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Abstract

Task-oriented dialogue systems allow users to001
interact through natural language with a vari-002
ety of digital devices in order to accomplish003
some goal, within which intent classification is004
an integral component in ensuring the satisfac-005
tion of a user’s request. Applications of Large006
Language Models (LLMs) in this domain can007
suffer from prohibitively high computation re-008
quirements and costs owing to the number of009
input tokens scaling with the number of intents.010
We propose a framework using candidate selec-011
tion, aimed at refining a model’s selection of012
candidate intents to reduce inference costs. We013
validate our approach through extensive eval-014
uation on four commonly-used intent classifi-015
cation datasets and show that our candidate se-016
lection approach can improve zero-shot intent017
classification performance (between +2.08% to018
+14.67%) over naive zero-shot across a range019
of model parameters, while significantly reduc-020
ing both the number of input tokens (up to 88%021
reduction) and inference time (up to 53% reduc-022
tion). All the while accomplishing this without023
any additional fine-tuning.024

1 Introduction025

Intent classification (Larson et al., 2019) is an026

integral part of Task-Oriented Dialogue Systems027

(TODS) in determining the correct intent of the user028

through a given utterance. Combined with slot fill-029

ing (Chen et al., 2015; Goo et al., 2018), it is critical030

in enabling a TODS to determine the appropriate031

functions to service the user’s request. In recent032

years, the capabilities of Large Language Models033

(LLMs) in generalising to a large number of unseen034

tasks have improved significantly (Achiam et al.,035

2023; Dubey et al., 2024; Team et al., 2024b), with036

such models having already been shown to improve037

intent classification through generating synthetic038

training data (Cegin et al., 2023; Liu et al., 2024).039

However, supervised approaches using such mod-040

els (Zhang et al., 2024; Gretz et al., 2023), while041

demonstrating impressive performance, can suf- 042

fer from issues stemming from the cost associated 043

with fine-tuning LLMs (Li et al., 2023a; Lin et al., 044

2024) that limit their practical application, com- 045

pounded by the inherent limitations of training data 046

requirement per intent and the necessity for further 047

training if an intent is added. To mitigate the limi- 048

tations mentioned above, recent work (Hong et al., 049

2024; Milios et al., 2023) has shown promising 050

results for the ability of LLMs to perform zero 051

shot intent classification in the absence of any task- 052

specific fine-tuning. Yet, such approaches typi- 053

cally require the inclusion of the full list of sup- 054

ported intents within the model prompt, signifi- 055

cantly increasing the number of input tokens and 056

consequently cost —computationally and monetar- 057

ily (Chen et al., 2023; Bang, 2023), which can limit 058

the scaling of such methods to large numbers of 059

intents (Larson et al., 2019). 060

In this work, we seek to explore approaches to 061

address the aforementioned problems with the in- 062

ference overhead associated with using LLMs1. We 063

compare our approaches on a number of recently 064

released models in a strict zero-shot, or dataless, 065

intent classification setting in which we forego any 066

model training. We perform extensive evaluation 067

of our approaches in a number of different task 068

settings with varying numbers of supported intents. 069

Our contributions can be summarised as follows: 070

• We propose a framework using a dataless can- 071

didate selector to filter candidate intents for 072

strict zero-shot intent classification. 073

• We show our approach can significantly im- 074

prove classification performance over naive 075

zero-shot on tested models (up to +14.67%). 076

• We show our approach significantly reduces 077

the number of input tokens (up to 88% reduc- 078

1All of our evaluation code and datasets will be made
available at [GITHUB LINK]
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tion) and average inference time2 (up to 53%079

