
Published as a conference paper at ICLR 2025

DESIGNING CONCISE CONVNETS WITH
COLUMNAR STAGES

Ashish Kumar
ScoreLabsAI
Atlanta, USA
ashishkumar@gmail.com

Jaesik Park∗

Seoul National University
Seoul, South Korea
jaesik.park@snu.ac.kr

ABSTRACT

In the era of vision Transformers, the recent success of VanillaNet shows the huge
potential of simple and concise convolutional neural networks (ConvNets). Where
such models mainly focus on runtime, it is also crucial to simultaneously focus
on other aspects, e.g., FLOPs, parameters, etc, to strengthen their utility further.
To this end, we introduce a refreshing ConvNet macro design called Columnar
Stage Network (CoSNet). CoSNet has a systematically developed simple and
concise structure, smaller depth, low parameter count, low FLOPs, and attention-
less operations, well suited for resource-constrained deployment. The key novelty
of CoSNet is deploying parallel convolutions with fewer kernels fed by input
replication, using columnar stacking of these convolutions, and minimizing the use
of 1×1 convolution layers. Our comprehensive evaluations show that CoSNet rivals
many renowned ConvNets and Transformer designs under resource-constrained
scenarios. Code: https://github.com/ashishkumar822/CoSNet.

1 INTRODUCTION

In the past decade, there has been enormous study in the neural network architectures Krizhevsky
et al. (2012); Simonyan & Zisserman (2014), demonstrating that different information paths He et al.
(2016); Huang et al. (2017); Szegedy et al. (2015); Tan & Le (2019); Xie et al. (2017) can affect the
performance. However, as highlighted in recent VanillaNet Chen et al. (2023), due to the increased
network complexity, the primary source of runtime bottleneck would be the off-chip memory traffic
apart from the main computations because GPUs are constantly becoming more powerful.

The issue is prevalent in more advanced models, such as ConvNext Liu et al. (2022), CoatNet Dai
et al. (2021b), ViT Dosovitskiy et al. (2020), etc., due to the indirect information paths or the attention
mechanism that requires frequent memory reordering. Hence, despite these models being far ahead
of their simpler counterparts He et al. (2016); Krizhevsky et al. (2012), there are still opportunities to
develop concise models for better accuracy, runtime, and resource tradeoffs.

Efforts in this direction are noteworthy. For example, RepVGG Ding et al. (2021) improves runtime
via structural parameterization. ParNet Goyal et al. (2021) reduces depth by utilizing multiple
shallower network modules. Recent VanillaNet Chen et al. (2023) merges layers during inference
while avoiding branches. These works fall in the paradigm of simplifying ConvNet models for
resource-constrained scenarios, in contrast to the advanced ConvNets Dai et al. (2021b); Liu et al.
(2022), or ViT Dosovitskiy et al. (2020) focusing on state-of-the-art accuracy.

We are inspired by the utility of the former class of works, i.e., simpler and concise models. However,
besides focusing on runtime or depth Chen et al. (2023); Ding et al. (2021); Goyal et al. (2021),
we also focus on other ConvNet aspects, such as FLOPs, parameters, depth, computational density,
etc. To this end, we propose a concise model by revisiting the fundamentals of prominent ConvNet
designs and define the following key sub-objectives:

1) Reducing depth: Network depth refers to the number of layers stacked. More depth means more
sequential operations, thus more latency and wastage of parallel computing elements (GPU cores).
2) Controlled parameter growth: Reducing depth to achieve lower latency leads to an increased
number of parameters Chen et al. (2023); Goyal et al. (2021), thus necessitating parameter control

∗Corresponding author

1

https://github.com/ashishkumar822/CoSNet


Published as a conference paper at ICLR 2025

1x13x3

1x13x3

1x13x3

3x3

3x3

3x3

1x1, Squeeze

3x3

1x1, expand1x1,Proj

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

3x3

1x1, expand1x1,Proj

3x3 3x3 3x3

3x3

1x1, expand

3x3 3x3 3x3

3x3

1x1, expand

3x3 3x3 3x3

1x1 1x1 1x1 1x1

1x1 1x1 1x1 1x1

1x1 1x1 1x1 1x1

3x3, Pool

1x11x1

3x31x1

3x3, Pool

1x15x5

Concatenate

Input

3x3

1x1

3x3 3x3 3x3

3x3 3x3 3x3 3x3

1x1

3x3 3x3 3x3 3x3

1x1

K = 4
groups

7x7 Depthwise

1x1, Expand

1x1, Squeeze

7x7 Depthwise

1x1, Expand

1x1, Squeeze

7x7 Depthwise

1x1, Expand

1x1, Squeeze

Stage

Block

branch

(a) VGG (b) Inception (c) ResNet (d) ResNeXt (e) ConvNeXt (f) RepVGG (g) Group Conv

Figure 1: Design of various representative architectures in the order of their development in the timeline from (a)
to (e). Each graph represents a stage of a network operating at a particular resolution.

while having short depth.
3) Low branching: Network branching increases memory requirements to hold intermediate tensors
and also increases memory access cost to account for the branched operations.
4) High computational density: A layer must have a high computing density since fewer computations
per layer waste the parallel computing cores, e.g., depthwise convolutions Howard et al. (2017) have
less computation density and high memory access cost compared to the dense convolutions Simonyan
& Zisserman (2014).
5) Uniform primitive operations: Maintaining a uniform convolution kernel size throughout the net-
work and branches is desirable so that computations can be packed into minimum GPU transactions.

This leads to a concise refreshing ConvNet design (Figure 2) that shows enhanced performance in
various aspects, such as low memory consumption, low memory access costs on parallel computing
hardware, smaller depth, minimum branching, lower latency, low parameter count, and reduced
FLOPs. The key attributes of CoSNet-unit are parallel columnar convolutions (Sec. 3.2), input
replication (Sec. 3.3), and shallow-deep projections (Sec. 3.7), allowing CoSNet to perform better
than simple ConvNets or rival the advanced designs. The achievements of CoSNet emphasize
simplicity’s importance in effective ConvNet designs.

2 RELATED WORK

This section provides an overview of representative network designs (Figure 1). The earlier Con-
vNets (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014) stacked dense convolutions with an
increasing number of channels and decreasing resolution (Figure 1a). Improved versions (He et al.,
2016; Szegedy et al., 2015; Xie et al., 2017) achieve higher accuracy via manually designed blocks
(Figure 1c), while (Howard et al., 2017; Ma et al., 2018; Sandler et al., 2018; Zhang et al., 2018), use
depthwise convolutions (Sifre & Mallat) for saving computations, but they are not memory friendly
(Ding et al., 2021).

ConvNets have also grown from branchless (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014)
(Figure 1a) to single branch (He et al., 2016) (Figure 1c) to multi-branch (Radosavovic et al., 2020;
Szegedy et al., 2016; Tan & Le, 2019; Zoph et al., 2018) (Figure 1b). These models utilize 1× 1
convolutions frequently, which rapidly increases network depth (He et al., 2016; Sandler et al., 2018;
Tan & Le, 2019; Zhang et al., 2018) (Figure 1c-1e). Although beneficial, both large depth and high
branching tend to increase the latency, memory requirements, and Memory Access Cost (MAC)
(Chen et al., 2023) due to the serialized execution of parallel branches (Ding et al., 2021; Srivastava
et al., 2015; Tan & Le, 2019).

