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Abstract
Direct Preference Optimization (DPO) has shown
effectiveness in aligning multi-modal large lan-
guage models (MLLM) with human preferences.
However, existing methods exhibit an imbalanced
responsiveness to the data of varying hardness,
tending to overfit on the easy-to-distinguish data
while underfitting on the hard-to-distinguish data.
In this paper, we propose Data- and Model-aware
DPO (DAMA) to dynamically adjust the optimiza-
tion process from two key aspects: (1) a data-
aware strategy that incorporates data hardness,
and (2) a model-aware strategy that integrates
real-time model responses. By combining the
two strategies, DAMA enables the model to effec-
tively adapt to data with varying levels of hard-
ness. Extensive experiments on five benchmarks
demonstrate that DAMA not only significantly
enhances the trustworthiness, but also improves
the effectiveness over general tasks. For instance,
on the Object HalBench, our DAMA-7B reduces
response-level and mentioned-level hallucination
by 90.0% and 95.3%, respectively, surpassing
the performance of GPT-4V. Code is available at:
https://github.com/injadlu/DAMA.

1. Introduction
Recent advances in Multimodal Large Language Models
(MLLMs) have demonstrated remarkable visual understand-
ing capabilities on the basis of large language models (Liu
et al., 2023b; 2024a). However, despite their effectiveness,
the hallucination issue — generating outputs inconsistent
with the image content and human preference — limits their
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Figure 1. (1) Preference data (Prompt, Image, Preferred response
yw, Rejected response yl) with different hardness: “easy-to-
distinguish” data denotes a large Image-Text sim score gap be-
tween yl and yw; “hard-to-distinguish” data indicates a low score
gap between yl and yw. (2) Implicit reward across the optimiza-
tion stage: the reward gap for “easy-to-distinguish” data enhances
significantly during optimization, while for “hard-to-distinguish”
data, the gap remains low.

broader applicability (Liu et al., 2023a; Yu et al., 2024b). To
address this, direct preference optimization (DPO) (Rafailov
et al., 2024; Wu et al., 2024b;a) has been adapted into
MLLM alignment (Yu et al., 2024c; Wang et al., 2024;
Lu et al., 2025), achieving encouraging performance with
moderate computational costs.

DPO methods (Lu et al., 2025; Yu et al., 2024c) collect pref-
erence data consisting of an image, a prompt, and two re-
sponses (yw, yl). The preferred response yw is better aligned
with the visual content (large Image-Text similarity score),
while the rejected response yl contains more hallucinated
content (small Image-Text similarity score). They prioritize
preferred responses yw over the rejected ones yl using DPO
with a hyperparameter β, which balances retaining the refer-
ence model πref and incorporating new preferences into the
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updated model πθ (Gu et al., 2024; Xie et al., 2024).

However, our analysis reveals that current methods exhibit
imbalanced responsiveness in handling the data with varying
hardness during the optimization process, resulting in sub-
optimal performance. As illustrated in Figure 1, for “easy-
to-distinguish” data (large Image-Text similarity score gap
between preferred yw and rejected yl), the reward gap am-
plifies during training, indicating stronger alignment. Con-
versely, for “hard-to-distinguish” data (small Image-Text
similarity score gap), the reward gap stagnates, suggesting
limited capability to distinguish yw from yl. This implies
that current methods, which employ optimization strategies
using a static β across data with varying hardness (Sun et al.,
2024; Yu et al., 2024c), could fail to capture the learning
dynamics inherent in multimodal preference data.

To address this imbalanced responsiveness issue, we pro-
pose Data- and Model-aware direct preference optimization
(DAMA), which dynamically adapts β to both data hard-
ness and model’s responsiveness, enabling adaptively adjust
model’s learning behavior based on the inherent preference
dynamics and model’s real-time responses. Specifically, we
propose two novel mechanisms:

Data-aware Preference Optimization (Section 3.1): We
quantify data hardness via CLIP-based image-text similar-
ity scores (Radford et al., 2021), decomposing responses
into sub-sentences for granularity-aware estimation. Then
we normalize and transform the scores into probabilities
to enable effective hardness estimation. By dynamically
scaling β inversely with hardness, we enforce stronger regu-
larization on “easy-to-distinguish” samples (large β) while
relaxing constraints for “hard-to-distinguish” ones (small
β), preventing overfitting and underfitting, respectively.

Model-aware Preference Optimization (Section 3.2): We
estimate the model’s responsiveness through reward gaps
between preferred (yw) and rejected responses yl, incor-
porating this into the optimization process by dynamically
adjusting β. Larger β values are assigned to larger reward
gaps between yw and yl, indicating the model’s proficiency
in those cases, while smaller β values correspond to smaller
reward gaps, suggesting that the model needs to improve
its responsiveness on those cases. This adaptive strategy al-
lows the model to focus more on cases with less confidence,
while maintaining its performance on well-learned cases.

By combining these strategies via element-wise multipli-
cation, DAMA enables real-time adaptation to both data
hardness and model responsiveness, demonstrating strong
alignment performance across various evaluation bench-
marks. Our contributions are summarized as follows:

• We pioneer the exploration of imbalanced responsiveness
in Multi-modal LLM (MLLM) alignment, where MLLMs
tend to overfit on “easy-to-distinguish” data while strug-

gling to capture the “hard-to-distinguish” data.

• We introduce DAMA, a data- and model-aware strategy
that dynamically adapts the optimization process based on
both data hardness and model responsiveness, facilitating
more nuanced and adaptive optimization.

