Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Anonymous Authors'

Abstract

Tabular data, a fundamental data format in
machine learning, is predominantly utilized in
competitions and real-world applications. The
performance of tabular models—such as gradient
boosted decision trees and neural networks—can
vary significantly across datasets due to differ-
ences in feature distributions and task characteris-
tics. Achieving top performance on each dataset
often requires specialized expert knowledge. To
address this variability, practitioners often aggre-
gate the predictions of multiple models. However,
conventional aggregation strategies typically rely
on static combination rules and lack instance-
level adaptability. In this work, we propose an
in-context ensemble framework for tabular predic-
tion that leverages large language models (LLMs)
to perform dynamic, instance-specific integration
of external model predictions. Without access
to raw tabular features or semantic information,
our method constructs a context around each
test instance using its nearest neighbors and
the predictions from a pool of external models.
Within this enriched context, we introduce Chain
of Tabular Thoughts (CoT?), a prompting strategy
that guides LLMs through multi-step, inter-
pretable reasoning, making still further progress
toward expert-level decision-making. Experi-
mental results show that our method outperforms
well-tuned baselines and standard ensemble
techniques across a wide range of tabular datasets.

1. Introduction

Tabular data holds a pivotal position in the field of ma-
chine learning, primarily because of its organized and
accessible format. Recently, Gradient Boosted Deci-
sion Trees (GBDTs) (Chen & Guestrin, 2016; Ke et al.,
2017; Prokhorenkova et al., 2018) and Neural Networks
(NN) (Gorishniy et al., 2021; Ye et al., 2023; Borisov et al.,
2022) are two of the most commonly explored methods for
tabular data learning. However, although GBDTs often out-
perform NNs across many datasets (Grinsztajn et al., 2022),
the diverse nature of tabular data tasks implies that either

method could be the most or least effective choice for a
specific dataset (McElfresh et al., 2023b; Ye et al., 2024). In
practice, achieving high accuracy often requires expert-level
tuning and the integration of multiple models. For instance,
top solutions in machine learning competitions frequently
adopt ensemble strategies designed by experienced prac-
titioners. Large Language Models (LLMs)(Achiam et al.,
2023; Brown et al., 2020) have achieved remarkable success
across a range of domains. However, LLMs’ application to
tabular data prediction remains limited. Current research on
applying LLMs to tabular data remains limited and is mostly
constrained to datasets with comprehensive textual descrip-
tions. Existing studies can be broadly categorized into two
main approaches: One line of work directly converts tabular
instances into text prompts using feature descriptions, allow-
ing the LLM to act as a predictor (Dinh et al., 2022). The
other line of research uses LLMs to support traditional tabu-
lar pipelines by automating steps. However, the effective-
ness of these methods remains fundamentally constrained
by the richness and accessibility of semantic information.
In many practical scenarios—especially those involving
sensitive data or proprietary systems—such semantic infor-
mation, including feature names or task-level descriptions,
may be unavailable or inaccessible. Motivated by this, we
pose the following question:

When there are no textual descriptions, can we
transform the LLM into a competition expert,
leveraging its robust reasoning abilities to make
predictions with minimal computational cost?

To address the question above, our central idea is to em-
power LLMs to act like human experts in machine learning
competitions: rather than directly accessing raw features,
the LLM integrates multiple model predictions at the in-
stance level, forming a dynamic ensemble guided by contex-
tual knowledge. This approach leverages the LLMs’ general
reasoning capabilities to selectively synthesize and reconcile
external predictions, much like how practitioners deliberate
over conflicting model outputs when making final decisions.
To realize this goal, we identify three key challenges:

First, where does the knowledge come from? In many real-
world scenarios, the semantic richness of tabular data is
often limited. For instance, features may consist solely
of numerical outputs from multiple sensors, or data pri-
vacy concerns may restrict access to descriptive information.

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

e "

Tabular Data Competition Leaderboard

Intelligent Prediction C ‘—|

C , Model Ensemble
2] Chain of
" Most Suitable Model (Q) @ Tabular

Construct
Tabular
Context

TP Traditional Model ,%- T
L]
K Target Instance /

Figure 1: CoT? utilizes the expert knowledge of LLMs to
create an intelligent ensemble of tabular models, making
still further progress.

Thus, a critical objective is to construct a context that con-
veys essential predictive signals while avoiding reliance on
raw features or textual descriptions. To overcome this, we
construct a tabular context for each target instance. We first
identify local neighbors of the target and gather predictions
from multiple external models within this neighborhood,
combined with other non-semantic dataset information. This
synthesized context is then used as a prompt to the LLM,
which generates a final prediction. However, our empirical
analysis shows that LLMs do not inherently interpret such
context effectively without further guidance.

Second, how do we guide the LLM to think? Simply expos-
ing the LLM to tabular contexts is not enough—we need to
guide it to reason like an expert. Inspired by the Chain of
Thought (CoT) (Wei et al., 2022), we introduce a structured
reasoning process tailored for tabular data: the Chain of
Tabular Thoughts (CoT?). CoT? decomposes the prediction
process into multiple analytical steps, such as identifying
outliers and selecting appropriate models, leveraging the
interactions among neighboring instances and their asso-
ciated predictions from external models. By guiding the
LLM through this step-by-step reasoning, we enable it to
detect anomalies and select the best models for the local
neighborhood. CoT? compensates for the LLMs’ limited
sensitivity to raw numerical values, helping it make effec-
tive and interpretable predictions like a machine learning
competition expert Figure 1.

After equipping LLMs with carefully constructed tabular
contexts and chains of thought, the third challenge is mini-
mizing inference cost. Since LLM-based methods require
running inference for each target instance (Dinh et al., 2022;
Hegselmann et al., 2023; Gardner et al., 2024), reducing the
number of instances that invoke LLMs is crucial for practi-

cal deployment. In real-world settings, many instances are
relatively simple—multiple external models already yield
consistent and accurate predictions for them. We identify
such cases by measuring the agreement among external
model outputs and bypass LLM processing when sufficient
consensus is observed.

We validate the effectiveness of our method on the Tiny-
Bench2 benchmark (Ye et al., 2024), which surpasses en-
semble methods and well-tuned baselines, making further
progress on the leaderboard. In summary, our main contri-
butions are as follows:

* We propose a novel tabular context construction method
that removes the reliance of LLMs on textual datasets or
feature descriptions, thereby significantly enhancing the
applicability and privacy-preserving potential of LLMs in
tabular domains.

» We present the Chain of Tabular Thoughts (CoT?)
approach, which enables step-by-step reasoning and
decision-making, effectively unlocking the numerical and
logical reasoning capabilities of LLMs on tabular data.

* We are the first to explore the role of LLMs in model
ensembling for tabular prediction, addressing a previ-
ously overlooked yet crucial component in the modeling
pipeline, and extending the use of LLMs beyond existing
applications such as feature engineering or data cleaning.

2. Methods

Our goal is to leverage LLMs to perform instance-wise
ensemble by reasoning over a structured “tabular context,”
which conveys alternative forms of knowledge without rely-
ing on raw features or semantic descriptions. Based on the
background and “tabular context” discussed in Appendix B,
we explain the design of the Chain of Tabular Thought
(CoT?), which allows the LLMs to reason clearly.

Chain of Tabular Thoughts LLMs often struggle with
multi-step or complex reasoning tasks. Our experiments
in Table 5 find that it is challenging for LLMs to directly
derive accurate answers from our tabular context. The CoT
helps by breaking down the problem into smaller tasks, al-
lowing the model to focus on each step individually. There-
fore, we emulate an expert’s analysis on the leaderboard
and add some reasoning steps to prompt p;. We design the
Chain of Tabular Thoughts (CoT?) to help LLMs reason
within our tabular context. Take classification for example,
our reasoning steps are as follows:

a) Well-performing Model Selection. Based on the train-
ing accuracies {t rain_acc(fm,)}Y_, and validation
accuracies {val_acc(fm)M_, of each model, LLMs
infer the overall performance of the external models
on the dataset. As shown in the “Step a” in Table 1,
LLMs select M® well-performing models { f,, } M

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

You are a competition expert for leaderboard
that performs binclass task prediction...

A J

Based on the reasoning steps, | predict the
label of the target instance as 0...

[J

’ Tabular Context -

[Let’s think steps by steps...] ‘ Chain of Tabular Thoughts

ﬂ)ataset:
Labels are integers ranging from 0 to 1
Class distribution: {0: 0.85, 1: 0.15}

Models:

Training Acc: | {KNN: 1.00; XGB: 0.90; MLP: 0.86}

Validation Acc: | {KNN: 0.83; XGB: 0.88; MLP: 0.85}

Neighbors (From nearest to farthest):

No. 1, true label: 0; [KNN pred: 1] [XGB pr::}m pred: 0]
No. 2, true label: 0; [KNN pred: 0] [XGB pree<1]|[MLP pred: 0]
lNo. 3, true label: 1; [KNN pred: 0] [XGB pred: O] [MLP pred: 0]
No. 4, true label: 0; [KNN pred: 0] [XGB pred: 0][[MLP pred: 0]
No. 5, true label: 1; [KNN pred: 1] [XGB pred: 1][[MLP pred: 1]

Target instance:
[KNN pred: 1] [XGB pred: 1] [MLP pred: 0]

Ltk k- S

Well-performing Model Selection:
7 KNN overfits, MLP has slight underfitting.
XGB performs well and generalizes effectively.
Outlier Identification:
Neighbor No. 3 is an outlier.
Because all models consistently mispredict its label.
Suitable Model Selection:
MLP is the most suitable model for this neighborhood space.
Because it correctly predicts the labels for all non-outliers.
Final Prediction:
The label of the target instance is more likely to be 0.
Because MLP is more reliable in this specific context and
the fact that the nearest non-outlier neighbors are labeled 0.
Additionally, the majority class in the dataset is 0. /

|7

/

\> LLMs: “I predict the label of the target instance as 0.”

Figure 2: An example of a binary classification task using the tabular context and Chain of Tabular Thoughts (CoT?). We
construct the tabular context based on the combination of neighbors and external model predictions. We design reasoning
steps by learning from the thought processes of leaderboard experts. Experts typically first filter models and neighbors, then
make predictions by aggregating the external models’ predictions for the neighbors and target instances. The tabular context
and CoT? are both provided as a prompt to the LLMs. Figure 9 shows an example.

Table 1: Summary of Key Steps and Corresponding Equations.

Step Equation
Reason in raw context | §; = map (LLM(p;)) = map (LLM (context (@, {y;}1 1, {(z;,y;)} <, M)))
Step a of CoT? {fm M2 = step a ({train_acc(fm)}N_,, {val_acc(fn)}_,)
Step b of CoT? {CUJ} <, =step_b ({yi}iL L {{fm(2)} 1}] L {ai}1)
Step ¢ of CoT? {fin}me1 = step_ c({yj j=1 {{fm(z))) J L {ai})
Step d of CoT? i = step_ d({yj j= 1a {fm(mz)}mzlu{fm(mz) m= iy {ai}i_ 1)

from external models. We aim for LLMs to identify
overfitting and underfitting models based on their train-
ing and validation accuracies, and to find the overall
well-performing models on D.

Outlier Identiﬁcation. Based on the true labels of the
neighbors {y; } XX |, the neighbors’ predicted labels from
well-performing models {{ f,,, (z;) }} 2, 1, and the
label frequencies {q;}$;, as shown in the “Step b”
in Table 1, LLMs identify non-outliers {y; }]K:l among
the neighbors. If the majority of well-performing mod-
els predict incorrectly for a particular neighbor, it sug-
gests that this neighbor might be an outlier, negatively
affecting the predictions. We want the LLMs to be able
to identify such outliers. Label frequencies provide ad-
ditional information about the degree of data imbalance,
which aids in reasoning.

b)

¢) Suitable Model Selection Based on the true labels of
the non-outliers {y;}/<,, the non- outliers’ predicted la-
bels from all models {{ f,(z;)}M 1}] 1> and the label
frequencies {qZ}ZC:1 as shown in the “Step ¢” in Table 1,
LLMs select M* the most suitable models { f,,, }M_;
for the neighborhood space of the target instance. Mod-
els that perform well overall on the dataset may not be
the most efficient at predicting the target instance. It
is essential to identify the best-suited models for the
target instance within the neighbor space after filtering
out outliers.