2



Published as a conference paper at ICLR 2025

1x1, Ls

1x1, Lf

1x1, Lp

3x3,Pool

3x3 3x3 3x3 3x3

3x3 3x3 3x3 3x3

3x3 3x3 3x3 3x3

IR

'M' Parallel
Convolutions,
each with 'N'

kernels

Shallow
Projection

Deep
Projections

Column

1x1, Ls

1x1, Lf

N, 3x3, g=M

1x1, Lp

3x3,Pool

N, 3x3, g=M

N, 3x3, g=M

IR

Input
Replication

Fuse Once

1x1, Squeeze

3x3

1x1, expand1x1,Proj

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

3x3

3x3

1x1, expand

Remove all
1x1 layers

except a few

Inserting parallel
convolutions and

shallow+deep
projections

Merging
Parallel

Convolutions

(Sec.3.2)

(Sec.3.7)

(Sec.3.3)

(Sec.3.7)

(Sec.3.6)

(Sec.3.5)(Sec.3.1)

(a) (b) (c) (d)

Figure 2: Design evolution flow of CoSNet-unit. (a) A ResNet (He et al., 2016) stage with three blocks. (b)
removing all 1× 1 convolutions except the first of the first block and the last of the last block. (c) detailed
design of the CoSNet-unit by integrating our design ideas into ‘(b)’, and (d) final optimized CoSNet-unit from
an implementation viewpoint.

Recent RepVGG (Ding et al., 2021) proposes structural parameterization (SR) to resolve the branching
issue. While ParNet (Goyal et al., 2021) and VanillaNet (Chen et al., 2023) reduce depth to achieve
lower latency. Efforts to reduce depth increase the parameter count (Chen et al., 2023; Goyal et al.,
2021) to match the accuracy of relatively deeper counterparts (He et al., 2016).

Recent Vision Transformers (ViTs) (Dosovitskiy et al., 2020; Liu et al., 2023; 2021; Touvron et al.,
2021) have attracted huge research interests. As outlined in (Dai et al., 2021b), the O(N2)-complex
attention in ViTs is a notable issue from a data size and resource-constrained viewpoint. This issue
continues to inspire improvements in ConvNets. For instance, RepLKNet (Ding et al., 2022) aims to
bridge the gap between ViT and CNNs by employing large kernels.

The above designs focus on limited aspects, e.g., (He et al., 2016; Xie et al., 2017) on the accuracy,
(Chen et al., 2023; Goyal et al., 2021) on runtime and depth. To address this research gap, we draw
inspiration from the success of VanillaNet-style networks, and instead of pursuing large-scale models,
we focus on our sub-objectives (Sec 1) and revisit the representative ConvNets to push the frontier of
simple, concise models.

3 COLUMNAR STAGE NETWORK

Our approach is a series of improvements motivated by representative ConvNet designs. To understand
better, we begin with ResNet (He et al., 2016) as a stepping stone as done in (Liu et al., 2022). We
design the building block of CoSNet i.e., CoSNet-unit while recalling our sub-objectives: 1) reducing
depth, 2) controlled parameter count, 3) high computational density, 4) uniform primitive operation,
and 5) low branching.

3.1 AVOIDING 1×1 FOR REDUCING DEPTH

The recent works of reducing depth (Chen et al., 2023; Goyal et al., 2021) increase the parameter
count to achieve accuracy similar to a deeper network. However, we aim to reduce depth while
avoiding a large parameter count, which is a difficult objective. Hence, we handle reducing depth and
controlling parameter count separately.

3



Published as a conference paper at ICLR 2025

To reduce depth, we identify that 1×1 convolutions in the ResNet-like designs (Figure 2a) (He et al.,
2016; Liu et al., 2022) etc., form almost 66% of depth without improving receptive field due to their
pointwise nature (Luo et al., 2016). Hence, we minimize the number of these layers. Specifically, we
use only two 1×1 convolutions Ls and L f in a CoSNet-unit, where Ls reduces the channel squeezing
while L f performs expansion (Figure 2b). Then, we stack l number of 3×3 convolutions, forming a
column sandwiched between Ls and L f .

This strategy brings two benefits. First, it reduces the overall depth at the same receptive field, e.g.,
three blocks of ResNet-like design have 9 layers with three receptive-field governing 3×3 layers.
In contrast, the proposed design only has 5 layers, i.e., two 1×1 and three 3×3 conv, indicating a
notable 45% depth reduction with the same receptive field.

Second, the reduced depth results in reduced FLOPs and latency e.g., CoSNet performs better than
ResNet-50 at 50% fewer layers while having relatively fewer parameters, FLOPs, and latency.

3.2 PARALLEL COLUMNAR CONVOLUTIONS FOR CONTROLLED PARAMETERS.

We propose Parallel Columnar Convolutions to handle the large parameter count originating to
compensate for the lost non-linearity due to the reduced depth (Chen et al., 2023). In this design,
we first deploy M columns in parallel (Figure 2c), and crosstalk among columns does not exist, i.e.
a convolution of a column can only feed a convolution of the same column. Then, we restrict the
number of kernels in a convolution layer of a column to a small number of N. This design affects the
number of parameters less aggressively when the number of columns increases (see ablations in the
supplement). This is a powerful feature of CoSNet design, offering controlled growth of parameter
count during network scaling. This helps CoSNet achieve higher accuracy with fewer parameters.

The idea of the parallel column is based on our hypothesis that multiple kernels with fewer channels
can be better than one with large channels. Having M convolutions in parallel with a smaller number
of kernels N is equivalent to synthesizing multiple kernels from a large kernel. On the other hand,
the idea of smaller N is motivated by the fact that many parallelly operating neurons tend to learn
redundant representations while being computationally taxing and causing overfitting. For the same
reason, EfficientViT (Liu et al., 2023) slices the input channels in its structure. Hence, by keeping N
small, we expect to decouple the data patterns learned by the different columns.

In ConvNets, a similar idea was proposed in Inception (Szegedy et al., 2015), then in ResNeXt
(Xie et al., 2017), and then abandoned later as it caused inefficiency. For instance, Inception uses
different-sized convolutions and pooling in parallel, which must be executed serially despite being
employed in parallel. Also, Inception differs from our columnar architecture since it does not have
columns as deep as CoSNet.

3.3 INPUT REPLICATION

In CoSNet, all the columns are fed with replicas of the input. We achieve that via a simple Input
Replication IR operation (Figure 2c), which transforms a tensor ∈ RC×H×W into duplicated one
∈ R(M×C)×H×W , where M denotes the desired number of the columns. In the CoSNet-unit, the IR is
applied over the output of the Ls layer to feed each column with the input replica.

Input replication has also been employed in the earlier ResNeXt (Xie et al., 2017), but notable
differences exist. ResNeXt has multiple blocks per stage, and each block performs IR, as shown
in Figure 1d. Whereas CoSNet performs IR only once. In ResNeXt, IR is performed before 1×1
squeeze layer, whereas in CoSNet, it is done after the squeeze layer.

The parallel columnar organization may seem to overlap with widely explored group convolutions
(Xie et al., 2017; Zhang et al., 2018). However, there are two key differences. First, group convolution
divides the input channels, thus defying the objective of IR because now each column receives only a
subset of the input channels, thus less information per group, as shown in Figure 1g. On the contrary,
CoSNet uses IR, which feeds each column with the replica of the input, thus making the entire input
information accessible to each column. This becomes one of the reasons that despite infrequent
fusion (Sec. 3.6), unlike group conv, CoSNet still performs better (See ablations in the supplement).

4



Published as a conference paper at ICLR 2025

3.4 UNIFORM KERNEL SIZE FOR HIGH COMPUTATIONAL DENSITY & UNIFORM PRIMITIVE
OPERATIONS.

The parallel columns of a CoSNet-unit can be executed independently; however, this design can be
optimized further if all the convolutions in all the columns have uniform kernel size. To this end,
we first set the kernel size in all the convolutions to k× k, where k ∈ R≥3. Then, we combine the
convolutions of different columns lying at the same level, i.e., the first convolution of each column is
combined into one convolution having M batches.

With this optimization, all columns (Figure 2c) can be efficiently processed using GPU-based
highly optimized Batched-Matrix-Multiply routines, leading to increased computational density,
increased GPU utilization, reduced memory access cost (Ding et al., 2021), and minimized GPU
load-dispatch transactions. Thus resulting in a simplified CoSNet design (Figure 2d). Moreover,
since an CoSNet-unit is made up mostly of 3×3 convolutions, it well suits the convolution hardware
accelerators because they have dedicated support for them, and more chip area can be dedicated to
3×3 computational units.