reduction).080

• We evaluate our approach extensively on081

four commonly used Task-Oriented Dialogue082

datasets and report on the results.083

• We provide analysis into the behaviours of the084

models on this task setting to encourage and085

guide future work in this domain.086

2 Related Works087

2.1 Zero-shot Intent Classification088

Intent classification (IC) (Larson et al., 2019) refers089

to the task of assigning a given utterance to one090

of a list of supported intents within task-oriented091

dialogue systems to properly service the user’s re-092

quest. Zero-shot intent classification (0SHOT-IC)093

(Xia et al., 2018) focuses on systems that perform094

intent classification without training on labelled,095

task-specific data (Yin et al., 2019). (Fan et al.,096

2020) uses capsule networks (Liu et al., 2019)097

along with an outlier detector to leverage train-098

ing on ‘seen’ classes to discriminate against un-099

seen classes. (Zhang et al., 2022; Parikh et al.,100

2023; Kulkarni et al., 2024; Liu et al., 2024) all101

demonstrate the potential for learning conducted on102

synthetic examples in conjunction with supervised103

training to transfer to unseen contexts and domains.104

However, supervised approaches to 0SHOT-IC can105

suffer from issues stemming from their reliance on106

the quality and quantity of the training data (Yin107

et al., 2023; Xu et al., 2024).108

Dataless classification (Chang et al., 2008; Song109

and Roth, 2014; Chen et al., 2015) is a stricter110

form of 0SHOT-IC defined by a total absence of111

training on any labelled data. This is typically112

achieved by mapping semantic representations of113

an utterance to a class label using their respective114

embedding distances (Chang et al., 2008). Recent115

approaches such as (Lamanov et al., 2022; Hu et al.,116

2024) have yielded promising results by leverag-117

ing embeddings of intent descriptions. However,118

(Hu et al., 2024) also identified an issue with the119

overlaps within the embedding space between dif-120

ferent intent classes, particularly those pertaining121

to similar concepts (i.e. PLAYMUSIC and AD-122

DTOPLAYLIST, AIR_FARE and GROUND_FARE),123

that was first noted by (Chang et al., 2008) in ref-124

erence to the necessity of a large enough margin125

2All inference times are extracted from experiments run
on a single Nvidia Quadro RTX6000 GPU. In total, all experi-
ments took an estimated total of 2400 GPU hours.

between semantic representations of classes for 126

dataless classification. 127

2.2 LLM Zero-shot Intent Classification 128

Recent developments in LLMs have demonstrated 129

the capabilities of such models in generalising to a 130

wide range of tasks in a zero-shot manner (Achiam 131

et al., 2023; Dubey et al., 2024; Team et al., 2024a), 132

with a number of the aforementioned models hav- 133

ing been used in generating synthetic examples for 134

training (Cegin et al., 2023; Liu et al., 2024) and 135

intent detection (Song et al., 2023). Supervised 136

approaches using LLMs such as (Gretz et al., 2023; 137

Zhang et al., 2024) have demonstrated the poten- 138

tial for such models to be fine-tuned to perform 139

0SHOT-IC. However, the cost of fine-tuning mod- 140

els of such size can prove prohibitive. LLM-based 141

approaches also typically include the full list of 142

intents and descriptions within the prompt (Hong 143

et al., 2024; Milios et al., 2023), which can sig- 144

nificantly increase the number of input tokens for 145

a given utterance, forming a bottleneck towards 146

scaling to a large number of intents (Larson et al., 147

2019). 148

2.3 LLM Re-ranking and Filtering 149

The problem of selecting the ‘most-relevant’ la- 150

bel from a large list of candidates based on some 151

metric of quality has been studied extensively for 152

re-ranking tasks in Information Retrieval (Nogueira 153

and Cho, 2019; Azar et al., 2009). Recent works 154

have explored the potential for LLMs to perform 155

the task of ranking in multistage re-ranking frame- 156

works, with most existing work in this domain fo- 157

cusing on fine-tuned models (Luo et al., 2024; Yue 158

et al., 2023) or models accessible through commer- 159

cially available APIs (Nouriinanloo and Lamothe, 160

2024; Rashid et al., 2024). These approaches can 161

incur significant costs when scaling to tasks with 162

a large number of labels. While approaches have 163

explored the use of a filtering stage prior to re- 164

ranking to reduce the number of inputs (Nouriinan- 165

loo and Lamothe, 2024; Rashid et al., 2024), these 166

approaches typically make use of LLMs in the fil- 167

tering mechanism, necessitating the inclusion of all 168

labels within the prompt at least once within the 169

framework. 170
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Figure 1: Illustration of our two-stage model architec-
ture. For each model input, intent candidates (i.e. cand1)
are added alongside their respective intent descriptions
(i.e. d1) and the original user utterance into the prompt
of the LLM.

3 Methodology171

3.1 Problem Definition172

For a given task-oriented dialogue system, we de-173

fine C as the set of intents supported by the system.174

For each intent c ∈ C, we define lc as the descrip-175

tion of the intent. We consider only the case where176

an utterance u is associated with a single intent c177

as previous works such as (Wan et al., 2024) have178

shown such approaches can be iteratively applied179

to tackle utterances with multiple labels and thresh-180

olding of relevance scores can be used to detect181

out-of-domain intents (Hou et al., 2021). We there-182

fore leave further exploration in that domain for183

future work.184

3.2 Our Approach185

3.2.1 Candidate Selection186

Previous work carried out by (Hu et al., 2024)187

produced a dataless intent classifier that lever-188

ages the cosine similarity s(·, ·) between the em-189

beddings of a user utterance h(u) and an in-190

tent description h(lc) to select the label ŷ =191

argmax s(h(u),h(lc)) as the prediction. We in-192

stead sort the list of similarity scores to produce s,193

where s1 is the highest similarity score.194

In order to reduce the computational require-195

ments posed by passing all intents within the input196

to our LLM (Nouriinanloo and Lamothe, 2024;197

Rashid et al., 2024), for each model prompt, we198

select the intents with the top-k highest similarity199

scores (Yang et al., 2012) as candidate intents. The200

list of candidate intents is then combined with their201

Figure 2: An example prompt used to give the list of
candidate intents and corresponding descriptions to the
LLM.