• We demonstrate DAMA’s effectiveness through compre-
hensive evaluations across various benchmarks and model
sizes. For instance, on the LLaVA-7B model, it achieves
more than 16% performance gains in Non-Response lev-
els compared to vanilla DPO.

2. Preliminary
In this section, we briefly review the MLLM preference
learning procedure, which starts by sampling pairwise pref-
erence data with a supervised fine-tuned (SFT) model and
then optimizing on such data. Specifically, we categorize
this process into the following aspects:

• Preference construction. Preference learning of an
MLLM π begins by sampling pair-wise responses (yw, yl)
from an SFT model πSFT, given an image I and a
prompt question x. This can be formalized as (yw, yl) ∼
πSFT(y|I, x). These pairs are then labeled, either by hu-
mans or other models, to indicate preference, such that yw
is preferred over yl given (I, x), denoted as (yw ≻ yl|I, x).

• Preference optimization. Given pair-wise preference
data (yw, yl) ∼ πSFT(y|I, x), the preference optimization
process traditionally involves explicit reward modeling fol-
lowed by policy optimization.

In this work, we employ Direct Preference Optimization
(DPO) (Rafailov et al., 2024), which simplifies this process
by directly optimizing a policy against the preference data
without an explicit reward model. Instead, DPO defines an
implicit reward function, formalized as:

r(y|I, x) = β log
πθ(y|I, x)
πref(y|I, x)

. (1)

Therefore, the DPO loss can be defined as:

Ldpo = −E(I,x,yw,yl)[log σ(β log
πθ(yw|I, x)
πref(yw|I, x)

−β log
πθ(yl|I, x)
πref(yl|I, x)

)].

(2)

3. Approach
In this section, we describe our DAMA in detail. Specifi-
cally, we first illustrate our data-aware preference optimiza-
tion, then we describe our model-aware preference optimiza-
tion, and finally, we show our combination strategies for
robust preference optimization. Our approach algorithm is
listed in Algorithm. 1.
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Figure 2. Overview of our data-aware preference optimization. For each preference instance: (1) We first break the preferred and rejected
response into sub-sentences by prompting a large language model (LLM); (2) Next, we estimate the similarity scores between each
sub-sentence and the given image using the CLIP classifier, and then calculate the differences between the preferred and rejected response
as the hardness of the data; (3) Finally, we incorporate the estimated hardness into the preference optimization process by modifying β in
Equ (2), allowing the model to adjust based on the data hardness.

3.1. Data-aware Preference Optimization

An overview of our data-aware preference optimization is
shown in Figure 2. Given a preference instance from the
dataset D as {(I, x, yw, yl)} ∼ D, where I, x, yw, yl de-
notes the image, question, preferred response, and rejected
response, respectively, it firstly splits the responses into sim-
ple and self-contained sub-sentences. Next, it calculates
the image-text similarity scores between the sub-sentences
and the image by the CLIP classifier. Then, it combines
the scores of each response and compares the difference
between the preferred and rejected responses as the data
hardness. This hardness is embedded into the preference
optimization process by modifying the β in Equ (2). The
following are detailed descriptions.

We employ the CLIP classifier ΓCLIP (Radford et al., 2021),
to calculate similarity scores. For each preference instance,
we aim to effectively capture the similarity between the re-
sponses (yw, yl) with the given image I, while alleviating
the 77 token length constraints in CLIP. To achieve this, we
decompose the complex responses, which contain various
objects and relations, into simple and self-contained sub-
sentences. Concretely, we prompt the open-source large lan-
guage model, such as LLaMA-3 (Dubey et al., 2024), to split
(yw, yl) into sub-sentences Sw = {Sw,j |j = 1, 2, . . . p}
and Sl = {Sl,k|k = 1, 2, . . . q}, where p and q denotes the
number of sub-sentences for Sw and Sl.

Subsequently, we employ the CLIP classifier ΓCLIP to cal-
culate the similarity score between the given image I and
the sub-sentences Sw,Sl as:

Cw = [ΓCLIP(I,Sw,j)]
p
j=1 ,

Cl = [ΓCLIP(I,Sl,k)]
q
k=1 ,

(3)

where Cw ∈ Rp and Cl ∈ Rq represents the corresponding
similarity scores of Sw and Sl, respectively. To effectively
quantify the difference between preferred response Cw and
rejected response Cl for each instance, we normalize the

corresponding score by the softmax probabilities as :[
Pw

Pl

]
= Softmax

([
Cw

Cl

])
, (4)

Pw ∈ Rp and Pl ∈ Rq represents the probabilites. The dif-
ference between the preferred and rejected probabilities
demonstrates the data hardness. A large difference im-
plies that the preference data is “easy-to-distinguish”, where
the rejected response includes more elements that are not
present in the image, conversely, a small difference suggests
that the preference data is “hard-to-distinguish”, and the
rejected response exhibits minimal hallucination. Then we
define the hardness based on the probabilities difference as:

δ =

p∑
j=1

Pw,j −
q∑

k=1

Pl,k, (5)

αD = σ(δ)/σ(δ̄), (6)

where αD denotes the data hardness, δ measures the differ-
ence between Pw and Pl, and δ̄ denotes the mean difference
across the dataset. The Sigmoid function σ(·) is employed
to transform the response divergence Pw and the mean δ̄
into the range (0, 1) for convenient comparison.

