all experiments, we use
trained and untrained guide networks and see consistent improvements for training the target network.
The success of untrained networks implies that our training method is not performing distillation but
instead truly transferring a prior from the guide network to the target network. To more strictly test
this theory, we include an experiment where we feed noise to the guide network instead of the same
batch of data fed to the target network as implied by eq. (1).

We apply this experiment to the Deep FCN with an untrained ResNet-18 as the target network. At
each training step, we pass a noisy batch which is sampled from a random Gaussian with mean of 0
and standard deviation of 1. We train for 100 epochs and report the learning curve results in fig. 6.

This result confirms our intuition about the role of guide network: as a guide on model priors rather
than a pure distillation of information. While the overall cross-entropy loss magnitudes are higher and
the overall accuracy is lower when passing noise to the guide network, our results are significantly
better than applying vanilla training approaches to the Deep FCN.

E Representational Similarity Loss

We can view the representational alignment between the guide and target networks during train-
ing. This allows us to better understand how this representational alignment influences network
performance. We show sequence modeling results in fig. 7 and image classification results in fig. 8.
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Figure 7: CKA representational similarity loss for sequence modeling tasks. We visualize the total CKA
dissimilarity loss across all layers across training for all three sequence modeling tasks. The CKA dissimilarity
loss represents the representational alignment between our guide network and target network. We can observe
that for the copy-paste task and language modeling task, the target network aligns with a randomly initialized
network more quickly. This could be because of special properties of RNNs.
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Figure 8: CKA representational similarity loss for image classification. We visualize the total CKA
dissimilarity loss across all layers across training for image classification. The CKA dissimilarity loss represents
the representational alignment between our guide network and target network. We can observe that for Deep FCN
and Wide FCN, the target network aligns with a randomly initialized network more quickly. This corresponds
with results where randomly initialized guide networks had superior performance to trained guide networks.

We notice that across most tasks, reducing representational dissimilarity is easier with activations
from randomly initialized networks rather than trained networks. This provides additional evidence
of representational alignment for inductive bias transfer. We notice that for certain cases, such as
Parity, the randomly initialized guide network has higher representational dissimilarity loss than the
trained guide network. This is matched with the Parity result in table 2 and fig. 2.

However, we can also observe more inconsistent results with the Deep ConvNet where the untrained
guide network has lower representational dissimilarity loss than the trained guide network, even
at the end of training. One possible explanation that the inductive bias was more similar for Deep
ConvNet and ResNet-50. This means that trained features are more important for better Deep
ConvNet results and representational alignment with a trained network is important. This result has
interesting implications for understanding the role of residual connections. Since untrained ResNet-50
is easier to align with than a trained ResNet-50, this demonstrates that residual connections influence
representation spaces during training. The untrained residual connections have little influence on the
inductive biases of the network or the overall representation space. This demonstrates the strength of
our method as a way to interpret neural network design choices and how they influence representation
and functional aspects of a network.

These results are also potentially indicative of architectural properties of RNNs and FCNs which match
randomly initialized networks more quickly. For instance, one potential explanation is that RNNs
have more degrees of freedom [8] and therefore, only need inductive guidance rather than trained
features. Transformers may require learned features indicating that the bottleneck for transformers
on the parity is not algorithmic but feature-based. Much of the future work can use these results to
design better networks with more informed designs.
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Figure 9: CKA dissimilarity decreases more in earlier network layers than later layers. When we separate
the CKA dissimilarity across layers of the target network, we find that earlier layers optimize more and earlier.
We take two layers from a Deep FCN during guidance with a randomly initialized ResNet-18. The early layer
comes from the 15th FCN block. The later layer comes from the 43rd FCN block. We see that both layers are
eventually optimized but the later layer receives less supervision and has a higher CKA at the end of training.

E.1 Layerwise Analysis

We provide a deeper analysis of patterns of the representational dissimilarity across different layers
during guidance in fig. 9. We find that earlier layers generally have higher CKA similarities with
their corresponding layer from the guide network and later layers have lower CKA similarities.
Furthermore, these later layers optimize later in the training process.

