
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Anonymous Authors1

Abstract
Tabular data, a fundamental data format in
machine learning, is predominantly utilized in
competitions and real-world applications. The
performance of tabular models—such as gradient
boosted decision trees and neural networks—can
vary significantly across datasets due to differ-
ences in feature distributions and task characteris-
tics. Achieving top performance on each dataset
often requires specialized expert knowledge. To
address this variability, practitioners often aggre-
gate the predictions of multiple models. However,
conventional aggregation strategies typically rely
on static combination rules and lack instance-
level adaptability. In this work, we propose an
in-context ensemble framework for tabular predic-
tion that leverages large language models (LLMs)
to perform dynamic, instance-specific integration
of external model predictions. Without access
to raw tabular features or semantic information,
our method constructs a context around each
test instance using its nearest neighbors and
the predictions from a pool of external models.
Within this enriched context, we introduce Chain
of Tabular Thoughts (CoT2), a prompting strategy
that guides LLMs through multi-step, inter-
pretable reasoning, making still further progress
toward expert-level decision-making. Experi-
mental results show that our method outperforms
well-tuned baselines and standard ensemble
techniques across a wide range of tabular datasets.

1. Introduction
Tabular data holds a pivotal position in the field of ma-
chine learning, primarily because of its organized and
accessible format. Recently, Gradient Boosted Deci-
sion Trees (GBDTs) (Chen & Guestrin, 2016; Ke et al.,
2017; Prokhorenkova et al., 2018) and Neural Networks
(NN) (Gorishniy et al., 2021; Ye et al., 2023; Borisov et al.,
2022) are two of the most commonly explored methods for
tabular data learning. However, although GBDTs often out-
perform NNs across many datasets (Grinsztajn et al., 2022),
the diverse nature of tabular data tasks implies that either

method could be the most or least effective choice for a
specific dataset (McElfresh et al., 2023b; Ye et al., 2024). In
practice, achieving high accuracy often requires expert-level
tuning and the integration of multiple models. For instance,
top solutions in machine learning competitions frequently
adopt ensemble strategies designed by experienced prac-
titioners. Large Language Models (LLMs)(Achiam et al.,
2023; Brown et al., 2020) have achieved remarkable success
across a range of domains. However, LLMs’ application to
tabular data prediction remains limited. Current research on
applying LLMs to tabular data remains limited and is mostly
constrained to datasets with comprehensive textual descrip-
tions. Existing studies can be broadly categorized into two
main approaches: One line of work directly converts tabular
instances into text prompts using feature descriptions, allow-
ing the LLM to act as a predictor (Dinh et al., 2022). The
other line of research uses LLMs to support traditional tabu-
lar pipelines by automating steps. However, the effective-
ness of these methods remains fundamentally constrained
by the richness and accessibility of semantic information.
In many practical scenarios—especially those involving
sensitive data or proprietary systems—such semantic infor-
mation, including feature names or task-level descriptions,
may be unavailable or inaccessible. Motivated by this, we
pose the following question:

When there are no textual descriptions, can we
transform the LLM into a competition expert,
leveraging its robust reasoning abilities to make
predictions with minimal computational cost?

To address the question above, our central idea is to em-
power LLMs to act like human experts in machine learning
competitions: rather than directly accessing raw features,
the LLM integrates multiple model predictions at the in-
stance level, forming a dynamic ensemble guided by contex-
tual knowledge. This approach leverages the LLMs’ general
reasoning capabilities to selectively synthesize and reconcile
external predictions, much like how practitioners deliberate
over conflicting model outputs when making final decisions.
To realize this goal, we identify three key challenges:

First, where does the knowledge come from? In many real-
world scenarios, the semantic richness of tabular data is
often limited. For instance, features may consist solely
of numerical outputs from multiple sensors, or data pri-
vacy concerns may restrict access to descriptive information.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Tabular Data Competition Leaderboard

Model Ensemble

Tree-based Model

Deep Model

Traditional Model

Most Suitable Model

Construct
Tabular
Context

LLM

Intelligent Prediction

Target Instance

Chain of
Tabular

Thoughts

Figure 1: CoT2 utilizes the expert knowledge of LLMs to
create an intelligent ensemble of tabular models, making
still further progress.

Thus, a critical objective is to construct a context that con-
veys essential predictive signals while avoiding reliance on
raw features or textual descriptions. To overcome this, we
construct a tabular context for each target instance. We first
identify local neighbors of the target and gather predictions
from multiple external models within this neighborhood,
combined with other non-semantic dataset information. This
synthesized context is then used as a prompt to the LLM,
which generates a final prediction. However, our empirical
analysis shows that LLMs do not inherently interpret such
context effectively without further guidance.

Second, how do we guide the LLM to think? Simply expos-
ing the LLM to tabular contexts is not enough—we need to
guide it to reason like an expert. Inspired by the Chain of
Thought (CoT) (Wei et al., 2022), we introduce a structured
reasoning process tailored for tabular data: the Chain of
Tabular Thoughts (CoT2). CoT2 decomposes the prediction
process into multiple analytical steps, such as identifying
outliers and selecting appropriate models, leveraging the
interactions among neighboring instances and their asso-
ciated predictions from external models. By guiding the
LLM through this step-by-step reasoning, we enable it to
detect anomalies and select the best models for the local
neighborhood. CoT2 compensates for the LLMs’ limited
sensitivity to raw numerical values, helping it make effec-
tive and interpretable predictions like a machine learning
competition expert Figure 1.

After equipping LLMs with carefully constructed tabular
contexts and chains of thought, the third challenge is mini-
mizing inference cost. Since LLM-based methods require
running inference for each target instance (Dinh et al., 2022;
Hegselmann et al., 2023; Gardner et al., 2024), reducing the
number of instances that invoke LLMs is crucial for practi-

cal deployment. In real-world settings, many instances are
relatively simple—multiple external models already yield
consistent and accurate predictions for them. We identify
such cases by measuring the agreement among external
model outputs and bypass LLM processing when sufficient
consensus is observed.

We validate the effectiveness of our method on the Tiny-
Bench2 benchmark (Ye et al., 2024), which surpasses en-
semble methods and well-tuned baselines, making further
progress on the leaderboard. In summary, our main contri-
butions are as follows:

• We propose a novel tabular context construction method
that removes the reliance of LLMs on textual datasets or
feature descriptions, thereby significantly enhancing the
applicability and privacy-preserving potential of LLMs in
tabular domains.

• We present the Chain of Tabular Thoughts (CoT2)
approach, which enables step-by-step reasoning and
decision-making, effectively unlocking the numerical and
logical reasoning capabilities of LLMs on tabular data.

• We are the first to explore the role of LLMs in model
ensembling for tabular prediction, addressing a previ-
ously overlooked yet crucial component in the modeling
pipeline, and extending the use of LLMs beyond existing
applications such as feature engineering or data cleaning.

2. Methods
Our goal is to leverage LLMs to perform instance-wise
ensemble by reasoning over a structured “tabular context,”
which conveys alternative forms of knowledge without rely-
ing on raw features or semantic descriptions. Based on the
background and “tabular context” discussed in Appendix B,
we explain the design of the Chain of Tabular Thought
(CoT2), which allows the LLMs to reason clearly.

Chain of Tabular Thoughts LLMs often struggle with
multi-step or complex reasoning tasks. Our experiments
in Table 5 find that it is challenging for LLMs to directly
derive accurate answers from our tabular context. The CoT
helps by breaking down the problem into smaller tasks, al-
lowing the model to focus on each step individually. There-
fore, we emulate an expert’s analysis on the leaderboard
and add some reasoning steps to prompt pi. We design the
Chain of Tabular Thoughts (CoT2) to help LLMs reason
within our tabular context. Take classification for example,
our reasoning steps are as follows:

a) Well-performing Model Selection. Based on the train-
ing accuracies {train_acc(fm)}Mm=1 and validation
accuracies {val_acc(fm)}Mm=1 of each model, LLMs
infer the overall performance of the external models
on the dataset. As shown in the “Step a” in Table 1,
LLMs select Mw well-performing models {fm}Mw

m=1

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Tabular Context

You are a competition expert for leaderboard
that performs binclass task prediction…

Dataset:
Labels are integers ranging from 0 to 1
Class distribution: {0: 0.85, 1: 0.15}
Models:
Training Acc:
Validation Acc:

Target instance:
[KNN pred: 1] [XGB pred: 1] [MLP pred: 0]

Based on the reasoning steps, I predict the
label of the target instance as 0…

Well-performing Model Selection:
KNN overfits, MLP has slight underfitting.
XGB performs well and generalizes effectively.
Outlier Identification:
Neighbor No. 3 is an outlier.
Because all models consistently mispredict its label.
Suitable Model Selection:
MLP is the most suitable model for this neighborhood space.
Because it correctly predicts the labels for all non-outliers.
Final Prediction:
The label of the target instance is more likely to be 0.
Because MLP is more reliable in this specific context and
the fact that the nearest non-outlier neighbors are labeled 0.
Additionally, the majority class in the dataset is 0.

LLMs: “I predict the label of the target instance as 0.”

Chain of Tabular ThoughtsLet’s think steps by steps…

Neighbors (From nearest to farthest):
No. 1, true label: 0; [KNN pred: 1] [XGB pred: 0] [MLP pred: 0]
No. 2, true label: 0; [KNN pred: 0] [XGB pred: 1] [MLP pred: 0]
No. 3, true label: 1; [KNN pred: 0] [XGB pred: 0] [MLP pred: 0]
No. 4, true label: 0; [KNN pred: 0] [XGB pred: 0] [MLP pred: 0]
No. 5, true label: 1; [KNN pred: 1] [XGB pred: 1] [MLP pred: 1]

{KNN: 1.00; XGB: 0.90; MLP: 0.86}
{KNN: 0.83; XGB: 0.88; MLP: 0.85}

Figure 2: An example of a binary classification task using the tabular context and Chain of Tabular Thoughts (CoT2). We
construct the tabular context based on the combination of neighbors and external model predictions. We design reasoning
steps by learning from the thought processes of leaderboard experts. Experts typically first filter models and neighbors, then
make predictions by aggregating the external models’ predictions for the neighbors and target instances. The tabular context
and CoT2 are both provided as a prompt to the LLMs. Figure 9 shows an example.

Table 1: Summary of Key Steps and Corresponding Equations.

Step Equation
Reason in raw context ŷi = map (LLM(pi)) = map

(
LLM

(
context

(
xi, {yj}Nj=1, {(xj , yj)}Kj=1, M

)))
Step a of CoT2 {fm}Mw

m=1 = step_a
(
{train_acc(fm)}Mm=1, {val_acc(fm)}Mm=1

)
Step b of CoT2 {yj}K

∗

j=1 = step_b
(
{yi}Ki=1, {{fm(xj)}M

w

m=1}Kj=1, {qi}Ci=1

)
Step c of CoT2 {fm}Ms

m=1 = step_c
(
{yj}K

∗

j=1, {{fm(xj)}Mm=1}K
∗

j=1, {qi}Ci=1

)
Step d of CoT2 ŷi = step_d

(
{yj}K

∗

j=1, {fm(xi)}M
s

m=1 ∪ {fm(xi)}M
w

m=1, {qi}Ci=1

)
from external models. We aim for LLMs to identify
overfitting and underfitting models based on their train-
ing and validation accuracies, and to find the overall
well-performing models on D.

b) Outlier Identification. Based on the true labels of the
neighbors {yi}Ki=1, the neighbors’ predicted labels from
well-performing models {{fm(xj)}M

w

m=1}Kj=1, and the
label frequencies {qi}Ci=1, as shown in the “Step b”
in Table 1, LLMs identify non-outliers {yj}K

∗

j=1 among
the neighbors. If the majority of well-performing mod-
els predict incorrectly for a particular neighbor, it sug-
gests that this neighbor might be an outlier, negatively
affecting the predictions. We want the LLMs to be able
to identify such outliers. Label frequencies provide ad-
ditional information about the degree of data imbalance,
which aids in reasoning.

c) Suitable Model Selection. Based on the true labels of
the non-outliers {yj}K

∗

j=1, the non-outliers’ predicted la-
bels from all models {{fm(xj)}Mm=1}K

∗

j=1, and the label
frequencies {qi}Ci=1, as shown in the “Step c” in Table 1,
LLMs select Ms the most suitable models {fm}Ms

m=1

for the neighborhood space of the target instance. Mod-
els that perform well overall on the dataset may not be
the most efficient at predicting the target instance. It
is essential to identify the best-suited models for the
target instance within the neighbor space after filtering
out outliers.

d) Final Prediction. Based on the true labels of the
non-outliers {yj}K

∗

j=1, the label frequencies {qi}Ci=1,
and the target instance xi’s predicted labels from
the most suitable models and well-performing models
{fm(xi)}M

s

m=1∪{fm(xi)}M
w

m=1, as shown in the “Step d”

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

in Table 1, LLMs make the prediction for the target in-
stance’s label ŷi. After removing outliers and unsuitable
external models, LLMs can reason more clearly within
the clean local context to achieve the most confident
final predictions.

