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Abstract

Outliers are ubiquitous in geometric vision contexts such
as pose estimation and mapping, leading to inaccurate es-
timates. While robust loss functions can tackle outliers, it
is challenging to make the estimation robust to the choice
of initialization and to estimate the appropriate robust loss
shape parameter that allows distinguishing inliers from
outliers. Graduated non-convexity (GNC) often mitigates
these issues. However, typical GNC uses a fixed anneal-
ing factor to update the shape parameter, which can lead
to low-quality or inefficient estimates. This paper proposes
a novel approach to adaptively anneal the shape parame-
ter within a GNC framework. We developed a search strat-
egy that incorporates a sampling of annealing choices and
model scorings to select the most promising shape parame-
ter at each GNC iteration. Additionally, we propose new
stopping criteria and an initialization technique that im-
proves performance for diverse data, and we show the ben-
efits of combining discrete and continuous robust estima-
tion strategies. We evaluate our method using synthetic
and real-world data in two problems: 3D registration and
pose graph optimization in SLAM sequences. Our results
demonstrate greater efficiency and robustness compared to
previous GNC schemes. Code and other resources are
available at https://www.merl.com/research/
highlights/sac-gnc.

1. Introduction
Least squares estimation is a primary method for solving
non-linear problems in computer vision. The goal is to find
the best model parameters θ∗ such that

θ∗ = argmin
θ

N∑
i=1

r2 (xi, θ) , (1)

where r (x, θ) is a function that outputs the residuals given
input data x and model θ. However, least squares solvers
are extremely sensitive to outliers since the square of the
residual increases drastically for outlier observations and

thus significantly affects the final estimate. This is espe-
cially critical in computer vision tasks such as pose estima-
tion and pose graph optimization, where outlier correspon-
dences between images/scans are inevitable due to repeated
structures, inaccurate feature detection, matching, etc.

An alternative to least squares estimation is M-
estimation, which utilizes a robust loss function ρσ (·) to
mitigate the influence of outliers in the estimation process.
M-estimation changes Eq. 1 to

θ∗ = argmin
θ

N∑
i=1

ρσ (r (xi, θ)) . (2)

Although there have been many alternatives for ρσ(·),
lately, many researchers have been using the Geman-
McClure robust loss [7, 52, 60], defined as

ρσ (r (xi, θ))
def
= r2(xi,θ)

1+
r2(xi,θ)

σ2

, (3)

where σ is a hyperparameter that characterizes the shape of
the function and is thus referred to as the shape parameter.
Figure 1 displays the Geman-McClure loss for varying σ.
This work primarily uses the Geman-McClure, but we also
experiment with Cauchy, Bisquare, and Logistic losses [19].

Graduated Non-Convexity & Limitations: For an ideal
σ that accurately captures the noise level in the data, ρσ(.)
can turn Eq. 2 robust to outliers1. However, even for a pre-
defined ideal σ, which might be impossible to set in general
scenarios, it is unlikely that we will obtain an accurate solu-
tion. This happens because, for any ideal σ, Eq. 2 is highly
non-convex, hence making any local optimization routine
susceptible to the choice of the initial guess for θ. A com-
monly used technique to mitigate this problem is Graduated
Non-Convexity (GNC) [8, 43].

GNC starts with a large value for the shape parameter σ,
where the loss function is convex, approximating the esti-
mation of least squares. Then, by iteratively reducing σ and

1For an ideal σ, the outliers will lie on the saturation part of the robust
loss function as shown in Fig. 1, and therefore have null gradients in the
optimization problem in Eq. 2.
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Figure 1. Illustration of
the Geman-McClure cost
function ρσ(·) for varying
shape parameter σ values.
As σ decreases, the satu-
ration point decreases, as
does the overall value of
the robust cost function. −5 0 5
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solving Eq. 2, GNC progressively moves toward the non-
convex cost target with σend. Most previous GNC-based
approaches use a non-optimal fixed annealing factor γGNC

to update σ (e.g., FGR [68], TEASER++ [61], and [60]),
which can lead to poor estimates and/or harm efficiency.
Some authors have worked on an adaptive annealing factor,
namely GNCp [52]. Although efficient in some scenarios,
the method in [52] is problem-specific (additional problem-
specific computation is required), becomes intractable for
high-dimensional θ, and struggles with low inlier rates.

In addition to the annealing factor, it is equally challeng-
ing to set an ideal value for the final shape parameter σend,
which can vary based on the data (even within the same
dataset) since it relates to its noise level. Furthermore, al-
though most previous approaches assume that the next it-
eration estimate is always better than the previous, a non-
ideal σend can lead to unwanted outliers in the estimation
or removing inliers from the optimal (unknown) inlier set.
Figure 2 illustrates the GNC issues in selecting a fixed γGNC
and σend. It can be observed that the ideal values for γGNC
and σend vary with the data. Therefore, no general value for
either parameter can be predefined and consistently lead to
the most accurate estimate.

Lastly, previous GNC-based methods improve model es-
timation by assuming a continuous decrease of σ. Although
this makes sense to increase the non-convexity of the opti-
mization problem for fixed annealing updates, for adaptive
updates, as in [52], this has the strong limitation of not being
able to recover from a poorly chosen annealing parameter at
earlier stages of GNC.