Final Prediction. Based on the true labels of the
non-outliers {y;}/<,, the label frequencies {¢;}Z .
and the target instance x;’s predicted labels from
the most suitable models and well-performing models
{ () YME U] frn () M2, as shown in the “Step d”

m=1>

d)

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

in Table 1, LLMs make the prediction for the target in-
stance’s label ¢J;. After removing outliers and unsuitable
external models, LLMs can reason more clearly within
the clean local context to achieve the most confident
final predictions.

Finally, we summarize the reasoning steps into text ¢ and in-
clude them in prompt p;. The tabular context and the Chain
of Tabular Thoughts are combined into the final prompt
Pi, which is then input into the LLMs to obtain the final
prediction:

9; = map (LLM(p;)) = map (LLM (p; Ut)). (H

Remark. The content related to the Variant for Regression
Tasks and Hard Sample Identification is provided in subsec-
tion B.3. In addition, we also present a simple non-LLM
baseline, MetaXGB.

Summary. To address the three challenges of applying
LLMs to tabular data, CoT? introduces the following solu-
tions:

+ CoT? designs an information-rich tabular context to re-
place textual descriptions, freeing LLMs from relying on
dataset semantics.

+ CoT? helps LLMs leverage the capabilities of external
models to understand the numerical relationships between
features and labels. Additionally, clear reasoning steps are
included to assist LLMs in understanding the relationship
between model predictions, neighbor labels, and target
predictions.

* To reduce inference cost and avoid token limits from
including raw features, CoT? adopts a selective strategy:
LLM:s are only invoked for hard instances where external
models disagree, while easy cases are handled without
LLM reasoning.

3. Experiments
3.1. Setups

Evaluation Protocol. We follow the evaluation protocol
proposed in (Ye et al., 2024) to ensure fair and consistent
comparisons across all methods. Specifically, we randomly
split each dataset into training, validation, and test sets with
a ratio of 64%: 16%: 20%. The validation set is used for
model selection and early stopping where applicable. All
methods, including those in our model set and all compar-
ison baselines, are trained and evaluated on the same data
splits. Details regarding the model set selection and com-
parison baselines can be found in the appendix.

To account for randomness, we repeat each experiment five
times with different random seeds {0, 1, 2, 3, 4} and report
the average performance on the test set. For classification
tasks, we report average accuracy (Acc), and for regression
tasks, we report average Root Mean Squared Error (RMSE).

3‘5 3‘0 2‘5 20 1‘5 1‘0 ?
|
NCM J_ L CoT2-Deepseek-v3
NB L CoT2-gpt-3.5-turbo
Dummy Averaging Voting
SwitchT Weighted Voting
TabNet, — Best Model
GrowNet — TabM
SVM —MMm—~ —— RealMLP
KNN —MM@M@Mm™— — CatB
TabT ————— —— TabR
L S — — MNCA
NODE —— — XGB
PTaRL —MmMm™—— —— LightG
TabCaps FT-T
TANGOS MLP-PLR
DANets RForest
SNN DCNv2
ExcelF MetaXGB
TabPFN ResNet
Autolnt MLP

Figure 3: Critical difference diagram based on the Wilcoxon-
Holm test with a significance level of 0.05, used to as-
sess pairwise significance of methods on 30 classification
datasets in TinyBench2. Blue-colored methods represent
the models included in the external model set. The method
names in the diagram are abbreviated; the mapping from
abbreviations to full names can be found in (Ye et al., 2024)
and Appendix C.

3.2. Results

Performance on Standard Tasks. For CoT?, we use
gpt-3.5-turbo and Deepseek-v3 (DeepSeek-Al
et al., 2024) with a temperature setting of 0.2. We set the
number of neighbors to 10. The external models used are
shown in Appendix D. As shown in Figure 3, Our method
achieves the best average ranking across all classification
datasets. For regression tasks, the performance results are
provided in Appendix G. Details regarding the effectiveness
of CoT? and the reduction of inference cost via selective
LLM usage are also provided in Appendix G.

4. Conclusion

The widespread use of LLMs on tabular data is limited by
several factors: a heavy reliance on textual descriptions, an
inability to handle datasets with a large number of features,
and insensitivity to numerical values. To apply the expert
knowledge of LLMs to aid in predictions on tabular data, we
designed a tabular context incorporating instance-specific
insights as a substitute for semantic descriptions and feature
values. By utilizing the capabilities of external models, we
addressed the weaknesses of LLMs in handling the relation-
ship between numerical features and labels. Additionally,
we devised a chain of tabular thoughts to teach LLMs how
to comprehend numerical values within our tabular context.
Our method can be efficiently applied to standard tabular
data tasks and few-shot tasks, and it can be easily adapted
and integrated with other approaches.

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. Gpt-4 technical report. CoRR,
abs/2303.08774, 2023.

Arik, S. O. and Pfister, T. Tabnet: Attentive interpretable
tabular learning. In AAAI, 2021.

Badirli, S., Liu, X., Xing, Z., Bhowmik, A., and Keerthi,
S. S. Gradient boosting neural networks: Grownet. CoRR,
abs/2002.07971, 2020.

Bendinelli, T., Dox, A., and Holz, C. Exploring LLM agents
for cleaning tabular machine learning datasets. CoRR,
abs/2503.06664, 2025.

Bodensohn, J.-M., Brackmann, U., Vogel, L., Sanghi, A.,
and Binnig, C. Unveiling challenges for llms in enterprise
data engineering. CoRR, abs/2504.10950, 2025.

Bordt, S., Nori, H., and Caruana, R. Elephants never forget:
Testing language models for memorization of tabular data.
CoRR, abs/2403.06644, 2024.

Borisov, V., Leemann, T., SeBler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Brown, G., Pocock, A. C., Zhao, M.-J., and Lujin, M. Con-
ditional likelihood maximisation: A unifying framework
for information theoretic feature selection. Journal of
Machine Learning Research, 2012.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In NeurlIPS, 2020.

Cai, H.-R. and Ye, H.-J.
deep tabular methods with temporal shift.
abs/2502.20260, 2025.

Understanding the limits of
CoRR,

Chan, J. S., Chowdhury, N., Jaffe, O., Aung, J., Sherburn, D.,
Mays, E., Starace, G., Liu, K., Maksin, L., Patwardhan,
T., Madry, A., and Weng, L. MLE-bench: Evaluating
machine learning agents on machine learning engineering.
In ICLR, 2025.

Chen, J., Liao, K., Wan, Y., Chen, D. Z., and Wu, J. Danets:
Deep abstract networks for tabular data classification and
regression. In AAAI, 2022.

Chen, J., Liao, K., Fang, Y., Chen, D., and Wu, J. Tabcaps:
A capsule neural network for tabular data classification
with bow routing. In ICLR, 2023a.

Chen, J., Yan, J., Chen, D. Z., and Wu, J. Excelformer: A
neural network surpassing gbdts on tabular data. CoRR,
abs/2301.02819, 2023b.

Chen, K.-Y., Chiang, P.-H., Chou, H.-R., Chen, T.-W., and
Chang, T.-H. Trompt: Towards a better deep neural
network for tabular data. In ICML, 2023c.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In KDD, 2016.

DeepSeek-Al, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B.,
Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D.,
Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai,
F., Luo, F.,, Hao, G., Chen, G., Li, G., Zhang, H., Bao,
H., Xu, H., Wang, H., Zhang, H., Ding, H., Xin, H., Gao,
H., Li, H., Qu, H,, Cai, J. L., Liang, J., Guo, J., Ni, J., Li,
J., Wang, J., Chen, J., Chen, J., Yuan, J., Qiu, J,, Li, J.,
Song, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang,
K., Yu, K., Wang, L., Zhang, L., Xu, L., Xia, L., Zhao,
L., Wang, L., Zhang, L., Li, M., Wang, M., Zhang, M.,
Zhang, M., Tang, M., Li, M., Tian, N., Huang, P., Wang,
P, Zhang, P,, Wang, Q., Zhu, Q., Chen, Q., Du, Q., Chen,
R.J., Jin, R. L., Ge, R., Zhang, R., Pan, R., Wang, R., Xu,
R., Zhang, R., Chen, R., Li, S. S., Lu, S., Zhou, S., Chen,
S.,Wu, S, Ye, S, Ye, S., Ma, S., Wang, S., Zhou, S., Yu,
S., Zhou, S., Pan, S., Wang, T., Yun, T., Pei, T., Sun, T.,
Xiao, W. L., and Zeng, W. Deepseek-v3 technical report.
CoRR, abs/2412.19437, 2024.

Dinh, T., Zeng, Y., Zhang, R., Lin, Z., Gira, M., Rajput,
S., Sohn, J.-y., Papailiopoulos, D., and Lee, K. Lift:
Language-interfaced fine-tuning for non-language ma-
chine learning tasks. In NeurIPS, 2022.

Frazier, P. I. A tutorial on bayesian optimization. CoRR,
abs/2305.02449, 2018.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. Retrieval-augmented generation for
large language models: A survey. CoRR, abs/2312.10997,
2023.

Gardner, J., Perdomo, J. C., and Schmidt, L. Large scale
transfer learning for tabular data via language modeling.
In NeurlIPS, 2024.

Gorishniy, Y., Rubachev, 1., Khrulkov, V., and Babenko,
A. Revisiting deep learning models for tabular data. In
NeurIPS, 2021.

Gorishniy, Y., Rubachev, 1., and Babenko, A. On embed-
dings for numerical features in tabular deep learning. In
NeurIPS, 2022.

Gorishniy, Y., Rubacheyv, 1., Kartashev, N., Shlenskii, D.,
Kotelnikov, A., and Babenko, A. Tabr: Tabular deep
learning meets nearest neighbors in 2023. In ICLR, 2024.

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Gorishniy, Y., Kotelnikov, A., and Babenko, A. Tabm:
Advancing tabular deep learning with parameter-efficient
ensembling. In ICLR, 2025.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on typical
tabular data? In NeurIPS, 2022.

Han, S., Yoon, J., Arik, S. O., and Pfister, T. Large language
models can automatically engineer features for few-shot
tabular learning. In ICML, 2024.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. Tabllm: Few-shot classification of
tabular data with large language models. In AISTATS,
2023.

Hollmann, N., Miiller, S., Eggensperger, K., and Hutter, F.
Tabpfn: A transformer that solves small tabular classifi-
cation problems in a second. In ICLR, 2023a.

Hollmann, N., Miiller, S., and Hutter, F. Large language
models for automated data science: Introducing caafe
for context-aware automated feature engineering. In
NeurlIPS, 2023b.

Hollmann, N., Miiller, S., Purucker, L., Krishnakumar, A.,
Korfer, M., Hoo, S. B., Schirrmeister, R. T., and Hutter,
F. Accurate predictions on small data with a tabular
foundation model. Nature, 2025.

Holzmiiller, D., Grinsztajn, L., and Steinwart, I. Better
by default: Strong pre-tuned mlps and boosted trees on
tabular data. In NeurIPS, 2024.

Hu, X., Zhao, Z., Wei, S., Chai, Z., Ma, Q., Wang, G., Wang,
X., Su, J.,, Xu, J., Zhu, M., Cheng, Y., Yuan, J., Li, J.,
Kuang, K., Yang, Y., Yang, H., and Wu, F. Infiagent-
dabench: Evaluating agents on data analysis tasks. In
ICML, 2024.

Huang, Q., Vora, J., Liang, P., and Leskovec, J. Mlagent-
bench: Evaluating language agents on machine learning
experimentation. In ICML, 2024.

Huang, X., Khetan, A., Cvitkovic, M., and Karnin, Z. Tab-
transformer: Tabular data modeling using contextual em-
beddings. CoRR, abs/2012.06678, 2020.

Hutter, F., Kotthoff, L., and Vanschoren, J. Automated
machine learning: methods, systems, challenges.
Springer Nature, 2019.

