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Abstract

Task-oriented dialogue systems allow users to
interact through natural language with a vari-
ety of digital devices in order to accomplish
some goal, within which intent classification is
an integral component in ensuring the satisfac-
tion of a user’s request. Applications of Large
Language Models (LLMs) in this domain can
suffer from prohibitively high computation re-
quirements and costs owing to the number of
input tokens scaling with the number of intents.
We propose a framework using candidate selec-
tion, aimed at refining a model’s selection of
candidate intents to reduce inference costs. We
validate our approach through extensive eval-
uation on four commonly-used intent classifi-
cation datasets and show that our candidate se-
lection approach can improve zero-shot intent
classification performance (between +2.08% to
+14.67%) over naive zero-shot across a range
of model parameters, while significantly reduc-
ing both the number of input tokens (up to 88%
reduction) and inference time (up to 53% reduc-
tion). All the while accomplishing this without
any additional fine-tuning.

1 Introduction

Intent classification (Larson et al., 2019) is an
integral part of Task-Oriented Dialogue Systems
(TODS) in determining the correct intent of the user
through a given utterance. Combined with slot fill-
ing (Chen et al., 2015; Goo et al., 2018), it is critical
in enabling a TODS to determine the appropriate
functions to service the user’s request. In recent
years, the capabilities of Large Language Models
(LLMs) in generalising to a large number of unseen
tasks have improved significantly (Achiam et al.,
2023; Dubey et al., 2024; Team et al., 2024b), with
such models having already been shown to improve
intent classification through generating synthetic
training data (Cegin et al., 2023; Liu et al., 2024).
However, supervised approaches using such mod-
els (Zhang et al., 2024; Gretz et al., 2023), while

demonstrating impressive performance, can suf-
fer from issues stemming from the cost associated
with fine-tuning LLMs (Li et al., 2023a; Lin et al.,
2024) that limit their practical application, com-
pounded by the inherent limitations of training data
requirement per intent and the necessity for further
training if an intent is added. To mitigate the limi-
tations mentioned above, recent work (Hong et al.,
2024; Milios et al., 2023) has shown promising
results for the ability of LLMs to perform zero
shot intent classification in the absence of any task-
specific fine-tuning. Yet, such approaches typi-
cally require the inclusion of the full list of sup-
ported intents within the model prompt, signifi-
cantly increasing the number of input tokens and
consequently cost —computationally and monetar-
ily (Chen et al., 2023; Bang, 2023), which can limit
the scaling of such methods to large numbers of
intents (Larson et al., 2019).

In this work, we seek to explore approaches to
address the aforementioned problems with the in-
ference overhead associated with using LLMs'. We
compare our approaches on a number of recently
released models in a strict zero-shot, or dataless,
intent classification setting in which we forego any
model training. We perform extensive evaluation
of our approaches in a number of different task
settings with varying numbers of supported intents.
Our contributions can be summarised as follows:

* We propose a framework using a dataless can-
didate selector to filter candidate intents for
strict zero-shot intent classification.

* We show our approach can significantly im-
prove classification performance over naive
zero-shot on tested models (up to +14.67%).

* We show our approach significantly reduces
the number of input tokens (up to 88% reduc-

'All of our evaluation code and datasets will be made
available at [GITHUB LINK]



tion) and average inference time> (up to 53%
reduction).

* We evaluate our approach extensively on
four commonly used Task-Oriented Dialogue
datasets and report on the results.

* We provide analysis into the behaviours of the
models on this task setting to encourage and
guide future work in this domain.

2 Related Works

2.1 Zero-shot Intent Classification

Intent classification (IC) (Larson et al., 2019) refers
to the task of assigning a given utterance to one
of a list of supported intents within task-oriented
dialogue systems to properly service the user’s re-
quest. Zero-shot intent classification (OSHOT-IC)
(Xia et al., 2018) focuses on systems that perform
intent classification without training on labelled,
task-specific data (Yin et al., 2019). (Fan et al.,
2020) uses capsule networks (Liu et al., 2019)
along with an outlier detector to leverage train-
ing on ‘seen’ classes to discriminate against un-
seen classes. (Zhang et al., 2022; Parikh et al.,
2023; Kulkarni et al., 2024; Liu et al., 2024) all
demonstrate the potential for learning conducted on
synthetic examples in conjunction with supervised
training to transfer to unseen contexts and domains.
However, supervised approaches to 0SHOT-IC can
suffer from issues stemming from their reliance on
the quality and quantity of the training data (Yin
etal., 2023; Xu et al., 2024).