F Error Consistency

We measure error consistency (κ) [23] between the guided target networks which indicates the error
overlap between two networks based on the accuracy of the networks, i.e. do the two networks make
similar class predictions? The measure first calculates the expected error overlap. Suppose a1 is
the accuracy of the first guided network and a2 is the accuracy of the second. The expected error
overlap is given by cexp = a1 ∗a2+(1−a1) ∗ (1−a2). Next, we measure the observed error overlap
across each sample in the validation set as cobs = # of samples where both models agree / total trials.
Finally, we can write κ as:

κ =
cobs − cexp

1− cexp
(7)

κ ranges from −1 to 1, where 1 is perfect agreement, −1 is perfect disagreement and 0 is change
agreement. When κ > 0, this implies that models make consistent error patterns, κ < 0 implies that
models make inverse error patterns, and κ ≈ 0 implies independent error patterns.

F.1 Guide Network Representation Comparison

We contextualize the findings in error consistency by comparing the representations of the guide
networks, in this case ResNet-18 and ViT-B-16. We apply a layer mapping between layers of ResNet-
18 and ViT-B-16 and compute the representational similarity over 1000 input images. Results are
shown in fig. 10.

Our findings are useful for error consistency. If models are inheriting inductive biases from their
guide network, then the models would have similar methods to process low-level image features are
indicated by a stronger CKA in earlier layers between the ResNet-18 and ViT-B. This means that
errors will be consistent for low level features but inconsistent for high level features collected in
later layers.
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Figure 10: Earlier layers of ResNet-18 and ViT-B are more similar. We analyze the representational similarity
between activations from layers ResNet-18 and ViT-B-16 via CKA. We find that earlier layers are more similar
while later layers have divergent representations. We see that this manifests in distinct error consistency patterns
when ResNet-18 and ViT-B are used as guide networks.
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Figure 11: Testing accuracy improves across guidance for sequence modeling. We visualize the testing
accuracy for sequence modeling as an example to demonstrate that guidance improves accuracy across training
and this improvement is significantly better across training. This allows for another interpretation of the method
outside of cross-entropy loss.

G Test Accuracy across Training

We plot accuracies over training as a complement to cross-entropy loss in fig. 11 for the sequence
modeling experiments. We can use these experiments to de-couple our results from properties of
cross-entropy loss that may lead to misleading improvements across training. We find that accuracies
improve consistently across training, supporting the loss curve interpretation that guided training
improves results.

H Basic Distillation Comparison

To show the effectiveness of guidance, we compare it with distillation from [33]. Distillation involves
transferring knowledge from a performant teacher network to a less performant student network via
maximizing the alignment of the output logits. This encourages the student to have similar predictions
as the teacher network. This occurs via the following loss function. Assume Q is the logits extracted
from the target (student) network and the P is the logits extracted from the guide (teacher) network.

Ldistill = α ∗ T 2 ∗ KL(σ(Q/T )||σ(P /T )) + (1− α) ∗ LCE(Q, y) (8)
where y is the ground truth labels, T is the temperature to soften the logits, and α is the weighting
factor between the distillation loss and cross-entropy loss. In this case, KL refers to the Kullback-
Liebler divergence and σ corresponds with the softmax function. In practice, we set α to 0.5 and T
to 2. We continue to track the full cross-entropy loss across training as well.
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Figure 12: Distillation does not prevent overfitting. We compare basic distillation [33] to see if we can prevent
overfitting. We use Deep FCN as our student network. We find that distillation with a trained ResNet-18 teacher
network leads to a small improvement in performance but still has some patterns of overfitting. Distillation with
an untrained ResNet-18 teacher network hurts performance.
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Figure 13: Distillation lowers error consistency. In general, we find that distillation results in error consistency
patterns that are less consistent than what is reported with guidance.

We show accuracy-based results in fig. 5 and loss curve results in fig. 12. Distillation with a trained
network can improve performance but much less than guidance. Distillation with an untrained
network reduces performance on average, although not by a significant amount.

H.1 Error Consistency

We show error consistency performance over distilled networks rather than guided networks in fig. 13.

I Guided Network Analysis and Interpretation

The results from guidance open many questions in order to explain why untrained guide networks
can be better at improving target network performance. We provide an intuitive explanation as well
as some geometric analysis of guided networks to see if there is a stronger interpretation.
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Figure 14: Guidance preserves intrinsic dimensionality, avoiding over-regularization. We measure the
PCA-based intrinsic dimensionality of representations from each layer of both a guided and unguided Deep FCN
at initialization i.e. Random FCN, 300 steps of training, and the end of training. We find that guidance with
an untrained guide network better preserves intrinsic dimensionality in comparison to base training or using
a trained guide. All networks collapse to the same intrinsic dimensions. This establishes that guidance does
change the dynamics of training based on geometric features of the target network.