Jeffares, A., Liu, T., Crabbé, J., Imrie, F., and van der Schaar,
M. Tangos: Regularizing tabular neural networks through
gradient orthogonalization and specialization. In ICLR,
2023.

Jiang, J.-P,, Liu, S.-Y., Cai, H.-R., Zhou, Q., and Ye, H.-J.
Representation learning for tabular data: A comprehen-
sive survey. CoRR, abs/2504.16109, 2025a.

Jiang, Z., Schmidt, D., Srikanth, D., Xu, D., Kaplan, 1.,
Jacenko, D., and Wu, Y. AIDE: ai-driven exploration in
the space of code. CoRR, abs/2502.13138, 2025b.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. In NIPS, 2017.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.
Self-normalizing neural networks. In NIPS, 2017.

Koshil, M., Nagler, T., Feurer, M., and Eggensperger, K.
Towards localization via data embedding for tabPFN. In
NeurIPS Workshop, 2024.

Kiiken, J., Purucker, L., and Hutter, F. Large language
models engineer too many simple features for tabular
data. CoRR, abs/2410.17787, 2024.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Kiittler, H., Lewis, M., Yih, W.-t., Rocktéschel,
T., Riedel, S., and Kiela, D. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. In NeurIPS,
2020.

Li, Z., Zang, Q., Ma, D., Guo, J., Zheng, T., Liu, M., Niu,
X., Wang, Y., Yang, J., Liu, J., Zhong, W., Zhou, W.,
Huang, W., and Zhang, G. Autokaggle: A multi-agent
framework for autonomous data science competitions.
CoRR, abs/2410.20424, 2024.

Liu, S.-Y. and Ye, H.-J. Tabpfn unleashed: A scalable
and effective solution to tabular classification problems.
CoRR, abs/2502.02527, 2025.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
CoRR, abs/1907.11692, 2019.

Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach,
A., Cresswell, J. C., Golestan, K., Yu, G., Volkovs, M.,
and Caterini, A. L. Tabdpt: Scaling tabular foundation
models. CoRR, abs/2410.18164, 2024.

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V.,
Ramakrishnan, G., Goldblum, M., and White, C. When
do neural nets outperform boosted trees on tabular data?
In NeurlIPS, 2023a.

McElfresh, D. C., Khandagale, S., Valverde, J., C., V. P,
Ramakrishnan, G., Goldblum, M., and White, C. When
do neural nets outperform boosted trees on tabular data?
In NeurlIPS, 2023b.

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Nagler, T. Statistical foundations of prior-data fitted net-
works. In ICML, 2023.

Nam, J., Kim, K., Oh, S., Tack, J., Kim, J., and Shin, J.
Optimized feature generation for tabular data via llms
with decision tree reasoning. In NeurIPS, 2024.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient
neural architecture search via parameters sharing. In
ICML, 2018.

Popov, S., Morozov, S., and Babenko, A. Neural oblivious
decision ensembles for deep learning on tabular data. In
ICLR, 2020.

Pricope, T. Hardml: A benchmark for evaluating data sci-
ence and machine learning knowledge and reasoning in
AL CoRR, abs/2501.15627, 2025.

Prokhorenkova, L. O., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. Catboost: unbiased boosting with
categorical features. In NeurIPS, 2018.

Qu, J., Holzmiiller, D., Varoquaux, G., and Morvan, M. L.
Tabicl: A tabular foundation model for in-context learn-
ing on large data. In ICML, 2025.

Rubacheyv, I., Kartashev, N., Gorishniy, Y., and Babenko,
A. Tabred: A benchmark of tabular machine learning
in-the-wild. CoRR, abs/2406.19380, 2024.

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., and
Tang, J. Autoint: Automatic feature interaction learning
via self-attentive neural networks. In CIKM, 2019.

Thomas, V., Ma, J., Hosseinzadeh, R., Golestan, K., Yu, G.,
Volkovs, M., and Caterini, A. L. Retrieval & fine-tuning
for in-context tabular models. In NeurIPS, 2024.

Wang, R., Fu, B., Fu, G., and Wang, M. Deep & cross
network for ad click predictions. In ADKDD, 2017.

Wang, R., Shivanna, R., Cheng, D. Z., Jain, S., Lin, D.,
Hong, L., and Chi, E. H. DCN V2: improved deep &
cross network and practical lessons for web-scale learning
to rank systems. In WWW, 2021.

Wang, Z. and Sun, J. Transtab: Learning transferable tabular
transformers across tables. In NeurIPS, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. In NeurIPS,
2022.

Wen, X., Zheng, S., Xu, Z., Sun, Y., and Bian, J. Scalable in-
context learning on tabular data via retrieval-augmented
large language models. CoRR, abs/2502.03147, 2025.

Wen, Y., Tran, D., and Ba, J. Batchensemble: an alternative

approach to efficient ensemble and lifelong learning. In
ICLR, 2020.

Wolpert, D. H. and Macready, W. G. No free lunch theo-
rems for optimization. IEEE transactions on evolutionary

computation, 1997.

Wu, J., Chen, S., Zhao, Q., Sergazinov, R., Li, C., Liu, S.,
Zhao, C., Xie, T., Guo, H., Ji, C., Cociorva, D., and Brun-
zell, H. Switchtab: Switched autoencoders are effective
tabular learners. In AAAI, 2024.

Yan, J., Zheng, B., Xu, H., Zhu, Y., Chen, D., Sun, J., Wu, J.,
and Chen, J. Making pre-trained language models great
on tabular prediction. In ICLR, 2024.

Ye, H., Fan, W., Song, X., Zheng, S., Zhao, H., dan Guo, D.,
and Chang, Y. Ptarl: Prototype-based tabular representa-
tion learning via space calibration. In ICLR, 2023.

Ye, H.-J., Liu, S.-Y., Cai, H.-R., Zhou, Q.-L., and Zhan, D.-
C. A closer look at deep learning on tabular data. CoRR,
abs/2407.00956, 2024.

Ye, H.-J., Yin, H.-H., Zhan, D.-C., and Chao, W.-L. Re-
visiting nearest neighbor for tabular data: A deep tabular
baseline two decades later. In ICLR, 2025a.

Ye, H.-J., Zhou, Q.-L., Yin, H.-H., Zhan, D.-C., and Chao,
W.-L. Rethinking pre-training in tabular data: A neigh-
borhood embedding perspective. CoRR, abs/2311.00055,
2025b.

Zhang, L., Zhang, Y., Ren, K., Li, D., and Yang, Y. Mlcopi-
lot: Unleashing the power of large language models in
solving machine learning tasks. In EACL (1). Association
for Computational Linguistics, 2024.

Zhang, S., Gong, C., Wu, L., Liu, X., and Zhou, M. Automl-
gpt: Automatic machine learning with GPT. CoRR,
abs/2305.02499, 2023.

Zhang, X. and Liu, K. TIFG: text-informed feature gen-

eration with large language models. In IEEE Big Data,
2024.

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

The Appendix consists of eight sections:

* Appendix A: We review related work that complements the discussion in the main text.

« Appendix B: We provide the preliminary and additional details of CoT?.

* Appendix C: We provide detailed descriptions of the datasets used in our experiments, along with implementation
details for reproducibility.

* Appendix D: We provide the experimental setups.

* Appendix E: We present a comprehensive ablation study analyzing the impact of key design choices in our method.

* Appendix F: We provide additional notes, such as limits, broader impact, and so on.

* Appendix G: We include complete experimental results that were omitted from the main paper due to space limitations.

* Appendix H: We show representative examples of our method, including prompt formats and responses under different
settings.

A. Additional Related Work

A.l. Traditional Tabular Data Learning

In traditional tabular data learning, research has primarily focused on Gradient Boosted Decision Trees (GBDTs) (Chen
& Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2018) and Neural Networks (NNs) (Gorishniy et al., 2021;
Ye et al., 2023; Borisov et al., 2022; Gorishniy et al., 2024; 2025; Ye et al., 2025a). Recent studies often pit GBDTs
against NNs in analyzing tabular data, with results indicating that GBDTs. While GBDTs often outperform NNs in many
scenarios (Grinsztajn et al., 2022), the diversity of tabular data tasks means that either method could be the best or the
worst choice for a particular dataset (McElfresh et al., 2023a). Given the “no free lunch” theorem (Wolpert & Macready,
1997), the selection or integration of the optimal models requires extensive searches or substantial expert knowledge. As
ensemble-based models, GBDTs iteratively construct decision trees to minimize residual loss, making them well-suited for
capturing heterogeneous patterns common in tabular datasets (Rubachev et al., 2024; Cai & Ye, 2025). Meanwhile, the
rapid development of deep learning has led to a surge of interest in adapting neural architectures for tabular data (Borisov
et al., 2022; Jiang et al., 2025a). These efforts include MLP-based variants (Klambauer et al., 2017; Gorishniy et al., 2021;
Holzmiiller et al., 2024), architectures tailored for tabular structures (Wang et al., 2017; Chen et al., 2023a), attention-based
models (Huang et al., 2020; Chen et al., 2023b), regularization-enhanced frameworks (Ye et al., 2023; Wu et al., 2024), and
tree-inspired (Arik & Pfister, 2021; Badirli et al., 2020) or context-aware methods (Gorishniy et al., 2024; Ye et al., 2025a).
Despite these innovations, recent large-scale benchmarks (Grinsztajn et al., 2022; Ye et al., 2024; McElfresh et al., 2023b)
consistently show that GBDTs still outperform deep models in most tabular tasks. While several deep learning methods have
attempted to mimic ensembling effects (Popov et al., 2020; Badirli et al., 2020; Chen et al., 2023c), few have succeeded in
consistently closing the gap. Recent advances such as TabM (Gorishniy et al., 2025) and BETA (Liu & Ye, 2025), which
integrates BatchEnsemble (Wen et al., 2020) into tabular networks, show that efficient and scalable ensembling in deep
tabular models remains an active and promising direction. We use the expert knowledge provided by LLMs, employing
traditional tabular models as base learners, to make further progress on the leaderboard. TabPFN (Hollmann et al., 2023a)
uses in-context learning but does not utilize LLMs, and it requires an additional pre-training process.

A.2. Pre-trained Language Models for Tabular Data

Although Pre-trained Language Models have achieved success in various fields on unseen tasks, their application to tabular
data is often limited due to the prevalence of numerical values and the scarcity of textual descriptions. Additionally, concerns
over data privacy and security can further restrict the availability of semantic information. As a result, the use of language
models in tabular datasets is typically confined to scenarios where textual data is sufficient.

TransTab (Wang & Sun, 2022) trains a tokenizer based on the words present in the tabular data to aid in prediction, rather
than using a language model directly. TP-BERTa (Yan et al., 2024) does not choose large language models. It fine-tunes
relatively smaller pre-trained language models such as RoBERTa (Liu et al., 2019) for tabular data prediction. Methods that
utilize the expert knowledge of LLMs for tabular data can be categorized into two types. The first type of method starts
by serializing data through feature names into text, combining this with task descriptions to enable direct predictions by
LLMs (Dinh et al., 2022; Hegselmann et al., 2023; Gardner et al., 2024). Among them, LIFT (Dinh et al., 2022) requires
fine-tuning on the whole training set, while TabuLa-8B (Gardner et al., 2024) and TabLLM (Hegselmann et al., 2023)
focuses on data scarce scenarios. The second type of method includes CAAFE (Hollmann et al., 2023b) and FeatLLM (Han
et al., 2024). These methods incorporate several examples in the prompt, enabling LLMs to generate new features based on

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 2: Related work on Language Models (LMs) for tabular data learning. “No textual description” means not utilizing
semantic descriptions included in the dataset. “No fine-tuning on LM” means no need to fine-tune language models. “Direct
prediction using LLM” means that the final decision is output by the language model. “Extended to regression tasks” means
that the method is applied to regression tasks in addition to classification. “Unconstrained by feature count” means the
method is not rendered ineffective by an excessive number of features in the dataset, such as when the prompt exceeds the
length limit. CoT? can be applied to tabular data with fewer constraints. (: TransTab (Wang & Sun, 2022) trains a tokenizer
based on the language information in tabular data without utilizing LMs.)