Dataless classification (Chang et al., 2008; Song
and Roth, 2014; Chen et al., 2015) is a stricter
form of OSHOT-IC defined by a total absence of
training on any labelled data. This is typically
achieved by mapping semantic representations of
an utterance to a class label using their respective
embedding distances (Chang et al., 2008). Recent
approaches such as (Lamanov et al., 2022; Hu et al.,
2024) have yielded promising results by leverag-
ing embeddings of intent descriptions. However,
(Hu et al., 2024) also identified an issue with the
overlaps within the embedding space between dif-
ferent intent classes, particularly those pertaining
to similar concepts (i.e. PLAYMUSIC and AD-
DTOPLAYLIST, AIR_FARE and GROUND_FARE),
that was first noted by (Chang et al., 2008) in ref-
erence to the necessity of a large enough margin

2All inference times are extracted from experiments run
on a single Nvidia Quadro RTX6000 GPU. In total, all experi-
ments took an estimated total of 2400 GPU hours.

between semantic representations of classes for
dataless classification.

2.2 LLM Zero-shot Intent Classification

Recent developments in LLMs have demonstrated
the capabilities of such models in generalising to a
wide range of tasks in a zero-shot manner (Achiam
et al., 2023; Dubey et al., 2024; Team et al., 2024a),
with a number of the aforementioned models hav-
ing been used in generating synthetic examples for
training (Cegin et al., 2023; Liu et al., 2024) and
intent detection (Song et al., 2023). Supervised
approaches using LLMs such as (Gretz et al., 2023;
Zhang et al., 2024) have demonstrated the poten-
tial for such models to be fine-tuned to perform
0SHOT-IC. However, the cost of fine-tuning mod-
els of such size can prove prohibitive. LLM-based
approaches also typically include the full list of
intents and descriptions within the prompt (Hong
et al., 2024; Milios et al., 2023), which can sig-
nificantly increase the number of input tokens for
a given utterance, forming a bottleneck towards
scaling to a large number of intents (Larson et al.,
2019).

2.3 LLM Re-ranking and Filtering

The problem of selecting the ‘most-relevant’ la-
bel from a large list of candidates based on some
metric of quality has been studied extensively for
re-ranking tasks in Information Retrieval (Nogueira
and Cho, 2019; Azar et al., 2009). Recent works
have explored the potential for LLMs to perform
the task of ranking in multistage re-ranking frame-
works, with most existing work in this domain fo-
cusing on fine-tuned models (Luo et al., 2024; Yue
et al., 2023) or models accessible through commer-
cially available APIs (Nouriinanloo and Lamothe,
2024; Rashid et al., 2024). These approaches can
incur significant costs when scaling to tasks with
a large number of labels. While approaches have
explored the use of a filtering stage prior to re-
ranking to reduce the number of inputs (Nouriinan-
loo and Lamothe, 2024; Rashid et al., 2024), these
approaches typically make use of LLMs in the fil-
tering mechanism, necessitating the inclusion of all
labels within the prompt at least once within the
framework.
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Figure 1: Illustration of our two-stage model architec-
ture. For each model input, intent candidates (i.e. cand1)
are added alongside their respective intent descriptions
(i.e. d1) and the original user utterance into the prompt
of the LLM.

3 Methodology
3.1 Problem Definition

For a given task-oriented dialogue system, we de-
fine C as the set of intents supported by the system.
For each intent ¢ € C, we define [ as the descrip-
tion of the intent. We consider only the case where
an utterance u is associated with a single intent ¢
as previous works such as (Wan et al., 2024) have
shown such approaches can be iteratively applied
to tackle utterances with multiple labels and thresh-
olding of relevance scores can be used to detect
out-of-domain intents (Hou et al., 2021). We there-
fore leave further exploration in that domain for
future work.

3.2 Our Approach
3.2.1 Candidate Selection

Previous work carried out by (Hu et al., 2024)
produced a dataless intent classifier that lever-
ages the cosine similarity s(-,-) between the em-
beddings of a user utterance h(u) and an in-
tent description h(l.) to select the label § =
argmax s(h(u),h(l.)) as the prediction. We in-
stead sort the list of similarity scores to produce s,
where s; is the highest similarity score.

In order to reduce the computational require-
ments posed by passing all intents within the input
to our LLM (Nouriinanloo and Lamothe, 2024;
Rashid et al., 2024), for each model prompt, we
select the intents with the top-£ highest similarity
scores (Yang et al., 2012) as candidate intents. The
list of candidate intents is then combined with their

Given the user said "UTTERANCE"

Please give the ‘intent' that best reflect what the user is
saying/asking for, based on which of the following
intents has a description best matching the user's
utterance:

intent: INTENT1
description: DESCRIPTION1

Please give the intent name only, do not provide
reasoning.

The intent is:

Figure 2: An example prompt used to give the list of

candidate intents and corresponding descriptions to the
LLM.

corresponding descriptions before being passed to
the LLM to generate a prediction. Our approach is
illustrated in Figure 1. As the focus of this work
is on the use of a dataless classifier and the impact
it has on zero-shot classification performance, we
do not perform extensive prompt engineering and
instead opt for a basic prompt template similar to
previous works (Rashid et al., 2024). Figure 2 con-
tains an example of our model prompt template.
We provide further analysis of the effects of our
candidate selector further on in Sections 6 and 7.