corresponding descriptions before being passed to 202

the LLM to generate a prediction. Our approach is 203

illustrated in Figure 1. As the focus of this work 204

is on the use of a dataless classifier and the impact 205

it has on zero-shot classification performance, we 206

do not perform extensive prompt engineering and 207

instead opt for a basic prompt template similar to 208

previous works (Rashid et al., 2024). Figure 2 con- 209

tains an example of our model prompt template. 210

We provide further analysis of the effects of our 211

candidate selector further on in Sections 6 and 7. 212

3.2.2 Token-Label Mapping 213

We follow previous work (Hong et al., 2024) in 214

including instructions within the model prompt 215

to return only the intent label. However, we ob- 216

served that models did not always follow this 217

particular instruction, we therefore implement a 218

lightweight post-processing mechanism to tackle 219

such cases. For a given utterance u consisting of 220

tokens x1, . . . , xn, we first extract a contiguous se- 221

quence of tokens w = xi, . . . , xj that forms the 222

last ‘word’ in the sequence. We then map w to an 223

intent class l̂: 224

l̂ = argmin
c∈C

dLev(w, lc) (1) 225

where dLev is the Levenshtein distance between 226

two strings and lc is the intent label for class c ∈ C. 227

We provide further analysis of the effects of this 228

mechanism in Section 6.2. 229

4 Experiments 230

4.1 Datasets 231

Following previous work of a similar nature and for 232

the sake of comparison, we choose to evaluate our 233

approach on four commonly used English TOD 234

datasets: ATIS (Hemphill et al., 1990), SNIPS- 235

NLU (Coucke et al., 2018), CLINC150 (Larson 236
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Dataset Uttr. Intents ū

ATIS (Hemphill et al., 1990) 5.8k 18 11.18
SNIPS-NLU (Coucke et al., 2018) 14.5k 7 8.97
CLINC150 (Larson et al., 2019) 22.5k 150 8.31
MASSIVE (FitzGerald et al., 2023) 16.5k 60 6.90
Total 59.3k 235

Table 1: Dataset statistics for the four evaluation
datasets used. ū denotes the average sequence length
for each dataset.