Finally, we adapt β of Equ (2) to incorporate the hardness
into the optimization procedure, and each preference in-
stance corresponding to a specific β as:

βD = β · αD. (7)

This adjustment allows the model to optimize based on the
data hardness, further enhancing its adaptability to the data.

3.2. Model-aware Preference Optimization

An overview of our model-aware preference optimization
is shown in Figure 3. Given a batch of preference in-
stances from dataset D, as B = {(Ii, xi, yw,i, yl,i)|i =
1, 2, . . . , N} ∼ D, it firstly calculates the reward gaps be-
tween the preferred yw,i and rejected yl,i, and then filters
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Figure 3. Overview of our model-aware preference optimization.
Given N preference instances: (1) we first calculate the reward gap
of each instance using the implicit reward model; (2) To ensure
stable modeling, we filter out the outliers (i.e. the instance with
excessively high or low gaps) and then estimate the average gap; (3)
To enable the model to be aware of its current responsiveness, we
integrate such estimation into the preference optimization process
by modifying β in Equ (2).

out the outliers (i.e. the instance with excessively high or
low gaps) for stable estimation. Such estimations are embed-
ded into the preference optimization process by integrating
into β in Equ (2), enabling the model to be aware of its
current responsiveness. Details of model-aware preference
optimization are as follows.

We employ current implicit reward gaps between the pre-
ferred and rejected responses of the given B instances to
measure the current model’s responsiveness. Specifically,
the reward gapR for the i-th instance in B is formalized as:

Ri =
[
β log

πθ(yw,i|Ii,xi)
πref(yw,i|Ii,xi)

− β log
πθ(yl,i|Ii,xi)
πref(yl,i|Ii,xi)

]
, (8)

where πθ and πref represent the optimizing model and ref-
erence model, respectively. We then normalize the reward
gaps using the estimated mean as follows:

R̄i = Ri/R̄, (9)

where R̄ represents the estimated average reward gap, and
R̄i is the normalized one for the i-th instance.

However, the estimation remains sensitive to outliers despite
normalization, especially in the full fine-tuning scenario,
where the batch size is relatively small. To mitigate this
issue, we filter out instances with exceptionally high or low
gaps using a mask vectorM∈ RN , defined as:

Mi =

{
1, (R̄i − R̄)2 ≤ τ,

0, (R̄i − R̄)2 > τ,
(10)

where (R̄i − R̄)2 implies the squared distances from the
mean, and τ represents the sorted K-th distance. With the
filtering, current responsiveness of πθ can be formalized as:

R̄B =
1

N −K

N∑
i=1

Mi × R̄i, (11)

αM = σ(R̄B)/σ(R̄). (12)

σ(·) is the Sigmoid function, which transforms both the
filtered gaps R̄B and the estimated mean R̄ into the range
(0, 1) for convenient comparison, and αM refers to the esti-
mated model responsiveness.

We then integrate αM into the optimization procedure by
modifying β of Equ (2) as:

βM = β · αM. (13)

By utilizing βM to optimize πθ with the filtered batch B·M,
the model can effectively adapt to its current responsiveness
to the preference data.

Finally, we update the estimated mean R̄ using a moving
average after optimization over batch B as follows:

R̄← γ · R̄+ (1− γ) · R̄B, (14)

the momentum γ is set to 0.9, and R̄ is initialized to 0.

3.3. Combining for Preference Optimization

In this section, we present the combination of both data-
and model-aware strategies for robust preference optimiza-
tion. Specifically, given a batch of preference instances
B = {(Ii, xi, yw,i, yl,i)|i = 1, 2, . . . , N} ∼ D, where Ii,
xi, yw,i, yl,i denotes the image, question, preferred response,
and rejected response, respectively, we first compute data
hardness offline based on our data-aware preference opti-
mization, and then obtain the corresponding instance-wise
hardness by Equ (6) as αB

D ∈ RN . Next, we calculate
the reward gaps using Equ 12 as αM. To facilitate the op-
timization process to be both data- and model-aware, we
propose an element-wise combination strategy. Specifically,
we combine αB

D and αM as:

α = αB
D · αM, (15)

where α ∈ RN represents the combined factor. Subse-
quently, we adjust β of Equ (2) to incorporate both compo-
nents into optimization procedure as:

βC = β · α, (16)

where βC ∈ RN , and each preference instance in B corre-
sponds to a specific β. Finally, our combination strategy
can be achieved by employing the βC to optimize πθ with
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the filtered batch B ·M , where M is obtained by Equ (10).
Thus, the optimization process can become more adaptive,
allowing the model to refine its preferences based on both
pre-computed data hardness and real-time model respon-
siveness, further enhancing the robustness.

4. Experiment
In this section, we elaborate on the effectiveness of our Data-
and Model-aware Direct Preference Optimization (DAMA).
Specifically, we first introduce the details of our experi-
mental settings. Next, we illustrate the ablation studies,
and finally, we compare the results with the state-of-the-art
methods over various benchmarks.

4.1. Experimental Settings

In this section, we describe the experimental settings.
Backbone: We employ the LLaVA-1.5 7B and 13B for per-
formance comparison (Liu et al., 2023b).
Dataset: Our focus is not on the preference data construc-
tion, thus we directly utilize the released dataset by (Yu
et al., 2024c), which contains 22k preference data totally.