Our Contributions: To address the mentioned limitations
of GNC, we propose a new adaptive annealing strategy for
GNC (see Algorithm 2). To deal with the limitations of hav-
ing a fixed annealing factor, we sample various annealing
factors at each iteration and decide which shape parame-
ter to follow in the next by leveraging model scorings. To
mitigate issues related to continuously decreasing σ, our
method uses a search-like strategy to choose the best model
to test at each GNC iteration. To conclude, our algorithm is
the first kind of GNC to include a stopping criteria based
on model scoring, which significantly alleviates the hard
choice of σend. We call this approach SAC-GNC. In addition
to the previous contributions, we propose an initialization
technique that reduces reliance on predefined thresholds and

(a) Varying annealing factor γGNC (b) Varying the final shape σend

Figure 2. Illustration of GNC’s drawbacks in a 3D registration
problem. Using two pairs of a sequence of the 3DMatch dataset
(namely the one in Fig. 3), we solve the standard GNC algorithm
(described later in Algorithm 1) varying (a) the annealing factor
γGNC, and (b) the final shape σend. By varying the annealing factor,
we observe that the best γGNC differs from pair A to pair B and
that using the ideal value of one pair on the other leads to poor
estimates. Varying σend leads to similar observations since the best
σend for pairs C and D also differ and would lead to worse results if
exchanged. The supplementary material provides a more in-depth
analysis of the best values of γGNC and σend over a larger data set.

improves efficiency. We evaluate SAC-GNC in 3D registra-
tion and pose graph optimization problems, which are core
problems of SLAM [14] and SfM [41, 50] pipelines and are
typically solved using GNC-based methods. To sum up:
1. We propose a new algorithm for robust and efficient esti-

mation using a GNC-type approach that utilizes an adap-
tive annealing strategy based on sample and consensus;

2. While some researchers see GNC-like and sample &
consensus methods as contrasting approaches (continu-
ous vs. discrete estimators) with different benefits, in this
paper, we show that combining sample & consensus into
GNC has benefits over previous GNC approaches;

3. Experiments show that our algorithm outperforms base-
lines in accuracy and efficiency.

We developed a C++ framework with Python wrappers to
support testing of Graduated Non-Convexity approaches.

2. Related Work
2.1. Robust optimization estimation
It is known that non-minimal solvers such as [13, 56, 67]
struggle with outliers. The state-of-the-art approaches are
based on iterative solvers, which require a good initial guess
to ensure a good model estimation. Several techniques such
as branch and bound (BnB) [30, 40], semidefinite program-
ming (SDP), and sums of squares (SOS) relaxations [9]
have been developed to help in the convergence. Both
SDP [12, 17, 18] and SOS [37, 45] have been successfully
used to develop solutions with optimality guarantees. [55]
proposes a general framework for robust estimation, where
each iteration progressively increases the proportion of out-
liers filtered out of the estimate. Other methods were specif-
ically derived to deal with outliers:
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M-estimators: M-estimators are a class of robust solvers
that minimize robust cost functions, as denoted in Eq. 2.
The Geman-McClure loss is among the most utilized robust
functions in recent years. Cauchy, Bisquare, Logistic, and
others (see [19]) are also used in M-estimation. [36] com-
pares the performance of various robust loss functions.

Graduated non-convexity: GNC is a popular estimation
algorithm [8, 43, 60, 62, 64]. While M-estimation does not
change the value of σ throughout the estimation, GNC ap-
proaches iteratively adjust its value according to an anneal-
ing factor γGNC. GNC has been particularly used in 3D reg-
istration [60, 61, 68] and pose graph optimization [60].

Although various authors have developed GNC-based al-
gorithms, little attention has been paid to defining the an-
nealing factor and the stopping criterion (i.e., σend). As
shown in Fig. 2, the ideal values for these parameters de-
pend on the data. However, previous approaches such as
FGR [68], TEASER++ [61], and [60] use fixed values for
γGNC and σend. This prevents these approaches from obtain-
ing the most accurate and/or efficient solutions. Recently,
GNCp [52] proposed an adaptive annealing strategy for 3D
registration, where the annealing is computed at each iter-
ation from the Hessian of the problem cost function. The
authors show that adaptive annealing results in more accu-
rate solutions and requires fewer iterations, although they
still use a fixed σend. In this paper, we also use an adap-
tive annealing factor. However, we aim for a general solu-
tion independent of the underlying problem, unlike GNCp’s
approach. We propose an algorithm that finds the most
suitable annealing factor using a search-like scheme and a
model scoring function. Regarding the stopping criterion,
we propose new criteria that stop the algorithm when we
converge to a solution or all promising σ’s have been tested.

2.2. RANSAC-based estimators
RANSAC [28] is an alternative robust estimator that it-
eratively samples minimal data, estimates a model, and
scores it using inlier counting. Its output is the solution
with the highest consensus. Despite yielding favorable re-
sults for properly tuned parameters, it has some drawbacks.
Firstly, RANSAC needs a minimal solver for each problem
(e.g., [26, 31, 33, 39]). Secondly, there are issues related to
computational complexity. Depending on the problem (i.e.,
size of the sampling set) and data (i.e., inlier rate), one may
need to run RANSAC for numerous iterations to ensure an
accurate solution. Several improvements in RANSAC have
been proposed, e.g., [1–4, 11, 11, 22, 23, 42, 58].