3.2.2 Token-Label Mapping

We follow previous work (Hong et al., 2024) in
including instructions within the model prompt
to return only the intent label. However, we ob-
served that models did not always follow this
particular instruction, we therefore implement a
lightweight post-processing mechanism to tackle
such cases. For a given utterance u consisting of
tokens 1, . . ., x,, we first extract a contiguous se-
quence of tokens w = x;,...,x; that forms the
last ‘word’ in the sequence. We then map w to an
intent class [:

[ = argmin dpey(w, lc) €))
ceC
where dj ¢y 1s the Levenshtein distance between
two strings and [, is the intent label for class ¢ € C.
We provide further analysis of the effects of this
mechanism in Section 6.2.

4 Experiments

4.1 Datasets

Following previous work of a similar nature and for
the sake of comparison, we choose to evaluate our
approach on four commonly used English TOD
datasets: ATIS (Hemphill et al., 1990), SNIPS-
NLU (Coucke et al., 2018), CLINC150 (Larson



Dataset | Uttr. | Intents| i
ATIS (Hemphill et al., 1990) 5.8k 18|11.18
SNIPS-NLU (Coucke et al., 2018) |14.5k 7| 8.97
CLINCI150 (Larson et al., 2019) 22.5k 150| 8.31
MASSIVE (FitzGerald et al., 2023) | 16.5k 60| 6.90
Total 59.3k|  235]

Table 1: Dataset statistics for the four evaluation

datasets used. @ denotes the average sequence length
for each dataset.

et al., 2019) and MASSIVE (FitzGerald et al.,
2023). In each case, as our approach does not
require fine-tuning, we use the full dataset as the
evaluation data. A statistical breakdown for each
dataset is shown in Table 1.

4.2 Baselines

Zero-shot Language Model (LM) Baseline We
establish an LM-only baseline by implementing a
basic zero-shot setup, providing each LM with the
full list of intents and corresponding descriptions
of each intent in a similar way to previous works
(Gretz et al., 2023; Milios et al., 2023). We use
the same prompt template previously outlined in
Section 3.2.1 across all of our experiments. The
results are referred to as ‘LM Only’ in Table 2.

Candidate Selector Baseline To evaluate the ad-
dition of the LM in conjunction with the candidate
selector, we establish the results reported in (Hu
et al., 2024) as our candidate selector baseline, re-
ferred to as ‘Encoder only’ in Section 5. We note
the authors of (Hu et al., 2024) reported only macro-
F1 for the MASSIVE dataset for the purpose of
comparing against previous work. We, however,
report both the accuracy and macro-F1 scores in
our results (Section 5).

4.3 Models

Large Language Models We experiment with
the following models as our LLM for producing an
intent prediction given a set of candidates: Llama-
3.1-7B-Instruct (Dubey et al., 2024), gemma-
2-9b-it (Team et al., 2024b), phi-3-medium-4k-
instruct (14B parameters) (Abdin et al., 2024) and
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). Our
model selection was conducted based on a desire
to capture a range of model performance and the
availability of compute resources to us at the time
of experimentation. It is by no means comprehen-
sive and we invite future work to explore a wider
range of models in application to this domain. All
model weights were sourced from their respective

repositories on Huggingface (Wolf et al., 2019)
with default hyperparameters being used.

Model Quantization Due to a limitation in com-
pute resources, we experiment with quantization of
our selected models at 4-bit, 8-bit, 16-bit and ‘full’
(32-bit) precisions using the bitsandbytes library
(Dettmers et al., 2024). Results of these experi-
ments are elaborated upon in more detail in Section
6.4. We select the best-performing setup for each
model by the consistency between the scores at
each quantization precision and full precision.

Candidate Selector Models We experiment with
using BGE-large (Xiao et al., 2024) and GTE-
large (Li et al., 2023b) as our candidate selector
models as both models have been shown to perform
well in dataless contexts for intent classification
(Hu et al., 2024). We analyse the impact of both
models within our framework in Section 6.3.

5 Results

5.1 Metrics

Following on from previous works of a similar
nature (Gritta et al., 2022; Hu et al., 2024), we
report both Accuracy and Macro-F1 scores® for all
models and datasets in our experiments. Where
applicable, we report the average of Accuracy and
Macro-F1 across all evaluation datasets as ‘Overall’
(Tables 2 and 4).

5.2 Zero-shot LM Baseline

The naive zero-shot baseline underperforms the
encoder-only approach on Llama-3.1-8B-Instruct (-
4.13% Overall), Phi-3-medium-4k-instruct (-3.81%
Overall), Mistral-7B-Instruct (-13.41% Overall)
models and outperforms the encoder-only approach
on Gemma-2-9b-it (+5.03% Overall). On inspec-
tion of the model outputs, we note that the Phi-3
model and Mistral-7B models fail to produce a
valid model prediction at much higher rates (9.61%
and 9.71% respectively) compared to the Llama-3.1
(1.23%) and Gemma-2 (1.09%). In such instances,
the model typically outputs a reasonable-looking
intent label that is not of a valid intent given to
the model. We attribute such outputs to halluci-
nations caused by the amount of intent labels and
descriptions available to the models.