Baselines. In this work, we compare against state-of-the-art
baselines across various categories:
(1) Hallucination-specific baselines. In this category, we
mainly compare with VCD (Leng et al., 2024), Less-is-more
(Yue et al., 2024), OPERA (Huang et al., 2024), and CCA-
LLaVA (Xing et al., 2024).
(2) Preference Optimization-based baselines. In this cate-
gory, we mainly compare with HA-DPO (Zhao et al., 2023),
POVID (Zhou et al., 2024a), LLaVA-RLHF (Sun et al.,
2024), RLHF-V (Yu et al., 2024b), RLAIF-V (Yu et al.,
2024c), AMP-MEG (Zhang et al., 2024), CSR (Zhou et al.,
2024b), V-DPO (Xie et al., 2024), and TPO (Gu et al., 2024).
(3) Commercial baseline. We include GPT-4V as a strong
reference to evaluate the performance gap between the open-
source and commercial models.

Benchmarks. We conduct experiments on five benchmarks,
including three hallucination benchmarks reflecting trust-
worthiness, and two general benchmarks:
(1) Object HalBench is employed to evaluate object hal-
lucination by detailed descriptions of the image content.
We report the response-level and mentioned-level non-
hallucination rates to evaluate its capability to reduce hallu-
cination (Rohrbach et al., 2018).
(2) AMBER is a multi-dimensional hallucination bench-
mark, which contains more than 15k samples. We report the
Accuracy and F1 metric by its discriminative component
(Wang et al., 2023).
(3) MMHal-Bench assesses response-level hallucination rate
and informativeness by GPT-4 compare model outputs with
human responses and object labels (Sun et al., 2024).

(4) LLaVA Bench consists of 24 images and 60 questions
including conversation, detailed description, and complex
reasoning ability (Liu et al., 2023b).
(5) MM-Vet is designed to evaluate six integrated compe-
tencies, including OCR, recognition, knowledge, language
generation, spatial awareness, and math (Yu et al., 2024d).

Implementation Details. For both LLaVA-1.5 7B and 13B
models, we employ full parameter-tuning over the prefer-
ence dataset with four epochs. Specifically, for reproducibil-
ity, we adopt the same hyperparameters as provided in the
official LLaVA GitHub repository 1. The batch size N is
set to 16, the selected size K is set to 12, and the penalty
hyperparameter β is set to 0.1 by following (Rafailov et al.,
2024; Yu et al., 2024c). All experiments are conducted with
four A100 80GB GPUs, and four epochs of fine-tuning cost
seven hours for both backbones.

4.2. Ablation Studies

In this section, we evaluate the effects of different compo-
nents of our DAMA. To this end, we utilize the LLaVA-1.5
7B model as the backbone. For clear illustration, we report
both the response and the mentioned-level non-hallucination
rate on the Object Hallucination benchmark, where the non-
hallucination rate is defined as 100%− hallucination rate.
The following are detailed illustrations.

• Influences of different components. The performance of
various components of DAMA is reported in Table 1, where
“DPO” refers to Direct Preference Optimization (Rafailov
et al., 2024), “MDPO” represents our Model-aware Pref-
erence Optimization, “D2PO” denotes Data-aware Prefer-
ence Optimization, and “DAMA” corresponds to our com-
bined strategy. The experimental results demonstrate: (1)
All strategies significantly outperform the baseline method
(DPO), especially our final “DAMA”, achieving more than
10% response level performance gains, highlighting the ef-
fectiveness of our method; (2) Compared with “MDPO”, the
performance gain of “D2PO” is relatively modest, suggest-
ing that the quality of the preference data is already high,
which further validates the efficacy of the preference data
construction strategy (Yu et al., 2024c).

• Influences of probability transformation in data-aware
preference optimization. Table 2 summarizes the perfor-
mance of different response inconsistency estimation strate-
gies, where “CLIP Scores” denotes that we directly estimate
δ based on Cw and Cl, with δ =

∑p
j=1 Cw,j/

∑q
k=1 Cl,k,

and “CLIP Probs” represents our strategy, which transforms
Cw and Cl into probabilities. The results indicate that:
firstly, both strategies improve the performance, underscor-
ing the effectiveness of integrating data inconsistency into
the optimization process, which allows the model to better

1https://github.com/haotian-liu/LLaVA
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Table 1. Experimental results of different components of DAMA.

METHOD
OBJECT HALBENCH

RESPONSE (↑) MENTION (↑)

LLAVA-1.5-7B 47.75 73.08
+DPO 78.29 89.48

+D2PO 82.54+4.25 90.64+1.16
+MDPO 88.00+9.71 93.74+4.26
+DAMA 90.87+12.58 95.33+5.85

Table 2. Experimental results of different preference inconsistency
construction strategies.

METHOD
OBJECT HALBENCH

RESPONSE (↑) MENTION (↑)

DPO 78.29 89.48

+CLIP SCORES 80.65+2.36 89.62+0.14
+CLIP PROBS 82.54+4.25 90.64+1.16

handle varying levels of data hardness, thereby improving
overall robustness; furthermore, transforming Cw and Cl

into probabilities yields a larger performance gain, as prob-
abilities smooth the estimation of δ, mitigating noise from
large gaps between Cw and Cl, and preventing the influ-
ences by the outliers.