CoT? LIFT TransTab TabLLM CAAFE TP-BERTa FeatLLM TabuLa-8B

No textual descriptions 4 X X X
No fine-tuning on LMs v X v X
Final prediction using LMs v v X v
Extended to regression tasks v v X X
Unconstrained by feature count v/ X v X

x % X% \ %
NN X X X%
x % X% \ %
x NN\ X X%

the textual descriptions. The new features are then used to train traditional models on tabular data.

The detailed comparison between these methods and our approach is shown in Table 2. TransTab and TP-BERTa do
not extend to leveraging LLMs. For other methods that apply LLMs, they transform tabular data problems into text
reasoning tasks. They capitalize on the textualization of data, leveraging the expert knowledge embedded in LLMs to infer
relationships between features and labels. However, this approach can lead to issues when the number of features increases,
as prompts may not be able to accommodate the serialized samples. Their use of LLMs is constrained by the available
semantic information or the capabilities of external tabular models. Besides, LLMs are not sufficiently sensitive to numerical
reasoning. Compared to related work, we emphasize overcoming the aforementioned limitations and applying LLMs more
broadly to tabular data prediction.

A.3. Retrieval-augmented Generation

Retrieval-Augmented Generation (RAG) was originally developed in the language modeling domain to address the limitations
of LLMs on knowledge-intensive tasks (Lewis et al., 2020), enabling models to incorporate external knowledge bases
for more accurate and informed responses. A comprehensive survey by (Gao et al., 2023) categorizes subsequent RAG
research into three stages: pre-training, fine-tuning, and inference. However, the use of RAG in tabular data learning remains
relatively limited. A notable exception is TabR (Gorishniy et al., 2024), which retrieves nearest neighbors to enhance neural
tabular model representations. Recent studies such as LocalPFN (Thomas et al., 2024) and TabDPT (Ma et al., 2024) further
demonstrate that leveraging local neighbors to construct context significantly enhances the performance of tabular foundation
models (e.g. TabPFN (Hollmann et al., 2025), TabICL (Qu et al., 2025), and TabPTM (Ye et al., 2025b)). These approaches
suggest that incorporating instance-specific, retrieval-based context not only improves generalization but also facilitates
more efficient adaptation to downstream tasks (Nagler, 2023; Koshil et al., 2024). This retrieval-based paradigm has also
been extended to enhance tabular prediction with LLMs. (Wen et al., 2025) applies the RAG mechanism to enable large
language models to effectively process large-scale tabular datasets, constructing informative contexts through instance-level
neighbor retrieval. In our approach, we use the labels of retrieved neighbors and the prediction outputs of external models
as key components of the context for CoT?’s reasoning. However, instead of relying on the LLM to directly perform
classification or regression, we position it as an intelligent ensembling agent. This design allows the LLM to make informed
decisions by reasoning over the structured outputs, without accessing any raw tabular features or semantic information. As a
result, our method offers strong privacy protection while retaining the benefits of instance-aware, context-driven prediction.

A.4. LLMs for Enhancing Machine Learning Pipelines.

Despite the success of machine learning (ML) in real-world tasks, building effective ML pipelines remains challenging
due to the many design choices involved. AutoML (Hutter et al., 2019) aims to automate this process through methods
such as neural architecture search (Pham et al., 2018) and Bayesian optimization (Frazier, 2018). While effective, most
AutoML techniques are time-consuming, lack transferability across tasks, and often behave as black boxes with limited
interpretability (Zhang et al., 2024). To overcome these challenges, recent efforts have explored using Large Language
Models (LLMs) to enhance ML workflows. LLM-based agents can assist with various stages of the pipeline—including task
understanding (Pricope, 2025; Chan et al., 2025; Hu et al., 2024), data cleaning (Bendinelli et al., 2025; Bodensohn et al.,

9

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

2025), feature engineering (Hollmann et al., 2023b; Nam et al., 2024; Kiiken et al., 2024; Han et al., 2024; Zhang & Liu,
2024), and model building and tuning (Li et al., 2024; Zhang et al., 2024; 2023; Huang et al., 2024; Jiang et al., 2025b)—but
most of these methods depend heavily on semantic information such as column descriptions or dataset metadata. Notably,
no prior work has explored using LLMs as intelligent ensemble experts for tabular prediction tasks. Our approach addresses
this gap by treating the LLM not as a direct predictor, but as an instance-aware decision-maker that integrates outputs from
multiple external models and nearest-neighbor labels. This enables accurate, interpretable predictions without accessing raw
features or semantic cues, thus preserving privacy while enhancing performance.

Our method targets a fundamentally different setting from prior LLM-based approaches for tabular data. Existing methods
largely fall into two categories: (1) approaches that convert each instance into a textual prompt using feature names or
dataset descriptions, allowing the LLM to act as a predictor (Dinh et al., 2022; Hegselmann et al., 2023; Gardner et al.,
2024); and (2) LLM-assisted tools that help automate parts of the ML pipeline—such as data cleaning, feature engineering,
or hyperparameter tuning—which also rely heavily on task instructions or column-level semantics (Bendinelli et al., 2025;
Hollmann et al., 2023b; Zhang et al., 2024). In contrast, our method assumes no access to raw features or semantic
descriptions. Instead, we position the LLM as an instance-wise ensemble expert that reasons over structured outputs
(e.g., model predictions and neighbor labels), enabling accurate and interpretable predictions even in privacy-sensitive or
low-semantic settings. Owing to this distinct problem formulation, these existing approaches fall outside the scope of our
empirical comparisons.

B. Preliminary and Tabular Context
B.1. Preliminary

Learning with Tabular Data. Given a labeled tabular dataset D = {(x;,y;)}}, with N examples (rows in the table).
An instance x; is associated with a label y;. We consider three types of tasks: binary classification y; € {0, 1}, multiclass
classification y; € [C] = {1,...,C}, and regression y; € R. There are D features (columns) for an instance x;, we denote
the j-th feature in tabular dataset as x. ; and denote the j-th dimension of x; as x;;. We learn multiple tabular models
M = {f}M_, on D that each f,, maps z; to its label y;. These models exhibit varying generalization capabilities on
unseen instances sampled from the same distribution as D. For example, KNN, XGBoost (Chen & Guestrin, 2016), and
Multi-Layer Perceptrons (MLP) are some of the classic models in M.

Predicting with Large Language Models. To make predictions on tabular data using LLMs, we need to generate a prompt
p; containing the necessary information based on the target instance x;. Existing methods often construct p; by utilizing
feature descriptions {FZ}Z’; ; and information of dataset D. For example, in TabLLM (Hegselmann et al., 2023), p; includes
a textual enumeration of all features. The textual serialization of the j-th feature in instance x; is “The feature name F}; is
value x;;”. The large language model LLM with vocabulary) generates output text LLM(p;) € V*, which has to be mapped
to a valid class in [C] when performing classification. However, when the number of features D is large, the length of the
prompt can exceed limitations, and textual descriptions of the dataset may not be available due to data privacy issues or
difficulties associated with data collection. To enable the broad application of LLMs in tabular data, we need prompts that
do not rely on textual descriptions.

B.2. Tabular Context

To eliminate the limitations imposed by feature descriptions {F;}2 | and task descriptions of D, we need to include
substitutes for these textual descriptions in the prompt p;. We use re-weighted distance to search for the target instance’s
nearest neighbors and initially construct a local context. After that, we incorporate predictions from external models into the
local context and add other important information to create the final “tabular context”.

Nearest Neighbor Search. Due to the non-sequential nature of tabular data, tabular data do not have an inherent context.
We address this by finding an implicit sequence based on the distance between instances. We calculate the re-weighted
distance between the target instance x; to instance x; in D:

b :
dist(z;,x;) = <Z wy - ey — :cjld>) 2)
=1
We set d = 1 and w; > 0 is a weight for each dimension. When w; = 1, the distance in Equation 2 degenerates to Manhattan

10

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

distance (d = 1). From the labeled dataset D, we calculate feature weights w; based on the mutual information (Brown
et al., 2012) between features and labels: w; = norm (mutual(z., y)) , where norm (-) normalizes the weights {w; }2 |
using a min-max scaling method. We rank the distances to obtain the K nearest neighbors {x1, x5, ...,k }, and their
corresponding labels {y1,y2,...,yx}. The re-weighted distance ensures that neighbors are more similar in important
aspects, leading to more meaningful neighbors. The local similarity of neighbors helps provide a relevant and focused
context for the target instance. This context can help understand local decision boundaries, leading to more precise and
tailored predictions.

External Models Integration. External tabular models can provide additional information and compensate for LLMs’
numerical reasoning weaknesses. Therefore, we incorporate external models M = {f,,}}/_, on D to enrich the context
and perform model ensembling. To better apply our method to large datasets, we avoid including feature values in
the context, as this would inevitably constrain the prompt length. The knowledge between feature values and labels
learned by the external models helps mitigate this information loss. An expert can more accurately infer the most
suitable external models for the target instance by analyzing the relationship between the neighbors’ true labels and
the model predictions. Consequently, we combine the capabilities of trained traditional tabular models with the in-
context learning abilities of LLMs. Based on neighbors and external models, the tabular context in our designed prompt
pi = context (x;, {y; 17, {(x;,y;)}/<,, M) includes:

* The basic attributes of dataset D, such as the label set [C] in classification and the label range in regression. In classification
tasks, we include the label frequencies {g;}$_, in D, where ¢; = Zjvzl I(y; =4)/N and I(-) is the indicator function.

* The training accuracies {t rain_acc(f,)}*, and validation accuracies {val_acc(f,,)}¥_; of each model. These
elements are already saved during the construction of M, and both the training and validation sets come from the
partitioning of dataset D, without introducing additional data.

 The true labels of these neighbors {y; le, and the predictions of M external models for these neighbors
{{fm(x;)}m—1 }J< . These elements can be obtained through {(a;,;)}/<, and M.

* The external models’ predictions for target instance { f,, (x;) }2_;.

Without including semantic content, we have constructed a tabular context rich in information within the prompt. As shown
in the equation corresponding to “Reason in tabular context” in Table 1, we anticipate that the robust expert knowledge of
LLM:s will be able to synthesize this evidence and carry out instance-wise model integration for target instance z;. map(-)
extracts the final prediction from the LLM’s response through regular expression matching. If the match fails, we will
re-enter the prompt until it succeeds. During our experiments, there was no instance of consecutive matching failures
occurring 10 times.

B.3. More details

Variant for Regression Tasks. For the regression task, we remove the label frequency, retain the true labels and model
predictions to four decimal places. We use RMSE instead of accuracy. The regular expression for map(-) was changed to
(-=2d+.d+) . Figure 10 shows an example of the prompts. If the match fails, we will re-enter the prompt until it succeeds.
During our experiments, there was no instance of consecutive matching failures occurring 10 times.

A Simple Alternative Approach. To assess the necessity of introducing large language models, we design a non-LLM
baseline named MetaXGB, which utilizes the same components as our constructed tabular context. For each target instance
x; in the validation or test set, we retrieve its K nearest neighbors from the training set using the re-weighted distance
in Equation 2, and collect their true labels as well as the external model predictions on both the target and its neighbors.
These components are concatenated into a fixed-length feature vector:

Z; = [{fm(mi)}:\r/{:h {yj}ﬁilv {{fm(m])}%zl}szl]) (3)

which is then used to train a downstream XGBoost classifier on the validation set. The trained model is evaluated on the test
set, and results are compared with our proposed method in subsection 3.2.

Hard Sample Identification. As discussed in section 1, a major challenge in deploying LLM-based tabular methods is
their high inference cost, as the LLM must be invoked for each instance. However, in many real-world scenarios, most
samples can already be accurately predicted by multiple external models with high agreement. To reduce computational
overhead, we adopt a selective strategy that reserves LLM reasoning for more difficult cases—those where external models
disagree. Taking classification tasks as an example, we define a hard sample as one for which fewer than a fraction 7 of the

11

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

M external models predict the same class label. In other words, if more than 7 of the models agree on the prediction, the
instance is considered easy, and LLM inference can be skipped.