Finally, we summarize the reasoning steps into text t and in-
clude them in prompt pi. The tabular context and the Chain
of Tabular Thoughts are combined into the final prompt
p̃i, which is then input into the LLMs to obtain the final
prediction:

ŷi = map (LLM(p̃i)) = map (LLM (pi ∪ t)) . (1)

Remark. The content related to the Variant for Regression
Tasks and Hard Sample Identification is provided in subsec-
tion B.3. In addition, we also present a simple non-LLM
baseline, MetaXGB.

Summary. To address the three challenges of applying
LLMs to tabular data, CoT2 introduces the following solu-
tions:
• CoT2 designs an information-rich tabular context to re-

place textual descriptions, freeing LLMs from relying on
dataset semantics.

• CoT2 helps LLMs leverage the capabilities of external
models to understand the numerical relationships between
features and labels. Additionally, clear reasoning steps are
included to assist LLMs in understanding the relationship
between model predictions, neighbor labels, and target
predictions.

• To reduce inference cost and avoid token limits from
including raw features, CoT2 adopts a selective strategy:
LLMs are only invoked for hard instances where external
models disagree, while easy cases are handled without
LLM reasoning.

3. Experiments
3.1. Setups

Evaluation Protocol. We follow the evaluation protocol
proposed in (Ye et al., 2024) to ensure fair and consistent
comparisons across all methods. Specifically, we randomly
split each dataset into training, validation, and test sets with
a ratio of 64%: 16%: 20%. The validation set is used for
model selection and early stopping where applicable. All
methods, including those in our model set and all compar-
ison baselines, are trained and evaluated on the same data
splits. Details regarding the model set selection and com-
parison baselines can be found in the appendix.

To account for randomness, we repeat each experiment five
times with different random seeds {0, 1, 2, 3, 4} and report
the average performance on the test set. For classification
tasks, we report average accuracy (Acc), and for regression
tasks, we report average Root Mean Squared Error (RMSE).

5101520253035

CoT2-Deepseek-v3

CoT2-gpt-3.5-turbo

Averaging Voting

Weighted Voting

Best Model

TabM

RealMLP

CatB

TabR

MNCA

XGB

LightG

FT-T

MLP-PLR

RForest

DCNv2

MetaXGB

ResNet

MLPAutoInt

TabPFN

ExcelF

SNN

DANets

TANGOS

TabCaps

PTaRL

NODE

LR

TabT

KNN

SVM

GrowNet

TabNet

SwitchT

Dummy

NB

NCM

1

Figure 3: Critical difference diagram based on the Wilcoxon-
Holm test with a significance level of 0.05, used to as-
sess pairwise significance of methods on 30 classification
datasets in TinyBench2. Blue-colored methods represent
the models included in the external model set. The method
names in the diagram are abbreviated; the mapping from
abbreviations to full names can be found in (Ye et al., 2024)
and Appendix C.

3.2. Results

Performance on Standard Tasks. For CoT2, we use
gpt-3.5-turbo and Deepseek-v3 (DeepSeek-AI
et al., 2024) with a temperature setting of 0.2. We set the
number of neighbors to 10. The external models used are
shown in Appendix D. As shown in Figure 3, Our method
achieves the best average ranking across all classification
datasets. For regression tasks, the performance results are
provided in Appendix G. Details regarding the effectiveness
of CoT2 and the reduction of inference cost via selective
LLM usage are also provided in Appendix G.

4. Conclusion
The widespread use of LLMs on tabular data is limited by
several factors: a heavy reliance on textual descriptions, an
inability to handle datasets with a large number of features,
and insensitivity to numerical values. To apply the expert
knowledge of LLMs to aid in predictions on tabular data, we
designed a tabular context incorporating instance-specific
insights as a substitute for semantic descriptions and feature
values. By utilizing the capabilities of external models, we
addressed the weaknesses of LLMs in handling the relation-
ship between numerical features and labels. Additionally,
we devised a chain of tabular thoughts to teach LLMs how
to comprehend numerical values within our tabular context.
Our method can be efficiently applied to standard tabular
data tasks and few-shot tasks, and it can be easily adapted
and integrated with other approaches.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. Gpt-4 technical report. CoRR,
abs/2303.08774, 2023.

Arik, S. Ö. and Pfister, T. Tabnet: Attentive interpretable
tabular learning. In AAAI, 2021.

Badirli, S., Liu, X., Xing, Z., Bhowmik, A., and Keerthi,
S. S. Gradient boosting neural networks: Grownet. CoRR,
abs/2002.07971, 2020.

Bendinelli, T., Dox, A., and Holz, C. Exploring LLM agents
for cleaning tabular machine learning datasets. CoRR,
abs/2503.06664, 2025.

Bodensohn, J.-M., Brackmann, U., Vogel, L., Sanghi, A.,
and Binnig, C. Unveiling challenges for llms in enterprise
data engineering. CoRR, abs/2504.10950, 2025.

Bordt, S., Nori, H., and Caruana, R. Elephants never forget:
Testing language models for memorization of tabular data.
CoRR, abs/2403.06644, 2024.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Brown, G., Pocock, A. C., Zhao, M.-J., and Luján, M. Con-
ditional likelihood maximisation: A unifying framework
for information theoretic feature selection. Journal of
Machine Learning Research, 2012.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In NeurIPS, 2020.

Cai, H.-R. and Ye, H.-J. Understanding the limits of
deep tabular methods with temporal shift. CoRR,
abs/2502.20260, 2025.

Chan, J. S., Chowdhury, N., Jaffe, O., Aung, J., Sherburn, D.,
Mays, E., Starace, G., Liu, K., Maksin, L., Patwardhan,
T., Madry, A., and Weng, L. MLE-bench: Evaluating
machine learning agents on machine learning engineering.
In ICLR, 2025.

Chen, J., Liao, K., Wan, Y., Chen, D. Z., and Wu, J. Danets:
Deep abstract networks for tabular data classification and
regression. In AAAI, 2022.

Chen, J., Liao, K., Fang, Y., Chen, D., and Wu, J. Tabcaps:
A capsule neural network for tabular data classification
with bow routing. In ICLR, 2023a.

Chen, J., Yan, J., Chen, D. Z., and Wu, J. Excelformer: A
neural network surpassing gbdts on tabular data. CoRR,
abs/2301.02819, 2023b.

Chen, K.-Y., Chiang, P.-H., Chou, H.-R., Chen, T.-W., and
Chang, T.-H. Trompt: Towards a better deep neural
network for tabular data. In ICML, 2023c.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In KDD, 2016.

DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B.,
Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D.,
Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai,
F., Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao,
H., Xu, H., Wang, H., Zhang, H., Ding, H., Xin, H., Gao,
H., Li, H., Qu, H., Cai, J. L., Liang, J., Guo, J., Ni, J., Li,
J., Wang, J., Chen, J., Chen, J., Yuan, J., Qiu, J., Li, J.,
Song, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang,
K., Yu, K., Wang, L., Zhang, L., Xu, L., Xia, L., Zhao,
L., Wang, L., Zhang, L., Li, M., Wang, M., Zhang, M.,
Zhang, M., Tang, M., Li, M., Tian, N., Huang, P., Wang,
P., Zhang, P., Wang, Q., Zhu, Q., Chen, Q., Du, Q., Chen,
R. J., Jin, R. L., Ge, R., Zhang, R., Pan, R., Wang, R., Xu,
R., Zhang, R., Chen, R., Li, S. S., Lu, S., Zhou, S., Chen,
S., Wu, S., Ye, S., Ye, S., Ma, S., Wang, S., Zhou, S., Yu,
S., Zhou, S., Pan, S., Wang, T., Yun, T., Pei, T., Sun, T.,
Xiao, W. L., and Zeng, W. Deepseek-v3 technical report.
CoRR, abs/2412.19437, 2024.

Dinh, T., Zeng, Y., Zhang, R., Lin, Z., Gira, M., Rajput,
S., Sohn, J.-y., Papailiopoulos, D., and Lee, K. Lift:
Language-interfaced fine-tuning for non-language ma-
chine learning tasks. In NeurIPS, 2022.

Frazier, P. I. A tutorial on bayesian optimization. CoRR,
abs/2305.02449, 2018.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. Retrieval-augmented generation for
large language models: A survey. CoRR, abs/2312.10997,
2023.

Gardner, J., Perdomo, J. C., and Schmidt, L. Large scale
transfer learning for tabular data via language modeling.
In NeurIPS, 2024.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko,
A. Revisiting deep learning models for tabular data. In
NeurIPS, 2021.

Gorishniy, Y., Rubachev, I., and Babenko, A. On embed-
dings for numerical features in tabular deep learning. In
NeurIPS, 2022.

Gorishniy, Y., Rubachev, I., Kartashev, N., Shlenskii, D.,
Kotelnikov, A., and Babenko, A. Tabr: Tabular deep
learning meets nearest neighbors in 2023. In ICLR, 2024.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Gorishniy, Y., Kotelnikov, A., and Babenko, A. Tabm:
Advancing tabular deep learning with parameter-efficient
ensembling. In ICLR, 2025.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on typical
tabular data? In NeurIPS, 2022.

Han, S., Yoon, J., Arik, S. O., and Pfister, T. Large language
models can automatically engineer features for few-shot
tabular learning. In ICML, 2024.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. Tabllm: Few-shot classification of
tabular data with large language models. In AISTATS,
2023.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F.
Tabpfn: A transformer that solves small tabular classifi-
cation problems in a second. In ICLR, 2023a.

Hollmann, N., Müller, S., and Hutter, F. Large language
models for automated data science: Introducing caafe
for context-aware automated feature engineering. In
NeurIPS, 2023b.

Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A.,
Körfer, M., Hoo, S. B., Schirrmeister, R. T., and Hutter,
F. Accurate predictions on small data with a tabular
foundation model. Nature, 2025.

Holzmüller, D., Grinsztajn, L., and Steinwart, I. Better
by default: Strong pre-tuned mlps and boosted trees on
tabular data. In NeurIPS, 2024.

Hu, X., Zhao, Z., Wei, S., Chai, Z., Ma, Q., Wang, G., Wang,
X., Su, J., Xu, J., Zhu, M., Cheng, Y., Yuan, J., Li, J.,
Kuang, K., Yang, Y., Yang, H., and Wu, F. Infiagent-
dabench: Evaluating agents on data analysis tasks. In
ICML, 2024.

Huang, Q., Vora, J., Liang, P., and Leskovec, J. Mlagent-
bench: Evaluating language agents on machine learning
experimentation. In ICML, 2024.

Huang, X., Khetan, A., Cvitkovic, M., and Karnin, Z. Tab-
transformer: Tabular data modeling using contextual em-
beddings. CoRR, abs/2012.06678, 2020.

Hutter, F., Kotthoff, L., and Vanschoren, J. Automated
machine learning: methods, systems, challenges.
Springer Nature, 2019.

Jeffares, A., Liu, T., Crabbé, J., Imrie, F., and van der Schaar,
M. Tangos: Regularizing tabular neural networks through
gradient orthogonalization and specialization. In ICLR,
2023.