3Accuracy and macro-F1 are computed using the
scikit-learn library (v1.3.2). Correlation is measured using
the numpy library (v1.24.4).



ATIS

SNIPS

CLINC150

MASSIVE

Model Top-k|l xce. F1 | Ace. Fl | Ace. Fl | Acc. F1 | Overall
Encoder only | | 69.57 52.51|92.81 92.33| 81.95 81.09| 65.49 65.76| 75.19

= |Llama-3.1-8B-Instruct 67.53 38.13] 71.94 71.78] 86.64 86.03| 73.87 72.60|| 71.06
S |Gemma-2-9B-it 4y || 8045 483119225 92.53) 88.88 88.36|75.81 75.21| 80.22
= | Phi-3-medium-4k-instruct 75.94 48.15| 92.45 92.70| 60.89 57.71| 73.26 69.97| 71.38
< |Mistral-7B-Instruct-v0.3 49.43 28.45| 66.41 68.41 83.14 82.50| 60.61 55.32| 61.78
k=3 || 76.08 52.65| 79.23 78.60| 87.89 87.34| 72.91 72.19|| 75.86

_|Llama-3.1-8B-Instruct k=5 || 73.71 49.56| 75.72 75.65| 88.52 88.13| 74.42 73.29|| 74.88
g k=10 || 72.23 45.11| 72.38 72.27| 88.88 88.46| 75.00 74.07| 73.55
S} k=3 || 86.48 57.60  93.83 93.94| 89.89 89.45| 75.00 74.51|| 82.59
§ |Gemma-2-9B-it k=5 || 85.69 57.34| 92.74 93.04| 90.80 90.45| 77.07 76.02| 82.89
S k=10 || 85.52 53.78| 92.65 92.93| 90.76 90.42| 76.99 75.86|| 82.36
S k=3 || 75.97 56.17| 94.00 94.05| 89.01 88.65 74.63 72.88|| 80.67
¥ |Phi-3-medium-4k-instruct| k=5 || 77.47 55.86| 93.54 93.69 89.87 89.50| 77.23 74.71|| 81.48
= k=10 || 78.31 54.82| 92.85 93.08| 90.01 89.72| 77.33 75.10| 81.40
S k=3 || 73.26 51.58| 83.55 84.16| 87.03 86.68| 72.76 72.55|| 76.45
© |Mistral-7B-Instruct-v0.3 | k=5 || 65.66 45.32| 76.22 77.95| 87.35 87.08 74.14 73.48| 73.40
k=10 || 53.90 38.86| 71.09 73.67| 85.45 85.21| 73.24 72.35|| 69.22

Table 2: Results of our approach on 4 intent classification datasets compared to LM performance. We report both

Accuracy and Macro-F1 scores. Overall denotes the average of all metrics across all datasets.

5.3 Methods with Candidate Selection

Our approach using a dataless candidate selector
on all selected models quantized at 8-bit preci-
sion (Section 6.4) yielded significant improvements
across all tested models (Table 2) compared to
the naive LLM baseline without candidate selec-
tion. For each model, the best-performing setup
achieves: Llama-3.1-8B-Instruct (+4.80% Overall),
Gemma-2-9b-it (+2.67% Overall), Phi-3-medium-
4k-instruct (+10.10% Overall) and Mistral-7B-
Instruct-v0.3 (+14.67% Overall). The increase in
model performance can also be seen in the sig-
nificant reduction in average model failure rate in
producing a valid intent prediction at k = 3 com-
pared to the naive zero-shot LM approach, which
had access to the full list of intents and descriptions
(1.96% vs 5.41%).

6 Ablations

6.1 Repeated Experiments

In order to observe the effect of randomisation on
our results, we repeat our experiments for 4 in-
dependent runs and compute the average result.
Due to the high number of experiments requiring a
prohibitively high amount of time and compute
resources, we choose to evaluate only the best-
performing setups on the gemma-2-9b-it and llama-

Model ‘ Pred, ‘ +Map ‘ A

Llama-3.1-8B-Instruct 75.07 | 75.42 |0.36
Gemma-2-9b-it 81.96 | 82.26(0.31
Phi-3-medium-4k-instruct | 78.38 | 80.94 |2.57
Mistral-7B-Instruct-v0.3 68.78 | 71.96 |3.18

Table 3: Average model performance across all intent
classification tasks, with and without our intent label
mapping mechanism.

3.1-8b-instruct models to rerun across all selected
intent classification datasets. We obtained a mean
Overall score of 82.88 + 0.01 for gemma-2-9b-it
and 76.38 4+ 0.08 for llama-3.1-8b-instruct. As
o < 0.01% in both instances, we conclude that
our approach is consistent across random initialisa-
tions. This setup is used for all further experiments
with the two models unless stated otherwise.