et al., 2019) and MASSIVE (FitzGerald et al.,237

2023). In each case, as our approach does not238

require fine-tuning, we use the full dataset as the239

evaluation data. A statistical breakdown for each240

dataset is shown in Table 1.241

4.2 Baselines242

Zero-shot Language Model (LM) Baseline We243

establish an LM-only baseline by implementing a244

basic zero-shot setup, providing each LM with the245

full list of intents and corresponding descriptions246

of each intent in a similar way to previous works247

(Gretz et al., 2023; Milios et al., 2023). We use248

the same prompt template previously outlined in249

Section 3.2.1 across all of our experiments. The250

results are referred to as ‘LM Only’ in Table 2.251

Candidate Selector Baseline To evaluate the ad-252

dition of the LM in conjunction with the candidate253

selector, we establish the results reported in (Hu254

et al., 2024) as our candidate selector baseline, re-255

ferred to as ‘Encoder only’ in Section 5. We note256

the authors of (Hu et al., 2024) reported only macro-257

F1 for the MASSIVE dataset for the purpose of258

comparing against previous work. We, however,259

report both the accuracy and macro-F1 scores in260

our results (Section 5).261

4.3 Models262

Large Language Models We experiment with263

the following models as our LLM for producing an264

intent prediction given a set of candidates: Llama-265

3.1-7B-Instruct (Dubey et al., 2024), gemma-266

2-9b-it (Team et al., 2024b), phi-3-medium-4k-267

instruct (14B parameters) (Abdin et al., 2024) and268

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). Our269

model selection was conducted based on a desire270

to capture a range of model performance and the271

availability of compute resources to us at the time272

of experimentation. It is by no means comprehen-273

sive and we invite future work to explore a wider274

range of models in application to this domain. All275

model weights were sourced from their respective276

repositories on Huggingface (Wolf et al., 2019) 277

with default hyperparameters being used. 278

Model Quantization Due to a limitation in com- 279

pute resources, we experiment with quantization of 280

our selected models at 4-bit, 8-bit, 16-bit and ‘full’ 281

(32-bit) precisions using the bitsandbytes library 282

(Dettmers et al., 2024). Results of these experi- 283

ments are elaborated upon in more detail in Section 284

6.4. We select the best-performing setup for each 285

model by the consistency between the scores at 286

each quantization precision and full precision. 287

Candidate Selector Models We experiment with 288

using BGE-large (Xiao et al., 2024) and GTE- 289

large (Li et al., 2023b) as our candidate selector 290

models as both models have been shown to perform 291

well in dataless contexts for intent classification 292

(Hu et al., 2024). We analyse the impact of both 293

models within our framework in Section 6.3. 294

5 Results 295

5.1 Metrics 296

Following on from previous works of a similar 297

nature (Gritta et al., 2022; Hu et al., 2024), we 298

report both Accuracy and Macro-F1 scores3 for all 299

models and datasets in our experiments. Where 300

applicable, we report the average of Accuracy and 301

Macro-F1 across all evaluation datasets as ‘Overall’ 302

(Tables 2 and 4). 303

5.2 Zero-shot LM Baseline 304

The naive zero-shot baseline underperforms the 305

encoder-only approach on Llama-3.1-8B-Instruct (- 306

4.13% Overall), Phi-3-medium-4k-instruct (-3.81% 307

Overall), Mistral-7B-Instruct (-13.41% Overall) 308

models and outperforms the encoder-only approach 309

on Gemma-2-9b-it (+5.03% Overall). On inspec- 310

tion of the model outputs, we note that the Phi-3 311

model and Mistral-7B models fail to produce a 312

valid model prediction at much higher rates (9.61% 313

and 9.71% respectively) compared to the Llama-3.1 314

(1.23%) and Gemma-2 (1.09%). In such instances, 315

the model typically outputs a reasonable-looking 316

intent label that is not of a valid intent given to 317

the model. We attribute such outputs to halluci- 318

nations caused by the amount of intent labels and 319

descriptions available to the models. 320

3Accuracy and macro-F1 are computed using the
scikit-learn library (v1.3.2). Correlation is measured using
the numpy library (v1.24.4).
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Model Top-k
ATIS SNIPS CLINC150 MASSIVE Overall

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Encoder only 69.57 52.51 92.81 92.33 81.95 81.09 65.49 65.76 75.19

A
ll

in
te

nt
s Llama-3.1-8B-Instruct

All

67.53 38.13 71.94 71.78 86.64 86.03 73.87 72.60 71.06
Gemma-2-9B-it 80.45 48.31 92.25 92.53 88.88 88.36 75.81 75.21 80.22
Phi-3-medium-4k-instruct 75.94 48.15 92.45 92.70 60.89 57.71 73.26 69.97 71.38
Mistral-7B-Instruct-v0.3 49.43 28.45 66.41 68.41 83.14 82.50 60.61 55.32 61.78

C
an

di
da

te
Se

le
ct

io
n

(O
ur

s) Llama-3.1-8B-Instruct
k=3 76.08 52.65 79.23 78.60 87.89 87.34 72.91 72.19 75.86
k=5 73.71 49.56 75.72 75.65 88.52 88.13 74.42 73.29 74.88

k=10 72.23 45.11 72.38 72.27 88.88 88.46 75.00 74.07 73.55

Gemma-2-9B-it
k=3 86.48 57.60 93.83 93.94 89.89 89.45 75.00 74.51 82.59
k=5 85.69 57.34 92.74 93.04 90.80 90.45 77.07 76.02 82.89

k=10 85.52 53.78 92.65 92.93 90.76 90.42 76.99 75.86 82.36

Phi-3-medium-4k-instruct
k=3 75.97 56.17 94.00 94.05 89.01 88.65 74.63 72.88 80.67
k=5 77.47 55.86 93.54 93.69 89.87 89.50 77.23 74.71 81.48

k=10 78.31 54.82 92.85 93.08 90.01 89.72 77.33 75.10 81.40

Mistral-7B-Instruct-v0.3
k=3 73.26 51.58 83.55 84.16 87.03 86.68 72.76 72.55 76.45
k=5 65.66 45.32 76.22 77.95 87.35 87.08 74.14 73.48 73.40

k=10 53.90 38.86 71.09 73.67 85.45 85.21 73.24 72.35 69.22

Table 2: Results of our approach on 4 intent classification datasets compared to LM performance. We report both
Accuracy and Macro-F1 scores. Overall denotes the average of all metrics across all datasets.

5.3 Methods with Candidate Selection321

Our approach using a dataless candidate selector322

on all selected models quantized at 8-bit preci-323

sion (Section 6.4) yielded significant improvements324

across all tested models (Table 2) compared to325

the naive LLM baseline without candidate selec-326

tion. For each model, the best-performing setup327

achieves: Llama-3.1-8B-Instruct (+4.80% Overall),328

Gemma-2-9b-it (+2.67% Overall), Phi-3-medium-329

4k-instruct (+10.10% Overall) and Mistral-7B-330

Instruct-v0.3 (+14.67% Overall). The increase in331

model performance can also be seen in the sig-332

nificant reduction in average model failure rate in333

producing a valid intent prediction at k = 3 com-334

pared to the naive zero-shot LM approach, which335

had access to the full list of intents and descriptions336

(1.96% vs 5.41%).337

6 Ablations338

6.1 Repeated Experiments339

In order to observe the effect of randomisation on340

our results, we repeat our experiments for 4 in-341

dependent runs and compute the average result.342

Due to the high number of experiments requiring a343

prohibitively high amount of time and compute344

resources, we choose to evaluate only the best-345

performing setups on the gemma-2-9b-it and llama-346

Model PredLM +Map ∆

Llama-3.1-8B-Instruct 75.07 75.42 0.36
Gemma-2-9b-it 81.96 82.26 0.31
Phi-3-medium-4k-instruct 78.38 80.94 2.57
Mistral-7B-Instruct-v0.3 68.78 71.96 3.18

Table 3: Average model performance across all intent
classification tasks, with and without our intent label
mapping mechanism.