Jiang, J.-P., Liu, S.-Y., Cai, H.-R., Zhou, Q., and Ye, H.-J.
Representation learning for tabular data: A comprehen-
sive survey. CoRR, abs/2504.16109, 2025a.

Jiang, Z., Schmidt, D., Srikanth, D., Xu, D., Kaplan, I.,
Jacenko, D., and Wu, Y. AIDE: ai-driven exploration in
the space of code. CoRR, abs/2502.13138, 2025b.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. In NIPS, 2017.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.
Self-normalizing neural networks. In NIPS, 2017.

Koshil, M., Nagler, T., Feurer, M., and Eggensperger, K.
Towards localization via data embedding for tabPFN. In
NeurIPS Workshop, 2024.

Küken, J., Purucker, L., and Hutter, F. Large language
models engineer too many simple features for tabular
data. CoRR, abs/2410.17787, 2024.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., Riedel, S., and Kiela, D. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. In NeurIPS,
2020.

Li, Z., Zang, Q., Ma, D., Guo, J., Zheng, T., Liu, M., Niu,
X., Wang, Y., Yang, J., Liu, J., Zhong, W., Zhou, W.,
Huang, W., and Zhang, G. Autokaggle: A multi-agent
framework for autonomous data science competitions.
CoRR, abs/2410.20424, 2024.

Liu, S.-Y. and Ye, H.-J. Tabpfn unleashed: A scalable
and effective solution to tabular classification problems.
CoRR, abs/2502.02527, 2025.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
CoRR, abs/1907.11692, 2019.

Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach,
A., Cresswell, J. C., Golestan, K., Yu, G., Volkovs, M.,
and Caterini, A. L. Tabdpt: Scaling tabular foundation
models. CoRR, abs/2410.18164, 2024.

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V.,
Ramakrishnan, G., Goldblum, M., and White, C. When
do neural nets outperform boosted trees on tabular data?
In NeurIPS, 2023a.

McElfresh, D. C., Khandagale, S., Valverde, J., C., V. P.,
Ramakrishnan, G., Goldblum, M., and White, C. When
do neural nets outperform boosted trees on tabular data?
In NeurIPS, 2023b.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Nagler, T. Statistical foundations of prior-data fitted net-
works. In ICML, 2023.

Nam, J., Kim, K., Oh, S., Tack, J., Kim, J., and Shin, J.
Optimized feature generation for tabular data via llms
with decision tree reasoning. In NeurIPS, 2024.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient
neural architecture search via parameters sharing. In
ICML, 2018.

Popov, S., Morozov, S., and Babenko, A. Neural oblivious
decision ensembles for deep learning on tabular data. In
ICLR, 2020.

Pricope, T. Hardml: A benchmark for evaluating data sci-
ence and machine learning knowledge and reasoning in
AI. CoRR, abs/2501.15627, 2025.

Prokhorenkova, L. O., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. Catboost: unbiased boosting with
categorical features. In NeurIPS, 2018.

Qu, J., Holzmüller, D., Varoquaux, G., and Morvan, M. L.
Tabicl: A tabular foundation model for in-context learn-
ing on large data. In ICML, 2025.

Rubachev, I., Kartashev, N., Gorishniy, Y., and Babenko,
A. Tabred: A benchmark of tabular machine learning
in-the-wild. CoRR, abs/2406.19380, 2024.

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., and
Tang, J. Autoint: Automatic feature interaction learning
via self-attentive neural networks. In CIKM, 2019.

Thomas, V., Ma, J., Hosseinzadeh, R., Golestan, K., Yu, G.,
Volkovs, M., and Caterini, A. L. Retrieval & fine-tuning
for in-context tabular models. In NeurIPS, 2024.

Wang, R., Fu, B., Fu, G., and Wang, M. Deep & cross
network for ad click predictions. In ADKDD, 2017.

Wang, R., Shivanna, R., Cheng, D. Z., Jain, S., Lin, D.,
Hong, L., and Chi, E. H. DCN V2: improved deep &
cross network and practical lessons for web-scale learning
to rank systems. In WWW, 2021.

Wang, Z. and Sun, J. Transtab: Learning transferable tabular
transformers across tables. In NeurIPS, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. In NeurIPS,
2022.

Wen, X., Zheng, S., Xu, Z., Sun, Y., and Bian, J. Scalable in-
context learning on tabular data via retrieval-augmented
large language models. CoRR, abs/2502.03147, 2025.

Wen, Y., Tran, D., and Ba, J. Batchensemble: an alternative
approach to efficient ensemble and lifelong learning. In
ICLR, 2020.

Wolpert, D. H. and Macready, W. G. No free lunch theo-
rems for optimization. IEEE transactions on evolutionary
computation, 1997.

Wu, J., Chen, S., Zhao, Q., Sergazinov, R., Li, C., Liu, S.,
Zhao, C., Xie, T., Guo, H., Ji, C., Cociorva, D., and Brun-
zell, H. Switchtab: Switched autoencoders are effective
tabular learners. In AAAI, 2024.

Yan, J., Zheng, B., Xu, H., Zhu, Y., Chen, D., Sun, J., Wu, J.,
and Chen, J. Making pre-trained language models great
on tabular prediction. In ICLR, 2024.

Ye, H., Fan, W., Song, X., Zheng, S., Zhao, H., dan Guo, D.,
and Chang, Y. Ptarl: Prototype-based tabular representa-
tion learning via space calibration. In ICLR, 2023.

Ye, H.-J., Liu, S.-Y., Cai, H.-R., Zhou, Q.-L., and Zhan, D.-
C. A closer look at deep learning on tabular data. CoRR,
abs/2407.00956, 2024.

Ye, H.-J., Yin, H.-H., Zhan, D.-C., and Chao, W.-L. Re-
visiting nearest neighbor for tabular data: A deep tabular
baseline two decades later. In ICLR, 2025a.

Ye, H.-J., Zhou, Q.-L., Yin, H.-H., Zhan, D.-C., and Chao,
W.-L. Rethinking pre-training in tabular data: A neigh-
borhood embedding perspective. CoRR, abs/2311.00055,
2025b.

Zhang, L., Zhang, Y., Ren, K., Li, D., and Yang, Y. Mlcopi-
lot: Unleashing the power of large language models in
solving machine learning tasks. In EACL (1). Association
for Computational Linguistics, 2024.

Zhang, S., Gong, C., Wu, L., Liu, X., and Zhou, M. Automl-
gpt: Automatic machine learning with GPT. CoRR,
abs/2305.02499, 2023.

Zhang, X. and Liu, K. TIFG: text-informed feature gen-
eration with large language models. In IEEE Big Data,
2024.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

The Appendix consists of eight sections:

• Appendix A: We review related work that complements the discussion in the main text.
• Appendix B: We provide the preliminary and additional details of CoT2.
• Appendix C: We provide detailed descriptions of the datasets used in our experiments, along with implementation

details for reproducibility.
• Appendix D: We provide the experimental setups.
• Appendix E: We present a comprehensive ablation study analyzing the impact of key design choices in our method.
• Appendix F: We provide additional notes, such as limits, broader impact, and so on.
• Appendix G: We include complete experimental results that were omitted from the main paper due to space limitations.
• Appendix H: We show representative examples of our method, including prompt formats and responses under different

settings.

A. Additional Related Work
A.1. Traditional Tabular Data Learning

In traditional tabular data learning, research has primarily focused on Gradient Boosted Decision Trees (GBDTs) (Chen
& Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2018) and Neural Networks (NNs) (Gorishniy et al., 2021;
Ye et al., 2023; Borisov et al., 2022; Gorishniy et al., 2024; 2025; Ye et al., 2025a). Recent studies often pit GBDTs
against NNs in analyzing tabular data, with results indicating that GBDTs. While GBDTs often outperform NNs in many
scenarios (Grinsztajn et al., 2022), the diversity of tabular data tasks means that either method could be the best or the
worst choice for a particular dataset (McElfresh et al., 2023a). Given the “no free lunch” theorem (Wolpert & Macready,
1997), the selection or integration of the optimal models requires extensive searches or substantial expert knowledge. As
ensemble-based models, GBDTs iteratively construct decision trees to minimize residual loss, making them well-suited for
capturing heterogeneous patterns common in tabular datasets (Rubachev et al., 2024; Cai & Ye, 2025). Meanwhile, the
rapid development of deep learning has led to a surge of interest in adapting neural architectures for tabular data (Borisov
et al., 2022; Jiang et al., 2025a). These efforts include MLP-based variants (Klambauer et al., 2017; Gorishniy et al., 2021;
Holzmüller et al., 2024), architectures tailored for tabular structures (Wang et al., 2017; Chen et al., 2023a), attention-based
models (Huang et al., 2020; Chen et al., 2023b), regularization-enhanced frameworks (Ye et al., 2023; Wu et al., 2024), and
tree-inspired (Arik & Pfister, 2021; Badirli et al., 2020) or context-aware methods (Gorishniy et al., 2024; Ye et al., 2025a).
Despite these innovations, recent large-scale benchmarks (Grinsztajn et al., 2022; Ye et al., 2024; McElfresh et al., 2023b)
consistently show that GBDTs still outperform deep models in most tabular tasks. While several deep learning methods have
attempted to mimic ensembling effects (Popov et al., 2020; Badirli et al., 2020; Chen et al., 2023c), few have succeeded in
consistently closing the gap. Recent advances such as TabM (Gorishniy et al., 2025) and BETA (Liu & Ye, 2025), which
integrates BatchEnsemble (Wen et al., 2020) into tabular networks, show that efficient and scalable ensembling in deep
tabular models remains an active and promising direction. We use the expert knowledge provided by LLMs, employing
traditional tabular models as base learners, to make further progress on the leaderboard. TabPFN (Hollmann et al., 2023a)
uses in-context learning but does not utilize LLMs, and it requires an additional pre-training process.

A.2. Pre-trained Language Models for Tabular Data

Although Pre-trained Language Models have achieved success in various fields on unseen tasks, their application to tabular
data is often limited due to the prevalence of numerical values and the scarcity of textual descriptions. Additionally, concerns
over data privacy and security can further restrict the availability of semantic information. As a result, the use of language
models in tabular datasets is typically confined to scenarios where textual data is sufficient.

TransTab (Wang & Sun, 2022) trains a tokenizer based on the words present in the tabular data to aid in prediction, rather
than using a language model directly. TP-BERTa (Yan et al., 2024) does not choose large language models. It fine-tunes
relatively smaller pre-trained language models such as RoBERTa (Liu et al., 2019) for tabular data prediction. Methods that
utilize the expert knowledge of LLMs for tabular data can be categorized into two types. The first type of method starts
by serializing data through feature names into text, combining this with task descriptions to enable direct predictions by
LLMs (Dinh et al., 2022; Hegselmann et al., 2023; Gardner et al., 2024). Among them, LIFT (Dinh et al., 2022) requires
fine-tuning on the whole training set, while TabuLa-8B (Gardner et al., 2024) and TabLLM (Hegselmann et al., 2023)
focuses on data scarce scenarios. The second type of method includes CAAFE (Hollmann et al., 2023b) and FeatLLM (Han
et al., 2024). These methods incorporate several examples in the prompt, enabling LLMs to generate new features based on

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 2: Related work on Language Models (LMs) for tabular data learning. “No textual description” means not utilizing
semantic descriptions included in the dataset. “No fine-tuning on LM” means no need to fine-tune language models. “Direct
prediction using LLM” means that the final decision is output by the language model. “Extended to regression tasks” means
that the method is applied to regression tasks in addition to classification. “Unconstrained by feature count” means the
method is not rendered ineffective by an excessive number of features in the dataset, such as when the prompt exceeds the
length limit. CoT2 can be applied to tabular data with fewer constraints. (†: TransTab (Wang & Sun, 2022) trains a tokenizer
based on the language information in tabular data without utilizing LMs.)

CoT2 LIFT TransTab TabLLM CAAFE TP-BERTa FeatLLM TabuLa-8B

No textual descriptions ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
No fine-tuning on LMs ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗
Final prediction using LMs ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓
Extended to regression tasks ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓
Unconstrained by feature count ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

the textual descriptions. The new features are then used to train traditional models on tabular data.