• Effects of the data filtering in model-aware preference
optimization. Table 3 presents the performance of differ-
ent data filtering strategies, where “No Filter” denotes that
we directly utilize the mean gaps to estimate the model
state without filtering, “Bottom” shows that we remove the
N−K samples with the largest distances in the batch, “Top”
is filtering the N −K samples with the smallest distances,
“Bottom & Top” refers to our filtering strategy, which filters
both extremes based on the squared distances. Specifically,
we can observe that: firstly, filtering solely from the bottom
or top leads to performance degradation, indicating that such
data introduces bias in estimating the model state. More-
over, filtering only the bottom samples results in significant
performance drops due to overfitting on the top-ranked data,
which misguides the estimation of model responsiveness
to focus excessively on potentially less representative in-
stances. Furthermore, filtering both bottom and top samples
yields performance improvements, demonstrating the effec-
tiveness of our proposed strategy, as it balances the influence
of extreme data points.

• Effects of the combination strategy. Figure 4 and Fig-
ure 5 illustrate the performance of different combination
strategies from the Response and Mention, respectively.
“Multiplication” refers to combining both effects using a
weighted sum strategy, where α = (1− ρ) · αM + ρ · αB

D,
with ρ ranging from 0.0 to 1.0, where ρ = 0.0 is the MDPO,

Table 3. Experimental results of different filtering strategies.

METHOD
OBJECT HALBENCH

RESPONSE (↑) MENTION (↑)

NO FILTER 86.66 92.62

BOTTOM 76.36-10.30 87.20-5.42
TOP 86.34-0.32 92.48-0.14
BOTTOM & TOP 88.00+1.34 93.74+1.12

80.00

82.50

85.00

87.50

90.00

92.50

1 2 3 4 5 6 7 8 9 10 110.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Addition Ratio

Response (  )

Multiplication

Addition

Figure 4. Experimental results of the combination strategies with
the response-level non-hallucination rates.

and ρ = 1.0 refers to the “D2PO”. We can observe that
multiplication outperforms the weighted sum by a signif-
icant margin. This is because the weighted sum balances
the two components without effectively merging their influ-
ences, whereas multiplication amplifies their contributions,
allowing for more robust and superior performance gains.

• Sensitivity to hyper-parameter. Table 5 shows the ef-
fects of varying K, where we select K = 8, 10, 12, and 14
responses from a batch of 16, where no filter denotes that K
is set to 16. We observe that the performance improves as K
increases from 8 to 12, peaking at K = 12, and then slightly
declines as K approaches 16. Notably, K = 8 performs
worse than the baseline (K = 16), which can be attributed
to the introduced bias by too few samples (50% samples).
These suggest that moderate filtering—removing a small
number of low-quality or outlier samples—can effectively
improve performance. Based on this observation, we adopt
K = 12 in our experiments.

4.3. Comparison with state-of-the-art methods

In this subsection, we compare our method with state-of-the-
art methods under three trustworthy benchmarks: Object
HalBench, AMBER, and MMHal-Bench, and two general
benchmarks: LLaVA-Bench and MM-Vet. We compare our
method against baselines from various aspects, including
hallucination-specific baselines, preference optimization-
based baselines, and the commercial baseline GPT-4V. Our
DAMA is adapted to both the LLaVA-1.5 7B and 13B mod-
els. The experimental results, along with results of vanilla
DPO and the improvements achieved by DAMA over DPO,
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Table 4. Performance comparisons with state-of-the-art methods on different benchmarks. We report non-hallucination rates in different
levels including response level (Non-Rsp.) and mentioned-level (Non-Men.) for Object HalBench (Rohrbach et al., 2018). Hall. refers to
the Hallucination Rate for MMHal Bench (Sun et al., 2024). The best results of all methods are indicated in bold, and the second best
results are underlined. The compared results are sourced from (Yu et al., 2024c; Gu et al., 2024), and the reported results of LLaVA-1.5,
DPO, and DAMA are evaluated using GPT-4-turbo-2024-04-09.

METHOD SIZE
OBJECT AMBER MMHAL- LLAVA

MM-VET(↑)HALBENCH BENCH BENCH(↑)
NON-RSP.(↑) NON-MEN.(↑) ACC(↑) F1(↑) SCORES(↑) HALL.(↓)

METHOD (HALLUCINATION-SPECIFIC)

VCD (CVPR’24) 7B 51.2 75.7 71.8 74.9 2.12 54.2 61.6 -
LESS-IS-MORE (ACL’24) 7B 59.7 82.2 72.4 75.8 2.33 50.0 - -
OPERA (CVPR’24) 7B 54.9 77.7 75.2 78.3 2.15 54.2 61.3 -
CCA-LLAVA (NIPS’24) 7B 53.3 76.2 77.7 81.9 1.92 61.5 64.3 -

METHOD (PREFERENCE OPTIMIZATION)

HA-DPO (ARXIV’23) 7B 60.1 80.1 75.2 79.9 1.98 60.4 - -
POVID (ARXIV’24) 7B 51.9 75.6 82.9 87.4 2.08 56.2 68.2 31.7
RLHF-V (CVPR’24) 7B - - 74.8 78.5 2.02 60.4 68.0 32.3
RLAIF-V (ARXIV’24) 7B 89.5 94.8 76.8 84.5 2.95 32.3 - -
CSR (NIPS’24) 7B - - 73.2 76.1 2.05 60.4 68.9 31.0
V-DPO (EMNLP’24) 7B - - - 81.6 2.16 56.0 - -
TPO (ARXIV’24) 7B - - 79.3 85.0 2.47 51.0 70.2 33.0
TPO (ARXIV’24) 13B - - 83.9 88.0 2.72 45.8 72.8 36.2
LLAVA-RLHF (ACL’24) 13B 61.9 81.1 79.7 83.9 2.02 62.5 95.6 -
RLHF-V (CVPR’24) 13B 87.8 92.5 72.6 75.0 2.45 51.0 76.7 38.5
AMP-MEG (NIPS’24) 13B 68.3 79.4 79.5 84.6 3.08 36.5 - -