3.5 BATCHED PROCESSING FOR MINIMAL BRANCHING.

From the previous step, batched processing yields additional benefits, i.e., CoSNet becomes uni-
branched regardless of training and testing. This reduces memory consumption and access costs,
resulting in lower per-iteration training time and increased parallelization. This contrasts with
RepVGG (Ding et al., 2021), which has a considerable training time. Regarding ASIC development,
low branching in CoSNet leaves more area on the chip because of the reduced memory requirement
to store intermediate tensors. This area can now be dedicated to more computational units.

Although the multi-branch design is beneficial for achieving high accuracy (Ding et al., 2021) (Fig-
ure 1f), CoSNet, despite having minimal branching, effortlessly achieves high accuracy. This is
because the core design of CoSNet-unit posses multiple branches in the form of columns and short
projections (Figure 2c). However, due to batched processing CoSNet-unit mimics uni-branched be-
havior. In this way, CoSNet takes advantage of both worlds, i.e., eliminated train time complexity due
to multiple branches and fast inference during test time without needing structural parameterization
(Ding et al., 2021).

3.6 FUSE ONCE

Finally, the output of all the columns is fused by L f . In ResNeXt (Figure 1d), the output of 3×3
convs are fused immediately via a 1×1 conv, whereas in CoSNet, it is done much later. Our fuse
once strategy is different from group (Zhang et al., 2018) or depthwise convolutions (Howard et al.,
2017) that are followed by 1×1 (Figure 1g) to avoid loss of accuracy because each group/channel
has too few connections which restrict its learning ability without frequent fusion ((Zhang et al.,
2018), Figure 1g). This increases network depth and, hence, latency. On the contrary, CoSNet is free
from this constraint because we increase N as we go deep in CoSNet unlike (Zhang et al., 2018).
Hence, each neuron in M columns has a sufficiently large number of connections that enable learning
without frequent fusion. We performed an ablation (see supplement) by applying the same strategy as
Figure 1g in CoSNet. We observed increased network depth, latency, and decreased accuracy.

3x3

1x1

3x3 3x3 3x3

3x3 3x3 3x3 3x3

1x1

3x3

1x1

3x3 3x3 3x3

3x3 3x3 3x3 3x3

1x1

1x1

1x1

3x3 3x3

3x3 3x3

3x3 3x3

3x3 3x3

1x1

1x1

Figure 3: Illustration of Vanilla
Frequent Fusion (left) ((Zhang
et al., 2018), Figure 1g) and Pair-
wise Frequent Fusion (right).

Pairwise Frequent Fusion (PFF): Although we aim to reduce 1×1
layers as they have a high concentration of most of the network pa-
rameters and FLOPs (Sec. 3.1), we propose a frequent fusion scheme
via 1× 1 while avoiding the parameter and FLOPs concentration
issue. In this scheme, instead of fusing all the columns simultane-
ously, we fuse columns only pairwise via 1× 1 (Figure 3). This
strategy essentially offers several benefits. Firstly, with pairwise
fusion, 1×1 kernel incorporates only a few computations per layer
due to small kernel size (fewer channels) while improving network
accuracy. Secondly, the latency incorporated due to these layers does
not increase the overall latency because of the few computations per
layer, hence offers better accuracy with negligible latency overhead (1− 2ms). See Table 1. We
denote all such CoSNet variants as CoSNet-PFF.

5



Published as a conference paper at ICLR 2025

3.7 PROJECTIONS

To facilitate better gradient flow during network training, we employ projections introduced by
ResNet (He et al., 2016) but slightly differently in two ways:

1) Shallow Range. These projections are formed between any two layers of a column and promote
better gradient flow through the stack of l layers (Figure 2c). Since such projections connect only
two layers, unlike a stack of layers in ResNet-like designs, these are named shallow ranges.

2) Deep Range. These projections are formed between the input and the output of a CoSNet-unit.
Specifically, the input to CoSNet-unit is projected to its output via a 3×3 pooling layer followed
by a 1× 1 convolution Lp whose output is fused with the output of L f (Figure 2c). The pooling
operation gathers spatial context by enlarging the receptive field, which is otherwise impossible for Lp
alone due to its point-wise nature. We call it deep projection because it bypasses the entire columnar
structure while combining information from the previous network stages, i.e., multi-layer information
fusion, and providing a short alternative path for gradient flow.

The above projection design helps achieve CoSNet better accuracy (see ablations) and is slightly
different from the existing ones. First, projection in ResNet-like models (He et al., 2016; Xie et al.,
2017) is used only in the first block of a stage (shallower), and projection between stages does not
exist. Second, projection in these models operates at a stride of 2. On the contrary, in CoSNet, the
projection connects two stages (deeper) while operating at unit stride and utilizing pooling to increase
the receptive field.

3.8 COSNET INSTANTIATION

Stem, 3x3 s=2

Pool
Block-1

Block-2

Block-N

Stage-2

Stage-3

Stage-4

Stage-5

Stem, 3x3 s=2

Pool

Stage-2, CosNet-Unit-1

Stage-3, CosNet-Unit-2

Stage-3, CosNet-Unit-3

Stage-4, CosNet-Unit-4

(a) Existing Models (b) CoSNet

Figure 4: Macro design of (a) exist-
ing networks e.g. Ding et al. (2021);
He et al. (2016); Liu et al. (2022);
Xie et al. (2017), and (b) CoSNet.
CoSNet does not have blocks in its
stages.

A CoSNet variant can be instantiated by stacking CoSNet-units
(Figure 4). CoSNet does not have the notion of blocks but only
has stages in the form of CoSNet-unit. This contrasts with existing
ConvNets, which have stages, and each stage comprises multiple
blocks (Goyal et al., 2021; He et al., 2016; Liu et al., 2022; Xie
et al., 2017) e.g., ResNet-50 has four stages, having 3, 4, 6, and
3 blocks respectively (Figure 1c- 1e).

To instantiate a CoSNet variant, we follow the tradition of five
stages (He et al., 2016; Simonyan & Zisserman, 2014), among
which the first (stem) is a 3× 3 convolution with a stride of 2,
while the remaining are the CoSNet-units.

Following ResNet (He et al., 2016), we set channels of Ls to 64,
which gets doubled at each stage, while the channels of Lp and
L f always equal to ζ times the channels of Ls. We set ζ = 4,
following (He et al., 2016). To further simplify the instantiation,
we set the depth of a column, i.e., l in kth CoSNet-unit equal to the number of blocks in the kth

stage of a widely used model ResNet-50 (He et al., 2016). Summarily, CoSNet-unit has only three
hyperparameters: M,N, l which control CoSNet’s parameters, depth, latency, and accuracy. Hence,
different CoSNet variants can be constructed by changing them. Please refer to the supplement for
CoSNet instance names and ablations on M,N, l.

4 EXPERIMENTS

We evaluate CoSNet on ImageNet (Deng et al., 2009) dataset consisting of 1.28M train and 50k
validation images of 1000 categories. Our training methodology is consistent with recent Vanil-
laNet (Chen et al., 2023). We use data augmentation techniques in (Chen et al., 2023; Liu et al.,
2022). See the appendix at the end of this paper for more details.

4.1 ADVANCED CONVNETS AND VISION TRANSFORMERS

CoSNet vs recent EfficientViT (Liu et al., 2023) As shown in Table 1 and Figure 5, CoSNet is
less deep and runs 60% faster than EfficientViT Transformer while exhibiting better accuracy, e.g.,
EfficientVit-M4 vs CoSNet-A0. EfficientVit is another example of lower FLOPs that do not guarantee

6



Published as a conference paper at ICLR 2025

Table 1: Evaluation of CoSNet on ImageNet Deng et al. (2009). Latency is measured with batch size 1. ‘SR’
denotes structural parameterization. ‘PFF’ stands for pairwise frequent fusion. See Sec 3.6 for details.