I.1 Interpreting Guidance

We believe several prior works support our findings and interpretations in this paper. We cover
them here. First, [38] is a recent paper that considers task-aware representational alignment. Their
theory provides a generalization bound via kernel alignment. They show that when a “stitcher” maps
representations or a source network to a target output, the excess risk of the stitched model is upper-
bounded by the CKA alignment between them. This provides a learning-theoretic guarantee that the
CKA term in guidance reduces the hypothesis class possibilities seen by an optimizer. Overfitting or
underfitting becomes harder.

Shan and Bordelon [70] investigates how a network’s neural tangent kernel (NTK) aligns with a target
output during training. The paper shows that NTK alignment accelerates convergence and lowers
generalization error in deep linear networks. This aligned kernel condition is inserted by hand in
guidance. Similarly, [3] uses Rademacher complexity tools to show that alignment of tangent-kernel
features onto a small set of task-relevant directions compresses the effective model class. This
formalizes the notion of guidance as an automatic regularizer, where task directions are replaced by
the guide network settings. Finally, [37] demonstrates that after training, the top singular vectors
of a network’s hidden activations align with the task target vectors. This empirically supports the
layerwise CKA choice in guidance. We believe that CKA bounds the risk or complexity in terms
of kernel alignment. The NTK and Rademacher analyses show that alignment shrinks the effective
hypothesis space and improves conditioning. This aligns with findings based on singular vectors. We
could sharpen this theory by changing the alignment used in guidance e.g. moving from aligning on
kernels to aligning on singular vectors or eigenvectors instead. A full PAC-style proof specialized to
guidance has not been shown in our paper but we leave this to future work.

I.2 Geometric Analysis via Intrinsic Dimensionality

We aim to understand how guidance with a randomly initialized guide network differs from a trained
guide network. To do so, we compare the representation space of a target network guided by a trained
guide network and a randomly initialized guide network using intrinsic dimensionality.

Intrinsic dimensionality (ID) refers to the minimum number of dimensions required to capture the
structure or variability in the input data. It represents the true complexity of the data manifold,
ignoring noise or redundant dimensions. Previous work has found that neural networks have low ID,
capturing data in low-dimensional manifolds [48, 60]. Following [22], for a given threshold β, the
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intrinsic dimension is the d ∈ N such that the ratio of explained variance for d dimensions of a N
dimensional PCA is above β: ∑d

i=1 var(yi)∑N
j=1 var(yj)

> β (9)

First, we measure the ID of both unguided and guided Deep FCNs across all layers at different points
of training; see fig. 14. Crucially, at 300 steps of training, we notice that guidance with an untrained
guide network preserves the initial ID found in the randomly initialized Deep FCN representations.
The trained guide network and base training achieve low ID values, which is consistent with findings
in prior work [11]. At the end of training, all networks reach the same intrinsic dimension. This
finding indicates that the dynamics of training, as shown by ID, change with or without guidance.
The Deep FCN without guidance achieves a low ID too early in training, and this is likely similar for
the guidance with a trained guide network.

One interpretation of these results is that ID has an effect on overfitting in the Deep FCN. When
ID is too low, the Deep FCN overfits. Therefore, we can discover a new regularization scheme
for training the Deep FCN based on ID. In this scheme we introduce a new loss function, which
designs a differentiable version of PCA-ID based on a specific ID threshold and forces the ID of the
representations to be above a particular ID. In particular, given the activations from a specific layer
of the target network, AT

i , a variance threshold τ , and a target ID t, we first find the SVD of the
activations,

AT
i = UΣV T (10)

We extract the eigenvalues using the singular values, λj = Σ2
jj and find the total variance using the

eigenvalues.

T =

r∑
j=1

λj + ϵ (11)

where r is the total number of nonzero singular values and ϵ is a small constant for numerical stability.
Afterwards, we find the explained ratios and cumulative sums of the eigenvalues:

pj =
λj

T
, ck =

k∑
j=1

pj (12)

We use the cumulative sum to find the loss for being below the target ID in eq. (13).

ℓbelow =

t−1∑
j=1

σ(β(cj − τ)) (13)

where σ is the sigmoid function and β controls the sharpness of the loss. Similarly, eq. (14) gives the
loss for being too far above the target ID.