The detailed comparison between these methods and our approach is shown in Table 2. TransTab and TP-BERTa do
not extend to leveraging LLMs. For other methods that apply LLMs, they transform tabular data problems into text
reasoning tasks. They capitalize on the textualization of data, leveraging the expert knowledge embedded in LLMs to infer
relationships between features and labels. However, this approach can lead to issues when the number of features increases,
as prompts may not be able to accommodate the serialized samples. Their use of LLMs is constrained by the available
semantic information or the capabilities of external tabular models. Besides, LLMs are not sufficiently sensitive to numerical
reasoning. Compared to related work, we emphasize overcoming the aforementioned limitations and applying LLMs more
broadly to tabular data prediction.

A.3. Retrieval-augmented Generation

Retrieval-Augmented Generation (RAG) was originally developed in the language modeling domain to address the limitations
of LLMs on knowledge-intensive tasks (Lewis et al., 2020), enabling models to incorporate external knowledge bases
for more accurate and informed responses. A comprehensive survey by (Gao et al., 2023) categorizes subsequent RAG
research into three stages: pre-training, fine-tuning, and inference. However, the use of RAG in tabular data learning remains
relatively limited. A notable exception is TabR (Gorishniy et al., 2024), which retrieves nearest neighbors to enhance neural
tabular model representations. Recent studies such as LocalPFN (Thomas et al., 2024) and TabDPT (Ma et al., 2024) further
demonstrate that leveraging local neighbors to construct context significantly enhances the performance of tabular foundation
models (e.g. TabPFN (Hollmann et al., 2025), TabICL (Qu et al., 2025), and TabPTM (Ye et al., 2025b)). These approaches
suggest that incorporating instance-specific, retrieval-based context not only improves generalization but also facilitates
more efficient adaptation to downstream tasks (Nagler, 2023; Koshil et al., 2024). This retrieval-based paradigm has also
been extended to enhance tabular prediction with LLMs. (Wen et al., 2025) applies the RAG mechanism to enable large
language models to effectively process large-scale tabular datasets, constructing informative contexts through instance-level
neighbor retrieval. In our approach, we use the labels of retrieved neighbors and the prediction outputs of external models
as key components of the context for CoT2’s reasoning. However, instead of relying on the LLM to directly perform
classification or regression, we position it as an intelligent ensembling agent. This design allows the LLM to make informed
decisions by reasoning over the structured outputs, without accessing any raw tabular features or semantic information. As a
result, our method offers strong privacy protection while retaining the benefits of instance-aware, context-driven prediction.

A.4. LLMs for Enhancing Machine Learning Pipelines.

Despite the success of machine learning (ML) in real-world tasks, building effective ML pipelines remains challenging
due to the many design choices involved. AutoML (Hutter et al., 2019) aims to automate this process through methods
such as neural architecture search (Pham et al., 2018) and Bayesian optimization (Frazier, 2018). While effective, most
AutoML techniques are time-consuming, lack transferability across tasks, and often behave as black boxes with limited
interpretability (Zhang et al., 2024). To overcome these challenges, recent efforts have explored using Large Language
Models (LLMs) to enhance ML workflows. LLM-based agents can assist with various stages of the pipeline—including task
understanding (Pricope, 2025; Chan et al., 2025; Hu et al., 2024), data cleaning (Bendinelli et al., 2025; Bodensohn et al.,

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

2025), feature engineering (Hollmann et al., 2023b; Nam et al., 2024; Küken et al., 2024; Han et al., 2024; Zhang & Liu,
2024), and model building and tuning (Li et al., 2024; Zhang et al., 2024; 2023; Huang et al., 2024; Jiang et al., 2025b)—but
most of these methods depend heavily on semantic information such as column descriptions or dataset metadata. Notably,
no prior work has explored using LLMs as intelligent ensemble experts for tabular prediction tasks. Our approach addresses
this gap by treating the LLM not as a direct predictor, but as an instance-aware decision-maker that integrates outputs from
multiple external models and nearest-neighbor labels. This enables accurate, interpretable predictions without accessing raw
features or semantic cues, thus preserving privacy while enhancing performance.

Our method targets a fundamentally different setting from prior LLM-based approaches for tabular data. Existing methods
largely fall into two categories: (1) approaches that convert each instance into a textual prompt using feature names or
dataset descriptions, allowing the LLM to act as a predictor (Dinh et al., 2022; Hegselmann et al., 2023; Gardner et al.,
2024); and (2) LLM-assisted tools that help automate parts of the ML pipeline—such as data cleaning, feature engineering,
or hyperparameter tuning—which also rely heavily on task instructions or column-level semantics (Bendinelli et al., 2025;
Hollmann et al., 2023b; Zhang et al., 2024). In contrast, our method assumes no access to raw features or semantic
descriptions. Instead, we position the LLM as an instance-wise ensemble expert that reasons over structured outputs
(e.g., model predictions and neighbor labels), enabling accurate and interpretable predictions even in privacy-sensitive or
low-semantic settings. Owing to this distinct problem formulation, these existing approaches fall outside the scope of our
empirical comparisons.

B. Preliminary and Tabular Context
B.1. Preliminary

Learning with Tabular Data. Given a labeled tabular dataset D = {(xi, yi)}Ni=1 with N examples (rows in the table).
An instance xi is associated with a label yi. We consider three types of tasks: binary classification yi ∈ {0, 1}, multiclass
classification yi ∈ [C] = {1, . . . , C}, and regression yi ∈ R. There are D features (columns) for an instance xi, we denote
the j-th feature in tabular dataset as x:,j and denote the j-th dimension of xi as xij . We learn multiple tabular models
M = {fm}Mm=1 on D that each fm maps xi to its label yi. These models exhibit varying generalization capabilities on
unseen instances sampled from the same distribution as D. For example, KNN, XGBoost (Chen & Guestrin, 2016), and
Multi-Layer Perceptrons (MLP) are some of the classic models in M.

Predicting with Large Language Models. To make predictions on tabular data using LLMs, we need to generate a prompt
pi containing the necessary information based on the target instance xi. Existing methods often construct pi by utilizing
feature descriptions {Fi}Di=1 and information of dataset D. For example, in TabLLM (Hegselmann et al., 2023), pi includes
a textual enumeration of all features. The textual serialization of the j-th feature in instance xi is “The feature name Fj is
value xij”. The large language model LLM with vocabulary V generates output text LLM(pi) ∈ V∗, which has to be mapped
to a valid class in [C] when performing classification. However, when the number of features D is large, the length of the
prompt can exceed limitations, and textual descriptions of the dataset may not be available due to data privacy issues or
difficulties associated with data collection. To enable the broad application of LLMs in tabular data, we need prompts that
do not rely on textual descriptions.

B.2. Tabular Context

To eliminate the limitations imposed by feature descriptions {Fi}Di=1 and task descriptions of D, we need to include
substitutes for these textual descriptions in the prompt pi. We use re-weighted distance to search for the target instance’s
nearest neighbors and initially construct a local context. After that, we incorporate predictions from external models into the
local context and add other important information to create the final “tabular context”.

Nearest Neighbor Search. Due to the non-sequential nature of tabular data, tabular data do not have an inherent context.
We address this by finding an implicit sequence based on the distance between instances. We calculate the re-weighted
distance between the target instance xi to instance xj in D:

dist(xi,xj) =

(
D∑
l=1

wl · |xil − xjl|d
) 1

d

. (2)

We set d = 1 and wl > 0 is a weight for each dimension. When wl = 1, the distance in Equation 2 degenerates to Manhattan

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

distance (d = 1). From the labeled dataset D, we calculate feature weights wl based on the mutual information (Brown
et al., 2012) between features and labels: wl = norm (mutual(x:l, y)) , where norm (·) normalizes the weights {wl}Dl=1

using a min-max scaling method. We rank the distances to obtain the K nearest neighbors {x1,x2, . . . ,xK}, and their
corresponding labels {y1, y2, . . . , yK}. The re-weighted distance ensures that neighbors are more similar in important
aspects, leading to more meaningful neighbors. The local similarity of neighbors helps provide a relevant and focused
context for the target instance. This context can help understand local decision boundaries, leading to more precise and
tailored predictions.

External Models Integration. External tabular models can provide additional information and compensate for LLMs’
numerical reasoning weaknesses. Therefore, we incorporate external models M = {fm}Mm=1 on D to enrich the context
and perform model ensembling. To better apply our method to large datasets, we avoid including feature values in
the context, as this would inevitably constrain the prompt length. The knowledge between feature values and labels
learned by the external models helps mitigate this information loss. An expert can more accurately infer the most
suitable external models for the target instance by analyzing the relationship between the neighbors’ true labels and
the model predictions. Consequently, we combine the capabilities of trained traditional tabular models with the in-
context learning abilities of LLMs. Based on neighbors and external models, the tabular context in our designed prompt
pi = context

(
xi, {yj}Nj=1, {(xj , yj)}Kj=1, M

)
includes:

• The basic attributes of dataset D, such as the label set [C] in classification and the label range in regression. In classification
tasks, we include the label frequencies {qi}Ci=1 in D, where qi =

∑N
j=1 I(yj = i)/N and I(·) is the indicator function.

• The training accuracies {train_acc(fm)}Mm=1 and validation accuracies {val_acc(fm)}Mm=1 of each model. These
elements are already saved during the construction of M, and both the training and validation sets come from the
partitioning of dataset D, without introducing additional data.

• The true labels of these neighbors {yj}Kj=1, and the predictions of M external models for these neighbors
{{fm(xj)}Mm=1}Kj=1. These elements can be obtained through {(xj , yj)}Kj=1 and M.

• The external models’ predictions for target instance {fm(xi)}Mm=1.

Without including semantic content, we have constructed a tabular context rich in information within the prompt. As shown
in the equation corresponding to “Reason in tabular context” in Table 1, we anticipate that the robust expert knowledge of
LLMs will be able to synthesize this evidence and carry out instance-wise model integration for target instance xi. map(·)
extracts the final prediction from the LLM’s response through regular expression matching. If the match fails, we will
re-enter the prompt until it succeeds. During our experiments, there was no instance of consecutive matching failures
occurring 10 times.

B.3. More details

Variant for Regression Tasks. For the regression task, we remove the label frequency, retain the true labels and model
predictions to four decimal places. We use RMSE instead of accuracy. The regular expression for map(·) was changed to
(-?d+.d+). Figure 10 shows an example of the prompts. If the match fails, we will re-enter the prompt until it succeeds.
During our experiments, there was no instance of consecutive matching failures occurring 10 times.

A Simple Alternative Approach. To assess the necessity of introducing large language models, we design a non-LLM
baseline named MetaXGB, which utilizes the same components as our constructed tabular context. For each target instance
xi in the validation or test set, we retrieve its K nearest neighbors from the training set using the re-weighted distance
in Equation 2, and collect their true labels as well as the external model predictions on both the target and its neighbors.
These components are concatenated into a fixed-length feature vector:

zi =
[
{fm(xi)}Mm=1, {yj}Kj=1, {{fm(xj)}Mm=1}Kj=1

]
, (3)

which is then used to train a downstream XGBoost classifier on the validation set. The trained model is evaluated on the test
set, and results are compared with our proposed method in subsection 3.2.

Hard Sample Identification. As discussed in section 1, a major challenge in deploying LLM-based tabular methods is
their high inference cost, as the LLM must be invoked for each instance. However, in many real-world scenarios, most
samples can already be accurately predicted by multiple external models with high agreement. To reduce computational
overhead, we adopt a selective strategy that reserves LLM reasoning for more difficult cases—those where external models
disagree. Taking classification tasks as an example, we define a hard sample as one for which fewer than a fraction τ of the

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

M external models predict the same class label. In other words, if more than τ of the models agree on the prediction, the
instance is considered easy, and LLM inference can be skipped.