2.3. Learning-based methods
Learning-based methods have become popular in recent
years. A significant improvement was noticed in problems
like high-quality feature detection [21, 25, 44, 49, 53] and
finding correspondences [20, 35, 48, 51, 53, 63], provid-

Algorithm 1: Graduated Non-Convexity
Input – Let D be some data; σ0 and σend be initial and
final shape parameter; and γGNC be the annealing factor.
Output – Final model θ∗

1 Initialize: k ← 1;
2 θ0 ← computeInitialModel (D);
3 while σk ≥ σend do
4 σk ← updateShape (σk−1, γGNC); ▷ Eq. 4
5 θk ← computeModel (D, θk−1, σk); ▷ Eq. 2
6 k ← k + 1;
7 θ∗ ← θk;

ing data with lower proportion of outliers. Other meth-
ods focus on detecting keypoints, finding correspondences,
and estimating model parameters in an end-to-end man-
ner [5, 10, 32, 34, 57, 66]. As our focus is on improv-
ing GNC’s limitations, we won’t compare our strategy with
learning-based solutions since these are not GNC-like ap-
proaches.

3. Graduated Non-Convexity (GNC)
As described in Sec. 1, GNC mitigates the risk of local
optimization routines converging to poor solutions. This
challenge arises because the cost in Eq. 2 becomes highly
non-convex for the chosen ideal σend. To address this, GNC
starts with a large σ, which makes ρσ(·) convex, making
Eq. 2 easier to optimize. Then, it progressively reduces σ
and solves for θ using the solution at the previous iteration
as the initial estimate. This is repeated until σ reaches the
predefined value σend. At that point, the latest estimated
model θk is returned. This process ensures that after ev-
ery σ update, we have a good initialization to minimize the
corresponding robust cost, which (when working correctly)
leads to convergence to a high-quality solution when σend is
reached. Algorithm 1 outlines the standard GNC steps. At
each iteration k, σk is updated (Line 4) according to

σk =
σk−1

γGNC
, (4)

where γGNC is a fixed annealing factor. Line 5 corresponds
to solving Eq. 2 using the updated shape parameter σk and
previous model estimate θk−1. Most previous approaches
(e.g., [60, 61, 68]) set the annealing factor to 1.4.

Computing the model in Line 5 can be challenging
and computationally expensive. Therefore, Line 5 is typ-
ically accomplished by following the Black-Rangarajan du-
ality [7] and alternating minimization methods. Additional
details are provided in the supplementary material.

4. SAmple Consensus for adaptive GNC
This section proposes a new method for adaptive annealing
in GNC entitled SAC-GNC, outlined in Algorithm 2.
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4.1. Method overview

SAC-GNC comprises an annealing sample consensus ap-
proach within an online searching strategy [46] to find the
best shape parameter σ at each GNC iteration. For readabil-
ity and replicability purposes, we focus on algorithm details
for solving the problem instead of modeling the search. In
the supplementary material, we show an illustration of the
proposed tree-search strategy.

Similar to Algorithm 1, we start by computing a least
squares solution, since no initial model is given. This is
shown in Line 2 of Algorithm 2. To improve the efficiency
of the estimation, our first contribution is the definition of
initial shape parameter σ0 based on the initial model residu-
als at Line 3 (details in Sec. 4.4). Then, in each iteration k of
the GNC cycle, we run several annealing trials (namely T ).
For each trial t, an annealing factor γk,t is chosen within
a given interval defined by [γGNC · α−, γGNC · α+], where
α± represents a relaxation of the original annealing param-
eter γGNC. We set α− = 1 and α+ = 3.5. Details on the an-
nealing factor selection process are given in Sec. 4.2. Each
γk,t sets a new hypothesis Hk,t comprised of the shape pa-
rameter σk,t computed using Eq. 4, model θk,t, model score
sk,t, and level in the search tree dk,t (Lines 10 to 15). As
we are deciding online what is the best σk to explore, one
might choose a σk,t based on some cost that leads to non-
optimal estimations in future iterations. To alleviate this
issue, instead of having a Markovian approach of forget-
ting all hypotheses other than the best one at each iteration,
all promising hypotheses are added to a priority queue Q
in Line 16. In Line 17, we keep track of the best overall
hypothesis–different than standard GNC, we cannot output
one of the latest estimated hypotheses since it may be worse
than a previous hypothesis due to the search strategy we uti-
lize. Next, we check whether the search is complete or a
consensus was reached regarding the quality of the estimate
by checking the stopping criteria in Line 19. Finally, we
select the next hypothesis for exploration from the top of
the priority queue (most promising one) in Line 20. See the
illustrative example in the supplementary material.

Depending on the number of trials T , the computational
complexity of each iteration will increase proportionally. To
be efficient, and since each trial is independent of the oth-
ers, each annealing hypothesis can be run in parallel. In the
supplementary material, we show how the number of trials
impacts the accuracy and efficiency of the estimation.