ℓabove = σ(β(τ − ct)) (14)

Our total loss is given by L = ℓabove + ℓbelow. Using this loss to control ID, we tune each layer in our
Deep FCN and see a final validation loss given in fig. 15. We find that using our new loss function to
control the ID of every linear layer of our Deep FCN leads to improved validation performance and
an accuracy of 14.65%. This aligns with guidance, indicating that guidance may be controlling the
ID of the target network. Furthermore, we have used guidance to find a new regularization scheme
based on intrinsic dimensionality.
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Figure 15: Controlling intrinsic dimensionality of Deep FCN representations improves image classification
performance. We introduce a novel loss function to regularize the ID of Deep FCN representations in each
linear layer of the network during training. We find that this leads to improved validation accuracy, similar to
guidance. This shows that guidance correlates with geometric modifications to target networks and can find new
regularizations.
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Figure 16: ImageNet classes are barely decodable from a randomly initialized ResNet-18. In order to assess
the performance of our randomly initialized networks, we design a linear decoder to decode ImageNet classes
from all layers of the network. Chance accuracy is 0.1% (1/1000) on the graph above. We find that, while we
can decode ImageNet classes with an accuracy above chance, the accuracy is still very low.
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I.3 Linear Decoding

We assess whether object classes are decodable from internal representations of a randomly initialized
ResNet-18. A potential explanation for improvements in the target network with an untrained guide
is the ability to linearly decode the ImageNet classes with significant accuracy at certain layers of the
untrained guide network.

We train a linear decoder with 4000 ImageNet images from the train set and test on 1000 images from
the validation set for each layer. We show results in fig. 16. We find that the linear decoder never
achieves any accuracy greater than 0.8% for any of the layers. Furthermore, later layers contain little
information that is useful to linearly decode ImageNet classes. This means that linearly decodable
information isn’t present in the guide network and this aspect isn’t driving improvements in target
networks. We note that this matches findings in Amid et al. [2], which reports that linear decodability
from a ResNet-18 achieves 3.4% top-1 accuracy. The increase in performance is likely due to using a
much larger dataset.

J Guidance with RSA and Ridge Regression

J.1 Representational Similarity Analysis

We use the RSA formulation as described in Kriegeskorte et al. [46]. Specifically, RSA constructs
representational dissimilarity matrices (RDMs) for two sets of representations and compares them
using an outer similarity function.

Given two sets of representations, R ∈ Rb×d1 and R′ ∈ Rb×d2 , we first calculate RDMs for each set
of representations using a distance function d. Formally, we define D ∈ Rb×b as

Di,j := s(Ri,Rj) (15)

Each row Di corresponds to the distance between the representations of input i and the representations
of all inputs including itself. This is done per-batch, meaning that RSA is sensitive to batch size.

Given two RDMs D and D′ constructed from sets of representations R and R′ respectively, we
vectorize the RDM matrices using a function v (since the RDMs are symmetric, we only need to
compare the lower triangles), and compute the similarity between the two vectorized RDMs using a
similarity function s.

M(R,R′) = s(v(D), v(D′)) (16)

As with CKA, we use the complement of the similarity to construct M̄. In practice, we define d to
be the cosine distance between every pair of inputs and s to be the pearson correlation between the
RDMs as done in previous work [14].

We apply guidance with RSA to Deep FCN as our target network and ResNet-18 as our guide network.
Similar to our CKA results, we train for 100 epochs with a batch size of 256, as RSA is sensitive to
the number of samples when comparing sets of representations.

J.2 Ridge Regression

We used similar ridge regression formulation as [14, 71] without cross-validation.

Given two sets of representations, R ∈ Rb×d1 and R′ ∈ Rb×d2 , we first apply a sparse random
projection on the representations. Since the dimensionality of the representations is prohibitively
large, the projection makes the ridge regression feasible to compute. We refer to the resulting
representations as P and P ′ which correspond to the projected representations R and R′ respectively.
P and P have dimension d, where d is fixed using the Johnson-Lindenstrauss lemma [40].