C. Datasets and implementation details

Datasets. To evaluate the effectiveness of CoT? on challenging tabular prediction tasks, we adopt the TinyBench2 Benchmark
Suite (Ye et al., 2024), a representative subset of 45 datasets selected from a larger benchmark containing over 300 datasets.
The full benchmark is designed for evaluating tabular models across diverse data types and task settings. However, due to its
scale, it poses a high computational burden for model evaluation. TinyBench2 addresses this challenge by selecting 15%
of datasets while preserving the relative ranking of models. The selection process is framed as an optimization problem:
minimizing the mean absolute error (MAE) between average model ranks on the subset and the full benchmark. The final
TinyBench2 shows the best consistency on both seen and unseen models. By using TinyBench2, we efficiently evaluate our
method while ensuring the results are representative of full-scale benchmarks (Ye et al., 2024).

Table 3 summarizes the key statistics for each dataset used in our experiments. Specifically, we report the following
information:

* Abbr: A short identifier used throughout the paper for concise reference.

» Task_type: The type of machine learning task (regression, binclass, or multiclass).

e N/ C: The number of numerical and categorical features, respectively.

* Samples: The total number of instances in the dataset.

* Hard ratio: The percentage of hard samples, indicating the dataset’s learning difficulty.

We quantify dataset difficulty using the hard ratio, which represents the proportion of hard samples in each dataset. A
sample is considered hard if it fails to reach consensus among external models during evaluation. For classification tasks, a
sample is labeled as hard if fewer than 3/4 of the external models predict the same class label. For regression tasks, we
use an outlier-based rule: a sample is marked as hard if more than 1/4 of the external model predictions fall outside the
interquartile range (IQR), specifically beyond [@1 — 1.5 x IQR, @3 + 1.5 x IQR]. These criteria help identify instances that
are difficult to predict consistently, providing a measure of dataset complexity. Remark. CoT? does not require providing
dataset descriptions or raw feature values as input to the LLM. Instead, the LLLM context is constructed solely from the
predictions of external models on the target test sample and the labels and predictions of its nearest neighbors. As a result,
we do not need to consider potential dataset leakage during LLM pretraining, nor do we require dedicated dataset leakage
detection procedures when selecting evaluation datasets. This makes our approach more broadly applicable, especially when
using proprietary or privacy-sensitive tabular data (Bordt et al., 2024; Kiiken et al., 2024).

External models. For all external baseline models that do not explicitly specify preprocessing strategies for categorical
and numerical features—such as MLP and ResNet—we uniformly apply one-hot encoding for categorical features and
standard normalization for numerical features and regression labels. Training is performed with a maximum of 200 epochs,
a batch size of 1024, and early stopping with a patience of 20 epochs. We conduct 100 rounds of hyperparameter tuning for
each external model. The full search space configurations are available at https://github.com/LAMDA-Tabular/
TALENT/tree/main/TALENT/configs/opt_space.

CoT? Configuration. In our main experiments, we run each dataset using 5 different random seeds and report the average
accuracy (for classification) or RMSE (for regression). For each target instance, we retrieve £ = 10 nearest neighbors
from the training set as context, and set the temperature parameter to t = 0.2. We deploy the CoT? pipeline using two
large language models: gpt—3.5-turbo-0125 and DeepSeek-V3-P001. Additionally, results from gpt—40 are
reported in Table 5 for further comparison.

Abbreviations of models compared in our main experiments. We group all baseline methods into several categories
for clarity. Classical methods include Dummy, Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector
Machines (SVM), Naive Bayes, Linear Regression (LR), and DNNR. Tree-based methods include Random Forest (RF),
XGBoost (XGB) (Chen & Guestrin, 2016), LightGBM (LightG) (Ke et al., 2017), and CatBoost (CatB) (Prokhorenkova
et al., 2018). MLP variants cover vanilla MLP, MLP-PLR (Gorishniy et al., 2022), Self-Normalizing Neural Networks
(SNN) (Klambauer et al., 2017), ResNet (Gorishniy et al., 2021), RealMLP (Holzmiiller et al., 2024), and TabM (Gorishniy
et al., 2025). Special architectures include DCNv2 (Wang et al., 2021), DANets (Chen et al., 2022), and TabCaps (Chen
et al., 2023a). Token-based methods include Autolnt (Song et al., 2019), TabTransformer (TabT) (Huang et al., 2020),
FT-Transformer (FT-T) (Gorishniy et al., 2021), and ExcelFormer (ExcelF) (Chen et al., 2023b). Regularization-based

12

https://github.com/LAMDA-Tabular/TALENT/tree/main/TALENT/configs/opt_space
https://github.com/LAMDA-Tabular/TALENT/tree/main/TALENT/configs/opt_space

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 3: The list of datasets in TinyBench2 (Ye et al., 2024), along with the statistics for each dataset.

Dataset Abbr Task_type N C Samples Hard ratio
Ailerons AIL regression 40 0 13750 49.3818
BNG(breast-w) BWR binclass 9 0 39366 0.5588
BNG(cmc) CMC multiclass 2 7 55296 9.5931
BNG(tic-tac-toe) TTT binclass 0 9 39366 4.6355
CPMP-2015-regression C2R regression 23 2 2108 53.7915
Cardiovascular-Disease-dataset CDD binclass 5 6 70000 3.9214
CookbookReviews COO regression 7 0 18182 4.1793
FOREX_audchf-day-High ADH binclass 10 O 1833 28.0654
FOREX_audsgd-hour-High AHH binclass 10 0 43825 26.5830
FOREX _cadjpy-hour-High FOR binclass 10 0 43825 21.5402
Gender_Gap_in_Spanish_ WP GGI multiclass 13 0 4746 10.5263
IEEE80211aa-GATS IGE regression 27 0 4046 46.7901
KDD KDD binclass 34 11 5032 12.1152
Large-scale_Wave_Energy_Farm_Sydney_49 LSW regression 99 0 17964 43.6961
Superconductivty SUP regression 81 0 21197 37.9953
VulNoneVul VUL binclass 16 0 5692 0.0000
archive2 ARC regression 11 1 1143 34.0611
bank8FM BAN regression 8 0 8192 64.2465
baseball BAS multiclass 15 1 1340 1.4925
communities_and_crime CAC regression 102 0 1994 36.3409
credit CRE binclass 10 O 16714 10.5594
dis DIS binclass 6 23 3772 0.3974
eye_movements_bin EMB binclass 20 0 7608 25.9527
fried FRI regression 10 0 40768 71.4251
healthcare_insurance_expenses HIE regression 3 3 1338 27.9851
house_16H_reg HIR regression 16 0 22784 32.1922
jungle_chess_2pcs_raw_endgame_complete IC2 multiclass 6 0 44819 12.0259
kin8nm KIN regression 8 0 8192 33.3130
law-school-admission-bianry LSA binclass 7 4 20800 0.0000
mfeat-fourier MFF multiclass 76 0 2000 11.0000
mv MV regression 7 3 40768 91.2558
online_shoppers OSN binclass 5 9 12330 4.9067
page-blocks PBA multiclass 10 0 5473 1.4612
pc3 PC3 binclass 37 0 1563 3.8339
pendigits PEN multiclass 16 0 10992 0.5457
gsar_fish_toxicity QFT regression 4 2 908 31.3187
rl RL binclass 5 7 4970 24.3461
satimage SAT multiclass 36 0 6430 5.5210
segment SEG multiclass 17 0 2310 6.2771
sylvine SYL binclass 20 0 5124 3.3171
taiwanese_bankruptcy_prediction TBP binclass 95 0 6819 0.8798
waveform-5000 WS5A multiclass 40 0 5000 6.7000
website_phishing WPE multiclass 0 9 1353 8.1181
wine-quality-white WQW multiclass 11 0 4898 24.5918
yeast YEA multiclass 8 0 1484 16.1616

13

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

methods comprise TANGOS (Jeffares et al., 2023), SwitchTab (SwitchT) (Wu et al., 2024), and PTaRL (Ye et al., 2023).
Tree-mimic methods include NODE (Popov et al., 2020), GrowNet (Badirli et al., 2020), and TabNet (Arik & Pfister,
2021). Context-based methods include TabR (Gorishniy et al., 2024), TabPFN (Hollmann et al., 2023a) and ModernNCA
(MNCA) (Ye et al., 2025a).

D. Experiment Setups

Model Set Selection. To ensure a comprehensive and robust evaluation of ensemble performance, we construct a model set
that spans multiple paradigms of tabular modeling. Our goal is twofold: to cover the dominant families of models used in
practice, and to expose the ensemble mechanism to diverse inductive biases. Specifically, we include:

a) Three representative GBDT models: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and Cat-
Boost (Prokhorenkova et al., 2018), which are widely recognized as state-of-the-art models for tabular data due to their
strong performance, robustness, and widespread adoption in both academia and industry.

b) Four deep learning models for tabular data: MLP, ResNet, and FT-Transformer (Gorishniy et al., 2021), which are
representative architectures selected by (Ye et al., 2024) based on systematic benchmarking. To broaden architectural
diversity, we also include AutoInt (Song et al., 2019), a hybrid model bridging tabular deep learning and recommender
systems that integrates attention mechanisms and feature interaction modeling.

c) A classical non-parametric method: K-Nearest Neighbors (KNN), which provides an intuitive, instance-based
learning paradigm. Including KNN complements the parametric models and offers a contrasting local inductive bias
that is useful for diversity in ensemble behavior.

All models are trained independently on each dataset, and their predictions are used by our method and the baselines

to construct tabular contexts and evaluate ensemble performance. This carefully chosen model set balances accuracy,

architectural diversity, and modeling philosophy.

Comparison Methods. We compare two main categories of methods, both derived from a common set of tabular models

that also serve as the external model pool for CoT?:

* TinyBench2 Baseline Methods: This category includes all baseline methods reported in the TinyBench2 benchmark (Ye
et al., 2024), which already cover all the models in our model set. These include classical machine learning models, gradient
boosted decision trees (GBDTs), and deep learning architectures for tabular data. In addition, we also compare against
TabM (Gorishniy et al., 2025), a recently proposed deep ensemble learning method that achieves strong performance.

* Ensemble Methods over the Model Set: Based on the same model set, we implement several standard ensemble or
selection strategies for comparison:

— Best Model: selects the model with the highest validation accuracy on each dataset;
— Average Voting: averages the predicted logits across models;
— Weighted Voting: averages logits weighted by each model’s training accuracy.

* Non-LLM Context-based Baseline (MetaXGB): We further compare with MetaXGB (see subsection B.3), a simple

non-LLM baseline using the same tabular context with CoT2.

E. Ablation Study

To better understand the design choices in CoT?, we conduct an ablation study on several key components. All the ablation
experiments are conducted using the gpt -3 . 5-turbo model on five classification datasets in TinyBench2. The ablation
experiments are conducted on a subset of five datasets: BAS, DIS, SYL, CRE, and FOR.

» Model Set: We investigate the impact of the external model set on the performance of CoT? by varying both the number
and quality of models included. Specifically, we experiment with different pool sizes and progressively introduce stronger
models into the ensemble. We evaluate three configurations: a reduced model set of 4 strong models (XGBoost, CatBoost,
MLP, FT-Transformer), the original 8-model pool used in the main experiments, and an extended 12-model set that
adds four recent, higher-performing deep models (RealMLP (Holzmiiller et al., 2024), TabR (Gorishniy et al., 2024),
ModernNCA (Ye et al., 2025a), and TabM (Gorishniy et al., 2025)). The results demonstrate that increasing the number of
models generally enhances performance, while incorporating higher-performing models into the pool leads to further
gains, as shown in Figure 4.

* Number of Neighbors (k): We evaluate different values of k£ when constructing the tabular context. The results show that
moderate values (e.g., k = 10) strike a good balance between context richness and prompt length, as shown in Figure 5.