SAC-GNC scales for any problem with N variables (i.e.,
problem size)2 just like vanilla GNC. SAC-GNC’s overhead
lies in the scoring mechanism, which depends linearly on
the data size M , i.e., O(M) complexity. Preemptive scoring
can reduce the scoring complexity, although SAC-GNC has
proved to be efficient even for large data.

2Unlike GNCp, which sequentially computes Hessian’s minimum

Algorithm 2: SAC-GNC: SAmple Consensus for adap-
tive GNC
Input – Let D be some data; annealing parameter γGNC;
T be the number of trial hypotheses for the annealing fac-
tor. Underline means new in this paper.
Output – Best hypothesisH∗ = {σ∗, θ∗, s∗, d∗}.

1 Initialize: k ← 0;
2 θ0 ← computeInitialModel (D);
3 σ0 ← shapeInitialization (θ0); ▷ Sec. 4.4
4 Q← empty queue;
5 H0 ← {σ0, θ0, ∞, 0};
6 while True do
7 k ← k + 1;
8 {σk−1, θk−1, sk−1, dk−1} ← Hk−1;
9 for t = 1 : T do

10 γk,t ← getAnnealing
(
γGNC, α

±) ; ▷ Sec. 4.2
11 σk,t ← updateShape (σk−1, γk,t) ; ▷ Eq. 4
12 θk,t ← computeModel (D , θk−1, σk,t); ▷ Eq. 2
13 sk,t ← computeScore (D, θk,t); ▷ Sec. 4.2
14 dk,t ← dk−1 + 1;
15 Hk,t ← {σk,t, θk,t, sk,t, dk,t};
16 Q ← addToQueue({Hk,i}) ; ▷ Sec. 4.2
17 H∗ ← saveBestHypothesis(H∗, {Hk,i}); ▷ Sec. 4.2
18 if stoppingCriteria(Q, H∗) then
19 break; ▷ Sec. 4.3
20 Hk ← getNextHypothesis(Q); ▷ Sec. 4.2

4.2. Online search for σ

The main contribution of this paper is the search-like esti-
mation of σ, which consists of sampling annealing factors,
model scoring (finding consensus), and the definition of a
search queue. Each block is described below.

Annealing sampling: Our sample consensus strategy re-
quires sampling T distinct annealing factors at each itera-
tion k. Consider t = 1, . . . , T generated hypothesis for the
annealing factor, denoted as γk,t. For each t, a shape param-
eter σk,t is computed according to σk,t = σk−1/γk,t, fol-
lowing Eq. 4. Each γk,t is chosen randomly from a prede-
fined interval such that γk,t ∈ [γGNC · α−, γGNC · α+]3. In-
creasing the sampling size T increases the chances of sam-
pling a reasonable set of annealing factors, albeit at a cost in
computational complexity. An alternative sampling process
is tested in the supplementary material.

Model scoring: While common GNC approaches consider
the current estimate to be better than all previous ones, this
is not always true. For example, when σ decreases too
much, the gradient of some inliers in Eq. 3 might converge

eigenvalue multiple times per GNC iteration with O(N3).
3Notice that we want γk,t > 1 to ensure we move towards increasing

the non-convexity of the robust cost, which is true for γGNC > 1 because
we set α− = 1.
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to zero, meaning that those inliers will be neglected in Eq. 2.
To determine the quality of a model, we compute a score
sk,t for each hypothesis Hk,t = {σk,t, θk,t, sk,t, dk,t} ob-
tained by the sampled annealing factors γk,t. A trivial scor-
ing could be the weighted or non-weighted model residu-
als’ mean (or median). However, a non-weighted approach
would not be robust to outliers, and a weighted approach
would mainly give better scores to models obtained from
lower σk,t since the Geman-McClure loss is a monotoni-
cally increasing function of σ.

Scoring is a critical step in RANSAC-based techniques,
which are known to be robust. Therefore, we borrowed
some of its typical scoring functions, namely MSAC [54],
where sk,t is the sum of the truncated squared residuals. We
also test RANSAC [28] (inlier counting) and LMeds [38]
(median of squared residuals) scores. MSAC and RANSAC
require an inlier threshold. However, this is common for ro-
bust estimators in computer vision and is appropriate to use.
Results with these scoring functions are given in the sup-
plementary material. Threshold marginalization approaches
(e.g., MAGSAC [3]) can also be explored.

Priority search queue: Our search strategy employs a pri-
ority queue to hold promising hypotheses and decide which
to explore next. Each hypothesis can be seen as a node in
a tree (from the root level 0 to ∞), where each iteration
grows a single node using a branching factor of T , creating
new nodes on the next level. The priority queue is sorted
primarily using the tree level (depth of the node in the tree),
denoted as dk,t, which is the number of times σ is slashed,
and is stored in Hk,t. Secondly, it is sorted by the model
score. This priority promotes searching all hypotheses in a
tree level before moving to the next (prioritizes a breadth-
first search approach, [46]) and exploring the best-scoring
models within a tree level first. We note that primarily pri-
oritizing scores would lead to exploring mostly hypothe-
ses from higher tree levels, i.e., higher dk,t (would lead to
a depth-first search kind of approach, [46]), since a lower
σ generally gets better scores, even for inaccurate models,
lowering chances of getting an accurate estimate.