3.1-8b-instruct models to rerun across all selected 347

intent classification datasets. We obtained a mean 348

Overall score of 82.88 ± 0.01 for gemma-2-9b-it 349

and 76.38 ± 0.08 for llama-3.1-8b-instruct. As 350

σ ≪ 0.01% in both instances, we conclude that 351

our approach is consistent across random initialisa- 352

tions. This setup is used for all further experiments 353

with the two models unless stated otherwise. 354

6.2 Effect of token-label mapping 355

We investigate the effect of our token-label map- 356

ping procedure on model performance by compar- 357

ing results with and without our postprocessing 358

step for all tested models at 4-bit and 8-bit pre- 359

cisions. Results are averaged across all setups 360

per model and shown in Table 3, full results are 361

shown in Appendix A. It can be observed that 362

the inclusion of our mapping procedure improves 363

model performance across all models tested, with 364
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Model Q
ATIS SNIPS CLINC150 MASSIVE Overall

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Llama-3.1-8B-Instruct
4-bit 74.76 53.30 81.66 81.92 87.38 86.85 73.00 72.51 76.42
8-bit 76.08 52.65 79.23 78.60 87.89 87.34 72.91 72.19 75.86
full 78.48 53.00 79.89 79.34 88.05 87.52 72.93 72.14 76.42

gemma-2-9b-it
4-bit 86.32 55.78 93.08 93.24 89.59 89.13 74.78 74.12 82.00
8-bit 86.48 57.60 93.83 93.94 89.89 89.45 75.00 74.51 82.59
full 86.41 57.56 93.97 94.07 89.94 89.49 74.96 74.50 82.61

Phi-3-medium-4k-instruct
4-bit 76.04 57.71 93.74 93.80 88.41 88.09 73.92 72.06 80.47
8-bit 75.97 56.17 94.00 94.05 89.01 88.65 74.63 72.88 80.67
16-bit 76.30 57.06 94.38 94.42 89.03 88.64 74.60 72.89 80.92

Mistral-7B-Instruct-v0.3
4-bit 65.90 51.69 80.53 81.27 86.72 86.32 72.66 72.18 74.66
8-bit 73.26 51.58 83.55 84.16 87.03 86.68 72.76 72.55 76.45
full 72.68 51.27 82.43 83.02 87.18 86.82 72.65 72.39 76.05

Table 4: Model performance across various quantization precisions. Due to memory constraints, we report the
16-bit quantization of Phi-3-medium-4k-instruct and full (32-bit) for all other models.

greater improvements seen in the Phi-3-medium-365

4k-instruct (+2.57) and Mistral-7B-Instruct-v0.3366

models (+3.18). We conduct a basic error attribu-367

tion and broadly summarise the two main groups368

of errors that were eliminated by token-label map-369

ping:370

• Output verbosity - Our prompt included a371

specifier that the model should output only372

the proposed intent label. Nonetheless, it was373

observed across all models, particularly at 4-374

bit precision, that there were instances where375

the model would disregard this instruction and376

generate more text after generating the intent377

label.378

• Lexical errors - Results from our experiments379

with Phi-3-medium-4k-instruct at 4-bit preci-380

sion yielded a significant number of instances381

where the generated text would be similar to382

an intent label but would contain lexical er-383

rors, where a number of letters are incorrect.384

We note this error likely arises from quantiza-385

tion to 4-bit precision as it is not seen at 8-bit386

or 16-bit precisions.387

In both instances, traditional regex post-388

processing would fail to correctly identify the389

model prediction, leading to misclassifications.390

Both of these issues are effectively eliminated with391

token-label mapping.392

6.3 Effect of choice of candidate selector393

We conduct a second set of experiments with a394

GTE-large model (Li et al., 2023b) using the same395

Model BGE GTE
E +P+M E +P+M

Llama-3.1-8B-Instruct 4.88 5.41 4.57 5.55
Gemma-2-9b-it 1.98 2.61 1.65 2.14

Table 5: Changes in the overall score when candidate se-
lector is used. E denotes setups using encoder only can-
didate selector and +P+M denotes setups with paraphras-
ing and masking components from (Hu et al., 2024).