Architecture Type #Depth ↓↓ #Params ↓↓ FLOPs ↓↓ Latency ↓↓ FPS ↑↑ Top-1 (%) ↑↑

• ResNet-18 He et al. (2016) ConvNet 18 11.6M 1.83B 4ms 250 71.1
• ResNet-34 He et al. (2016) ConvNet 34 21.7M 3.68B 8ms 125 74.1
• ResNet-50 He et al. (2016) ConvNet 50 25.5M 4.12B 11ms 90 76.3
• ResNet-101 He et al. (2016) ConvNet 101 44.5M 7.85B 15ms 67 77.2
• ResNet-152 He et al. (2016) ConvNet 152 60.1M 11.50B 15ms 67 77.8

• ResNeXt-50 Xie et al. (2017) ConvNet 50 25.1M 4.40B 11ms 90 77.4
• ResNeXt-101 Xie et al. (2017) ConvNet 101 44.1M 8.10B 14ms 71 78.4

• EfficientNet-B0 Tan & Le (2019) ConvNet 49 5.3M 0.40B 8ms 125 75.1

• RegNetX-12GF Radosavovic et al. (2020) ConvNet 57 46.0M 12.10B 13ms 77 80.5

• RepVGG-A0 Ding et al. (2021) ConvNet 22 8.3M 1.46B 4ms 250 72.4
• RepVGG-A0 Ding et al. (2021) w/o SR ConvNet 22 9.1M 1.51B 8ms 125 72.4
• RepVGG-A1 Ding et al. (2021) ConvNet 22 12.7M 2.36B 5ms 200 74.4
• RepVGG-A1 Ding et al. (2021) w/o SR ConvNet 22 14.0M 2.63B 7ms 143 74.4
• RepVGG-B0 Ding et al. (2021) ConvNet 28 14.3M 3.40B 5ms 200 75.1
• RepVGG-B0 Ding et al. (2021) w/o SR ConvNet 28 15.8M 3.06B 7ms 143 75.1
• RepVGG-A2 Ding et al. (2021) ConvNet 22 25.5M 5.12B 7ms 143 76.4
• RepVGG-A2 Ding et al. (2021) w/o SR ConvNet 22 28.1M 5.69B 9ms 111 76.4
• RepVGG-B3 Ding et al. (2021) ConvNet 28 110.9M 26.20B 17ms 58 80.5
• RepVGG-B3 Ding et al. (2021) w/o SR ConvNet 28 123.0M 29.10B 22ms 45 80.5

• ParNet-L Goyal et al. (2021) ConvNet 12 55.0M 26.70B 23ms 43 77.7
• ParNet-XL Goyal et al. (2021) ConvNet 12 85.0M 41.50B 25ms 40 78.5

• DeiT-S Touvron et al. (2021) Transformer 48 22.0M 4.60B 15ms 66 79.8
• Swin-T Liu et al. (2021) Transformer 96 28.0M 4.50B 20ms 50 81.1
• ViTAE-S Xu et al. (2021) Transformer 116 23.6M 5.60B 24ms 41 82.0

• CoAtNet-0 Dai et al. (2021b) Hybrid 64 25.0M 4.20B 15ms 66 81.6

• ConvNeXt-T Liu et al. (2022) ConvNet 59 29.0M 4.50B 13ms 77 81.8
• ConvNextV2-P Woo et al. (2023) ConvNet 41 9.1M 1.37B 11ms 90 79.7
• ConvNextV2-N Woo et al. (2023) ConvNet 47 15.6M 2.45B 13ms 77 81.2
• ConvNextV2-T Woo et al. (2023) ConvNet 59 28.6M 4.47B 16ms 62 82.5

• EfficientViT-M4 Liu et al. (2023) Transformer 42 8.8M 0.30B 6ms 166 74.3
• EfficientViT-M5 Liu et al. (2023) Transformer 70 12.4M 0.60B 7ms 142 76.8

• VanillaNet-6 Chen et al. (2023) ConvNet 6 32.0M 6.00B 6ms 167 76.3
• VanillaNet-8 Chen et al. (2023) ConvNet 8 37.1M 7.70B 6ms 167 79.1
• VanillaNet-9 Chen et al. (2023) ConvNet 9 41.4M 8.60B 6ms 167 79.8
• VanillaNet-10 Chen et al. (2023) ConvNet 10 45.7M 9.40B 7ms 142 80.5

• InceptionNeXt-S (Yu et al., 2024) ConvNet 48 49.0M 8.40B 18ms 55 83.5
• UniRepLKNet-S (Ding et al., 2024) ConvNet 180 56.0M 9.10B 23ms 43 83.9

• CoSNet-A0 ConvNet 26 8.8M 1.25B 6ms 167 77.1
• CoSNet-A1 ConvNet 26 12.1M 1.70B 6ms 167 78.2
• CoSNet-B0 ConvNet 26 19.8M 3.05B 7ms 143 79.5
• CoSNet-B1 ConvNet 26 22.0M 3.50B 7ms 167 79.9
• CoSNet-B2 ConvNet 26 30.0M 5.10B 9ms 111 81.3
• CoSNet-C1 ConvNet 28 24.4M 4.12B 7ms 143 80.0
• CoSNet-C2 ConvNet 26 38.9M 7.09B 11ms 90 82.1

• CoSNet-A1-PFF ConvNet 38 12.7M 1.93B 7ms 143 79.7
• CoSNet-B0-PFF ConvNet 38 21.8M 3.44B 8ms 125 80.6
• CoSNet-B1-PFF ConvNet 38 25.6M 4.08B 8ms 125 81.4
• CoSNet-B2-PFF ConvNet 38 34.3M 5.91B 10ms 100 82.7
• CoSNet-C1-PFF ConvNet 42 27.3M 4.75B 8ms 125 81.3
• CoSNet-C2-PFF ConvNet 38 44.5M 8.27B 13ms 77 83.7

lower latency. Even the CoSNet-A1-PFF variant is still relatively shallower than EfficientVit while
delivering better accuracy.

CoSNet vs DeiT (Touvron et al., 2021) From Table 1, CoSNet-B1 is almost 50% less deep, has 23%
fewer params, and runs 60% faster than DeiT Transformer while exhibiting slightly better accuracy.
With PFF, CoSNet-B0-PFF performs better in terms of accuracy, depth, and runtime.

CoSNet vs advanced mid-range ConvNets and Transformers CoSNet-B2 is 72% less deeper, 55%
faster, and 1.2% more accurate than the popular Swin Transformer (Liu et al., 2021). It is also 55%

7



Published as a conference paper at ICLR 2025

0 10 20 30 40 50 60
Parameters (M)

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

ResNet-18

ResNet-34

ResNet-50
ResNet-101

ResNet-152
ResNeXt-50

ResNeXt-101

RepVGG-A0

RepVGG-A1
RepVGG-B0

RepVGG-A2
ParNet-L

VanillaNet-8
VanillaNet-9

VanillaNet-10

EfficientViT-M4

EfficientViT-M5

ConvNeXt-T
ConvNextV2-T

DeiT-S Swin-T

ViTAE-S
CoAtNet-0

CoSNet-A0
CoSNet-A1
CoSNet-B0

CoSNet-B1
CoSNet-B2

CoSNet-C2

CoSNet-B0-PFF

6 7 8 9
Parameter modulated Depth

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

ResNet-18

ResNet-34

ResNet-50 ResNet-101
ResNet-152ResNeXt-50

ResNeXt-101

RepVGG-A0

RepVGG-A1
RepVGG-B0

RepVGG-A2

ParNet-L

VanillaNet-8
VanillaNet-9

VanillaNet-10

EfficientViT-M4

EfficientViT-M5

ConvNeXt-T
ConvNextV2-T

DeiT-S Swin-T

ViTAE-S
CoAtNet-0

CoSNet-A0
CoSNet-A1

CoSNet-B0
CoSNet-B1

CoSNet-B2
CoSNet-C2

CoSNet-B0-PFF

0.0 2.5 5.0 7.5 10.0 12.5 15.0
FLOPS (B)