For efficiency purposes, some additional heuristics are
considered. We do not append all hypotheses {Hk,i}, i =
1, · · · , T to the priority queue since it would increase the
computational time exponentially. For the same reason, we
set a maximum size for the priority queue, denoted Qsize.
We specify the maximum number of new hypotheses added
in each iteration using Qadd. At each GNC iteration k, we
decide which hypotheses to add to the queue as follows:

1. Hypotheses with a σ below a preset σmin are not added;
2. The best scoring hypothesis is always added (except if

not complying with item 1);
3. No more than Qadd new hypotheses are added, and;
4. Only hypotheses with a similar score but a sufficiently

different model4 are added.
After adding hypotheses, if the queue size surpasses Qsize,
the hypotheses with lower priority are discarded. Increasing
the Qadd and Qsize will allow for a more thorough search, al-
beit at a computational cost. Supplementary material shows
an ablation study for Qadd and Qsize.
Best hypothesis: Given the search nature of our algorithm,
we cannot retain the best of the last estimated hypotheses
{Hk,i}, i = 1, · · · , T as the best hypothesis overall (H∗)
because we may end up testing some shape that results in
a poorer estimate. Thus, in each iteration, we check if any
of the new hypotheses {Hk,i} has a better score sk,i than
the score s∗ of the best hypothesis H∗ (Line 17). When the
stopping criteria are triggered, H∗ is returned.

4.3. Stopping criteria
While GNC-based methods typically iterate until a certain
shape σend is reached, we propose removing this termination
criterion because it is not robust to diverse data. Instead,
we follow typical optimization techniques of checking for
model or scoring convergence. If in consecutive search tree
levels, the model or the model scoring does not differ by
more than a predefined threshold, we end the estimation.
In addition, when the queue is empty (i.e., there are no
more hypotheses to explore), the estimation is also stopped.
While we still predefine a σmin value (item 1 of Sec. 4.2)
to add new hypotheses, we set it to a much lower value
than the typical σend of GNC in Algorithm 1, which makes
SAC-GNC stop mainly from the convergence criterion. We
choose σmin only to ensure that Eq. 2 does not vanish. Un-
like σend, σmin does not depend on the noise of the data or
the outliers. We address this in the supplementary material.

4.4. Shape parameter initialization
GNC starts with a model θ0 obtained from a least squares
solution (Eq. 1), which does not rely on σ. For the Geman-
McClure specifically, this means that σ0 takes a large
enough value. In practice, setting σ0 too high can lead to
successive iterations with no changes to the best model es-
timate since all data will be considered inliers. To improve
efficiency, we offer the option to set σ0 to the lowest value of
σ that approximates the least squares estimation. We com-
pute the residuals R0 of the initial model, take the max-
imum value rmax ∈ R0, and compute σ0 by analytically
modeling the contribution of the residual to the optimiza-
tion in Eq. 2, which we denote as w ∈ (0, 1] (due to space
limitation, we show how w is modeled in the supplemen-
tary material). Specifically, we want a σ0 that makes the w
of the data point with maximum residual, rmax, close to 1.
The initial shape σ0 is then given by

w =
(

1
1+r2

max/σ2
0

)2

⇒ σ0 = rmax√
(w−1/2−1)

. (5)

4Comparison against the best scoring hypothesis at iteration k.
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In practice, for efficiency, we define w = 0.95. This ini-
tialization can be adapted to other robust losses and used by
any GNC-based approach.

An alternative to our initialization is [60], where σ2
0 =

2r2max/c
2 and c is a fixed scale parameter. In the supplemen-

tary material, we compare both initialization approaches.

5. Experiments and Results
We evaluate our method on the two computer vision prob-
lems that are typically solved utilizing GNC-based ap-
proaches: 1) Section 5.1 presents ablation studies and evalu-
ations against baseline methods for 3D registration; 2) Sec-
tion 5.2 evaluates SAC-GNC in the pose graph optimization
(PGO). Additional ablation studies and results are provided
in the supplementary material.

Evaluation metrics: Both problems estimate rotations and
translations in 2D or 3D. For the rotation error, we use

eR

(
pR,Rgt

)
= arcos

((
trace

(
pRTRgt

)
− 1

)
/η

)
(6)

where pR and Rgt are the estimated and ground truth rota-
tions, respectively, and η is either 1 or 2 for 2D or 3D, re-
spectively. The translation error is

et

(
pt, tgt

)
= ∥pt− tgt∥22, (7)

where pt and tgt
5 are the estimated and ground truth trans-

lations. Similar to recent works [6, 63], in the tables and
graphs, we show the mean Average Accuracy (mAA) for
each error metric. This robust error function measures the
area under the curve of the cumulative distribution of the
errors up to a certain threshold (higher mAA is better). We
use the average of all the runs for time and iterations.