C. Datasets and implementation details
Datasets. To evaluate the effectiveness of CoT2 on challenging tabular prediction tasks, we adopt the TinyBench2 Benchmark
Suite (Ye et al., 2024), a representative subset of 45 datasets selected from a larger benchmark containing over 300 datasets.
The full benchmark is designed for evaluating tabular models across diverse data types and task settings. However, due to its
scale, it poses a high computational burden for model evaluation. TinyBench2 addresses this challenge by selecting 15%
of datasets while preserving the relative ranking of models. The selection process is framed as an optimization problem:
minimizing the mean absolute error (MAE) between average model ranks on the subset and the full benchmark. The final
TinyBench2 shows the best consistency on both seen and unseen models. By using TinyBench2, we efficiently evaluate our
method while ensuring the results are representative of full-scale benchmarks (Ye et al., 2024).
Table 3 summarizes the key statistics for each dataset used in our experiments. Specifically, we report the following
information:

• Abbr: A short identifier used throughout the paper for concise reference.
• Task_type: The type of machine learning task (regression, binclass, or multiclass).
• N / C: The number of numerical and categorical features, respectively.
• Samples: The total number of instances in the dataset.
• Hard ratio: The percentage of hard samples, indicating the dataset’s learning difficulty.

We quantify dataset difficulty using the hard ratio, which represents the proportion of hard samples in each dataset. A
sample is considered hard if it fails to reach consensus among external models during evaluation. For classification tasks, a
sample is labeled as hard if fewer than 3/4 of the external models predict the same class label. For regression tasks, we
use an outlier-based rule: a sample is marked as hard if more than 1/4 of the external model predictions fall outside the
interquartile range (IQR), specifically beyond [Q1 − 1.5× IQR, Q3 +1.5× IQR]. These criteria help identify instances that
are difficult to predict consistently, providing a measure of dataset complexity. Remark. CoT2 does not require providing
dataset descriptions or raw feature values as input to the LLM. Instead, the LLM context is constructed solely from the
predictions of external models on the target test sample and the labels and predictions of its nearest neighbors. As a result,
we do not need to consider potential dataset leakage during LLM pretraining, nor do we require dedicated dataset leakage
detection procedures when selecting evaluation datasets. This makes our approach more broadly applicable, especially when
using proprietary or privacy-sensitive tabular data (Bordt et al., 2024; Küken et al., 2024).

External models. For all external baseline models that do not explicitly specify preprocessing strategies for categorical
and numerical features—such as MLP and ResNet—we uniformly apply one-hot encoding for categorical features and
standard normalization for numerical features and regression labels. Training is performed with a maximum of 200 epochs,
a batch size of 1024, and early stopping with a patience of 20 epochs. We conduct 100 rounds of hyperparameter tuning for
each external model. The full search space configurations are available at https://github.com/LAMDA-Tabular/
TALENT/tree/main/TALENT/configs/opt_space.

CoT2 Configuration. In our main experiments, we run each dataset using 5 different random seeds and report the average
accuracy (for classification) or RMSE (for regression). For each target instance, we retrieve k = 10 nearest neighbors
from the training set as context, and set the temperature parameter to t = 0.2. We deploy the CoT2 pipeline using two
large language models: gpt-3.5-turbo-0125 and DeepSeek-V3-P001. Additionally, results from gpt-4o are
reported in Table 5 for further comparison.

Abbreviations of models compared in our main experiments. We group all baseline methods into several categories
for clarity. Classical methods include Dummy, Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector
Machines (SVM), Naive Bayes, Linear Regression (LR), and DNNR. Tree-based methods include Random Forest (RF),
XGBoost (XGB) (Chen & Guestrin, 2016), LightGBM (LightG) (Ke et al., 2017), and CatBoost (CatB) (Prokhorenkova
et al., 2018). MLP variants cover vanilla MLP, MLP-PLR (Gorishniy et al., 2022), Self-Normalizing Neural Networks
(SNN) (Klambauer et al., 2017), ResNet (Gorishniy et al., 2021), RealMLP (Holzmüller et al., 2024), and TabM (Gorishniy
et al., 2025). Special architectures include DCNv2 (Wang et al., 2021), DANets (Chen et al., 2022), and TabCaps (Chen
et al., 2023a). Token-based methods include AutoInt (Song et al., 2019), TabTransformer (TabT) (Huang et al., 2020),
FT-Transformer (FT-T) (Gorishniy et al., 2021), and ExcelFormer (ExcelF) (Chen et al., 2023b). Regularization-based

12

https://github.com/LAMDA-Tabular/TALENT/tree/main/TALENT/configs/opt_space
https://github.com/LAMDA-Tabular/TALENT/tree/main/TALENT/configs/opt_space

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 3: The list of datasets in TinyBench2 (Ye et al., 2024), along with the statistics for each dataset.

Dataset Abbr Task_type N C Samples Hard ratio

Ailerons AIL regression 40 0 13750 49.3818
BNG(breast-w) BWR binclass 9 0 39366 0.5588
BNG(cmc) CMC multiclass 2 7 55296 9.5931
BNG(tic-tac-toe) TTT binclass 0 9 39366 4.6355
CPMP-2015-regression C2R regression 23 2 2108 53.7915
Cardiovascular-Disease-dataset CDD binclass 5 6 70000 3.9214
CookbookReviews COO regression 7 0 18182 4.1793
FOREX_audchf-day-High ADH binclass 10 0 1833 28.0654
FOREX_audsgd-hour-High AHH binclass 10 0 43825 26.5830
FOREX_cadjpy-hour-High FOR binclass 10 0 43825 21.5402
Gender_Gap_in_Spanish_WP GGI multiclass 13 0 4746 10.5263
IEEE80211aa-GATS IGE regression 27 0 4046 46.7901
KDD KDD binclass 34 11 5032 12.1152
Large-scale_Wave_Energy_Farm_Sydney_49 LSW regression 99 0 17964 43.6961
Superconductivty SUP regression 81 0 21197 37.9953
VulNoneVul VUL binclass 16 0 5692 0.0000
archive2 ARC regression 11 1 1143 34.0611
bank8FM BAN regression 8 0 8192 64.2465
baseball BAS multiclass 15 1 1340 1.4925
communities_and_crime CAC regression 102 0 1994 36.3409
credit CRE binclass 10 0 16714 10.5594
dis DIS binclass 6 23 3772 0.3974
eye_movements_bin EMB binclass 20 0 7608 25.9527
fried FRI regression 10 0 40768 71.4251
healthcare_insurance_expenses HIE regression 3 3 1338 27.9851
house_16H_reg H1R regression 16 0 22784 32.1922
jungle_chess_2pcs_raw_endgame_complete JC2 multiclass 6 0 44819 12.0259
kin8nm KIN regression 8 0 8192 33.3130
law-school-admission-bianry LSA binclass 7 4 20800 0.0000
mfeat-fourier MFF multiclass 76 0 2000 11.0000
mv MV regression 7 3 40768 91.2558
online_shoppers OSN binclass 5 9 12330 4.9067
page-blocks PBA multiclass 10 0 5473 1.4612
pc3 PC3 binclass 37 0 1563 3.8339
pendigits PEN multiclass 16 0 10992 0.5457
qsar_fish_toxicity QFT regression 4 2 908 31.3187
rl RL binclass 5 7 4970 24.3461
satimage SAT multiclass 36 0 6430 5.5210
segment SEG multiclass 17 0 2310 6.2771
sylvine SYL binclass 20 0 5124 3.3171
taiwanese_bankruptcy_prediction TBP binclass 95 0 6819 0.8798
waveform-5000 W5A multiclass 40 0 5000 6.7000
website_phishing WPE multiclass 0 9 1353 8.1181
wine-quality-white WQW multiclass 11 0 4898 24.5918
yeast YEA multiclass 8 0 1484 16.1616

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

methods comprise TANGOS (Jeffares et al., 2023), SwitchTab (SwitchT) (Wu et al., 2024), and PTaRL (Ye et al., 2023).
Tree-mimic methods include NODE (Popov et al., 2020), GrowNet (Badirli et al., 2020), and TabNet (Arik & Pfister,
2021). Context-based methods include TabR (Gorishniy et al., 2024), TabPFN (Hollmann et al., 2023a) and ModernNCA
(MNCA) (Ye et al., 2025a).

D. Experiment Setups
Model Set Selection. To ensure a comprehensive and robust evaluation of ensemble performance, we construct a model set
that spans multiple paradigms of tabular modeling. Our goal is twofold: to cover the dominant families of models used in
practice, and to expose the ensemble mechanism to diverse inductive biases. Specifically, we include:
a) Three representative GBDT models: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and Cat-

Boost (Prokhorenkova et al., 2018), which are widely recognized as state-of-the-art models for tabular data due to their
strong performance, robustness, and widespread adoption in both academia and industry.

b) Four deep learning models for tabular data: MLP, ResNet, and FT-Transformer (Gorishniy et al., 2021), which are
representative architectures selected by (Ye et al., 2024) based on systematic benchmarking. To broaden architectural
diversity, we also include AutoInt (Song et al., 2019), a hybrid model bridging tabular deep learning and recommender
systems that integrates attention mechanisms and feature interaction modeling.

c) A classical non-parametric method: K-Nearest Neighbors (KNN), which provides an intuitive, instance-based
learning paradigm. Including KNN complements the parametric models and offers a contrasting local inductive bias
that is useful for diversity in ensemble behavior.

All models are trained independently on each dataset, and their predictions are used by our method and the baselines
to construct tabular contexts and evaluate ensemble performance. This carefully chosen model set balances accuracy,
architectural diversity, and modeling philosophy.
Comparison Methods. We compare two main categories of methods, both derived from a common set of tabular models
that also serve as the external model pool for CoT2:
• TinyBench2 Baseline Methods: This category includes all baseline methods reported in the TinyBench2 benchmark (Ye

et al., 2024), which already cover all the models in our model set. These include classical machine learning models, gradient
boosted decision trees (GBDTs), and deep learning architectures for tabular data. In addition, we also compare against
TabM (Gorishniy et al., 2025), a recently proposed deep ensemble learning method that achieves strong performance.

• Ensemble Methods over the Model Set: Based on the same model set, we implement several standard ensemble or
selection strategies for comparison:
– Best Model: selects the model with the highest validation accuracy on each dataset;
– Average Voting: averages the predicted logits across models;
– Weighted Voting: averages logits weighted by each model’s training accuracy.

• Non-LLM Context-based Baseline (MetaXGB): We further compare with MetaXGB (see subsection B.3), a simple
non-LLM baseline using the same tabular context with CoT2.

E. Ablation Study
To better understand the design choices in CoT2, we conduct an ablation study on several key components. All the ablation
experiments are conducted using the gpt-3.5-turbo model on five classification datasets in TinyBench2. The ablation
experiments are conducted on a subset of five datasets: BAS, DIS, SYL, CRE, and FOR.

• Model Set: We investigate the impact of the external model set on the performance of CoT2 by varying both the number
and quality of models included. Specifically, we experiment with different pool sizes and progressively introduce stronger
models into the ensemble. We evaluate three configurations: a reduced model set of 4 strong models (XGBoost, CatBoost,
MLP, FT-Transformer), the original 8-model pool used in the main experiments, and an extended 12-model set that
adds four recent, higher-performing deep models (RealMLP (Holzmüller et al., 2024), TabR (Gorishniy et al., 2024),
ModernNCA (Ye et al., 2025a), and TabM (Gorishniy et al., 2025)). The results demonstrate that increasing the number of
models generally enhances performance, while incorporating higher-performing models into the pool leads to further
gains, as shown in Figure 4.

• Number of Neighbors (k): We evaluate different values of k when constructing the tabular context. The results show that
moderate values (e.g., k = 10) strike a good balance between context richness and prompt length, as shown in Figure 5.

• Distance Metric: We compare several distance metrics for neighbor retrieval, including Manhattan, Euclidean, cosine

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

BAS DIS SLY
0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

CRE FOR
0.65

0.70

0.75

0.80
Size=4
Size=8
Size=12

Figure 4: Impact of external model set size and quality on the performance of CoT2.