Afterwards, we mean-center the representations and apply ridge regressions using the original least-
squared solution as follows. Our goal is to predict the representations P ′ using regressors over P .
We first split our representations into a training set i.e. Ptrain,P

′
train and testing set Ptest,P

′
test where
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Figure 17: Guidance with RSA as the representational similarity metric maintains similar performance to
CKA. We include a further experiment where we change the metric for representational alignment from CKA to
RSA during guidance training. We apply this to the Deep FCN with ResNet-18 as a guide network. We see that,
like CKA, RSA alignment also allows for transferring the prior from ResNet-18. However, unlike CKA, the
untrained guide network only does marginally better than the trained network, potentially indicating the RSA is
better at transferring trained features.

the training set contain half the representations and the testing set contains the other half. We first a
set of regressors β̂ as follows:

β̂ = ((Ptrain)
TPtrain + λId)

−1(Ptrain)
TP ′

train (17)

where λ is the ridge penalty, which is a hyperparameter. The coefficients β̂ are then used to predict
the held out data where:

ˆP ′
test = Ptestβ (18)

We measure the cosine similarity between the predicted representations ˆP ′
test and actual representations

Ptest.

M(R,R′) = cosine( ˆP ′
test,P

′
test) (19)

We apply guidance with RSA to Deep FCN as our target network and ResNet-18 as our guide network.
Similar to our CKA results, we train for 100 epochs with a batch size of 256, as ridge regression is
sensitive to the number of samples when comparing sets of representations. We manually tune the
λ hyperparameter, finding that λ = 10.0 is optimal for the trained guide network and λ = 100.0 is
optimal for the untrained guide network.

J.3 Results

RSA: We see results over the training, validation, and representational dissimilarity loss in fig. 17.
The Deep FCN guided by a trained ResNet-18 achieves an accuracy of 11.02% and the Deep FCN
guided by a randomly initialized ResNet-18 achieves an accuracy of 11.74%.

We can first observe that guided training improves over base training as noted in fig. 2 and table 3.
This demonstrates the generality of our approach to other metrics. As long as a representational
similarity metric is differentiable, we can optimize the metric for alignment between two networks as
a method to transfer the prior of one network to another.

We can also observe some minute differences between the results with CKA. Most notably, the trained
guide network has similar performance to the untrained guide network. This is likely because less
information about trained features are present in the RSA metric. RSA measures relative distance
between input instances and imposes a constraint of placing these into relative distances. It could be
possible that fewer degrees of freedom are useful for aligning target network with trained guides.

Ridge: We see results over the training, validation and representational dissimilarity loss in fig. 18.
The Deep FCN guided by a trained ResNet-18 achieves an accuracy of 9.46% and the Deep FCN
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Figure 18: Guidance with ridge regression as the representational similarity metric improves performance
over CKA. We change the metric for representational alignment from CKA to ridge regression during guidance
training. We apply this to the Deep FCN with ResNet-18 as a guide network. We see that, like CKA, ridge
regression alignment also allows for transferring the prior from ResNet-18. We find that this improves over CKA
significantly

Experiment CIFAR-10 Test Accuracy (↑)

Deep FCN 60.58

All layer Guidance 70.15
Last layer Guidance 67.18
Last two layers Guidance 68.03
Last five layers Guidance 67.50
Last ten layers 69.31
First ten layers 79.22
First five layers 79.58
First two layers Guidance 73.34
First layer Guidance 65.11

Multiple Guide Layers 68.14
Table 5: Guiding earlier layers of deep networks leads to better results. We apply an ablation experiment to
identify which layers lead to stronger improvement when guided. We use a Deep FCN, guided by a randomly
initialized ResNet-18 on CIFAR-10. We find that guiding earlier layers leads to strong improvement, even over
guiding all layers. Guiding any layer leads to an improvement of performance.

guided by a randomly initialized ResNet-18 achieves an accuracy of 15.69%. Similar to RSA and
CKA, we can see the guided training improves over base training.

Similar to CKA, we observe that randomly initialized guide networks outperform trained guide
networks. Furthermore, performance with ridge regression is better than with CKA. This finding
is intuitive. Ridge regression generally has more degrees of freedom than other similarity metrics
because of fewer invariances imposed on the metric. This means that the solution search space is
larger, leading to better results. We believe this provides a promising path forward for making target
networks have better performance.