LLAVA-1.5 7B 47.8 71.2 73.9 77.7 1.95 63.5 62.3 31.6
+ DPO 7B 78.3 89.5 75.5 79.2 2.15 57.0 64.6 30.4
+ DAMA 7B 90.9 95.3 83.3 87.0 2.76 41.0 68.0 32.8
IMPROVEMENTS (%) +16.1% +6.5% +10.3% +9.8% +28.4% +28.1% +5.3% +7.9%

LLAVA-1.5 13B 50.0 76.4 71.2 73.0 2.36 56.0 66.1 36.1
+ DPO 13B 84.5 92.4 78.5 83.5 2.59 48.0 74.0 35.4
+ DAMA 13B 89.1 94.4 84.3 88.1 2.89 43.0 75.1 36.4
IMPROVEMENTS (%) +5.1 % +2.1 % + 5.8% + 4.6% +15.4% +10.4% +1.4 % +2.8 %

GPT-4V - 86.4 92.7 83.4 87.4 3.49 28.1 98.0 67.7
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Figure 5. Experimental results of the combination strategies with
the mentioned-level non-hallucination rates.

are listed in Table 4.

From the experimental results, we can observe that: (1)
Compared to DPO, our DAMA achieves substantial per-
formance improvements over all compared benchmarks.
It’s noteworthy that on MMHal-Bench, it achieves more
than 10% improvements for the 13B model, and more than
28% gain for 7B models, which is significant; (2) DAMA
achieves new state-of-the-art over various benchmarks. Our
DAMA-7B reduces the response-level and mentioned-level

Table 5. Experimental results of different selected number(K),
with the batch size N=16.

METHOD
OBJECT HALBENCH

RESPONSE (↑) MENTION (↑)

NO FILTER 86.66 92.62
K = 8 85.34-1.32 92.25-0.37

K = 10 87.50+0.84 93.19+0.57
K = 14 87.96+1.30 93.45+0.83
K = 12 88.00+1.34 93.74+1.12

hallucination on the generative Object HalBench by 90.9%
and 95.3%. Moreover, DAMA-13B achieves 84.3% Ac-
curacy and 88.1 F1 score on the discriminative AMBER
benchmark. These attained results surpass those of GPT-4V,
fully demonstrating the effectiveness of DAMA.

5. Related Work
In this section, we first briefly summarize the hallucination
mitigation methods for multi-modal large language models,
and then, we illustrate related methods for aligning with
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human preferences. Finally, we enumerate the differences
between ours and related methods.

5.1. Hallucination mitigation in MLLMs

Hallucination, as a key indicator of trustworthiness, refers
to that the MLLM outputs are not aligned with the image
content (Liu et al., 2024b). Current mitigation strategies
generally fall into the following four key areas:
• Data cleaning. Works such as LRV-Instruction (Liu et al.,
2023a) and Hallucidoctor (Yu et al., 2024a) identify noise
within instruction tuning data as a cause of hallucination and
propose fine-grained data cleaning and curation strategies.
• Visual representation enhancement. Methods like (Jain
et al., 2024; Tong et al., 2024) suggest that insufficient visual
cues as a cause of hallucination, and they incorporate more
intricate visual features to enrich the visual representations.
• Inference-time enhancement. Works like VCD (Leng
et al., 2024) and MARINE (Zhao et al., 2024) employ visual
contrastive decoding mechanisms to enhance the model’s
focus on visual details, often by contrastively sampling from
the original and visually distorted distribution.
• Preference Optimization. Inspired by the great success
of preference optimization in language models (Rafailov
et al., 2024; Shao et al., 2024), recent works utilizing pref-
erence optimization have demonstrated significant perfor-
mance in hallucination mitigation (Lu et al., 2025; Yu et al.,
2024b;c). They achieve this by designing strategies to pri-
oritize the preferred responses (better aligned with visual
content) over the rejected responses (containing more hallu-
cinated content).

5.2. Preference Optimization

To align model outputs with human preferences, preference
optimization methods have garnered significant attention
(Ouyang et al., 2022; Rafailov et al., 2024; Wu et al., 2024b).
As a pioneering work, RLHF (Ouyang et al., 2022) firstly
trains a reward model on preference data and then optimizes
the policy with PPO (Schulman et al., 2017). However,
obtaining an effective reward model remains challenging.
To address this, DPO (Rafailov et al., 2024) simplifies the
process with an implicit reward function, allowing for direct
optimization on preference data. β-DPO (Wu et al., 2024b)
further enhances DPO by introducing dynamic β to more
effectively leverage preference data of varying quality.

In MLLMs, current efforts typically focus on two aspects:

• Collecting high-quality preference data. Existing works
employ diverse strategies for preference construction. These
include human-based methods (Yu et al., 2024b; Sun et al.,
2024), and large language model-based strategies (Yu et al.,
2024c; Li et al., 2024). Among the latter, RLAIF-V (Yu
et al., 2024c) utilizes open-source models (e.g., LLaVA-
NeXT (Liu et al., 2024a)), while works like (Li et al., 2024;
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Figure 6. Log probability gaps of different models (LLaVA-1.5-
7B, DPO, and DAMA) between “easy-to-distinguish” (top 25%
image-text similarity), “hard-to-distinguish” (bottom 25% image-
text similarity), and “normal” data (middle 50%).