6.2 Effect of token-label mapping

We investigate the effect of our token-label map-
ping procedure on model performance by compar-
ing results with and without our postprocessing
step for all tested models at 4-bit and 8-bit pre-
cisions. Results are averaged across all setups
per model and shown in Table 3, full results are
shown in Appendix A. It can be observed that
the inclusion of our mapping procedure improves
model performance across all models tested, with



ATIS

SNIPS

CLINC150

MASSIVE

Model Q | Ace. Fl | Acc. Fl | Ace. FlI | Acc. F1 |Overall
4A-bit || 74.76 53.30| 81.66 81.92| 87.38 86.85| 73.00 72.51|| 76.42
Llama-3.1-8B-Instruct | 8-bit || 76.08 52.65| 79.23 78.60| 87.89 87.34| 72.91 72.19| 75.86
full || 78.48 53.00| 79.89 79.34| 88.05 87.52| 72.93 72.14| 76.42
4-bit || 86.32 55.78] 93.08 93.24| 89.59 89.13| 74.78 74.12|| 82.00
gemma-2-9b-it 8-bit || 86.48 57.60 93.83 93.94| 89.89 89.45| 75.00 74.51| 82.59
full | 86.41 57.56| 93.97 94.07| 89.94 89.49| 74.96 74.50| 82.61
4-bit || 76.04 57.71] 93.74 93.80| 88.41 88.09| 73.92/ 72.06|| 80.47
Phi-3-medium-4k-instruct| 8-bit || 75.97 56.17| 94.00 94.05| 89.01 88.65| 74.63 72.88|| 80.67
16-bit| 76.30 57.06| 94.38 94.42| 89.03 88.64| 74.60 72.89| 80.92
4-bit || 65.90 51.69| 80.53 81.27| 86.72 86.32| 72.66 72.18|| 74.66
Mistral-7B-Instruct-v0.3 | 8-bit || 73.26 51.58| 83.55 84.16| 87.03 86.68| 72.76 72.55| 76.45
full || 72.68 51.27| 82.43 83.02| 87.18 86.82| 72.65 72.39|| 76.05

Table 4: Model performance across various quantization precisions. Due to memory constraints, we report the
16-bit quantization of Phi-3-medium-4k-instruct and full (32-bit) for all other models.

greater improvements seen in the Phi-3-medium-
4k-instruct (+2.57) and Mistral-7B-Instruct-v0.3
models (+3.18). We conduct a basic error attribu-
tion and broadly summarise the two main groups
of errors that were eliminated by token-label map-

ping:

* Qutput verbosity - Our prompt included a
specifier that the model should output only
the proposed intent label. Nonetheless, it was
observed across all models, particularly at 4-
bit precision, that there were instances where
the model would disregard this instruction and
generate more text after generating the intent
label.

Lexical errors - Results from our experiments
with Phi-3-medium-4k-instruct at 4-bit preci-
sion yielded a significant number of instances
where the generated text would be similar to
an intent label but would contain lexical er-
rors, where a number of letters are incorrect.
We note this error likely arises from quantiza-
tion to 4-bit precision as it is not seen at 8-bit
or 16-bit precisions.

In both instances, traditional regex post-
processing would fail to correctly identify the
model prediction, leading to misclassifications.
Both of these issues are effectively eliminated with
token-label mapping.

6.3 Effect of choice of candidate selector

We conduct a second set of experiments with a
GTE-large model (Li et al., 2023b) using the same

BGE GTE
Model E +P+M| E +P+M
Llama-3.1-8B-Instruct |4.88 5.41 |4.57 5.55
Gemma-2-9b-it 1.98 2.61 [1.65 2.14

Table 5: Changes in the overall score when candidate se-
lector is used. E denotes setups using encoder only can-
didate selector and +P+M denotes setups with paraphras-
ing and masking components from (Hu et al., 2024).

models and setups as in our experiments in Section
6.1. Table 5 shows the results for gemma-2-9b-it
and llama-3.1-8b-instruct in setups using only the
sentence embedding similarities as candidate selec-
tion metrics and setups using the additional para-
phrasing and masking components proposed by
(Hu et al., 2024). We observe a significant increase
in performance in all setup permutations compared
to LM-only. Figure 3a illustrates the success rates
of the candidate selector models, showing the addi-
tion of paraphrasing and masking to yield a higher
model success rate. Upon inspection of candidate
selector predictions, we note that the addition of
paraphrasing and masking improves the ranking
of the correct label in 8.31% of examples on av-
erage. However, we also note that on average in
0.94% of examples, the correct label was no longer
within the top-5 candidates. Further work should
investigate improvements to the candidate selector
to reduce the introduction of new errors. A de-
tailed breakdown of results by dataset is available
in Appendix B.



vz 100 20 90.8

!

o

2 /" 897\ 2 90.6

= 98 88 f 9.4

- A

= 87 90.2f :

'§ % 86 S —— 90.0 \

E oal. ——- bge-large-en-v1.5 85 89.8 \

K —— +pp & mask 84 89.6 \

. o2 —-=-- gte-large 83 89.4 - —

g !

o —— +pp & mask 82 89.2 i N

Q. 90 . 81 S 89.0

0 5 10 15 20 25 30 35 40 0 15 30 45 60 75 90 105 120 135 150 0 15 30 45 60 75 90 105 120 135150

k-value llama-3.1-8b-instruct gemma-2-9b-it
(a) (c)
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success rate when the label is within top-k candidates given to the LM. Note that the success rate decreases as k

increases. Full results are shown in Appendix D.