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

ResNet-18

ResNet-34

ResNet-50
ResNet-101

ResNet-152ResNeXt-50
ResNeXt-101

RepVGG-A0

RepVGG-A1RepVGG-B0

RepVGG-A2

VanillaNet-8
VanillaNet-9

VanillaNet-10

EfficientViT-M4

EfficientViT-M5

ConvNeXt-T
ConvNextV2-T

DeiT-S

Swin-T

ViTAE-S
CoAtNet-0

CoSNet-A0
CoSNet-A1

CoSNet-B0
CoSNet-B1

CoSNet-B2
CoSNet-C2

CoSNet-B0-PFF

0 5 10 15 20 25
Latency (ms)

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

ResNet-18

ResNet-34

ResNet-50
ResNet-101
ResNet-152ResNeXt-50

ResNeXt-101

RepVGG-A0

RepVGG-A1

RepVGG-B0 RepVGG-A2

ParNet-L

VanillaNet-8
VanillaNet-9

VanillaNet-10

EfficientViT-M4

EfficientViT-M5

ConvNeXt-T
ConvNextV2-T

DeiT-S Swin-T

ViTAE-SCoAtNet-0

CoSNet-A0
CoSNet-A1

CoSNet-B0
CoSNet-B1

CoSNet-B2
CoSNet-C2

CoSNet-B0-PFF

(a) (b)

(c) (d)

Figure 5: Comparing the proposed CoSNet with representative models. Models in ‘ and ‘ refers to CoSNet
and existing models respectively. CoSNet has lower parameters, lower FLOPs, while depth of CoSNet is not
unnecessarily large. The size of the circle is proportional to the parameter count.

less deeper, 30% faster with slightly lower accuracy than the popular ConvNeXt (Liu et al., 2022).
Moreover, CoSNet-C2 rivals the latest ConvNext-v2-T (Woo et al., 2023) with similar accuracy but
higher speed and smaller depth.

CoSNet-B2, C1, C2 models rivals advanced Transformers, such as ViTAE-S (Xu et al., 2021) and
hybrid models, such as CoAtNet-0 (Dai et al., 2021b). With similar parameter counts and accuracy,
our models show faster inference speed. The competitive tradeoffs offered by CoSNet show the
significance of concise models.

4.2 COMPARISON WITH STANDARD CONVNETS

We show that CoSNet achieves efficiency in multiple aspects in a large spectrum of models while
being simpler during training and inference and offering competitive trade-offs relative to the rival
network. See Table 1 for the comparison. Figure 5 plots the trends regarding various aspects.

CoSNet vs recent VanillaNet (Chen et al., 2023). CoSNet rivals recent ConvNet design, VanillaNet.
VanillaNet is shallow and mainly focuses on latency. Our CoSNet-A0 shows similar latency at fewer
parameters, fewer FLOPs, and high accuracy compared with VanillaNet-6 (Table 1).

CoSNet vs recent ParNet (Goyal et al., 2021). CoSNet outperforms recent non-deep ParNet that
focuses on lower latency (Table 1 R4). CoSNet is uni-branched, while ParNet has multiple shallow
branches which serialize the computations, thus making them deeper virtually.

CoSNet vs RepVGG (Ding et al., 2021). RepVGG offers a plain VGG-like (Simonyan & Zisserman,
2014) structure via Structural Reparameterization (SR). However, its training complexity is high due
to a large number of parameters and three branches at each layer (Figure 1f). Hence, we show its
performance with and without SR.

Compared with the RepVGG family, CoSNet offers considerably lower complexity during training
and testing, thanks to its parallel columnar convolutions. In addition, CoSNet has fewer parameters

8



Published as a conference paper at ICLR 2025

Table 2: Comparison with VannilaNet Chen et al. (2023) in training.

Architecture #Depth↓↓ #Epochs↓↓ #Params↓↓ #FLOPs↓↓ Top-1 (%)↑↑ Train Time Per Epoch ↓↓ Train Time 300 Epochs ↓↓

• VanillaNet-6 Chen et al. (2023) 6 300 32.0M 6.00B 76.36 8 minutes 40 hours
• VanillaNet-8 Chen et al. (2023) 8 300 37.1M 7.70B 79.13 11 minutes 55 hours
• CoSNet-B1 26 300 19.8M 3.05B 79.50 5 minutes 25 hours

Table 3: CoSNet with SE-like modules Hu et al. (2018).

Approach #Epochs #Depth #Params #FLOPs Top-1 (%)

• ResNet-50 + SE Hu et al. (2018) 120 50 28.0M 4.13B 76.85
• ResNet-50 + CBAM Woo et al. (2018) 120 50 28.0M 4.13B 77.34
• CoSNet-B1 120 26 19.2M 3.05B 76.77
• CoSNet-B1 + SE Hu et al. (2018) 120 26 20.1M 3.10B 77.85

• ResNet-50 + AFF Dai et al. (2021a) 160 50 30.3M 4.30B 79.10
• ResNet-50 + SKNet Li et al. (2019) 160 50 27.7M 4.47B 79.21
• CoSNet-C1 + SE Hu et al. (2018) 160 28 25.0M 4.13B 79.51

and fewer FLOPs while offering similar speeds with higher accuracy. For instance, CoSNet-B2 is
better than RepVGG-B3 at similar depth, 73% fewer parameters, 80% lesser FLOPs while running
faster. This shows the significance of parallel columns of CoSNet that during model scaling, parameter
count does not grow rapidly.

CoSNet vs EfficientNet (Tan & Le, 2019). Although we do not aim for a mobile regime in this
paper, we show that having fewer parameters and FLOPs does not guarantee faster speeds. As shown
in Table 1, EfficientNet-B0 has 50% fewer parameters and 77% fewer FLOPs, but is 50% deeper, and
runs 37% slower. By exploring the design space, CoSNet can be extended to the mobile regime.

CoSNet vs ResNet (He et al., 2016) family. As shown in Table 1, CoSNet-A0 is 6% more accurate,
has 25% fewer parameters, shows similar runtime, and shows 31% fewer FLOPs than ResNet-18
although CoSNet has 6 more layers. Similarly, in contrast to ResNet-34, it is more accurate by
3% with 59% fewer parameters, 66% fewer FLOPs, and 23% less layers, while it is fast by 37%.
ResNet-50 is the widely employed backbone in downstream tasks (Carion et al., 2020; Goyal et al.,
2017; He et al., 2017; Ren et al., 2015) due to its affordability regarding representation power, FLOPs,
depth, and accuracy. Table 1 shows that CoSNet-B0 surpasses ResNet-50 while being 50% shallower,
22% fewer parameters, 25% fewer FLOPs, and 40% faster.

CoSNet vs bigger ResNet (He et al., 2016) and ResNeXt (Xie et al., 2017) models. As shown
in Table 1, CoSNet-C1 is better than bigger variants of ResNet, which serves as backbones for
cutting-edge works (Carion et al., 2020; Li et al., 2022). Our CoSNet outperforms them in various
aspects while being 72% and 82% less deep relative to ResNet-101 and ResNet-152, respectively.
CoSNet also runs faster by 50% in 50% fewer parameters and FLOPs. In addition, despite being
smaller than ResNeXt (Xie et al., 2017), CoSNet-C1 outperforms it in various aspects. Overall
CoSNet-C1 is 50% less deeper than ResNeXt-50 while running 50% faster at 6% fewer FLOPs, 2%
fewer parameters while being more accurate. In contrast to ResNeXt-101, CoSNet-C2 is 75% less
deeper, 11% fewer parameters, 12% fewer FLOPs, and 35% faster at a higher accuracy.