Zhang et al., 2025) employ closed-source models such as
GPT-4V (Achiam et al., 2023) for annotation.
• Emphasizing visual detail. Recent approaches that con-
struct vision-based rejected samples via image manipulation
include (Xie et al., 2024; Wang et al., 2024; Lu et al., 2025)
(e.g., object removal or replacement (Lu et al., 2025)). Ad-
ditionally, works like (Gu et al., 2024; Cui et al., 2025)
identify and emphasize key language tokens from prefer-
ence responses to better attend to visual details.

Differences. Compared with existing MLLM preference
optimization strategies, which focus on data curation and
introduce fine-grained regularizations, our work aims to de-
sign an improved optimization strategy that can effectively
leverage model responses and preference data, enabling
the model to adaptively respond to the data, and thereby
enhancing the alignment performance.

6. Discussion and Future Work
6.1. Discussion

Although DPO has demonstrated its effectiveness in miti-
gating hallucination issues in multi-modal LLMs (Yu et al.,
2024b;c), it inherently treats all training samples equally. As
illustrated in Figure 6, this tends to bias the model toward
“easy-to-distinguish” data—those with larger log probabil-
ity gaps—while neglecting the more challenging “hard-to-
distinguish” data, which often exhibit negative log probabil-
ity gaps. This imbalance constrains the model’s expressive
capacity and generalization ability.

To address this limitation, we introduce DAMA, a data- and
model-aware strategy that enhances the model’s sensitivity
to data hardness. As shown in Figure 6, by explicitly ac-
counting for data hardness and model responses, DAMA
achieves consistently higher log probability gaps, with no-
table gains on “hard-to-distinguish”. This leads to a more
balanced optimization process and substantially enhances
the model’s overall reliability.

8
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6.2. Future Work

While DAMA marks a significant advancement towards
adaptive and robust MLLM alignment, several promising
avenues remain for future exploration:
(1) Adaptive strategies in online scenarios. DAMA cur-
rently operates on offline data; future work could investigate
its application in online settings, leveraging approaches like
GRPO (Huang et al., 2025) to enable continuous model
refinement with evolving preference data.
(2) Advanced hardness and responsiveness estimations.
Our current estimation of data hardness (CLIP-based simi-
larity (Radford et al., 2021)) and model responses (reward
gaps) is simple. Future research could explore more sophis-
ticated metrics, e.g. semantic entropy (Farquhar et al., 2024),
fine-grained visual representations (Tong et al., 2024).
(3) Scalability to broader architectures and modalities.
A crucial next step involves assessing DAMA’s efficacy and
scalability on commercial MLLMs (Google, 2025; OpenAI,
2025), diverse multi-modal architectures (e.g., Omni model
(Xu et al., 2025), Unified model (Deng et al., 2025)), and
reasoning models (Kimi et al., 2025), which promises to
broaden its practical impact significantly.

7. Conclusion
This paper introduced Data- and Model-aware Direct Prefer-
ence Optimization (DAMA), a simple yet effective strategy
to address the imbalanced responsiveness to varying data
hardness in Multimodal Large Language Models (MLLMs).
DAMA adaptively adjusts the model’s learning behavior
through two key strategies: (1) a data-aware strategy that dy-
namically incorporates data hardness, and (2) a model-aware
strategy that integrates the model’s real-time responses. Ex-
periments across five benchmarks and various model sizes
consistently demonstrated DAMA’s effectiveness.

Impact Statement
This paper aims to enhance the robustness of multi-modal
large language model alignment, thereby advancing the
field of visual understanding. By tackling challenges like
hallucination, we strive to improve the reliability of AI
systems in alignment with human preferences. We hope that
our research will contribute to facilitating the development
of AI systems that are both effective and reliable, ultimately
delivering meaningful societal benefits.
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A. Appendix

Figure 7. Dynamic data-aware βD over each data point, we also show the mean, std, min, and max value.

Figure 8. Dynamic model-aware βM over each training step, we also show the mean, std, min, and max value.

A.1. Prompt templates to split the sentences

In this section, we introduce the prompt template to split the sentences into sub-sentences with LLaMA3 (Dubey et al.,
2024). The prompt is: You are an expert in extracting facts from the given question-answer pair about an image. Your
task is to: Analyze the provided question-answer pair based on the image, extract all factual statements from the answer,
and rewrite them into self-contained sentences. Requirements for each sentence are: 1. complete, each sentence must be
self-contained; 2. factual (omit opinions, subjective statements); 3. concise (no more than 77 tokens). Format your result
strictly as:### Facts:- Fact 1 (e.g., ”A red shoe sits on a wooden floor.”)- Fact 2 (e.g., ”The shoe has laces and a white
sole.”)- ...### Question-answer pair: Question: ”{Question}” Answer: ”{Answer}”
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Figure 9. Dynamic βC by combining the data- and model-aware strategies, we also show the mean, std, min, and max value.

A.2. Dynamic β with different strategies.