Method settings: The settings used are σmin = 10−3,
α− = 1, α+ = 3.5, our σ initialization, random anneal-
ing selection, and MSAC [54] scoring. For a fair compar-
ison, we use γGNC = 1.4, as all the baselines do. When
not mentioned otherwise, we use Geman-McClure as ρσ(·).
Additionally, we use two versions of our method:

SAC-GNC : T = 5, Qadd = 1, and Qsize = 1;
SAC-GNC++ : T = 10, Qadd = 2, and Qsize = 10.

SAC-GNC prioritizes efficiency, while SAC-GNC++ prior-
itizes accuracy (narrow vs. deep tree search). These settings
were ablated in a single 3DMatch [65] sequence for the
3D registration problem and are fixed for all experiments
in Sec. 5.1 and Sec. 5.2. The supplementary material pro-
vides more robustness studies for all these parameters.

Item 4 of Sec. 4.2 requires some empirical configurations
regarding model similarity. In 3D registration, two models

5Note that t means translation, while t in Algorithm 2 means trial.

are similar if they differ by less than 5 deg and 30 cm in ro-
tation and translation, respectively. In PGO, two solutions
are similar if the gain between the cost function values is be-
low 1%. Besides, in both problems, only hypotheses with
scores that differ by less than 10% compared to the current
iteration’s best hypothesis can be added. The stopping crite-
ria use the previous settings to check model similarity, and
for score convergence, it checks if the best hypothesis H∗

score stopped improving in consecutive tree levels.

5.1. 3D registration problem
Given 3D point correspondences between two point clouds
A and B, represented by the tuple (pA

i ,p
B
i ), where pi ∈

R3 and i = 1, · · · , N , potentially outlier-contaminated, the
goal is to find a rotation R ∈ SO(3) and translation t ∈ R3

that aligns the two point clouds, i.e.,

r(pA
i ,p

B
i , R, t)

def
= ∥pA

i −RpB
i − t∥2, (8)

which is plugged into Eq. 2, where xi = (pA
i ,p

B
i ) and θ =

(R, t). Following GNCp [52], we solve Eq. 2 for residuals
in Eq. 8 by finding Umeyama’s solution [56].

Datasets: Following [52], we evaluate our approach with
synthetic and real-world data. For synthetic data, we use
ModelNet [59] with Predator [32] features. Results with
other synthetic data are provided in the supplementary ma-
terial. For real-world data, we use 3DMatch [65] (8 se-
quences) to generate two sets of matches: 1) matches with a
lower inlier rate (≈ 11.6%), obtained from FPFH [47] fea-
tures, and 2) matches with a higher inlier rate (≈ 59.8%),
obtained from FCGF [21] features. With KITTI [29], we
use matches from FCGF features for the testing sequences
08-10. All features were matched using nearest-neighbor
matching. The inlier threshold for model scoring was set to
5 cm in ModelNet and 3DMatch and 20 cm in KITTI. These
values resemble the voxel size of the point clouds.

5.1.1. Ablations
Ablation studies use solely the HOME1 sequence of
3DMatch for the low inliers dataset. Below, we provide
three ablation studies–more are available in the supplemen-
tary material. Each experiment was repeated 10 times.

Study of each component of SAC-GNC: Table 1 weighs
different components of SAC-GNC. The first line of the ta-
ble corresponds to Vanilla GNC. We note that removing σ
search means using a fixed γGNC. In this setting, we cannot
test our termination criteria, and we use the same σend as the
termination criterion of vanilla GNC. By default (not using
our σ initialization), σ0 is set to a predefined high number.
We observe that using the σ search (even on its own) brings
the most improvements, particularly in accuracy. Adding
termination (i.e., checking for convergence) or initialization
significantly improves the computation time. Without being
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SAC-GNC SAC-GNC++ (eR, 5
◦) (et, 0.3m)

0.465 0.612 28 7.45
✓ 0.457 0.605 13.8 5.82

✓ 0.487 0.619 11.9 7.47
✓ ✓ 0.487 0.618 10.9 6.80
✓ ✓ 0.490 0.622 7.83 6.69
✓ ✓ ✓ 0.490 0.623 6.72 5.98

✓ 0.506 0.644 45.1 58.0
✓ ✓ 0.506 0.645 36.4 48.3
✓ ✓ 0.507 0.645 39.8 55.7
✓ ✓ ✓ 0.505 0.644 30.9 46.4

σ Search (Sec. 4.2) Termination
(Sec. 4.3)

σ Init.
(Sec. 4.4)

mAA ↑
Iter. ↓ Time ↓

[ms]

Table 1. Ablation study on the different components of SAC-GNC.
All modules disabled correspond to vanilla GNC.