4.3 ADDITIONAL EXPERIMENTS

CoSNet has small training walltime. We provide an additional comparison with the recent ConvNet
design, VanillaNet (Chen et al., 2023), under training settings. Table 2 shows that despite VanillaNet
being a shallow network, it has a high training time. We speculate that the large number of channels
in the deeper layers of VanillaNet slows down batch processing at large batch sizes. In CoSNet,
parallel columnar convolutions and controlled parameter growth in the deeper layers counter this
issue, leading to lower training time.

CoSNet is seamlessly compatible with SE-like (Hu et al., 2018) modules. Table 3 shows the results
when CoSNet is used in conjunction with Squeeze and Excitation (SE) like modules (Hu et al., 2018).
It outperforms recent attention mechanism (AFF (Dai et al., 2021a), SKNet (Li et al., 2019), and
CBAM (Woo et al., 2018)) applied to ResNet-50.

9



Published as a conference paper at ICLR 2025

Table 4: CoSNet in state-of-the-art Detection Transformers (DETR) Li et al. (2022) @12 epochs setting.

Method #Params #FPS AP AP50 AP75 APS APM APL

• DN-DETR-ResNet50 Li et al. (2022) 44M 24 38.3 59.1 41.0 17.3 42.4 57.7
• DN-DETR-CoSNet-C2 56M 25 39.2 60.0 41.9 18.1 43.0 59.1

Im
ag

e
R

es
N

et
-5

0
C

oS
N

et
-B

1

Figure 6: CAM Srinivas & Fleuret (2019) visualizations. Notably, CoSNet attends the class regions more
accurately than the baseline.

4.4 COSNET IN STATE-OF-THE-ART DETECTION TRANSFORMER

We apply CoSNet to state-of-the-art object Detection Transformer, DN-DETR (Li et al., 2022) to
demonstrate the effectiveness of CoSNet in the downstream task. We experiment on MS-COCO (Lin
et al., 2014) benchmark and utilized DN-DETR’s default training settings.

Table 4 shows that DN-DETR with CoSNet improves the inference speed and average precision com-
pared to the DN-DETR with ResNet-50 backbone. By further optimizing the DETR hyperparameters,
CoSNet can be configured to deliver better performance.

4.5 VISUALIZATION OF ATTENTION

To comprehend CoSNet’s better performance, we investigate its class activation maps (CAM) on
ImageNet (Deng et al., 2009) validation set. We use CAM output from popular Full-Grad-CAM
(Srinivas & Fleuret, 2019) for a given class. CAM visualizations of ResNet-50 and CoSNet-B1 are
shown in Figure 6. It can be seen that CoSNet, despite being 50% shallower than ResNet, is better at
learning to attend regions of the target class relative to the baseline.

5 CONCLUSION

We propose CoSNet, which revisits ConvNet design based on multiple aspects for concise models.
CoSNet is based on our parallel columnar convolutions and input replication concepts to be efficient
in parameters, FLOPs, accuracy, latency, and training duration. Through extensive experimentation
and ablations, we show that CoSNet rivals many representative ConvNets and ViTs such as ResNet,
ResNeXt, RegNet, RepVGG, and ParNet, VanillaNet, DeiT, EfficientViT while being shallower,
faster, and being architecturally simpler.

Future work. CoSNet is open for improvement. In this paper, we have built a simple template
architecture that can further evolve like ConvNext (Liu et al., 2022). For instance, a comprehensive
design space of CoSNet including mobile regime can be explored, similar to RegNet (Radosavovic
et al., 2020). Besides, layer merging post-training, shown in VanillarNet (Chen et al., 2023), can be
utilized to develop shallower variants of CoSNet. In addition to that, CoSNet can also be married
with a Transformer attention mechanism like (Dai et al., 2021b) or (Liu et al., 2023).

10



Published as a conference paper at ICLR 2025

Acknowledgements. Jaesik Park was supported by MSIT grant (RS-2021-II211343: AI Graduate
School Program at Seoul National University (5%) and 2023R1A1C200781211 (95%))

REFERENCES

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer
Vision, pp. 213–229. Springer, 2020.

Hanting Chen, Yunhe Wang, Jianyuan Guo, and Dacheng Tao. Vanillanet: the power of minimalism
in deep learning. Advances in Neural Information Processing Systems, 36, 2023.

Yimian Dai, Fabian Gieseke, Stefan Oehmcke, Yiquan Wu, and Kobus Barnard. Attentional feature
fusion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 3560–3569, 2021a.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in neural information processing systems, 34:3965–3977,
2021b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13733–13742, 2021.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11963–11975, 2022.

Xiaohan Ding, Yiyuan Zhang, Yixiao Ge, Sijie Zhao, Lin Song, Xiangyu Yue, and Ying Shan.
Unireplknet: A universal perception large-kernel convnet for audio video point cloud time-series
and image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5513–5524, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ankit Goyal, Alexey Bochkovskiy, Jia Deng, and Vladlen Koltun. Non-deep networks. arXiv preprint
arXiv:2110.07641, 2021.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

11



Published as a conference paper at ICLR 2025

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. CVPR, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
detr training by introducing query denoising. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13619–13627, 2022.

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 510–519, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988,
2017.

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14420–14430, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive
field in deep convolutional neural networks. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, pp. 4905–4913, 2016.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28:
91–99, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

L Sifre and S Mallat. Rigid-motion scattering for image classification. arxiv 2014. arXiv preprint
arXiv:1403.1687.

12



Published as a conference paper at ICLR 2025

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

Suraj Srinivas and François Fleuret. Full-gradient representation for neural network visualization.
Advances in neural information processing systems, 32, 2019.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pp. 6105–6114. PMLR, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3–19, 2018.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16133–16142, 2023.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vitae: Vision transformer advanced
by exploring intrinsic inductive bias. Advances in neural information processing systems, 34:
28522–28535, 2021.

Weihao Yu, Pan Zhou, Shuicheng Yan, and Xinchao Wang. Inceptionnext: When inception meets con-
vnext. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5672–5683, 2024.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856, 2018.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

13



Published as a conference paper at ICLR 2025

APPENDIX

A COSNET INSTANCES

Table A1 shows CoSNet instances configurations mentioned in the main paper.

Table A1: CoSNet instances Configurations.

Model Pc N l M #Depth #Params #FLOPs

• CoSNet-A0 256 512 1024 2048 16 32 64 128 3 4 6 3 1 1 1 1 26 8.8M 1.25B
• CoSNet-A1 256 512 1024 2048 16 32 64 128 3 4 6 3 4 4 4 4 26 12.1M 1.77B

• CoSNet-B0 256 512 1024 2048 32 64 128 256 3 4 6 3 4 4 4 4 26 19.8M 3.05B
• CoSNet-B1 256 512 1024 2048 32 64 128 256 3 4 6 3 5 5 5 5 26 22.6M 3.51B
• CoSNet-B2 256 512 1024 2048 32 64 128 256 3 4 6 3 4 4 16 4 26 30.0M 5.1B

• CoSNet-C1 256 512 1024 2048 48 80 144 272 4 4 6 4 4 4 4 4 28 24.4M 4.12B
• CoSNet-C2 256 512 1024 2048 48 80 144 272 3 4 6 3 6 6 16 6 26 38.9M 7.09B

B ABLATION STUDY

Varying M and N. Table A2 demonstrates the effect of varying N and M (R0-R5). We first fix the
values of N and vary M (R0-R5), and then vary M while fixing N (R0 ↔ R3, R1 ↔ R4, R2 ↔ R5).
For fixed N, accuracy improves by increasing M, and the same effect is seen by fixing M while
varying N. It can be noticed that parameters, FLOPs can be controlled by changing the M (R1 ↔ R2,
R4 ↔ R5), which directly reflects accuracy.