BAS DIS SLY
0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

CRE FOR
0.60

0.65

0.70

0.75
K=5
K=10
K=15

Figure 5: Performance of CoT2 under different numbers of neighbors k used in the context.

similarity, and our proposed re-weighted distance in Equation 2. These metrics affect how relevant neighbors are selected
for each target instance, which in turn influences the quality of the constructed tabular context (Figure 6).

• Anonymizing External Model Names: We examine whether hiding the real names of external models in the tabular
context affects CoT2’s performance. Instead of using actual model names, we substitute them with anonymized labels (e.g.,
Model A, B, C, D). Interestingly, we observe improved performance on four out of five datasets under this anonymized
setting. This suggests that LLMs may carry inherent biases or preferences toward certain model names, and removing
these cues can lead to more objective and consistent reasoning (Figure 7).

• LLM Inference Temperature: We analyze the effect of temperature settings on model outputs. Lower temperatures
(e.g., 0.2) yield more stable and deterministic predictions, while higher temperatures introduce variability and may reduce
accuracy (Figure 8).

• Threshold for Hard Sample Selection: We study how varying the agreement threshold for identifying hard samples
affects both predictive performance and inference cost (Table 4).

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

BAS DIS SLY
0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

CRE FOR
0.60

0.65

0.70

0.75
MAN_RW
COS
MAN
EUC_RW

Figure 6: In the process of nearest neighbor search, we used the Manhattan distance reweighted by mutual information
(MAN-RW) in the main experiment. We also experimented with cosine distance (COS) and Euclidean distance reweighted
by mutual information (EUC-RW). The knowledge from LLMs and the predictions from external models can help us filter
out outliers in the nearest neighbors, making CoT2 robust to different distance metrics.

BAS DIS SLY
0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

CRE FOR
0.68

0.70

0.72

0.74

0.76

0.78

0.80
W/o Name
W/ Name

Figure 7: Impact of anonymizing external model names in the tabular context on CoT2’s performance. We compare two
settings: w/ name, where real model names are provided, and w/o name, where anonymized labels (e.g., Model A, B, C) are
used. Results show that the anonymized version (w/o name) outperforms the named version on four out of five datasets,
indicating that removing model identity may reduce bias and improve reasoning consistency.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

0.00 0.25 0.50 0.75 1.00
Temperature

0.94

0.96

0.98

Ac
cu

ra
cy BAS

DIS
SLY

0.00 0.25 0.50 0.75 1.00
Temperature

0.700

0.725

0.750

0.775

CRE
FOR

Figure 8: Effect of temperature setting on CoT2’s performance. We evaluate four values: t = 0.1, 0.2, 0.5, and 1.0. Results
show that CoT2 is generally robust to temperature changes, with performance remaining stable across different t values.
However, higher temperatures lead to increased variance, indicating less stable behavior from the LLM during inference.

Table 4: Effect of varying the hard sample threshold on accuracy and inference cost. Increasing the threshold allows
more instances to be handled by the LLM, but may decrease accuracy due to potential hallucinations on simple instances.
Conversely, decreasing the threshold may also reduce accuracy, as difficult samples not solvable by base ensembles alone
may be excluded from LLM inference. Results are reported on the SYL and CRE datasets.

Dataset Threshold Accuracy (%) Time (s) Tokens (input) Tokens (output) Price ($)

SYL
0.50 94.20 19.3 41715 6148 0.03
0.75 94.56 62.4 74920 11841 0.06
1.00 93.06 213.2 394769 60807 0.29

CRE
0.50 77.08 146.3 275757 41475 0.20
0.75 77.86 644.8 1525206 134162 0.96
1.00 77.29 1418.4 2995927 454875 2.18

F. Additional Notes
Experimental Compute Resources. All experiments were conducted using 4 NVIDIA RTX 4090 GPUs and 2 Intel(R)
Xeon(R) Platinum 8352V CPUs. The hyperparameter tuning and training of all external models can be completed within 48
hours under this configuration. CoT2 takes an average of 1044.6 seconds to run once on the largest dataset, CDD, which
contains 70,000 instances, as shown in Table 3.

Limitations. We did not find significant drawbacks in the method.

Broader Impacts. CoT2 enables the application of LLMs to tabular data without requiring semantic information, thereby
preserving data privacy. It also overcomes LLMs’ limitations related to insensitivity to numerical values, scarcity of textual
descriptions, and context length restrictions.

G. Detailed Results
Effective of CoT2. As shown in Figure 3, CoT2 significantly outperforms the non-LLM baseline MetaXGB, which adopts
a hard-rule strategy based on handcrafted feature construction and a downstream XGBoost classifier. This result highlights
the limitations of rigid integration methods and demonstrates the necessity of leveraging large language models for more
intelligent and flexible model ensembling. The key difference between using and not using the chain of tabular thoughts is
whether the four inference steps are included in the prompt. As shown in Table 5, incorporating CoT2 significantly enhances

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 5: Mean and STD of test accuracy on five datasets. CoT2 provided significant improvements for GPT-3.5 and smaller
benefits for GPT-4o and Deepseek-v3, indicating that the reasoning steps in CoT2 align well with advanced expert knowledge.
(Bold indicates superiority across all methods, while underline signifies whether CoT2 has brought improvements to the
same LLM.)

gpt-3.5-turbo gpt-4o Deepseek-V3
Dataset w/o CoT2 w/ CoT2 w/o CoT2 w/ CoT2 w/o CoT2 w/ CoT2

BAS 93.36 ± 0.28 94.63 ± 0.18 94.40± 0.00 94.63 ± 0.18 94.10 ± 0.28 94.55 ± 0.18
DIS 98.41 ± 0.05 98.54 ± 0.00 98.57± 0.05 98.60 ± 0.06 98.54 ± 0.15 98.68 ± 0.06
SYL 91.65 ± 0.18 94.56 ± 0.04 94.60± 0.30 94.87 ± 0.24 94.43 ± 0.27 94.93 ± 0.14
CRE 76.37 ± 0.25 77.86 ± 0.08 77.99± 0.15 78.01± 0.15 77.80 ± 0.15 77.97 ± 0.16
FOR 64.18 ± 0.26 68.65 ± 0.11 69.66± 0.19 70.69± 0.11 69.75 ± 0.27 70.69 ± 0.11
Mean 84.79 86.85 87.04 87.36 86.92 87.36

performance when using GPT-3.5 compared to the original tabular context. We further include comparisons with gpt-4o,
showing that CoT2 continues to bring benefits for more capable models. Figure 11 and Figure 12 show that, without CoT2,
GPT-3.5’s predictions rely solely on the models that perform well on the overall dataset and majority prediction, resulting
in an incorrect prediction. CoT2 enables GPT-3.5 to perform clear and structured reasoning in the tabular context, leading
to a correct prediction. The effectiveness of CoT2 helps bridge the performance gap between GPT-3.5 and GPT-4o in this
specific reasoning task, demonstrating that our designed reasoning steps align with the more advanced expert knowledge
in GPT-4o. With CoT2, our simple and efficient prediction context does not require new or complex knowledge. The
responses of different LLMs to the same prompt are shown in Figure 13, and Figure 14. We also include responses from
the latest version of ChatGPT in Figure 15, Figure 16, Figure 17, and Figure 18. We observe that both gpt-4o and
Deepseek-v3 tend to provide more fine-grained analysis for each piece of information. In particular, Deepseek-v3
and the latest ChatGPT often structure their reasoning in a list format, which enhances interpretability and clarity.

Reducing Inference Cost via Selective LLM Usage. As discussed in section 1, a key challenge of LLM-based tabular
prediction is the high inference cost, as separate prompts must be processed for each instance (Dinh et al., 2022; Hegselmann
et al., 2023; Gardner et al., 2024). To reduce inference cost, we adopt a strategy to identify easy instances—those for
which external models show high agreement. Specifically, for classification tasks, we define an instance as easy if at least
τ = 3/4 of the external models agree on the prediction, and LLM inference is skipped in these cases. This selective
strategy significantly reduces computational overhead by reserving LLM inference for more challenging instances. As
shown in Table 3, this approach allows us to bypass LLM reasoning for the majority of test samples, ensuring that LLMs are
used only when their reasoning capabilities are most needed.

Table 6: The detailed results shown in Figure 3.

Dataset CoT2-Deepseek-v3 MetaXGB CoT2-gpt-3.5 Dataset CoT2-Deepseek-v3 MetaXGB CoT2-gpt-3.5

BAS 94.55 95.52 94.63 WPE 92.03 88.93 91.14
PC3 89.14 89.14 89.39 ADH 74.22 71.12 69.65
MFF 87.50 86.25 88.25 SEG 93.29 92.64 93.81
DIS 98.68 98.15 98.54 GGI 60.40 56.21 59.64
WQW 63.59 63.67 63.84 RL 78.81 77.67 77.87
W5A 85.80 83.30 86.12 KDD 81.15 78.35 80.10
SYL 94.93 94.05 94.56 PBA 97.44 96.53 97.50
VUL 98.95 98.95 98.95 SAT 92.40 90.75 92.40
TBP 97.20 96.41 97.27 EMB 62.67 59.86 62.65
PEN 99.43 99.18 99.45 OSN 90.30 89.94 90.18
CRE 77.97 74.69 77.86 LSA 100.0 100.0 100.0
BWR 98.74 98.63 98.70 TTT 81.47 78.54 81.52
FOR 70.69 66.53 68.65 AHH 68.55 66.34 65.65
JC2 95.26 98.57 90.13 CMC 58.88 55.48 58.84
CDD 73.48 70.84 73.46 YEA 60.88 58.22 60.94

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 7: RMSE on 15 regression datasets in TinyBench2. We report the RMSE of all the external models for each dataset.
CoT2 achieved the highest average ranking among all methods.

Dataset KNN XGBoost Catboost LightGBM MLP ResNet AutoInt FT-T Average CoT2

ARC×102 3.6422 3.3812 3.2327 3.4980 3.6477 3.5902 3.7367 4.0321 3.2382 3.2491
HIE×103 5.5246 4.6865 4.5222 4.6913 4.8525 4.7755 4.8049 4.5223 4.5460 4.6150
CAC×10−1 1.3446 1.3502 1.2977 1.3308 1.3584 1.4602 1.3649 1.3791 1.3033 1.2989
IGE×10−2 8.4527 4.2323 3.6572 4.2587 3.0002 2.4307 2.8165 3.0886 2.9917 2.7597
KIN×10−1 1.2049 1.249 0.9029 1.2599 0.7488 7.3773 7.0919 0.6754 0.7835 0.7699
BAN×10−2 4.9246 3.0842 2.8628 3.0073 2.8947 2.8571 2.8360 2.8245 2.8505 2.8142
AIL×10−4 2.0400 1.5300 1.4700 1.5200 1.5500 1.5500 1.5500 1.5700 1.4800 1.4700
LSW×104 1.1759 0.5011 0.4449 0.4991 0.4841 0.5963 0.6354 0.4007 0.4249 0.3964
COO×100 1.4921 1.4795 1.4877 1.4833 1.5112 1.5921 1.5777 1.5899 1.4947 1.4951
SUP×101 1.0713 0.9959 0.9980 1.0103 1.0738 1.0365 1.0924 1.0593 0.9744 0.9754
H1R×104 3.7025 3.1061 3.0191 3.1017 3.1441 3.1448 3.1296 3.1265 2.9075 2.9143
MV×10−1 15.1106 0.9397 0.8157 0.9257 0.2590 1.2554 0.4128 0.2684 1.9614 0.4875
FRI×100 1.8540 1.0838 1.0105 1.0627 1.0840 1.0230 1.0201 1.0100 1.0330 1.0122
QFT×10−1 9.7412 9.2242 8.7159 8.9754 9.1436 9.4800 9.1662 9.1038 8.6904 8.9618
C2R×102 5.7960 4.6258 4.7438 4.7587 5.3895 5.1601 5.3207 5.3627 4.9601 4.9860
average rank 8.80 5.73 3.27 5.53 6.80 6.67 6.27 5.27 3.67 3.00

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

H. Examples

Prompt

You are a machine learning expert that performs binclass task prediction.