models and setups as in our experiments in Section 396

6.1. Table 5 shows the results for gemma-2-9b-it 397

and llama-3.1-8b-instruct in setups using only the 398

sentence embedding similarities as candidate selec- 399

tion metrics and setups using the additional para- 400

phrasing and masking components proposed by 401

(Hu et al., 2024). We observe a significant increase 402

in performance in all setup permutations compared 403

to LM-only. Figure 3a illustrates the success rates 404

of the candidate selector models, showing the addi- 405

tion of paraphrasing and masking to yield a higher 406

model success rate. Upon inspection of candidate 407

selector predictions, we note that the addition of 408

paraphrasing and masking improves the ranking 409

of the correct label in 8.31% of examples on av- 410

erage. However, we also note that on average in 411

0.94% of examples, the correct label was no longer 412

within the top-5 candidates. Further work should 413

investigate improvements to the candidate selector 414

to reduce the introduction of new errors. A de- 415

tailed breakdown of results by dataset is available 416

in Appendix B. 417
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(a) (b) (c)

Figure 3: (a) Probability of the correct label being within top-k candidates given to the LM for different candidate
selector setups. (b) and (c) Blue: Mean of Accuracy and Macro-F1 on the CLINC150 dataset. Orange: Model
success rate when the label is within top-k candidates given to the LM. Note that the success rate decreases as k
increases. Full results are shown in Appendix D.

6.4 Effect of model quantization precision on418

model performance419

Table 4 shows the model performance for all se-420

lected models and datasets for k = 3 at various421

quantization precisions. We note that some models422

appear generally more robust across different quan-423

tization precisions (Llama-3.1 σ = 0.32, Gemma-424

2 σ = 0.34, Phi-3 σ = 0.22) while some yield425

more variant results (Mistral σ = 0.94). Table426

6 shows the results of our investigation into com-427

paring prediction behaviours across different pre-428

cisions. Our results showed the average model429

failure rate in producing a valid prediction to be sig-430

nificantly higher at 4-bit precision than at 8-bit or431

full-precision (3.71% vs 1.96% vs 1.91%). We ob-432

served the largest difference in Phi-3-medium-4k-433

instruct (8.34% vs 0.69%), which began to produce434

misspellings of intent labels at 4-bit precision. We435

note that both Llama-3.1-8B-Instruct and Mistral-436

7B-Instruct-v0.3 had a lower failure rate at 4-bit437

precision than 8-bit (0.49 vs 0.57 and 4.47 vs 5.49),438

though for Mistral, it was closer to the failure rate439

of the full-precision model (5.49 vs 5.47). Table 6440

also shows that all tested models showed greater441

correlation between predictions made at 8-bit pre-442

cision (average Pearson’s r = 0.972) than at 4-bit443

precision (average Pearson’s r = 0.921), implying444

the 8-bit precision model to be more similar to the445

original, full-precision model. In consideration of446

this in addition to our compute resource constraints,447

and our early experiments showing an average of448

54.56% reduction in inference time between the449

quantized and full-precision models (Table 10 in450

Appendix C), we opt to experiment with models451

quantized to 4-bit and 8-bit precision.452

Model LLM Failure ( %) Corr. Pred.
4-bit 8-bit full 4-bit 8-bit

Llama-3.1-8B-Instruct 0.49 0.57 0.45 0.936 0.953
Gemma-2-9b-it 1.26 1.07 1.03 0.975 0.992
Phi-3-Medium-4k-Instruct 8.34 0.69 0.68 0.848 0.977
Mistral-7b-Instruct-v0.3 4.47 5.49 5.47 0.924 0.966

Mean 3.71 1.96 1.91 0.921 0.972

Table 6: Comparison of model predictions across quan-
tization precisions. LLM Failure denotes the rate at
which the LLM fails to produce the intent label without
label-intent mapping. Corr. Pred. denotes the correla-
tion of predictions between quantized models at lower
precisions and the model at full/16-bit precision.

7 Analysis 453

7.1 Effect of k-value on model performance 454

As the choice of k has a direct impact on whether 455

the correct label is presented to the LLM, we re- 456

peat our experiments on the CLINC150 dataset 457

with an increasing number of candidates starting 458

from k = 3 to a maximum of k = 150. Figures 459

3b and 3c show the performance of the models. 460

Full results can be found in Appendix D. We ob- 461

serve on both tested models a peak in performance 462

around k = 10 similar to those observed by (Hong 463

et al., 2024) in their work on the same dataset, after 464

which the model performance steadily decreases. 465

On inspecting the model performance, given the 466

correct label is provided to the LLM, we note that 467

the success rate is continually decreasing for both 468

models tested, suggesting the overall model perfor- 469

mance is a balance between the correctness of the 470

candidate selector in ensuring the correct label is 471

provided as a candidate and the LLM selecting the 472

correct label in turn. 473
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Figure 4: Distribution of prediction errors by the intra-
description similarity of the ground-truth intent and the
predicted intent on the CLINC150 dataset. (Top) The
number of errors per relation (Bottom) The number
of relations with erroneous predictions. Dashed line
denotes the mean intra-description similarity across the
entire dataset.