* Distance Metric: We compare several distance metrics for neighbor retrieval, including Manhattan, Euclidean, cosine

14

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

0.80
0.981 Size=4
Size=8
£ 0.961 0.751 Size=12
o
S 0.941
Q
< 0.701
0.92 -
0.90 ; ; ; 0.65 - i
BAS DIS SLY CRE FOR
Figure 4: Impact of external model set size and quality on the performance of CoT?.
0.981 K=5
0.751 K=10
?0.96- K=
5 0.70-
© 0.94
O
<
0.92_ 0-65-
0.90 ; ; ; 0.60 - ;
BAS DIS SLY CRE FOR

Figure 5: Performance of CoT? under different numbers of neighbors k used in the context.

similarity, and our proposed re-weighted distance in Equation 2. These metrics affect how relevant neighbors are selected
for each target instance, which in turn influences the quality of the constructed tabular context (Figure 6).
Anonymizing External Model Names: We examine whether hiding the real names of external models in the tabular
context affects CoT?’s performance. Instead of using actual model names, we substitute them with anonymized labels (e.g.,
Model A, B, C, D). Interestingly, we observe improved performance on four out of five datasets under this anonymized
setting. This suggests that LLMs may carry inherent biases or preferences toward certain model names, and removing
these cues can lead to more objective and consistent reasoning (Figure 7).

LLM Inference Temperature: We analyze the effect of temperature settings on model outputs. Lower temperatures
(e.g., 0.2) yield more stable and deterministic predictions, while higher temperatures introduce variability and may reduce
accuracy (Figure 8).

Threshold for Hard Sample Selection: We study how varying the agreement threshold for identifying hard samples
affects both predictive performance and inference cost (Table 4).

15

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

0.981 MAN RW
0.751 COS

>0.96 MAN
5 0.70 EUC RW
© 0.94
@]
<

0.92_ 0.65-

0.90 ; ; ; 0.60 - .

BAS DIS SLY CRE FOR

Figure 6: In the process of nearest neighbor search, we used the Manhattan distance reweighted by mutual information
(MAN-RW) in the main experiment. We also experimented with cosine distance (COS) and Euclidean distance reweighted
by mutual information (EUC-RW). The knowledge from LLMs and the predictions from external models can help us filter
out outliers in the nearest neighbors, making CoT? robust to different distance metrics.

0.80
0.98+ W/o Name
0.781 W/ Name
>’0.96- 0.761
(&)
©
=] 0.74 1
;@, 0.94 -
0.72 1
0.92+
0.701
0.90 \ \ ; 0.68 \ ;
BAS DIS SLY CRE FOR

Figure 7: Impact of anonymizing external model names in the tabular context on CoT?’s performance. We compare two
settings: w/ name, where real model names are provided, and w/o name, where anonymized labels (e.g., Model A, B, C) are
used. Results show that the anonymized version (w/o name) outperforms the named version on four out of five datasets,
indicating that removing model identity may reduce bias and improve reasoning consistency.

16

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

0.775+
0.98
> BAS | 0.750-
S DIS —— CRE
8 0.96 0.7251 FOR
< — SLY
0.700
0.941, | | |] | | | | |
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Temperature Temperature

Figure 8: Effect of temperature setting on CoT?’s performance. We evaluate four values: ¢ = 0.1, 0.2, 0.5, and 1.0. Results
show that CoT? is generally robust to temperature changes, with performance remaining stable across different ¢ values.
However, higher temperatures lead to increased variance, indicating less stable behavior from the LLM during inference.

Table 4: Effect of varying the hard sample threshold on accuracy and inference cost. Increasing the threshold allows
more instances to be handled by the LLM, but may decrease accuracy due to potential hallucinations on simple instances.
Conversely, decreasing the threshold may also reduce accuracy, as difficult samples not solvable by base ensembles alone
may be excluded from LLM inference. Results are reported on the SYL and CRE datasets.

Dataset Threshold Accuracy (%) Time (s) Tokens (input) Tokens (output) Price ($)

0.50 94.20 19.3 41715 6148 0.03
SYL 0.75 94.56 62.4 74920 11841 0.06
1.00 93.06 213.2 394769 60807 0.29
0.50 77.08 146.3 275757 41475 0.20
CRE 0.75 77.86 644.8 1525206 134162 0.96
1.00 77.29 1418.4 2995927 454875 2.18

F. Additional Notes

Experimental Compute Resources. All experiments were conducted using 4 NVIDIA RTX 4090 GPUs and 2 Intel(R)
Xeon(R) Platinum 8352V CPUs. The hyperparameter tuning and training of all external models can be completed within 48
hours under this configuration. CoT? takes an average of 1044.6 seconds to run once on the largest dataset, CDD, which
contains 70,000 instances, as shown in Table 3.

Limitations. We did not find significant drawbacks in the method.

Broader Impacts. CoT? enables the application of LLMs to tabular data without requiring semantic information, thereby
preserving data privacy. It also overcomes LLMs’ limitations related to insensitivity to numerical values, scarcity of textual
descriptions, and context length restrictions.

G. Detailed Results

Effective of CoT?. As shown in Figure 3, CoT? significantly outperforms the non-LLM baseline MetaXGB, which adopts
a hard-rule strategy based on handcrafted feature construction and a downstream XGBoost classifier. This result highlights
the limitations of rigid integration methods and demonstrates the necessity of leveraging large language models for more
intelligent and flexible model ensembling. The key difference between using and not using the chain of tabular thoughts is
whether the four inference steps are included in the prompt. As shown in Table 5, incorporating CoT? significantly enhances

17

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 5: Mean and STD of test accuracy on five datasets. CoT? provided significant improvements for GPT-3.5 and smaller
benefits for GPT-40 and Deepseek-v3, indicating that the reasoning steps in CoT? align well with advanced expert knowledge.
(Bold indicates superiority across all methods, while underline signifies whether CoT? has brought improvements to the
same LLM.)

gpt-3.5-turbo gpt-4o Deepseek-V3

Dataset | w/o CoT? w/ CoT? w/o CoT? w/ CoT? w/o CoT? w/ CoT?
BAS 93.36 = 0.28 94.63 + 0.18 | 94.40+0.00 94.63 +0.18 | 94.10 == 0.28 94.55 £ 0.18
DIS 98.41 £0.05 98.54 +0.00 | 98.57£0.05 98.60 £ 0.06 | 98.54 = 0.15 98.68 + 0.06
SYL 91.65 £ 0.18 94.56 +0.04 | 94.60+ 0.30 94.87 £0.24 | 9443 £ 0.27 94.93 +0.14
CRE 76.37 £0.25 77.86 +0.08 | 77.99+ 0.15 78.01+0.15 | 77.80 = 0.15 77.97 £ 0.16
FOR 64.18 £0.26 68.65 +0.11 | 69.66+ 0.19 70.69+ 0.11 | 69.75 £0.27 70.69 + 0.11
Mean 84.79 86.85 87.04 87.36 86.92 87.36

performance when using GPT-3.5 compared to the original tabular context. We further include comparisons with gpt—-4o,
showing that CoT? continues to bring benefits for more capable models. Figure 11 and Figure 12 show that, without CoT?,
GPT-3.5’s predictions rely solely on the models that perform well on the overall dataset and majority prediction, resulting
in an incorrect prediction. CoT? enables GPT-3.5 to perform clear and structured reasoning in the tabular context, leading
to a correct prediction. The effectiveness of CoT? helps bridge the performance gap between GPT-3.5 and GPT-4o in this
specific reasoning task, demonstrating that our designed reasoning steps align with the more advanced expert knowledge
in GPT-40. With CoT?, our simple and efficient prediction context does not require new or complex knowledge. The
responses of different LLLMs to the same prompt are shown in Figure 13, and Figure 14. We also include responses from
the latest version of ChatGPT in Figure 15, Figure 16, Figure 17, and Figure 18. We observe that both gpt-40 and
Deepseek~-v3 tend to provide more fine-grained analysis for each piece of information. In particular, Deepseek-v3
and the latest ChatGPT often structure their reasoning in a list format, which enhances interpretability and clarity.

Reducing Inference Cost via Selective LLM Usage. As discussed in section 1, a key challenge of LLM-based tabular
prediction is the high inference cost, as separate prompts must be processed for each instance (Dinh et al., 2022; Hegselmann
et al., 2023; Gardner et al., 2024). To reduce inference cost, we adopt a strategy to identify easy instances—those for
which external models show high agreement. Specifically, for classification tasks, we define an instance as easy if at least
7 = 3/4 of the external models agree on the prediction, and LLM inference is skipped in these cases. This selective
strategy significantly reduces computational overhead by reserving LLM inference for more challenging instances. As
shown in Table 3, this approach allows us to bypass LLM reasoning for the majority of test samples, ensuring that LLMs are
used only when their reasoning capabilities are most needed.

Table 6: The detailed results shown in Figure 3.

Dataset CoT?-Deepseek-v3 MetaXGB CoT?-gpt-3.5 ‘ Dataset CoT2-Deepseek-v3 MetaXGB CoT?2-gpt-3.5
BAS 94.55 95.52 94.63 WPE 92.03 88.93 91.14
PC3 89.14 89.14 89.39 ADH 74.22 71.12 69.65
MFF 87.50 86.25 88.25 SEG 93.29 92.64 93.81
DIS 98.68 98.15 98.54 GGI 60.40 56.21 59.64
WQW 63.59 63.67 63.84 RL 78.81 71.67 71.87
WS5A 85.80 83.30 86.12 KDD 81.15 78.35 80.10
SYL 94.93 94.05 94.56 PBA 97.44 96.53 97.50
VUL 98.95 98.95 98.95 SAT 92.40 90.75 92.40
TBP 97.20 96.41 97.27 EMB 62.67 59.86 62.65
PEN 99.43 99.18 99.45 OSN 90.30 89.94 90.18
CRE 77.97 74.69 77.86 LSA 100.0 100.0 100.0
BWR 98.74 98.63 98.70 TTT 81.47 78.54 81.52
FOR 70.69 66.53 68.65 AHH 68.55 66.34 65.65
Cc2 95.26 98.57 90.13 CMC 58.88 55.48 58.84
CDD 73.48 70.84 73.46 YEA 60.88 58.22 60.94

18

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Table 7: RMSE on 15 regression datasets in TinyBench2. We report the RMSE of all the external models for each dataset.
CoT? achieved the highest average ranking among all methods.

Dataset KNN XGBoost Catboost LightGBM MLP ResNet Autolnt FT-T Average CoT?
ARCy 102 3.6422 3.3812 3.2327 3.4980 3.6477 3.5902 3.7367 4.0321 3.2382 3.2491
HIE 103 5.5246 4.6865 4.5222 4.6913 4.8525 477755 4.8049 45223 45460 4.6150

CACq9-1 1.3446 1.3502 1.2977 1.3308 1.3584 14602 13649 1.3791 13033 1.2989
IGE 19-2 8.4527 4.2323 3.6572 4.2587 3.0002 24307 28165 3.0886 2.9917 2.7597
KINy19-1 1.2049 1.249 0.9029 1.2599 0.7488 73773 7.0919 0.6754 0.7835 0.7699
BAN 19-2 4.9246 3.0842 2.8628 3.0073 2.8947 2.8571 2.8360 2.8245 2.8505 2.8142
AlL 19~ 2.0400 1.5300 1.4700 1.5200 1.5500 1.5500 1.5500 1.5700 1.4800 1.4700

LSW 104 1.1759 0.5011 0.4449 0.4991 0.4841 0.5963 0.6354 0.4007 0.4249 0.3964
COO g0 1.4921 1.4795 1.4877 1.4833 1.5112 1.5921 1.5777 1.5899 1.4947 1.4951
SUP 101 1.0713 0.9959 0.9980 1.0103 1.0738 1.0365 1.0924 1.0593 09744 0.9754
HIR 104 3.7025 3.1061 3.0191 3.1017 3.1441 3.1448 3.1296 3.1265 29075 29143
MV ;109-1 15.1106 ~ 0.9397 0.8157 0.9257 02590 1.2554 0.4128 0.2684 19614 0.4875
FRI 100 1.8540 1.0838 1.0105 1.0627 1.0840 1.0230 1.0201 1.0100 1.0330 1.0122
QFT 101 9.7412 9.2242 8.7159 8.9754 9.1436 9.4800 9.1662 9.1038 8.6904 8.9618
C2R 102 5.7960 4.6258 4.7438 4.7587 5.3895 5.1601 53207 5.3627 4.9601 4.9860
average rank 8.80 5.73 3.27 5.53 6.80 6.67 6.27 5.27 3.67 3.00

19

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

H. Examples

Figure 9: An example of the prompt in the classification dataset CRE. We also provided examples in Figure 12 and Figure 11
where gpt-3.5-turbo responds without and with CoT?, respectively. It can be observed that CoT? breaks down a complex
problem into multiple steps, resulting in more structured answers, thus enhancing the interpretability and accuracy. The
responses of Deepseek-v3 and GPT-40 are in Figure 14 and Figure 13. We further provide step-by-step responses from the

Prompt

You are a machine learning expert that performs binclass task prediction.
I will give you a target instance, and I need you to make the final prediction decision based on a comprehensive analysis
of its neighbors and the predictions from some external trained models.