I will give you a target instance, and I need you to make the final prediction decision based on a comprehensive analysis

of its neighbors and the predictions from some external trained models.

First, the information about the dataset:

Labels are integers ranging from 0 to 1. Class distribution: {0: 0.5, 1: 0.5}.

Second, the information about the external models:

The training accuracy of the models is as follows:

knn: 0.6934; xgboost: 0.8020; catboost: 0.7850; lightgbm: 0.8168;

mlp: 0.7585; resnet: 0.7573; autoint: 0.7585; ftt: 0.7523;

The validation accuracy of the models is as follows:

knn: 0.6654; xgboost: 0.7809; catboost: 0.7806; lightgbm: 0.7764;

mlp: 0.7574; resnet: 0.7589; autoint: 0.7563; ftt: 0.7604;

Third, the information about the neighbors, ordered from nearest to farthest:

No. 1, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 2, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 3, True label is 1;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 1] [lightgbm pred: 1]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 4, True label is 0;

[knn pred: 0] [xgboost pred: 1] [catboost pred: 0] [lightgbm pred: 1]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 5, True label is 1;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 1]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 6, True label is 0;

[knn pred: 0] [xgboost pred: 1] [catboost pred: 1] [lightgbm pred: 1]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 7, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 8, True label is 1;

[knn pred: 1] [xgboost pred: 1] [catboost pred: 1] [lightgbm pred: 1]

[mlp pred: 1] [resnet pred: 1] [autoint pred: 1] [ftt pred: 1]

No. 9, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 10, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

Fourth, the information about the target instance:

[knn pred: 0] [xgboost pred: 1] [catboost pred: 1] [lightgbm pred: 1]

[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

Let’s think step by step:

1. Based on the training accuracies and validation accuracies of each model, You infer the overall performance of the

external models on the dataset. Then you select well-performing models from external models. We aim for you to identify

overfitting and underfitting models based on their training and validation accuracies, and to find the overall

well-performing models dataset.

2. Based on the true labels of the neighbors, the neighbors’ predicted labels from well-performing models, and the label

frequencies, you identify non-outliers among the neighbors. If the majority of well-performing models predict incorrectly

for a particular neighbor, it suggests that this neighbor might be an outlier, negatively affecting the predictions. We

want you to be able to identify such outliers. Label frequencies provide additional information about the degree of data

imbalance, which aids in reasoning.

3. Based on the true labels of the non-outliers, the non-outliers’ predicted labels from all models, and the label

frequencies, you select the most suitable models for the neighborhood space of the target instance. Models that perform

well overall on the dataset may not be the most efficient at predicting the target instance. It is essential to identify

the best-suited models for the target instance within the neighbor space after filtering out outliers.

4. Based on the true labels of the non-outlier neighbors, the label frequencies, and the target instance’s predicted labels

from the most suitable models and well-performing models, list the labels of the non-outlier neighbors and the predictions

of the most suitable models on the target instance. This will help you assess the effectiveness of these models in the

target instance’s neighborhood. After removing outliers and unsuitable external models, you can use a KNN-based approach

and model ensembling within the clean local context to achieve the most confident final predictions. Well-performing models,

being the strongest models on the current dataset leaderboard, provide auxiliary information for the final prediction.

I will use Python code to extract your prediction. Please ensure your response allows the following code to successfully

obtain your predicted label:

import re

label = re.search(r’I predict the label of the target instance as (\d+)’, your_response_text).group(1)

To match the regex, your response must strictly contain this sentence after your reasoning steps:

"I predict the label of the target instance as [Your Answer]."

1

Figure 9: An example of the prompt in the classification dataset CRE. We also provided examples in Figure 12 and Figure 11
where gpt-3.5-turbo responds without and with CoT2, respectively. It can be observed that CoT2 breaks down a complex
problem into multiple steps, resulting in more structured answers, thus enhancing the interpretability and accuracy. The
responses of Deepseek-v3 and GPT-4o are in Figure 14 and Figure 13. We further provide step-by-step responses from the
latest ChatGPT to illustrate the reasoning process in more detail, as shown in Figure 15, 16, 17, and 18.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Prompt

You are a machine learning expert that performs regression task prediction.

I will give you a target instance, and I need you to make the final prediction decision based on a comprehensive analysis

of its neighbors and the predictions from some external trained models.

First, the information about the dataset:

Labels range from -1.0058 to 4.4005.

Second, the information about the external models:

The training RMSE of the models is as follows:

knn: 0.1216; xgboost: 0.1345; catboost: 0.1420; lightgbm: 0.1575;

mlp: 0.2364; resnet: 0.2215; autoint: 0.2275; ftt: 0.2161;

The validation RMSE of the models is as follows:

knn: 0.2876; xgboost: 0.2635; catboost: 0.2588; lightgbm: 0.2628;

mlp: 0.2931; resnet: 0.2823; autoint: 0.2952; ftt: 0.2838;

Third, the information about the neighbors, ordered from nearest to farthest:

No. 1, True label is -0.9582;

[knn pred: -0.9582] [xgboost pred: -0.9504] [catboost pred: -0.9638] [lightgbm pred: -0.9420]

[mlp pred: -0.9549] [resnet pred: -1.0089] [autoint pred: -0.9115] [ftt pred: -0.9284]

No. 2, True label is -0.9804;

[knn pred: -0.9683] [xgboost pred: -0.9504] [catboost pred: -0.9652] [lightgbm pred: -0.9420]

[mlp pred: -0.9551] [resnet pred: -1.0077] [autoint pred: -0.9088] [ftt pred: -0.9237]

No. 3, True label is -0.9561;

[knn pred: -0.9683] [xgboost pred: -0.9504] [catboost pred: -0.9652] [lightgbm pred: -0.9420]

[mlp pred: -0.9551] [resnet pred: -1.0077] [autoint pred: -0.9088] [ftt pred: -0.9237]

No. 4, True label is -0.9813;

[knn pred: -0.9813] [xgboost pred: -0.9526] [catboost pred: -0.9711] [lightgbm pred: -0.9413]

[mlp pred: -0.9393] [resnet pred: -1.0271] [autoint pred: -0.8666] [ftt pred: -0.8721]

No. 5, True label is -0.9620;

[knn pred: -0.9620] [xgboost pred: -0.9409] [catboost pred: -0.9481] [lightgbm pred: -0.9510]

[mlp pred: -0.9424] [resnet pred: -0.9613] [autoint pred: -0.8746] [ftt pred: -0.8476]

No. 6, True label is -0.8159;

[knn pred: -0.8159] [xgboost pred: -0.7953] [catboost pred: -0.8107] [lightgbm pred: -0.8180]

[mlp pred: -0.8514] [resnet pred: -0.8512] [autoint pred: -0.8824] [ftt pred: -0.8675]

No. 7, True label is -0.7954;

[knn pred: -0.7954] [xgboost pred: -0.8337] [catboost pred: -0.8085] [lightgbm pred: -0.8160]

[mlp pred: -0.8598] [resnet pred: -0.7583] [autoint pred: -0.9357] [ftt pred: -0.9902]

No. 8, True label is -0.9123;

[knn pred: -0.9123] [xgboost pred: -0.9207] [catboost pred: -0.9147] [lightgbm pred: -0.9185]

[mlp pred: -0.9698] [resnet pred: -0.8695] [autoint pred: -0.9723] [ftt pred: -0.9036]

No. 9, True label is -0.8217;

[knn pred: -0.8217] [xgboost pred: -0.8567] [catboost pred: -0.8416] [lightgbm pred: -0.8620]

[mlp pred: -0.8576] [resnet pred: -0.8030] [autoint pred: -0.8840] [ftt pred: -0.8008]

No. 10, True label is -0.6259;

[knn pred: -0.6259] [xgboost pred: -0.6181] [catboost pred: -0.6195] [lightgbm pred: -0.6031]

[mlp pred: -0.6648] [resnet pred: -0.6208] [autoint pred: -0.6959] [ftt pred: -0.7828]

Fourth, the information about the target instance:

[knn pred: -0.9605] [xgboost pred: -0.9504] [catboost pred: -0.9592] [lightgbm pred: -0.9420]

[mlp pred: -0.9549] [resnet pred: -1.0090] [autoint pred: -0.9119] [ftt pred: -0.9293]

Let’s think step by step:

1. Based on the training accuracies and validation accuracies of each model, You infer the overall performance of the

external models on the dataset. Then you select well-performing models from external models. We aim for you to identify

overfitting and underfitting models based on their training and validation accuracies, and to find the overall

well-performing models dataset.

2. Based on the true labels of the neighbors, the neighbors’ predicted labels from well-performing models, and the label

frequencies, you identify non-outliers among the neighbors. If the majority of well-performing models predict incorrectly

for a particular neighbor, it suggests that this neighbor might be an outlier, negatively affecting the predictions. We

want you to be able to identify such outliers. Label frequencies provide additional information about the degree of data

imbalance, which aids in reasoning.

3. Based on the true labels of the non-outliers, the non-outliers’ predicted labels from all models, and the label

frequencies, you select the most suitable models for the neighborhood space of the target instance. Models that perform

well overall on the dataset may not be the most efficient at predicting the target instance. It is essential to identify

the best-suited models for the target instance within the neighbor space after filtering out outliers.

4. Based on the true labels of the non-outlier neighbors, the label frequencies, and the target instance’s predicted labels

from the most suitable models and well-performing models, list the labels of the non-outlier neighbors and the predictions

of the most suitable models on the target instance. This will help you assess the effectiveness of these models in the

target instance’s neighborhood. After removing outliers and unsuitable external models, you can use a KNN-based approach and

model ensembling within the clean local context to achieve the most confident final predictions. Well-performing models,

being the strongest models on the current dataset leaderboard, provide auxiliary information for the final prediction.

I will use Python code to extract your prediction. Please ensure your response allows the following code to successfully

obtain your predicted label:

import re

label = re.search(r’I predict the label of the target instance as (\d+)’, your_response_text).group(1)

To match the regex, your response must strictly contain this sentence after your reasoning steps:

"I predict the label of the target instance as [Your Answer]."

1

Figure 10: An example of the prompt in the regression dataset KIN.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Response

1. Based on the training and validation accuracies of the external models, we can infer the overall performance on the

dataset. The models with high training and validation accuracies such as lightgbm (0.8168 training, 0.7764 validation)

and xgboost (0.8020 training, 0.7809 validation) seem to perform well without overfitting or underfitting.

2. Identifying non-outliers among the neighbors:

- No. 1, 2, 4, 6, 7, 9, 10 are non-outliers as they have a majority of correct predictions from well-performing models.

- No. 3, 5, 8 are outliers as most of the well-performing models predict incorrectly for them.

3. Selecting the most suitable models for the target instance:

Based on the non-outlier neighbors, the models that seem suitable for the target instance are knn, resnet, and ftt.

4. Final analysis:

- Non-outlier neighbors’ labels: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

- Predictions from the most suitable models on the target instance:

[knn pred: 0] [resnet pred: 0] [ftt pred: 0]

Considering the majority label from the non-outlier neighbors and the predictions from the most suitable models,

the final prediction for the target instance is label 0.

I predict the label of the target instance as 0.

1

Figure 11: The response from gpt-3.5-turbo with CoT2 for Figure 9, where the true label corresponding to the question is 0,
and the model predicted 0, indicating a right prediction.

Response

Based on the information provided, we can analyze the predictions from the nearest neighbors and the external models to

make a final prediction for the target instance.

Looking at the nearest neighbors, we see that the majority of them have predicted the target instance as label 0, except for

one neighbor which predicted it as label 1. This indicates some uncertainty in the neighborhood around the target instance.

Considering the predictions from the external models, we see that xgboost, catboost, and lightgbm have predicted the target

instance as label 1, while knn, mlp, resnet, autoint, and ftt have predicted it as label 0. The models with higher

validation accuracy (xgboost, catboost, lightgbm) are leaning towards predicting the target instance as label 1.

Given the mix of predictions from the neighbors and the external models, and considering the higher validation accuracy of

xgboost, catboost, and lightgbm, we can make a final prediction that the target instance is likely to be label 1.