6.4 Effect of model quantization precision on
model performance

Table 4 shows the model performance for all se-
lected models and datasets for k& = 3 at various
quantization precisions. We note that some models
appear generally more robust across different quan-
tization precisions (Llama-3.1 ¢ = 0.32, Gemma-
2 0 = 0.34, Phi-3 ¢ = 0.22) while some yield
more variant results (Mistral o = 0.94). Table
6 shows the results of our investigation into com-
paring prediction behaviours across different pre-
cisions. Our results showed the average model
failure rate in producing a valid prediction to be sig-
nificantly higher at 4-bit precision than at 8-bit or
full-precision (3.71% vs 1.96% vs 1.91%). We ob-
served the largest difference in Phi-3-medium-4k-
instruct (8.34% vs 0.69%), which began to produce
misspellings of intent labels at 4-bit precision. We
note that both Llama-3.1-8B-Instruct and Mistral-
7B-Instruct-v0.3 had a lower failure rate at 4-bit
precision than 8-bit (0.49 vs 0.57 and 4.47 vs 5.49),
though for Mistral, it was closer to the failure rate
of the full-precision model (5.49 vs 5.47). Table 6
also shows that all tested models showed greater
correlation between predictions made at 8-bit pre-
cision (average Pearson’s r = 0.972) than at 4-bit
precision (average Pearson’s = 0.921), implying
the 8-bit precision model to be more similar to the
original, full-precision model. In consideration of
this in addition to our compute resource constraints,
and our early experiments showing an average of
54.56% reduction in inference time between the
quantized and full-precision models (Table 10 in
Appendix C), we opt to experiment with models
quantized to 4-bit and 8-bit precision.

LLM Failure ( %) | Corr. Pred.

Model 4-bit 8-bit full | 4-bit 8-bit
Llama-3.1-8B-Instruct 0.49 0.57 0.45 [0.936 0.953
Gemma-2-9b-it 126 1.07 1.03 [0.975 0.992
Phi-3-Medium-4k-Instruct | 8.34 0.69 0.68 |0.848 0.977
Mistral-7b-Instruct-v0.3  |4.47 549 547 [0.924 0.966
Mean 1371 1.96 191 |0.921 0.972

Table 6: Comparison of model predictions across quan-
tization precisions. LLM Failure denotes the rate at
which the LLM fails to produce the intent label without
label-intent mapping. Corr. Pred. denotes the correla-
tion of predictions between quantized models at lower
precisions and the model at full/16-bit precision.

7 Analysis

7.1 Effect of k-value on model performance

As the choice of k has a direct impact on whether
the correct label is presented to the LLM, we re-
peat our experiments on the CLINC150 dataset
with an increasing number of candidates starting
from £ = 3 to a maximum of k¥ = 150. Figures
3b and 3c show the performance of the models.
Full results can be found in Appendix D. We ob-
serve on both tested models a peak in performance
around k£ = 10 similar to those observed by (Hong
et al., 2024) in their work on the same dataset, after
which the model performance steadily decreases.
On inspecting the model performance, given the
correct label is provided to the LLLM, we note that
the success rate is continually decreasing for both
models tested, suggesting the overall model perfor-
mance is a balance between the correctness of the
candidate selector in ensuring the correct label is
provided as a candidate and the LLM selecting the
correct label in turn.
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Figure 4: Distribution of prediction errors by the intra-
description similarity of the ground-truth intent and the
predicted intent on the CLINC150 dataset. (Top) The
number of errors per relation (Bottom) The number
of relations with erroneous predictions. Dashed line
denotes the mean intra-description similarity across the
entire dataset.

7.2 Effect of description similarity on model
performance

We attempt to examine whether there exists any
relation between classification errors in the model
output and similarities between intent descriptions.
Intuitively, this is the assumption that similar def-
initions of intents may lead to a greater degree
of confusion, thus resulting in more prediction er-
rors. Figure 4 illustrates the distribution of pre-
diction errors by the intra-description similarity
between the ground-truth intent and the predicted
intent. We note a significant skewness of mis-
predictions towards higher intra-description sim-
ilarities (Fisher-Pearson G7; = 0.798). Com-
puting the correlation between prediction errors
and cosine similarity of description embeddings
yielded a weak positive correlation (Pearson’s r =
0.213 + 0.015). Conversely, much weaker cor-
relation was obtained between the prediction er-
rors and the intra-description Levenshtein distance
(Pearson’s r = 0.07 £ 0.01), implying that errors
arising from high description similarity or overlap-
ping descriptions are more likely to be focused on
the semantic similarities rather than lexical similar-
ity. We also observe from error attribution that on
average, mispredictions arising from the LLM ac-
counted for 75-82% of classification errors across

Inference time / it. (s)

Model k=3 k=16 k=150
Llama-3.1-8B-Instruct 1.69 2.59 4.29
Gemma-2-9b-it 5.05 561 11.26
Phi-3-Medium-4k-Instruct| 2.68  3.89 5.64
Mistral-7B-Instruct-v0.3 3.09 3.60 5.71
% Reduction 53% 38% -
Input Tokens / Prompt

Model k=3 k=16 k =150

128.55 312.21 1084.16
88%  71% -

Avg. Num. Tokens
9 Reduction

Table 7: Average inference time and number of input
tokens per example for varying values of k. % Reduc-
tion indicates the mean percentage-decrease for lower
values of k from k = 150.

all of our experiments. We suggest future work to
explore means to tackle prediction errors arising
from such circumstances, such as through generat-
ing semantically diverse descriptions.