Fixed γ Adaptive (eR, 5
◦) (eR, 10

◦) (et, 0.3m) (et, 0.6m)

1.4 – 0.641 0.798 0.809 0.887 28 5.82
2.5 – 0.650 0.802 0.816 0.891 11 2.60
3.5 – 0.649 0.799 0.813 0.887 8 1.99
5.0 – 0.646 0.799 0.812 0.887 6 1.54
– SAC-GNC 0.654 0.805 0.816 0.889 6.40 3.85
– SAC-GNC++ 0.655 0.810 0.819 0.896 11.6 11.2

1.4 – 0.465 0.610 0.612 0.704 28 7.45
2.5 – 0.467 0.592 0.594 0.668 11 3.56
3.5 – 0.463 0.585 0.586 0.660 8 2.75
5.0 – 0.446 0.562 0.566 0.639 6 2.21
– SAC-GNC 0.490 0.623 0.623 0.708 6.72 5.98
– SAC-GNC++ 0.505 0.646 0.644 0.726 30.9 46.4

Dataset:
3DMatch

Annealing Update mAA ↑
Iter. ↓ Time ↓

[ms]

↑
in

lie
rs

≈
59

.8
%

↓
in

lie
rs

≈
1
1
.6
%

Table 2. Fixed vs. adaptive annealing update. Factors γ =
[1.4, 2.5, 3.5, 5.0] were chosen arbitrarily since each scan pair has
an unknown ideal value. We highlight the first and second best.

coupled with σ search, our initialization improves time but
lowers slightly the accuracy of vanilla GNC. This is due to
our initialization being greedy, and vanilla GNC cannot re-
cover from it as well as an adaptive search.

Fixed vs. adaptive annealing factor: To compare the fixed
and adaptive annealing strategies, we replace the multiple
trials in Algorithm 2 with a single trial using a fixed pre-
defined annealing factor and compare the results with our
algorithm on the HOME1 sequence data with low and high
inlier rates. Results are shown in Tab. 2. We observe a clear
trade-off between accuracy and efficiency when varying the
fixed annealing factor. We also note that 1) SAC-GNC and
SAC-GNC++ have better accuracy than all fixed annealing
approaches, and 2) SAC-GNC is more efficient than having
the typical 1.4 fixed annealing factor.

Study on the use of different robust cost functions: SAC-
GNC applies to any robust loss ρσ(·), and its choice in-
fluences σ initialization (trivial to derive for other ρσ(·)),
the model estimation, and σ’s update direction. In Tab. 3,
we show results comparing SAC-GNC to vanilla GNC us-
ing the Geman-McClure, Cauchy, Bisquare, and Logistic
losses. For a fair comparison, we use the same fixed ini-
tial σ0 for all. Comparing the performance of each loss,
we observe that the Geman-McClure has the best accuracy-
efficiency relation. Comparing the performance of each

(eR, 5
◦) (et, 0.3m)

Vanilla
GNC

γ = 1.4

Geman-McClure 0.465 0.612 28 7.45
Cauchy 0.425 0.532 35 9.95

Bisquare 0.147 0.329 22 4.37
Logistic 0.162 0.269 42 13.2

SAC-GNC

Geman-McClure 0.487 0.618 10.9 6.80
Cauchy 0.427 0.529 11.2 6.97

Bisquare 0.276 0.456 5.69 3.26
Logistic 0.157 0.265 10.5 5.81

Method Cost Function
ρσ(·)

mAA ↑
Iter. ↓ Time ↓

[ms]

Table 3. Ablation study on the use of different robust cost func-
tions. SAC-GNC applies to any robust loss ρσ(·).

(eR, 5
◦) (eR, 10

◦) (et, 0.3m) (et, 0.6m)

RANSAC [28] 0.437 0.671 0.939 0.967 0.789
FGR [68] 0.598 0.752 0.961 0.979 3.05

TEASER++ [61] 0.613 0.763 0.963 0.980 6.53
GNCp [52] 0.627 0.771 0.967 0.982 0.960
SAC-GNC 0.708 0.816 0.976 0.987 1.02

SAC-GNC++ 0.709 0.817 0.976 0.987 1.86

RANSAC [28] 0.492 0.707 0.713 0.829 5.13
FGR [68] 0.514 0.693 0.706 0.804 16.5

TEASER++ [61]
GNCp [52] 0.553 0.726 0.738 0.831 5.61
SAC-GNC 0.584 0.750 0.756 0.842 3.98

SAC-GNC++ 0.586 0.753 0.759 0.846 18.4

RANSAC [28] 0.279 0.446 0.455 0.577 21.6
FGR [68] 0.271 0.417 0.443 0.549 12.6

TEASER++ [61] 0.287 0.441 0.429 0.555 125
GNCp [52] 0.348 0.491 0.509 0.603 25.7
SAC-GNC 0.421 0.539 0.544 0.616 7.05

SAC-GNC++ 0.435 0.560 0.565 0.640 56.6

(eR, 1
◦) (eR, 5

◦) (et, 0.3m) (et, 1m) Time [ms] ↓
RANSAC [28] 0.589 0.888 0.463 0.798 17.8

FGR [68] 0.628 0.909 0.298 0.703 62.4
TEASER++ [61] 0.296 0.634 0.221 0.590 4075

GNCp [52] 0.658 0.919 0.346 0.759 8.39
SAC-GNC 0.693 0.927 0.363 0.769 14.3

SAC-GNC++ 0.693 0.928 0.363 0.770 66.7

Dataset Method
mAA ↑

Time [ms] ↓

ModelNet
inliers

≈ 50.8%

3DMatch
↑ inliers
≈ 59.8%

Runtime fail (> 30 minutes per instance)

3DMatch
↓ inliers
≈ 11.6%

KITTI
inliers

≈ 27.4%

Table 4. 3D registration results on synthetic (ModelNet) and real
data (3DMatch and KITTI). We highlight the first and second best.

method with each loss, we observe that SAC-GNC outper-
forms vanilla GNC with all losses except the Logistic. In
this case, SAC-GNC takes half the time of vanilla GNC but
experiences a slight drop in accuracy. The supplementary
material provides this experiment for SAC-GNC++.