Therefore, based on the analysis, I predict the label of the target instance as 1.

1

Figure 12: The response from gpt-3.5-turbo without CoT2 for Figure 9, where the true label corresponding to the question is
0, and the model predicted 1, indicating a right prediction.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Response

To predict the label of the target instance, let’s go through the steps outlined:

1. **Evaluate External Models:**

- **Training vs. Validation Accuracy:**

- **KNN:** Training: 0.6934, Validation: 0.6654 (Slight overfitting)

- **XGBoost:** Training: 0.8020, Validation: 0.7809 (Good performance, slight overfitting)

- **CatBoost:** Training: 0.7850, Validation: 0.7806 (Good performance, minimal overfitting)

- **LightGBM:** Training: 0.8168, Validation: 0.7764 (Overfitting)

- **MLP:** Training: 0.7585, Validation: 0.7574 (Good balance)

- **ResNet:** Training: 0.7573, Validation: 0.7589 (Good balance)

- **AutoInt:** Training: 0.7585, Validation: 0.7563 (Good balance)

- **FTT:** Training: 0.7523, Validation: 0.7604 (Good balance)

- **Well-performing Models:** XGBoost, CatBoost, MLP, ResNet, AutoInt, FTT

(due to good validation performance and minimal overfitting)

2. **Identify Non-Outliers Among Neighbors:**

- **Neighbor Analysis:**

- Neighbors 1, 2, 4, 6, 7, 9, 10 have true label 0.

- Neighbors 3, 5, 8 have true label 1.

- **Outlier Detection:**

- Neighbor 8 is an outlier as all models predict 1, but most neighbors are labeled 0.

- Neighbors 3 and 5 are also potential outliers as they have mixed predictions and true label 1,

while most neighbors are 0.

3. **Select Suitable Models for Neighborhood:**

- **Non-Outlier Neighbors:** 1, 2, 4, 6, 7, 9, 10 (all true label 0)

- **Model Performance on Non-Outliers:**

- XGBoost, CatBoost, LightGBM show some incorrect predictions on non-outliers.

- MLP, ResNet, AutoInt, FTT consistently predict 0 for non-outliers.

- **Most Suitable Models:** MLP, ResNet, AutoInt, FTT

4. **Final Prediction Using KNN and Model Ensembling:**

- **Non-Outlier Neighbors’ True Labels:** All are 0.

- **Target Instance Predictions from Suitable Models:**

- MLP: 0, ResNet: 0, AutoInt: 0, FTT: 0

- **Well-Performing Models’ Predictions on Target:**

- XGBoost: 1, CatBoost: 1, MLP: 0, ResNet: 0, AutoInt: 0, FTT: 0

- **KNN-Based Approach:** Majority of non-outlier neighbors are 0.

- **Model Ensembling:** Majority of suitable models predict 0.

Given the analysis, the majority of the non-outlier neighbors have a true label of 0, and the most suitable models for

the neighborhood also predict 0 for the target instance. Therefore, the final prediction for the target instance is:

I predict the label of the target instance as 0.

1

Figure 13: The response from gpt-4o for Figure 9, where the true label corresponding to the question is 0, and the model
predicted 0, indicating a right prediction.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Response

Step 1: Infer the overall performance of the external models and select well-performing models

The training and validation accuracies of the models are as follows:

- **knn**: Training: 0.6934, Validation: 0.6654

- **xgboost**: Training: 0.8020, Validation: 0.7809

- **catboost**: Training: 0.7850, Validation: 0.7806

- **lightgbm**: Training: 0.8168, Validation: 0.7764

- **mlp**: Training: 0.7585, Validation: 0.7574

- **resnet**: Training: 0.7573, Validation: 0.7589

- **autoint**: Training: 0.7585, Validation: 0.7563

- **ftt**: Training: 0.7523, Validation: 0.7604

Analysis:

- **Overfitting Models**: Models with a significant gap between training and validation accuracy

(e.g., lightgbm, xgboost) may be overfitting.

- **Underfitting Models**: Models with low training and validation accuracy (e.g., knn) may be underfitting.

- **Well-performing Models**: Models with high and close training and validation accuracy

(e.g., catboost, mlp, resnet, autoint, ftt) are considered well-performing.

Selected Well-performing Models: catboost, mlp, resnet, autoint, ftt

Step 2: Identify non-outliers among the neighbors

Neighbors’ True Labels and Predictions:

| Neighbor | True Label | catboost | mlp | resnet | autoint | ftt |

|----------|------------|----------|-----|--------|---------|-----|

| 1 | 0 | 0 | 0 | 0 | 0 | 0 |

| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

| 3 | 1 | 1 | 0 | 0 | 0 | 0 |

| 4 | 0 | 0 | 0 | 0 | 0 | 0 |

| 5 | 1 | 0 | 0 | 0 | 0 | 0 |

| 6 | 0 | 1 | 0 | 0 | 0 | 0 |

| 7 | 0 | 0 | 0 | 0 | 0 | 0 |

| 8 | 1 | 1 | 1 | 1 | 1 | 1 |

| 9 | 0 | 0 | 0 | 0 | 0 | 0 |

| 10 | 0 | 0 | 0 | 0 | 0 | 0 |

Outlier Identification:

- **Neighbor 3**: Majority of well-performing models predict 0, but the true label is 1.

- **Neighbor 5**: Majority of well-performing models predict 0, but the true label is 1.

- **Neighbor 6**: Majority of well-performing models predict 0, but the true label is 0.

However, catboost predicts 1, which is incorrect.

This suggests that Neighbor 3, 5, 6 might be outliers.

Non-outliers: Neighbors 1, 2, 4, 7, 8, 9, 10

Step 3: Select the most suitable models for the neighborhood space of the target instance

Non-outliers’ True Labels and Predictions:

| Neighbor | True Label | catboost | mlp | resnet | autoint | ftt |

|----------|------------|----------|-----|--------|---------|-----|

| 1 | 0 | 0 | 0 | 0 | 0 | 0 |

| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

| 4 | 0 | 0 | 0 | 0 | 0 | 0 |

| 7 | 0 | 0 | 0 | 0 | 0 | 0 |

| 8 | 1 | 1 | 1 | 1 | 1 | 1 |

| 9 | 0 | 0 | 0 | 0 | 0 | 0 |

| 10 | 0 | 0 | 0 | 0 | 0 | 0 |

Analysis:

- **catboost**: Correctly predicts all non-outliers.

- **mlp**: Correctly predicts all non-outliers.

- **resnet**: Correctly predicts all non-outliers.

- **autoint**: Correctly predicts all non-outliers.

- **ftt**: Correctly predicts all non-outliers.

Most Suitable Models: catboost, mlp, resnet, autoint, ftt

Step 4: Make the final prediction

Target Instance Predictions from Most Suitable Models:

| Model | Prediction |

|-----------|------------|

| catboost | 1 |

| mlp | 0 |

| resnet | 0 |

| autoint | 0 |

| ftt | 0 |

Analysis:

- **Majority Vote**: 0 (mlp, resnet, autoint, ftt) vs 1 (catboost)

- **KNN-based Approach**: Considering the non-outlier neighbors, the majority label is 0.

Final Prediction: 0

I predict the label of the target instance as 0.

2
Figure 14: The response from DeepSeek-v3 for Figure 9, where the true label corresponding to the question is 0, and the
model predicted 0, indicating a right prediction.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 1: Evaluate External Models' Performance

We analyze both training and validation accuracies to assess overfitting and generalization:

Model Train Acc Val Acc Gap (Train - Val)

knn 0.6934 0.6654 0.0280

xgboost 0.8020 0.7809 0.0211

catboost 0.7850 0.7806 0.0044

lightgbm 0.8168 0.7764 0.0404

mlp 0.7585 0.7574 0.0011

resnet 0.7573 0.7589 -0.0016

autoint 0.7585 0.7563 0.0022

ftt 0.7523 0.7604 -0.0081

Models with high validation accuracy and low train-val gap are considered well-performing. Let’s

select models with validation accuracy ≥ 0.76 and low overfitting:

✅ xgboost (0.7809)

✅ catboost (0.7806)

✅ lightgbm (0.7764)

✅ ftt (0.7604)

These are our well-performing models.

图片由 MarkdownToImage 生成Figure 15: Step 1 of the response generated by the latest ChatGPT model for the example in Figure 9. This step demonstrates
how the model begins to decompose the problem and reason through the input systematically.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 2: Identify Non-Outlier Neighbors

We now look at the predictions of well-performing models on each neighbor and compare them to

the true label.

Neighbors:

1. Label 0 — All well-performing models predicted 0 → ✅ correct

2. Label 0 — All well-performing models predicted 0 → ✅ correct

3. Label 1 — xgboost: 0 ❌, catboost: 1 ✅, lightgbm: 1 ✅, ftt: 0 ❌ → 2 correct, 2 incorrect →

borderline

4. Label 0 — xgboost: 1 ❌, catboost: 0 ✅, lightgbm: 1 ❌, ftt: 0 ✅ → 2 correct, 2 incorrect →

borderline

5. Label 1 — xgboost: 0 ❌, catboost: 0 ❌, lightgbm: 1 ✅, ftt: 0 ❌ → 1 correct, 3 incorrect →

likely ❌ outlier

6. Label 0 — xgboost: 1 ❌, catboost: 1 ❌, lightgbm: 1 ❌, ftt: 0 ✅ → 1 correct, 3 incorrect → ❌

outlier

7. Label 0 — All correct → ✅

8. Label 1 — All correct → ✅

9. Label 0 — All correct → ✅

10. Label 0 — All correct → ✅

Outliers: Neighbors 5 and 6

Borderline (keep for now): Neighbors 3 and 4

Non-outliers: Neighbors 1, 2, 3, 4, 7, 8, 9, 10

图片由 MarkdownToImage 生成Figure 16: Step 2 of the response generated by the latest ChatGPT model for the example in Figure 9.

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 3: Select Most Suitable Models in the Neighborhood

Now we evaluate how each model performs on the non-outlier neighbors (Neighbors

1,2,3,4,7,8,9,10).

Let’s count correct predictions for each model on these 8 neighbors:

Model Correct Predictions

knn 7 (missed neighbor 3)

xgboost 5 (missed 3,4,9)

catboost 7 (missed 5, not in non-outliers)

lightgbm 6 (missed 4,9)

mlp 7 (missed 3)

resnet 7 (missed 3)

autoint 7 (missed 3)

ftt 6 (missed 3,4)

So, models that perform best in this neighborhood:

✅ knn (7/8)

✅ catboost (7/8)

✅ mlp (7/8)

✅ resnet (7/8)

✅ autoint (7/8)

These are the most suitable models for the neighborhood.

图片由 MarkdownToImage 生成Figure 17: Step 3 of the response generated by the latest ChatGPT model for the example in Figure 9.

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 4: Final Prediction Using Local and Global Evidence

Let’s now look at:

True labels of non-outlier neighbors:

Neighbors 1,2,4,7,9,10 → label 0

Neighbors 3,8 → label 1

→ Class distribution in local space: 6 of 8 are class 0 → strong local bias toward class 0

Predictions of the most suitable models on the target instance:

knn: 0, catboost: 1, mlp: 0, resnet: 0, autoint: 0

→ 4 votes for label 0, 1 vote for label 1

Predictions of the well-performing models:

xgboost: 1, catboost: 1, lightgbm: 1, ftt: 0

→ 3 votes for label 1, 1 for label 0

Interpretation:

Most suitable models in the local neighborhood strongly favor label 0 (4 to 1).

Well-performing models slightly favor label 1 (3 to 1), but these models are global and may not

reflect local structure.

The local neighborhood has a strong majority of class 0 (6/8).

The most suitable models have a high accuracy in the neighborhood and favor class 0.

✅ Final Decision:

Given the strong local evidence from both neighbor labels and the most suitable models, we

prioritize the local context. The slight disagreement from global models is not enough to override

the strong local consensus.

I predict the label of the target instance as 0.

图片由 MarkdownToImage 生成Figure 18: Step 4 of the response generated by the latest ChatGPT model for the example in Figure 9.

28