Effect of PCC. We compare instances having different N,M, but have similar parameters and FLOPs
budget, for instance, R1 ↔ R2, R1 ↔ R3, Table A2. Noticeably, R2 with 5 PCC is better by 0.36% in
accuracy, only at 1.1M more parameters relative to R1. Similarly, R1 is better by 0.28% in accuracy,
only at 0.8M more parameters relative to R3. It shows that multiple PCCs facilitates improved
accuracy in just a fraction of parameters and FLOPs. Moreover, if comparing R9 (a deeper model)
with R2, R2 achieves 0.13% more accuracy in 0.2M fewer parameters and 0.17B fewer FLOPs. It
shows the advantage of having multiple convolutional modules while being shallower.

Varying l. The impact of varying l is shown in R9, Table A2. It can be seen that going deeper is
not necessary because a shallower version with same parameters (R2) is more accurate. Moreover,
increased depth causes increased latency in R9. Therefore, we stick to 20−40 layers of depth.

Group Convolution or ResNext-like Xie et al. (2017) Setting We also conduct additional exper-
iments where each PCC is followed by a 1× 1 convolution as done in group convolutions while
keeping depth and parameters constant. We observe a 1% accuracy drop. This indicates that frequent
fusion similar to ResNeXt is not necessary.

Effect of Shallow Projections in PCC. R6-R9, Table A2 shows this analysis. For the shallower
model, the residual connection shows only minor improvement (0.09%), however, for the deeper
model, the effect of residual connections is noticeable (0.70%).

Effect of Deep Projections (DP). We train an CoSNet instance in three ways: First, remove DP
entirely, Second, use DP without pooling, and Third, DP with pooling. See Table A2 for
the analysis. It can be noticed that without DP (R10), the model suffers with heavy accuracy
loss of ∼ 0.54% relative to when DP is used without pooling (R11). Moreover, when using
DP with pooling (R12), accuracy improves, i.e., 1.22% and 1.76% relative to R11 and R10,
respectively, because pooling provides more spatial context to the 1×1 Lp layer by summarizing
the neighborhood.

Effect of using very small N to compare with Group Convs Zhang et al. (2018) and depthwise
Conv-like Howard et al. (2017) structure. From Table A2, R13-14, it can be seen that when
in deeper layers, N is restricted to a very smaller value while keeping parameters or FLOPs the
same, accuracy decreases considerably. This is because of the reason mentioned in the main paper
(Sec.“Fuse-Once”) that too few connections restrict the learning ability of neurons. Hence, they need
frequent fusion similar to GroupWise and Depthwise convolution methods, but it increases depth. To
avoid that, we increase N as we go deep down in CoSNet, which does not require frequent fusion due

14



Published as a conference paper at ICLR 2025

Table A2: Effect of parallel columnar convolution (PCC), # of kernels N, # of layers l, # of parallel convolutions
M, and Deeper projections (DP). Values of M,N, l are for each of the four CoSNet stages. Ablations are
conducted at 120 epochs.

Row N l M #Depth DP Residual in PCC #Params #FLOPs Top-1 (%)

R0 • 16 32 64 128 3 4 6 3 1 1 1 1 26 ✓ ✓ 8.80M 1.25B 74.45
R1 • 16 32 64 128 3 4 6 3 4 4 4 4 26 ✓ ✓ 12.1M 1.77B 75.65
R2 • 16 32 64 128 3 4 6 3 5 5 5 5 26 ✓ ✓ 13.2M 1.95B 76.01

R3 • 32 64 128 256 3 4 6 3 1 1 1 1 26 ✓ ✓ 11.3M 1.65B 75.37
R4 • 32 64 128 256 3 4 6 3 4 4 4 4 26 ✓ ✓ 19.8M 3.05B 76.76
R5 • 32 64 128 256 3 4 6 3 5 5 5 5 26 ✓ ✓ 22.6M 3.51B 77.01

R6 • 32 64 128 256 3 4 6 3 1 1 1 1 26 ✓ ✗ 11.3M 1.65B 75.28
R7 • 32 64 128 256 3 4 6 3 1 1 1 1 26 ✓ ✓ 11.3M 1.65B 75.37

R8 • 32 64 128 256 4 5 20 3 1 1 1 1 44 ✓ ✗ 13.4M 2.12B 75.18
R9 • 32 64 128 256 4 5 20 3 1 1 1 1 44 ✓ ✓ 13.4M 2.12B 75.88

R10 • 32 64 128 256 3 4 6 3 1 1 1 1 26 ✗ ✓ 8.5M 1.29B 73.61
R11 • 32 64 128 256 3 4 6 3 1 1 1 1 26 w/o. Pooling ✓ 9.8M 1.44B 74.15
R12 • 32 64 128 256 3 4 6 3 1 1 1 1 26 w. Pooling ✓ 9.8M 1.44B 75.37

R13 • 32 64 128 256 3 4 6 3 4 4 4 4 26 ✓ ✓ 19.8M 3.51B 76.76
R14 • 32 32 32 32 3 4 6 3 4 8 16 32 26 ✓ ✓ 18.4M 3.42B 71.20

Table A3: Effect of batch size on the baselines and CoSNet in the context.

Architecture Type Batch Size #Depth ↓↓ #Params ↓↓ FLOPs ↓↓ Latency ↓↓ FPS ↑↑ Top-1 (%) ↑↑

• EfficientNet-B0 Tan & Le (2019) ConvNet 256 49 5.3M 0.40B 8ms 125 75.1
• EfficientNet-B0 Tan & Le (2019) ConvNet 2048 49 5.3M 0.40B 8ms 125 77.1
• EfficientViT-M5 Liu et al. (2023) Transformer 256 70 12.4M 0.60B 7ms 142 76.8
• EfficientViT-M5 Liu et al. (2023) Transformer 2048 70 12.4M 0.60B 7ms 142 77.1
• CoSNet-A0 ConvNet 256 26 8.8M 1.25B 6ms 167 77.1
• CoSNet-A1-PFF ConvNet 256 38 12.7M 1.93B 7ms 143 79.7

• ConvNeXt-T Liu et al. (2022) ConvNet 256 59 29.0M 4.50B 13ms 77 81.8
• ConvNeXt-T Liu et al. (2022) ConvNet 4096 59 29.0M 4.50B 13ms 77 82.1
• CoSNet-C2 ConvNet 256 26 38.9M 7.09B 11ms 90 82.1
• CoSNet-B2-PFF ConvNet 256 38 34.3M 5.91B 10ms 100 82.7

to a sufficiently large number of neuron connections. Thus, we fuse only once, eliminating the need
for fusion 1×1 layers, thus smaller depth and lower latency.

C THE EFFECT OF BATCH SIZES OF THE BASELINE APPROACHES.

In the literature, some baselines are trained with larger batch sizes (above 1024), but others have been
trained at a much smaller batch size (256). Therefore, we retrained high batch size baselines with
256 batch sizes to avoid getting biased conclusions about the effects of large batch sizes. Such results
with 256 batch size are carefully reported in Table 1.

In this section, we present the results of the baselines with larger batch sizes in Table A3. As
widely studied, the baseline approaches Tan & Le (2019); Liu et al. (2023; 2022) show improved
accuracy. Interestingly, it can be noticed that CoSNet trained with a 256 batch size can compete with
state-of-the-art approaches trained with a larger batch size. This shows the utility of obtaining higher
accuracies in resource-constrained training scenarios (i.e., limited memory to fit 4096 batch, etc.).

D ADDITIONAL RESULTS

Table A4 shows results on RetinaNet x1 Lin et al. (2017) detection pipeline. It can be seen that,
for a comparable vision transformer backbone, CoSNet performs better. We also provide semantic
segmentation results for the popular PSPNet pspnet semantic segmentation framework. It can be seen
that CoSNet performs better than the baselines.

15



Published as a conference paper at ICLR 2025

Table A4: CoSNet in RetinaNet x1 Lin et al. (2017) object detection framework.

Method #Depth #Params AP APS APM APL

• EfficientViT-M4 Liu et al. (2023) 42 8.8M 32.7 17.6 35.3 46.0
• CoSNet-A0 26 8.8M 34.3 19.1 38.0 49.1

Table A5: CoSNet in PSPNet Zhao et al. (2017) semantic segmentation framework.