7.2 Effect of description similarity on model474

performance475

We attempt to examine whether there exists any476

relation between classification errors in the model477

output and similarities between intent descriptions.478

Intuitively, this is the assumption that similar def-479

initions of intents may lead to a greater degree480

of confusion, thus resulting in more prediction er-481

rors. Figure 4 illustrates the distribution of pre-482

diction errors by the intra-description similarity483

between the ground-truth intent and the predicted484

intent. We note a significant skewness of mis-485

predictions towards higher intra-description sim-486

ilarities (Fisher-Pearson G1 = 0.798). Com-487

puting the correlation between prediction errors488

and cosine similarity of description embeddings489

yielded a weak positive correlation (Pearson’s r =490

0.213 ± 0.015). Conversely, much weaker cor-491

relation was obtained between the prediction er-492

rors and the intra-description Levenshtein distance493

(Pearson’s r = 0.07± 0.01), implying that errors494

arising from high description similarity or overlap-495

ping descriptions are more likely to be focused on496

the semantic similarities rather than lexical similar-497

ity. We also observe from error attribution that on498

average, mispredictions arising from the LLM ac-499

counted for 75-82% of classification errors across500

Model Inference time / it. (s)
k = 3 k = 16 k = 150

Llama-3.1-8B-Instruct 1.69 2.59 4.29
Gemma-2-9b-it 5.05 5.61 11.26
Phi-3-Medium-4k-Instruct 2.68 3.89 5.64
Mistral-7B-Instruct-v0.3 3.09 3.60 5.71

% Reduction 53% 38% -

Model Input Tokens / Prompt
k = 3 k = 16 k = 150

Avg. Num. Tokens 128.55 312.21 1084.16

% Reduction 88% 71% -

Table 7: Average inference time and number of input
tokens per example for varying values of k. % Reduc-
tion indicates the mean percentage-decrease for lower
values of k from k = 150.

all of our experiments. We suggest future work to 501

explore means to tackle prediction errors arising 502

from such circumstances, such as through generat- 503

ing semantically diverse descriptions. 504

7.3 Effect of candidate selection on model 505

inference 506

A key conceptual benefit to filtering through can- 507

didate selection is a reduction in computational 508

overhead and cost when applying to classification 509

tasks with a high number of classes. We therefore 510

analyse the benefits of our approach in these ar- 511

eas. We collect inference times and the number 512

of input tokens per prompt for all selected mod- 513

els and datasets and analyse the average inference 514

overhead, results are shown in Table 7. We ob- 515

serve from Table 7 that our approach significantly 516

reduced the average inference time (up to 53% re- 517

duction) and the number of input tokens (up to 88% 518

reduction). We note the latter in particular can sig- 519

nificantly reduce the cost in using the growing suite 520

of commercial LLMs-as-a-service solutions (Sun 521

et al., 2022; Chen et al., 2023). 522

8 Conclusion 523

In this paper, we utilise a dataless candidate se- 524

lector component and demonstrate its potential to 525

improve model intent classification performance 526

over encoder-only and naive zero-shot LLM ap- 527

proaches, while significantly reducing the number 528

of input tokens and inference time, all without re- 529

quiring any further fine-tuning of the models. We 530

performed extensive experiments with a range of 531

models and provide analysis into model behaviour 532

and failure conditions to guide future work. 533

8



8.1 Limitations534

Our work focuses on the potential for our proposed535

framework to leverage dataless candidate selection536

to mitigate computational overheads in a strict zero-537

shot intent classification setting. The utilisation538

of intent label descriptions in candidate selection539

creates the potential for such approaches to be ap-540

plied to other such tasks that can be defined using541

label descriptions, such as emotion classification542

(Rashkin et al., 2019; Canales and Martínez-Barco,543

2014) and genre prediction (Hoang, 2018) which544

we leave for future work to pursue. Additionally,545

we experimented with Levenshtein distance in our546

token-label mapping postprocessing procedure, fu-547

ture work could explore semantic distance metrics548

such as embedding similarity or WordNet-based549

methods.550
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A Results of token-label mapping887

Table 8 contains the full results for model perfor-888

mance with and without token label mapping, used889

to compute the values for Table 3.890

B Results of choice of candidate selector891

Table 9 shows the full results for our experiments892

using different candidate selectors, from which we893

get the results in Table 5.894

C Model inference times at full/16-bit895

precision896

Table 10 shows the inference time of all tested897

models at full/16-bit quantization precision.898

D Results of increasing k-value899

Table 11 shows the full list of results from our900

experiments on increasing k-value using Gemma-901

2-9b-it and Llama-3.1-8B-Instruct that was used to902

produce Figures 3b and 3c.903
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Model Q k-value
ATIS SNIPS CLINC150 MASSIVE Overall