Furthermore, ridge regression has other desirable properties such as potential explainability via
probing predicted representations to measure similarity. We can use probing analyses on predicted
representations to see what information the target has inherited from the guide network. This opens
up many avenues for studying guidance in the future.
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Experiment Copy-Paste Accuracy (↑)

RNN 14.35

All layer Guidance 42.56
Last layer Guidance 38.19
Last three layers Guidance 42.33
Last two layers Guidance 41.55
First layer Guidance 27.59
First two layers Guidance 28.15
First three layers Guidance 33.93

One guide layer 36.11
Table 6: Guidance of later layers improves RNN performance. We apply an ablation experiment over RNNs
trained for copy-paste to see whether guiding certain layers lead to improved performance. We find that guiding
later layers leads to stronger performance overall. Furthermore, RNN layers are guided by several guide network
layers in the transformer such as the linear layer and layer-normalization in the transformer decoder. Including
both of these leads to better results.

K Ablation Experiments

We analyze the current design of our layer mapping for guidance by experimenting with the number
of layers used in guidance and whether more complex mappings exist like mapping several layers of
the guide network to a single target network.

We run layer-wise ablation experiments the Deep FCN guided by an untrained ResNet-18 over
CIFAR-10. Similarly, we experiment with RNNs guided by untrained transformers over the copy-
paste task.

In table 5, we first show the effect of guiding over a subset of layers in the Deep FCN, evaluated
over CIFAR-10. We find that earlier layers are much more impactful for a deep network. Intuitively,
this could be due to guidance providing aiding with the credit assignment problem in deep networks:
gradients don’t propagate properly to earlier layers. However, table 6 shows that later layers in the
RNN are more useful to apply guidance to when improving copy-paste performance. In general,
we find that guiding any layer leads to improvements in results generally, showing the general
applicability.

Furthermore, in table 5 and table 6, we consider new methods to map guide network layers to target
network layers. When guiding a Deep FCN with ResNet-18, we only apply a 1-1 layer mapping
for supervision i.e. each Deep FCN layer is guided by only one ResNet-18 layer. From table 5,
introducing multiple sources of supervision from guide network layers by allowing a one-to-many
mapping decreases performance. However, with the RNN, we guide with representations from the
linear layer and layer normalization in the transformer decoder. One could consider that linear layers
are redundant with layer normalization for guidance, so we remove its representations as a potential
supervisory target. We find that this hurts performance, showing that RNNs benefit from multiple
levels of supervision from its guide.

Understanding the dynamics of guidance supervision is interesting and could allow for understanding
training dynamics of neural networks or allow us to form cross-architectural relationships.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce guidance as a tool for taking neural networks that are considered
ill-suited for specific tasks and making them trainable by aligning their activations with
a trainable network like a transformer. We specifically design guidance for a suite of
networks like fully-connected networks and recurrent neural networks and show systematic
improvements. We state these findings in the abstract and introduction and use these to
make claims about deeper understanding neural networks and potential for designing new
architectures.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper addresses all limitations at the end of the introduction as well as in
the appendix. We take care to make point out assumptions of our results but also establishes
how we identified failures in architectures.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper is empirical by nature. We do not rely on proofs. We do formulate
loss functions with particular properties. These loss functions borrow from prior literature
such as prior work that use neural distance functions so there are few theoretical derivations
necessary.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We upload code associated with all experiments in this paper. Furthermore,
we also describe all architectures in detail, include all hyperparameters used in the paper
such as batch size, learning rate, and optimizer, and cover number of training steps. See our
appendices or section 4 where we cover our training setting. We run all experiments with
open-source datasets that are widely available or can be easily generated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See previous answer. We upload code and also only work with open datasets
or generated datasets. All data is available at this time.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We either use datasets with standard train/test splits or describe in detail
how we generate the training/validation/testing data for generated datasets like parity or
copy-paste.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We train with multiple seeds for all runs of base training and guidance and
average over seeds to find the average training performance and standard error. We make
all plots with this average performance and standard error for comparison of statistical
significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the compute (4 H100s) used for this experiment as well as the
amount of time needed to get the experiments to work with our code set up.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with all aspects of the Code of Ethics; our data does not involve
human subjects or have privacy concerns. We also do not believe this work will have harmful
impacts and believe this work will have positive impacts on neural architecture design.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our conclusion is dedicated to potential impacts of our paper, with societal
impacts as well.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our paper does not require any safeguards since we are not in a high risk
category.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide proper citation for the creators of ImageNet and Wikitext-103. We
provide proper citation for the inspiration to use other tasks such as parity and copy-paste.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce/release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not crowdsource or conduct research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use any crowdsourcing nor research with any human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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