Method #Params mIoU FPS

• RepVGG-B1g2 Ding et al. (2021) 41.36M 78.88 13
• ResNet-50 25.5M 77.17 13
• CosNet-B1 22.0M 79.05 17

E TRAINING SETTING

We train models in PyTorch Paszke et al. (2019) using eight NVIDIA A40 GPUs.

F PYTORCH CODE

All codes shall be open-sourced in PyTorch Paszke et al. (2019) post the review process. Here, we
provide a code snippet of a CoSNet-Unit. Please see until the end of this document.

1
2 class InputReplicator(nn.Module):
3 def __init__(self, M):
4 super(InputReplicator, self).__init__()
5
6 # number of Parallel Columnar Convolutions
7 self.M = M
8
9 def forward(self, ip):

10 x = ip.repeat(1, self.M, 1, 1)
11 return x
12
13
14 class CoSNetUnit(nn.Module):
15 def __init__(self, n_ip):
16 super(CoSNetUnit, self).__init__()
17
18 self.n_op_Lf = 256 # 512, 1024, 2048
19 self.N = 32
20 self.stride = 2
21 self.l = 3 # 4, 6, 3]
22 self.M = 4# 4, 4, 4]
23
24 n_op_Ls = int(self.n_op_Lf / 4)
25
26 self.conv_ls = nn.Conv2d(n_ip, n_op_Ls, 1, 1, 0, bias=False)
27 self.bn_ls = nn.BatchNorm2d(n_op_Ls)
28 self.act_ls = nn.SiLU(True)
29
30 self.IR = InputReplicator(self.M)
31
32 # we limit the n_op of last PCC layer so that the parameters of the 1x1 expansion layer
33 # do not grow overly large if number of columns is very big
34 # as a rule of thumb, we set it nearly equal to n_op / 4
35 self.n_op_pcc_last = int(round(n_op_Ls / self.M)) * self.M
36
37 self.conv_pcc = nn.ModuleList()
38 self.bn_pcc = nn.ModuleList()
39 self.act_pcc = nn.ModuleList()
40
41 self.conv_pcc.append(nn.Conv2d(n_op_Ls * self.M, self.N * self.M, 3, self.stride, 1,
42 groups=self.M, bias=False))
43 self.bn_pcc.append(nn.BatchNorm2d(self.N * self.M))
44 self.act_pcc.append(nn.SiLU(True))
45
46 for i in range(self.l-2):
47 self.conv_pcc.append(nn.Conv2d(self.N * self.M, self.N * self.M, 3, 1, 1,
48 groups=self.M, bias=False))
49 self.bn_pcc.append(nn.BatchNorm2d(self.N * self.M))
50 self.act_pcc.append(nn.SiLU(True))
51

16



Published as a conference paper at ICLR 2025

52 self.conv_pcc.append(nn.Conv2d(self.N * self.M, self.self.n_op_pcc_last, 3, 1, 1,
53 groups=self.M, bias=False))
54 self.bn_pcc.append(nn.BatchNorm2d(self.n_op_pcc_last))
55 self.act_pcc.append(nn.SiLU(True))
56
57 self.conv_lf = nn.Conv2d(self.n_op_pcc_last, self.n_op_Lf, 1, 1, 0, bias=False)
58 self.bn_lf = nn.BatchNorm2d(self.n_op_Lf)
59 self.act_lf = nn.SiLU(True)
60
61
62 self.conv_lp = nn.Conv2d(n_ip, self.n_op_Lf, 1, 2, 0, bias=False)
63 self.bn_lp = nn.BatchNorm2d(self.n_op_Lf)
64
65 def forward(self, ip):
66 x = self.act_ls(self.bn_ls(self.conv_ls(ip)))
67 x = self.IR(x)
68
69 x = self.act_pcc[0](self.bn_pcc[0](self.conv_pcc[0](x)))
70
71 for i in range(1, self.l - 2):
72 y = self.bn_pcc[i](self.conv_pcc[i](x))
73 x = self.act_pcc[i](x + y)
74
75 # Last pccN needs to handled with care because n_op for last pcc may not match
76 # with n_op of the previous pcc layer
77 # and thus an idenity residual connection is not possible
78 # In other words, a residual connection will be used iff n_op of all pcc layers
79 # is same
80 if (self.N * self.M == self.n_op_pcc_last):
81 idx = self.l - 1
82 y = self.bn_pcc[idx](self.conv_pcc[idx](x))
83 x = self.act_pcc[idx](x + y)
84 else:
85 idx = self.l - 1
86 x = self.act_pcc[idx](self.bn_pcc[idx](self.conv_pcc[idx](x)))
87
88 x = self.bn_lf(self.conv_lf(x))
89
90 z = F.avg_pool2d(ip, 3, 2, 1)
91 z = self.bn_lp(self.conv_lp(z))
92
93 return self.act_lf(x + z)

G COMPLETE NETWORK VISUALIZATION

We also visualize the complete architecture of CoSNet-B1 variant and have put it in the context of
ResNet-like models. We have plotted ResNet-50 variant. Please see Figure A1.

17



Published as a conference paper at ICLR 2025

1x1, Squeeze

3x3

1x1, expand1x1,Proj

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3, s=2

1x1, expand1x1,Proj

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3, s=2

1x1, expand1x1,Proj

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3, s=2

1x1, expand1x1,Proj

1x1, Squeeze

3x3

1x1, expand

1x1, Squeeze

3x3

1x1, expand

Global Pool

1x1, classifier

Stem, 7x7 s=2

Pool, s=2

St
ag

e-
2

St
ag

e-
3

St
ag

e-
4

St
ag

e-
5

1x1, Ls

1x1, Lf

N, 3x3, g=M

1x1, Lp

3x3,Pool

N, 3x3, g=M

N, 3x3, g=M

IR

Stem, 3x3 s=2

Pool, s=2

1x1, Ls

1x1, Lf

N, 3x3, g=M

1x1, Lp

3x3,Pool

N, 3x3, g=M

IR

1x1, Ls

1x1, Lf

N, 3x3, g=M

1x1, Lp

3x3,Pool

IR

1x1, Ls

1x1, Lf

N, 3x3, g=M

1x1, Lp

3x3,Pool

N, 3x3, g=M

N, 3x3, g=M

IR

Global Pool

1x1, classifier

N, 3x3, g=M

N, 3x3, g=M

N, 3x3, g=M

N, 3x3, g=M

N, 3x3, g=M

N, 3x3, g=M

N, 3x3, g=M

St
ag

e-
2

St
ag

e-
3

St
ag

e-
4

St
ag

e-
5

(a) ResNet-50 (b) CoSNet-B1

Figure A1: Illustration of (a) ResNet-50 He et al. (2016) network, and (b) CoSNet-B1. It must be noted that by
merely replacing the residual bottleneck-based stages of ResNet with the proposed CoSNet-unit, our CoSNet
variant becomes roughly 50% less deep, has 22% fewer parameters, 25% fewer FLOPs, and runs 40% faster. It
shows the utility of CoSNet design from an efficiency perspective in multiple aspects.

18


	Introduction
	Related Work
	Columnar Stage Network
	Avoiding 11 for Reducing Depth
	Parallel Columnar Convolutions for Controlled Parameters.
	Input Replication
	Uniform Kernel Size for High Computational Density & Uniform Primitive Operations.
	Batched Processing for Minimal Branching.
	Fuse Once
	Projections
	CoSNet Instantiation

	Experiments
	Advanced ConvNets and Vision Transformers
	Comparison with Standard ConvNets
	Additional Experiments
	CoSNet in State-of-the-art Detection Transformer
	Visualization of Attention

	Conclusion
	CoSNet Instances
	Ablation Study
	The effect of batch sizes of the baseline approaches.
	Additional Results
	Training setting
	PyTorch Code
	Complete Network Visualization