First, the information about the dataset:
Labels are integers ranging from O to 1. Class distribution: {0: 0.5, 1: 0.5}.

Second, the information about the external models:

The training accuracy of the models is as follows:

knn: 0.6934; xgboost: 0.8020; catboost: 0.7850; lightgbm: 0.8168;
mlp: 0.7585; resnet: 0.7573; autoint: 0.7585; ftt: 0.7523;

The validation accuracy of the models is as follows:

knn: 0.6654; xgboost: 0.7809; catboost: 0.7806; lightgbm: 0.7764;
mlp: 0.7574; resnet: 0.7589; autoint: 0.7563; ftt: 0.7604;

Third, the information about the neighbors, ordered from nearest to farthest:
No. 1, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 2, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 3, True label is 1;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 1] [lightgbm pred: 1]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 4, True label is 0;

[knn pred: 0] [xgboost pred: 1] [catboost pred: 0] [lightgbm pred: 1]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 5, True label is 1;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 1]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 6, True label is 0;

[knn pred: 0] [xgboost pred: 1] [catboost pred: 1] [lightgbm pred: 1]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 7, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 8, True label is 1;

[knn pred: 1] [xgboost pred: 1] [catboost pred: 1] [lightgbm pred: 1]
[mlp pred: 1] [resnet pred: 1] [autoint pred: 1] [ftt pred: 1]

No. 9, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

No. 10, True label is 0;

[knn pred: 0] [xgboost pred: 0] [catboost pred: 0] [lightgbm pred: 0]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

Fourth, the information about the target instance:
[knn pred: 0] [xgboost pred: 1] [catboost pred: 1] [lightgbm pred: 1]
[mlp pred: 0] [resnet pred: 0] [autoint pred: 0] [ftt pred: 0]

Let’s think step by step:

1. Based on the training accuracies and validation accuracies of each model, You infer the overall performance of the
external models on the dataset. Then you select well-performing models from external models. We aim for you to identify
overfitting and underfitting models based on their training and validation accuracies, and to find the overall
well-performing models dataset.

2. Based on the true labels of the neighbors, the neighbors’ predicted labels from well-performing models, and the label
frequencies, you identify non-outliers among the neighbors. If the majority of well-performing models predict incorrectly
for a particular neighbor, it suggests that this neighbor might be an outlier, negatively affecting the predictions. We
want you to be able to identify such outliers. Label frequencies provide additional information about the degree of data
imbalance, which aids in reasoning.

3. Based on the true labels of the non-outliers, the non-outliers’ predicted labels from all models, and the label
frequencies, you select the most suitable models for the neighborhood space of the target instance. Models that perform
well overall on the dataset may not be the most efficient at predicting the target instance. It is essential to identify
the best-suited models for the target instance within the neighbor space after filtering out outliers.

4. Based on the true labels of the non-outlier neighbors, the label frequencies, and the target instance’s predicted labels
from the most suitable models and well-performing models, list the labels of the non-outlier neighbors and the predictions
of the most suitable models on the target instance. This will help you assess the effectiveness of these models in the
target instance’s neighborhood. After removing outliers and unsuitable external models, you can use a KNN-based approach
and model ensembling within the clean local context to achieve the most confident final predictions. Well-performing models,
being the strongest models on the current dataset leaderboard, provide auxiliary information for the final prediction.

I will use Python code to extract your prediction. Please ensure your response allows the following code to successfully
obtain your predicted label:

import re

label = re.search(r’I predict the label of the target instance as (\d+)’, your_response_text).group(1)

To match the regex, your response must strictly contain this sentence after your reasoning steps:
"I predict the label of the target instance as [Your Answer]."

latest ChatGPT to illustrate the reasoning process in more detail, as shown in Figure 15, 16, 17, and 18.

20

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Prompt

You are a machine learning expert that performs regression task prediction.
I will give you a target instance, and I need you to make the final prediction decision based on a comprehensive analysis
of its neighbors and the predictions from some external trained models.

First, the information about the dataset:
Labels range from -1.0058 to 4.4005.

Second, the information about the external models:

The training RMSE of the models is as follows:

knn: 0.1216; xgboost: 0.1345; catboost: 0.1420; lightgbm: 0.1575;
mlp: 0.2364; resnet: 0.2215; autoint: 0.2275; ftt: 0.2161;

The validation RMSE of the models is as follows:

knn: 0.2876; xgboost: 0.2635; catboost: 0.2588; lightgbm: 0.2628;
mlp: 0.2931; resnet: 0.2823; autoint: 0.2952; ftt: 0.2838;

Third, the information about the neighbors, ordered from nearest to farthest:

No. 1, True label is -0.9582;

[knn pred: -0.9582] [xgboost pred: -0.9504] [catboost pred: -0.9638] [lightgbm pred: -0.9420]
[mlp pred: -0.9549] [resnet pred: -1.0089] [autoint pred: -0.9115] [ftt pred: -0.9284]

No. 2, True label is -0.9804;

[knn pred: -0.9683] [xgboost pred: -0.9504] [catboost pred: -0.9652] [lightgbm pred: -0.9420]
[mlp pred: -0.9551] [resnet pred: -1.0077] [autoint pred: -0.9088] [ftt pred: -0.9237]

No. 3, True label is -0.9561;

[knn pred: -0.9683] [xgboost pred: -0.9504] [catboost pred: -0.9652] [lightgbm pred: -0.9420]
[mlp pred: -0.9551] [resnet pred: -1.0077] [autoint pred: -0.9088] [ftt pred: -0.9237]

No. 4, True label is -0.9813;

[knn pred: -0.9813] [xgboost pred: -0.9526] [catboost pred: -0.9711] [lightgbm pred: -0.9413]
[mlp pred: -0.9393] [resnet pred: -1.0271] [autoint pred: -0.8666] [ftt pred: -0.8721]

No. 5, True label is -0.9620;

[knn pred: -0.9620] [xgboost pred: -0.9409] [catboost pred: -0.9481] [lightgbm pred: -0.9510]
[mlp pred: -0.9424] [resnet pred: -0.9613] [autoint pred: -0.8746] [ftt pred: -0.8476]

No. 6, True label is -0.8159;

[knn pred: -0.8159] [xgboost pred: -0.7953] [catboost pred: -0.8107] [lightgbm pred: -0.8180]
[mlp pred: -0.8514] [resnet pred: -0.8512] [autoint pred: -0.8824] [ftt pred: -0.8675]

No. 7, True label is -0.7954;

[knn pred: -0.7954] [xgboost pred: -0.8337] [catboost pred: -0.8085] [lightgbm pred: -0.8160]
[mlp pred: -0.8598] [resnet pred: -0.7583] [autoint pred: -0.9357] [ftt pred: -0.9902]

No. 8, True label is -0.9123;

[knn pred: -0.9123] [xgboost pred: -0.9207] [catboost pred: -0.9147] [lightgbm pred: -0.9185]
[mlp pred: -0.9698] [resnet pred: -0.8695] [autoint pred: -0.9723] [ftt pred: -0.9036]

No. 9, True label is -0.8217;

[knn pred: -0.8217] [xgboost pred: -0.8567] [catboost pred: -0.8416] [lightgbm pred: -0.8620]
[mlp pred: -0.8576] [resnet pred: -0.8030] [autoint pred: -0.8840] [ftt pred: -0.8008]

No. 10, True label is -0.6259;

[knn pred: -0.6259] [xgboost pred: -0.6181] [catboost pred: -0.6195] [lightgbm pred: -0.6031]
[mlp pred: -0.6648] [resnet pred: -0.6208] [autoint pred: -0.6959] [ftt pred: -0.7828]

Fourth, the information about the target instance:
[knn pred: -0.9605] [xgboost pred: -0.9504] [catboost pred: -0.9592] [lightgbm pred: -0.9420]
[mlp pred: -0.9549] [resnet pred: -1.0090] [autoint pred: -0.9119] [ftt pred: -0.9293]

Let’s think step by step:

1. Based on the training accuracies and validation accuracies of each model, You infer the overall performance of the
external models on the dataset. Then you select well-performing models from external models. We aim for you to identify
overfitting and underfitting models based on their training and validation accuracies, and to find the overall
well-performing models dataset.

2. Based on the true labels of the neighbors, the neighbors’ predicted labels from well-performing models, and the label
frequencies, you identify non-outliers among the neighbors. If the majority of well-performing models predict incorrectly
for a particular neighbor, it suggests that this neighbor might be an outlier, negatively affecting the predictions. We
want you to be able to identify such outliers. Label frequencies provide additional information about the degree of data
imbalance, which aids in reasoning.

3. Based on the true labels of the non-outliers, the non-outliers’ predicted labels from all models, and the label
frequencies, you select the most suitable models for the neighborhood space of the target instance. Models that perform
well overall on the dataset may not be the most efficient at predicting the target instance. It is essential to identify
the best-suited models for the target instance within the neighbor space after filtering out outliers.

4. Based on the true labels of the non-outlier neighbors, the label frequencies, and the target instance’s predicted labels
from the most suitable models and well-performing models, list the labels of the non-outlier neighbors and the predictions
of the most suitable models on the target instance. This will help you assess the effectiveness of these models in the
target instance’s neighborhood. After removing outliers and unsuitable external models, you can use a KNN-based approach and
model ensembling within the clean local context to achieve the most confident final predictions. Well-performing models,
being the strongest models on the current dataset leaderboard, provide auxiliary information for the final prediction.

I will use Python code to extract your prediction. Please ensure your response allows the following code to successfully
obtain your predicted label:
import re

label = re.search(r’I predict the label of the target instance as (\d+)’, your_response_text).group(1)

To match the regex, your response must strictly contain this sentence after your reasoning steps:
"I predict the label of the target instance as [Your Answer]."

Figure 10: An example of the prompt in the regression dataset KIN.

21

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Response

1. Based on the training and validation accuracies of the external models, we can infer the overall performance on the
dataset. The models with high training and validation accuracies such as lightgbm (0.8168 training, 0.7764 validation)
and xgboost (0.8020 training, 0.7809 validation) seem to perform well without overfitting or underfitting.

2. Identifying non-outliers among the neighbors:
- No. 1, 2, 4, 6, 7, 9, 10 are non-outliers as they have a majority of correct predictions from well-performing models.

- No. 3, 5, 8 are outliers as most of the well-performing models predict incorrectly for them.

3. Selecting the most suitable models for the target instance:
Based on the non-outlier neighbors, the models that seem suitable for the target instance are knn, resnet, and ftt.

4. Final analysis:
- Non-outlier neighbors’ labels: 0, O, 0, O, 0, 0, O, O, O, O
- Predictions from the most suitable models on the target instance:

[knn pred: 0] [resnet pred: 0] [ftt pred: 0]

Considering the majority label from the non-outlier neighbors and the predictions from the most suitable models,
the final prediction for the target instance is label O.

I predict the label of the target instance as 0.