7.3 Effect of candidate selection on model
inference

A key conceptual benefit to filtering through can-
didate selection is a reduction in computational
overhead and cost when applying to classification
tasks with a high number of classes. We therefore
analyse the benefits of our approach in these ar-
eas. We collect inference times and the number
of input tokens per prompt for all selected mod-
els and datasets and analyse the average inference
overhead, results are shown in Table 7. We ob-
serve from Table 7 that our approach significantly
reduced the average inference time (up to 53% re-
duction) and the number of input tokens (up to 88%
reduction). We note the latter in particular can sig-
nificantly reduce the cost in using the growing suite
of commercial LL.Ms-as-a-service solutions (Sun
et al., 2022; Chen et al., 2023).

8 Conclusion

In this paper, we utilise a dataless candidate se-
lector component and demonstrate its potential to
improve model intent classification performance
over encoder-only and naive zero-shot LLM ap-
proaches, while significantly reducing the number
of input tokens and inference time, all without re-
quiring any further fine-tuning of the models. We
performed extensive experiments with a range of
models and provide analysis into model behaviour
and failure conditions to guide future work.



8.1 Limitations

Our work focuses on the potential for our proposed
framework to leverage dataless candidate selection
to mitigate computational overheads in a strict zero-
shot intent classification setting. The utilisation
of intent label descriptions in candidate selection
creates the potential for such approaches to be ap-
plied to other such tasks that can be defined using
label descriptions, such as emotion classification
(Rashkin et al., 2019; Canales and Martinez-Barco,
2014) and genre prediction (Hoang, 2018) which
we leave for future work to pursue. Additionally,
we experimented with Levenshtein distance in our
token-label mapping postprocessing procedure, fu-
ture work could explore semantic distance metrics
such as embedding similarity or WordNet-based
methods.
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A Results of token-label mapping

Table 8 contains the full results for model perfor-
mance with and without token label mapping, used
to compute the values for Table 3.

B Results of choice of candidate selector

Table 9 shows the full results for our experiments
using different candidate selectors, from which we
get the results in Table 5.

C Model inference times at full/16-bit
precision
Table 10 shows the inference time of all tested

models at full/16-bit quantization precision.

D Results of increasing k-value

Table 11 shows the full list of results from our
experiments on increasing k-value using Gemma-
2-9b-it and Llama-3.1-8B-Instruct that was used to
produce Figures 3b and 3c.
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Model O |k-value ATIS SNIPS CLINC150 | MASSIVE Overall
Before| After ||Before| After ||Before| After ||Before| After || Before| After
k=3 63.97| 64.03| 81.77| 81.79|| 86.78 | 87.11|| 72.56 | 72.75|| 76.27 | 76.42
4-bit| k=5 62.22 | 62.28| 81.55| 81.57|| 87.43| 87.87| 74.00| 74.18| 76.30| 76.48
Llama-3.1-8B-Instruct k=10 61.18| 61.39|| 76.95| 76.96| 88.29| 88.71| 74.30| 74.41| 75.18| 75.37
k=3 63.50| 64.37|| 78.86| 78.91| 87.50| 87.62| 72.32| 72.55| 75.54 | 75.86
8-bit|k=5 59.89| 61.64|| 75.67| 75.69| 88.24 | 88.33| 73.63| 73.85| 74.36| 74.88
k=10 55.86| 58.67|| 72.31| 72.32| 88.49| 88.67| 74.41| 74.53| 72.77| 73.55
k=3 70.97 | 71.05(| 92.97 | 93.16|| 89.27 | 89.36|| 73.90| 74.45|| 81.78 | 82.01
4-bit| k=5 69.83| 70.30(| 90.93| 91.50|| 90.07 | 90.15|| 75.67 | 75.99| 81.62| 81.98
. k=10 68.72| 69.17|| 90.65| 91.88| 89.94| 90.06|| 75.69| 75.90| 81.25| 81.75
Gemma-2-9b-it
k=3 71.73 | 72.04 | 93.76| 93.88|| 89.67 | 89.67|| 74.29| 74.76|| 82.36| 82.59
8-bit| k=5 71.21 | 71.52] 92.74 | 92.89|| 90.55| 90.63| 76.23 | 76.54| 82.68 | 82.89
k=10 69.11| 69.65|| 92.25| 92.79|| 90.54 | 90.59| 76.27 | 76.42| 82.04 | 82.36
k=3 64.74 | 66.88|| 84.26| 93.77| 74.82 88.25| 67.64| 72.99| 72.87 | 80.47
4-bit|k=5 65.36| 66.54|| 85.05| 93.13|| 75.87 | 88.75|| 70.12| 74.59| 74.10| 80.75
Phi-3-medium-dk-instruct k=10 63.79 | 64.48| 92.79| 92.97|| 89.43| 89.87| 75.88 | 76.21| 80.47 | 80.88
k=3 65.93| 66.07|| 93.85| 94.02| 88.72| 88.83| 73.42| 73.75| 80.48 | 80.67
8-bit| k=5 66.38 | 66.67| 93.49| 93.61|| 89.47| 89.68| 75.59| 75.97| 81.23 | 81.48
k=10 66.30| 66.57|| 92.79| 92.97| 89.44 | 89.87| 75.88 | 76.21| 81.10 | 81.40
k=3 58.40 | 58.80| 74.94| 80.90|| 85.38 | 86.52|| 70.66 | 72.42|| 72.34 | 74.66
4-bit| k=5 50.42 | 50.56| 68.80| 73.95|| 86.03 | 86.98| 72.53| 74.06|| 69.44 | 71.39
Mistral-7B-Instruct-v0 3 k=10 40.70 | 40.79|| 62.48 | 67.85|| 84.12| 84.91|| 71.07| 73.14| 64.59 | 66.67
k=3 61.88| 62.42|| 78.31| 83.86| 85.20| 86.85| 68.79 | 72.65| 73.55| 76.45
8-bit| k=5 55.34| 55.49|| 71.35| 77.09| 85.40| 87.22| 67.61 | 73.81| 69.92 | 73.40
k=10 45.10| 46.38|| 66.49 | 72.38|| 79.52| 85.33|| 60.23 | 72.80| 62.84 | 69.22