5.1.2. Results
We compare our approach against RANSAC [28],
FGR [68], TEASER++ [61], and GNCp [52]. We use
the Open3D [69] implementation of RANSAC (with paral-
lel computing), the publicly available codes for FGR and
TEASER++, and the original implementation for GNCp,
provided by the authors. For a fair comparison, we set
the maximum iterations in RANSAC such that its compu-
tation time is close to the GNC-based methods. For the
other baselines, we use their default settings. Results on
ModelNet [59], 3DMatch [65] and KITTI [29] are shown
in Tab. 4. Each experiment was repeated 10 times. Across
all datasets, we observe that 1) SAC-GNC++ is the most ac-
curate at a time cost, 2) SAC-GNC is second, being close to
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(a) Data (≈ 90% outliers) (b) SAC-GNC (Ours)

Figure 3. 3D registration example in an extreme outlier rate sce-
nario from 3DMatch [65] (data is from the ↓ inliers set).

SAC-GNC++ in accuracy but faster, and 3) SAC-GNC has
the best trade-off between accuracy and efficiency. While
RANSAC is fast and performs well for high inlier rates,
it has a large performance drop when dealing with con-
siderable outliers. Among the GNC-based approaches, the
adaptive strategies (ours and GNCp) always outperform the
fixed annealing strategies (FGR and TEASER++). Figure 3
shows an example of 3DMatch data (↓ inliers) and the re-
spective result obtained by SAC-GNC.

5.2. Pose graph optimization problem
Next, we consider the PGO problem. PGO optimizes N
global pose transformations vi ∈ SE(2), i = 1, · · ·N from
relative measurements ẽi,j ∈ SE(2) acquired along some
trajectory. Following [27], we define the problem as the
one in Eq. 2, with residuals given by

r(ẽi,j , vi, vj) = ∥log
(
ẽ−1
i,j v−1

i vj
)∨ ∥Σ, (9)

where log (·)∨ brings an element of SE(2) to its tangent
space and Σ ∈ R3×3 is a covariance matrix. In this for-
mulation, the data and model are given by x = {ẽi,j} and
θ = {vi}, respectively. Note that this is a large-scale prob-
lem, where the model θ to be updated consists of all camera
poses. We solve Eq. 2 with residuals in Eq. 9 using GT-
SAM’s Levenberg–Marquardt (LM) optimizer in [24].

We ran our approach on several real-world SLAM
benchmark datasets. Due to space limitations, we show
the INTEL [15] and CSAIL [16] sequences and provide more
(2D/3D) in the supplementary material. For generating out-
liers, we follow [60]. We keep the odometry measurements,
named “Initial trajectory”, and perturb loops with random
transformations. The rate of loops perturbed varies from
10% to 90%, repeating each 100 times (each run uses a new
perturbed graph). Since there is no ground truth, the refer-
ence is the result obtained for 0% outliers, which we denote
as “Reference”. As in [27], the inlier threshold is 0.5.

The current state-of-the-art approach for PGO is [60].
We use its GTSAM [24] implementation with the Geman-
McClure loss and default settings, denoted as GTSAM-
GNC. SAC-GNC and GTSAM-GNC only differ in the

(a) INTEL (2D, real-world data)

(b) CSAIL (2D, real-world data)

Figure 4. Pose graph optimization results on (a) INTEL and (b)
CSAIL datasets. For each sequence, the left image displays the
“Initial trajectory”, the trajectory estimated by SAC-GNC with
50% outlier loops, and the “Reference” trajectory. The right image
shows the mAA at 25 cm (dashed line) and 1 m (solid line) for the
trajectory error (higher mAA is better) over the average computa-
tional time, for a percentage of randomly perturbed loops varying
between 10% (leftmost dot) to 90% (rightmost dot).

σ initialization, σ update, and stopping criteria. Re-
sults comparing our approach and GTSAM-GNC are pro-
vided in Fig. 4. Our main observation relates to effi-
ciency, as SAC-GNC and SAC-GNC++ are much faster
than GTSAM-GNC. Concerning accuracy, all methods have
similar results until around 50% outliers. Beyond 50% out-
liers, our approach outperforms GTSAM-GNC.

6. Conclusion

We propose SAC-GNC, a novel algorithm for adaptive an-
nealing in GNC. It employs an annealing sample and con-
sensus strategy by testing various annealing factors at each
GNC iteration and scoring each computed model to decide
the most promising shape parameter to explore. Addition-
ally, we propose new stopping criteria and shape initializa-
tion. Extensive results in two computer vision problems
demonstrate that our solution is the most robust and effi-
cient than the baselines. Lastly, this paper demonstrates that
combining sample and consensus into GNC offers advan-
tages over previous GNC-only approaches.
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