In this section, we analyze the dynamic β with our data- and model-aware strategies.
• Data-aware strategy (Figure 7,): The range of data-aware βD falls within (0.0524, 0.1428) with the original β initialized as
0.1. Moreover, the mean value is 0.0999 with a standard deviation of 0.0288. These observations demonstrate that maintains
proximity to the original, while adaptively adjusting based on the data characteristics, enabling a more effective capture of
the data.
•Model-aware strategy (Figure 8): as the training progresses, the model-aware βM gradually converges to the original β.
Meanwhile, we find that the βM fluctuates within a moderate range of (0.0530, 0.1580), demonstrating controlled adaptivity.
These observations suggest that as the model training stabilizes, its responsiveness becomes more consistent and eventually
approaches a steady state.
• Combined strategy (Figure 9): Combining both the data- and model-aware strategies yields a more dynamic range of
combined βC, spanning from 0.0177 to 0.2261, which is wider than either. Moreover, while the value eventually stabilizes
around 0.1, we notice that the mean value during the training stage is a bit lower than βM. This suggests that it relaxes the
constraints during training based on the data hardness, enabling the model to better capture fine-grained data patterns and
thereby adaptively enhancing its responsiveness to data characteristics.

A.3. Qualitative analysis

In this section, we provide qualitative analysis between our Data- and Model-aware preference optimization (DAMA) and
the DPO method (Rafailov et al., 2024). The case studies are shown in Figure 10 and Figure 11, and we also include the
evaluations of GPT-4. From the case studies, we can observe two key points: (1) while both methods generate correct outputs,
DPO tends to be more general, whereas DAMA offers richer, more detailed descriptions. This can be attributed to the
integration of data hardness, quantified by the CLIP score between the Image and responses, into the optimization process,
enabling DAMA to capture and describe more nuanced visual details; and (2) as evidenced by the GPT-4 evaluation, DAMA
generates more vivid and immersive visual descriptions, this can be attributed to the enhancement of the responsiveness to
the visual content, resulting in a more expressive and contextually aligned representation of the scene.
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Algorithm 1 Algorithm of DAMA.
Input: Preference dataset D, hyper-parameter β, SFT model πSFT, CLIP classifier ΓCLIP.
Output: The optimized model πθ.
Initialize model πθ and reference model πref as πSFT.
for {(I, x, yw, yl)} in D do

Sw ← LLM{yw}, Sl ← LLM{yl};
obtains δ with {I,Sw}, {I,Sl}; ▷ Equ (3)→ (5);
αD ← σ(δ)/σ(δ̄); ▷ Equ (6);

end for
repeat

for B = {(Ii, xi, yw,i, yl,i)}Ni=1 ∼ D do
obtainRi with yw,i and yl,i; ▷ Equ (8);
obtain R̄B withRi; ▷ Equ (9)→ (11);
αM ← σ(R̄B)/σ(R̄); ▷ Equ (12);
α← αB

D · αM , where αB
D = {αD,i}Ni=1; ▷ Equ (15);

βC ← β · α; ▷ Equ (16);
Compute loss w.r.t. βC, πθ; ▷ Equ (2);
Compute the gradient and update the model πθ.
R̄← γ · R̄+ (1− γ) · R̄B; ▷ Equ (14);

end for
until The optimization is converged.

Q: Provide a thorough description of the given image.

DAMA: The image features a bathroom with a unique and eye-catching element - a large green plant 

climbing up the wall. The plant covers a significant portion of the wall, adding a touch of nature to the 

space. In the bathroom, there is a toilet located towards the right side of the image. A potted plant can 

also be seen in the room, further enhancing the greenery in the space. The bathroom appears to have a 

modern design, giving it a contemporary feel.

DPO: The image features a bathroom with a unique and 

eye-catching element - a large green plant climbing up 

the wall. The plant adds a touch of nature to the space, 

making it feel more alive and vibrant. 

In the bathroom, there is a toilet located towards the right 

side of the image. A shelf can also be seen in the room, 

possibly for storing bathroom essentials. The presence of 

the plant and the shelf contribute to the overall cozy and 

inviting atmosphere of the bathroom.

GPT-4: DAMA is more effective due to the richness in its description. It not only describes the plant’s 

effect but gives a clearer picture of its scale and placement, creating a more vivid visual. The added 

mention of another potted plant and the modern design gives a stronger sense of the room’s style and 

enhances the overall atmosphere. These details would likely help someone visualize the space better.

Prompt: Given two different descriptions of a given image, with the question “Provide a thorough 

description of the given image”, tell me which one you like, and show me reasons.

Figure 10. Qualitative Comparisons between DAMA and vanilla DPO. Data source: Object HalBench.
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Q: What is this photo about? Please answer in great detail.

DAMA: The image features a snowboarder performing a trick in the snow, with the snowboard in 

mid-air near a ramp. The snowboarder is the main focus of the scene, showcasing skills.

There are several other people and a building present in the background, possibly watching the 

snowboarder's performance or engaging in their own snowboarding activities. The overall 

atmosphere of the image conveys an exciting and dynamic winter sports scene.

DPO: In the image, a person is performing a trick on a 

snowboard in the snow. They are in the middle of the 

action, showcasing skills. The snowboarder is the main 

focus of the scene, and their snowboard is prominently 

visible beneath them.

The background features a building, adding to the wintery 

atmosphere of the scene. The snowboarder's impressive 

trick and the presence of the building create a dynamic 

and exciting image.

GPT-4: DAMA provides a more comprehensive, detailed, and immersive portrayal of the image. It 

not only highlights the snowboarder's skill and trick but also fleshes out the background, giving a sense 

of the environment and the people around. The extra information about the ramp, the other people, 

and the overall excitement makes the scene feel more dynamic and real, which is why I prefer it over DPO.

Prompt: Given two different descriptions of an given image, with the question “What is this photo 

about? Please answer in great detail”, tell me which one you like, and show me reasons.

Figure 11. Qualitative Comparisons between DAMA and vanilla DPO. Data source: Object HalBench.
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