Figure 11: The response from gpt-3.5-turbo with CoT? for Figure 9, where the true label corresponding to the question is 0,
and the model predicted 0, indicating a right prediction.

Response

Based on the information provided, we can analyze the predictions from the nearest neighbors and the external models to
make a final prediction for the target instance.

Looking at the nearest neighbors, we see that the majority of them have predicted the target instance as label 0, except for
one neighbor which predicted it as label 1. This indicates some uncertainty in the neighborhood around the target instance.

Considering the predictions from the external models, we see that xgboost, catboost, and lightgbm have predicted the target
instance as label 1, while knn, mlp, resnet, autoint, and ftt have predicted it as label 0. The models with higher

validation accuracy (xgboost, catboost, lightgbm) are leaning towards predicting the target instance as label 1.

Given the mix of predictions from the neighbors and the external models, and considering the higher validation accuracy of
xgboost, catboost, and lightgbm, we can make a final prediction that the target instance is likely to be label 1.

Therefore, based on the analysis, I predict the label of the target instance as 1.

Figure 12: The response from gpt-3.5-turbo without CoT? for Figure 9, where the true label corresponding to the question is
0, and the model predicted 1, indicating a right prediction.

22

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Response

To predict the label of the target instance, let’s go through the steps outlined:

1. **Evaluate External Models:**
- **Training vs. Validation Accuracy:**
- *x*#KNN:** Training: 0.6934, Validation: 0.6654 (Slight overfitting)
- *xXGBoost:** Training: 0.8020, Validation: 0.7809 (Good performance, slight overfitting)
- *xCatBoost:**x Training: 0.7850, Validation: 0.7806 (Good performance, minimal overfitting)
- **LightGBM:** Training: 0.8168, Validation: 0.7764 (Overfitting)
- **MLP:** Training: 0.7585, Validation: 0.7574 (Good balance)
- **ResNet:** Training: 0.7573, Validation: 0.7589 (Good balance)
- *xAutoInt:*x Training: 0.7585, Validation: 0.7563 (Good balance)
- **FTT:** Training: 0.7523, Validation: 0.7604 (Good balance)
*xWell-performing Models:** XGBoost, CatBoost, MLP, ResNet, Autolnt, FTT
(due to good validation performance and minimal overfitting)

2. *»*xIdentify Non-Outliers Among Neighbors:**

- *x*Neighbor Analysis:*x*
- Neighbors 1, 2, 4, 6, 7, 9, 10 have true label O.
- Neighbors 3, 5, 8 have true label 1.

- **0utlier Detection:**
- Neighbor 8 is an outlier as all models predict 1, but most neighbors are labeled O.
- Neighbors 3 and 5 are also potential outliers as they have mixed predictions and true label 1,

while most neighbors are O.

3. **Select Suitable Models for Neighborhood:**
- **Non-Outlier Neighbors:** 1, 2, 4, 6, 7, 9, 10 (all true label 0)
- **Model Performance on Non-Outliers:*x*
- XGBoost, CatBoost, LightGBM show some incorrect predictions on non-outliers.
- MLP, ResNet, AutoInt, FTT consistently predict O for non-outliers.
- **Most Suitable Models:** MLP, ResNet, AutolInt, FTT

4. **Final Prediction Using KNN and Model Ensembling:*x*

- **Non-Outlier Neighbors’ True Labels:** All are O.

- *xTarget Instance Predictions from Suitable Models:**
- MLP: O, ResNet: O, AutoInt: O, FTT: O
*xWell-Performing Models’ Predictions on Target:*x*
- XGBoost: 1, CatBoost: 1, MLP: O, ResNet: O, AutoInt: O, FTT: O
*xKNN-Based Approach:** Majority of non-outlier neighbors are 0.
- **Model Ensembling:** Majority of suitable models predict O.

Given the analysis, the majority of the non-outlier neighbors have a true label of 0, and the most suitable models for
the neighborhood also predict O for the target instance. Therefore, the final prediction for the target instance is:

I predict the label of the target instance as 0.

Figure 13: The response from gpt-4o for Figure 9, where the true label corresponding to the question is 0, and the model
predicted 0, indicating a right prediction.

23

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Response

Step 1: Infer the overall performance of the external models and select well-performing models
The training and validation accuracies of the models are as follows:

- *xknn**: Training: 0.6934, Validation: 0.6654

- **xgboost**: Training: 0.8020, Validation: 0.7809

- **catboost**: Training: 0.7850, Validation: 0.7806
- **lightgbm**: Training: 0.8168, Validation: 0.7764
- skmlp**: Training: 0.7585, Validation: 0.7574

- **resnet**: Training: 0.7573, Validation: 0.7589

- **kautoint**: Training: 0.7585, Validation: 0.7563

- sxfttx*: Training: 0.7523, Validation: 0.7604

Analysis:

- *xQverfitting Models**: Models with a significant gap between training and validation accuracy

(e.g., lightgbm, xgboost) may be overfitting.

- *xUnderfitting Models**: Models with low training and validation accuracy (e.g., knn) may be underfitting.
- **Well-performing Models**: Models with high and close training and validation accuracy

(e.g., catboost, mlp, resnet, autoint, ftt) are considered well-performing.

Selected Well-performing Models: catboost, mlp, resnet, autoint, ftt
Step 2: Identify non-outliers among the neighbors

*xNeighbors’ True Labels and Predictions:*x*

| Neighbor | True Label | catboost | mlp | resnet | autoint | ftt |
| | | Je====]) | |Jo==n |
|1 (Y (Y o 10 | o (Y
| 2 (Y (Y o 1o | o | o
| 3 |1 |1 o 1o | o | o
| 4 (Y I o lo 1o 1o 1o |
| 5 1 I o lo 1o 1o 1o |
16 I o |1 lo 1o 1o 1o |
17 | o I o lo 1o 1o 1o |
18 1 |1 1 11 I1 11
|9 I o I o 1o 1o I o I o
| 10 I o |0 |0 | o | o | o

0utlier Identification:

- #*Neighbor 3%*: Majority of well-performing models predict O, but the true label is 1.

- *xNeighbor 5%*: Majority of well-performing models predict O, but the true label is 1.

- **Neighbor 6%*: Majority of well-performing models predict O, but the true label is 0.
However, catboost predicts 1, which is incorrect.

This suggests that Neighbor 3, 5, 6 might be outliers.

Non-outliers: Neighbors 1, 2, 4, 7, 8, 9, 10

Step 3: Select the most suitable models for the neighborhood space of the target instance
**Non-outliers’ True Labels and Predictions:*x

autoint | ftt |

Neighbor | True Label | catboost | mlp | resnet

© W NN

ocoroooo

ocoroooo

ocoroooo
ocoroooo
ocoroooo

10

Analysis:

- **catboost**: Correctly predicts all non-outliers.
- *xmlp**: Correctly predicts all non-outliers.

- *xresnet**: Correctly predicts all non-outliers.

- *xautoint#**: Correctly predicts all non-outliers.
- *xftt**: Correctly predicts all non-outliers.

Most Suitable Models: catboost, mlp, resnet, autoint, ftt
Step 4: Make the final prediction
*xTarget Instance Predictions from Most Suitable Models:*x*
| Model | Prediction |
S |
catboost |
mlp
resnet
|
|

autoint
ftt

1 |
0 |
0 |
0 |
0 |

**Analysis:*k*
- **Majority Votex*: O (mlp, resnet, autoint, ftt) vs 1 (catboost)
- **KNN-based Approach**: Considering the non-outlier neighbors, the majority label is 0.

**Final Prediction¥*: O

I predict the label of the target instance as 0.

Figure 14: The response from DeepSeek-v3 for Figure 9, where the true label corresponding to the question is 0, and the
model predicted 0, indicating a right prediction.

24

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 1: Evaluate External Models' Performance

We analyze both training and validation accuracies to assess overfitting and generalization:

m Gap (Train] Val)

knn 0.6934 0.6654 0.0280
xgboost 0.8020 0.7809 0.021

catboost 0.7850 0.7806 0.0044
lightgbm 0.8168 0.7764 0.0404
mlp 0.7585 0.7574 0.00M

resnet 0.7573 0.7589 -0.0016
autoint 0.7585 0.7563 0.0022

ftt 0.7523 0.7604 -0.0081

Models with high validation accuracy and low train-val gap are considered well-performing. Let's

select models with validation accuracy = 0.76 and low overfitting:

W xgboost (0.7809)

W catboost (0.7806)

Bl lightgbm (0.7764)
v

ftt (0.7604)

These are our well-performing models.

Figure 15: Step 1 of the response generated by the latest ChatGPT model for the example in Figure 9. This step demonstrates
how the model begins to decompose the problem and reason through the input systematically.

25

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 2: Identify Non-Outlier Neighbors

We now look at the predictions of well-performing models on each neighbor and compare them to

the true label.
Neighbors:

. Label 0 — All well-performing models predicted 0 — # correct
. Label 0 — All well-performing models predicted 0 — §# correct

. Label 1T— xgboost: 0 >{, catboost: 1 #, lightgbm: 1 #4, ftt: O — 2 correct, 2 incorrect -

borderline

. Label 0 — xgboost: 1 X{, catboost: 0 §#, lightgbm: 1 >{, ftt: 0 # — 2 correct, 2 incorrect -
borderline

. Label 1— xgboost: 0 >, catboost: 0 >{, lightgom: 1 §, ftt: O — 1 correct, 3 incorrect —»

likely > outlier

. Label 0 — xgboost: 1 X{, catboost: 1 X{, lightgbm: 1 >{, ftt: 0 # — 1 correct, 3 incorrect -

outlier

. Label 0 — All correct - ¥

. Label 1— All correct » W&
(%4

. Label 0 — All correct —»

. Label 0 — All correct - V&

Outliers: Neighbors 5 and 6
Borderline (keep for now): Neighbors 3 and 4
Non-outliers: Neighbors 1, 2, 3, 4, 7, 8, 9, 10

Figure 16: Step 2 of the response generated by the latest ChatGPT model for the example in Figure 9.

26

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 3: Select Most Suitable Models in the Neighborhood

Now we evaluate how each model performs on the non-outlier neighbors (Neighbors
1,2,3,4,7,8,9,10).

Let's count correct predictions for each model on these 8 neighbors:

Model Correct Predictions

knn 7 (missed neighbor 3)

xgboost 5 (missed 3,4,9)

catboost 7 (missed 5, not in non-outliers)
lightgbm 6 (missed 4,9)

mlp 7 (missed 3)

resnet 7 (missed 3)

autoint 7 (missed 3)

ftt 6 (missed 3,4)

So, models that perform best in this neighborhood:

B knn (7/8)

B catboost (7/8)
¥ mip (7/8)

B resnet (7/8)

W autoint (7/8)

These are the most suitable models for the neighborhood.

Figure 17: Step 3 of the response generated by the latest ChatGPT model for the example in Figure 9.

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Step 4: Final Prediction Using Local and Global Evidence

Let's now look at:

True labels of non-outlier neighbors:

Neighbors 1,2,4,7,9,10 - label 0

Neighbors 3,8 - label 1

— Class distribution in local space: 6 of 8 are class 0 — strong local bias toward class 0

Predictions of the most suitable models on the target instance:

knn: O, catboost: 1, mip: O, resnet: O, autoint: 0

— 4 votes for label 0, 1 vote for label 1
Predictions of the well-performing models:
xgboost: 1, catboost: 1, lightgbm: 1, ftt: O

— 3 votes for label 1, 1 for label O

Interpretation:

Most suitable models in the local neighborhood strongly favor label 0 (4 to 1).

Well-performing models slightly favor label 1 (3 to 1), but these models are global and may not

reflect local structure.
The local neighborhood has a strong majority of class 0 (6/8).

The most suitable models have a high accuracy in the neighborhood and favor class 0.

Bl Final Decision:

Given the strong local evidence from both neighbor labels and the most suitable models, we

prioritize the local context. The slight disagreement from global models is not enough to override

the strong local consensus.

| predict the label of the target instance as 0.

Figure 18: Step 4 of the response generated by the latest ChatGPT model for the example in Figure 9.