Table 8: Results of each tested model on all four evaluation datasets with and without token-label mapping. Before -
Prediction made directly from model output. After - Prediction made using token-label mapping.

ATIS SNIPS CLINC150 | MASSIVE
cs LM |Setup Acc. F1 | Acc. F1 | Acc. F1 | Acc. Fl Overall

Embedding Only | 85.14 54.69| 92.68 92.99| 90.62 90.27| 76.62 75.02| 82.25
+ Parap. + Mask.| 85.69 57.34| 92.74 93.04| 90.80 90.45| 77.07 76.02| 82.89
Embedding Only | 86.32 54.84| 93.09 93.34| 90.01 89.58| 74.86 73.39| 81.93
+ Parap. + Mask.| 86.25 54.99| 93.00 93.24| 90.33 89.93| 76.55 75.08| 82.42

Embedding Only | 74.43 48.91| 80.30 81.32| 88.10 87.49| 73.83 73.13| 75.94
+ Parap. + Mask. | 73.45 51.11| 81.04 82.10 88.10 87.64| 74.44 73.93| 76.48
Embedding Only | 76.27 48.07 | 80.64 81.47| 87.21 86.56| 72.95 71.92| 75.64
+ Parap. + Mask.| 76.03 49.39| 82.71 83.44| 87.69 87.19| 73.71 72.74| 76.61

BGE
Gemma-2-9b-it
GTE

BGE
Llama-3.1-8B-Instruct
GTE

Table 9: Performance when using different candidate selectors within our framework. BGE - bge-large-en-v1.5,
GTE - gte-large. Paraphrasing and Masking refers to the additional components proposed by (Hu et al., 2024) to
improve the candidate selector.

Model (k = 3) Inference Time / it. (s)
Llama-3.1-8B-Instruct 5.76
Gemma-2-9b-it 13.82
Phi-3-medium-4k-instruct™® 4.05
Mistral-7B-Instruct-v0.3 3.90
Average 6.88

Table 10: Inference times for each model at the highest quantization precision tested. *Due to GPU memory limits,
we test Phi-3-medium-4k-instruct at 16-bit precision.
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Gemma-2-9b-it Llama-3.1-8B-Instruct

hovalee |y o FI AM%) | Ace.  F1 (LM %)
k=3 8993 8953 9678 | 87.86 87.30 | 95.69
k=5 90.80 90.44 9654 | 8849 88.09 9537

k=10 | 90.76 9042 9593 | 88.82 88.40 94.93
k=16 | 90.57 9023 9554 | 88.85 8842 94.53
k=32 | 9040 90.07 9527 | 88.73 8831 9425
k=64 | 89.95 89.60 9494 | 87.69 87.14 9378
k=75 | 89.63 89.24 9475 | 87.08 8649  93.47
k=128 | 89.66 89.29 94.64 | 8598 8544 = 9291
k=150 | 89.36 88.98 9442 | 83.14 8250 93.32

Table 11: Results of tested models on the CLINC150 dataset for varying k-values. (LM %) denotes the LM’s
success rate given the correct intent label is within the list of candidates.
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