Before After Before After Before After Before After Before After

Llama-3.1-8B-Instruct

4-bit
k=3 63.97 64.03 81.77 81.79 86.78 87.11 72.56 72.75 76.27 76.42
k=5 62.22 62.28 81.55 81.57 87.43 87.87 74.00 74.18 76.30 76.48
k=10 61.18 61.39 76.95 76.96 88.29 88.71 74.30 74.41 75.18 75.37

8-bit
k=3 63.50 64.37 78.86 78.91 87.50 87.62 72.32 72.55 75.54 75.86
k=5 59.89 61.64 75.67 75.69 88.24 88.33 73.63 73.85 74.36 74.88
k=10 55.86 58.67 72.31 72.32 88.49 88.67 74.41 74.53 72.77 73.55

Gemma-2-9b-it

4-bit
k=3 70.97 71.05 92.97 93.16 89.27 89.36 73.90 74.45 81.78 82.01
k=5 69.83 70.30 90.93 91.50 90.07 90.15 75.67 75.99 81.62 81.98
k=10 68.72 69.17 90.65 91.88 89.94 90.06 75.69 75.90 81.25 81.75

8-bit
k=3 71.73 72.04 93.76 93.88 89.67 89.67 74.29 74.76 82.36 82.59
k=5 71.21 71.52 92.74 92.89 90.55 90.63 76.23 76.54 82.68 82.89
k=10 69.11 69.65 92.25 92.79 90.54 90.59 76.27 76.42 82.04 82.36

Phi-3-medium-4k-instruct

4-bit
k=3 64.74 66.88 84.26 93.77 74.82 88.25 67.64 72.99 72.87 80.47
k=5 65.36 66.54 85.05 93.13 75.87 88.75 70.12 74.59 74.10 80.75
k=10 63.79 64.48 92.79 92.97 89.43 89.87 75.88 76.21 80.47 80.88

8-bit
k=3 65.93 66.07 93.85 94.02 88.72 88.83 73.42 73.75 80.48 80.67
k=5 66.38 66.67 93.49 93.61 89.47 89.68 75.59 75.97 81.23 81.48
k=10 66.30 66.57 92.79 92.97 89.44 89.87 75.88 76.21 81.10 81.40

Mistral-7B-Instruct-v0.3

4-bit
k=3 58.40 58.80 74.94 80.90 85.38 86.52 70.66 72.42 72.34 74.66
k=5 50.42 50.56 68.80 73.95 86.03 86.98 72.53 74.06 69.44 71.39
k=10 40.70 40.79 62.48 67.85 84.12 84.91 71.07 73.14 64.59 66.67

8-bit
k=3 61.88 62.42 78.31 83.86 85.20 86.85 68.79 72.65 73.55 76.45
k=5 55.34 55.49 71.35 77.09 85.40 87.22 67.61 73.81 69.92 73.40
k=10 45.10 46.38 66.49 72.38 79.52 85.33 60.23 72.80 62.84 69.22

Table 8: Results of each tested model on all four evaluation datasets with and without token-label mapping. Before -
Prediction made directly from model output. After - Prediction made using token-label mapping.

CS LM Setup ATIS SNIPS CLINC150 MASSIVE Overall
Acc. F1 Acc. F1 Acc. F1 Acc. F1

Gemma-2-9b-it
BGE

Embedding Only 85.14 54.69 92.68 92.99 90.62 90.27 76.62 75.02 82.25
+ Parap. + Mask. 85.69 57.34 92.74 93.04 90.80 90.45 77.07 76.02 82.89

GTE
Embedding Only 86.32 54.84 93.09 93.34 90.01 89.58 74.86 73.39 81.93
+ Parap. + Mask. 86.25 54.99 93.00 93.24 90.33 89.93 76.55 75.08 82.42

Llama-3.1-8B-Instruct
BGE

Embedding Only 74.43 48.91 80.30 81.32 88.10 87.49 73.83 73.13 75.94
+ Parap. + Mask. 73.45 51.11 81.04 82.10 88.10 87.64 74.44 73.93 76.48

GTE
Embedding Only 76.27 48.07 80.64 81.47 87.21 86.56 72.95 71.92 75.64
+ Parap. + Mask. 76.03 49.39 82.71 83.44 87.69 87.19 73.71 72.74 76.61

Table 9: Performance when using different candidate selectors within our framework. BGE - bge-large-en-v1.5,
GTE - gte-large. Paraphrasing and Masking refers to the additional components proposed by (Hu et al., 2024) to
improve the candidate selector.

Model (k = 3) Inference Time / it. (s)

Llama-3.1-8B-Instruct 5.76
Gemma-2-9b-it 13.82
Phi-3-medium-4k-instruct∗ 4.05
Mistral-7B-Instruct-v0.3 3.90

Average 6.88

Table 10: Inference times for each model at the highest quantization precision tested. ∗Due to GPU memory limits,
we test Phi-3-medium-4k-instruct at 16-bit precision.
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k-value
Gemma-2-9b-it Llama-3.1-8B-Instruct

Acc. F1 (LM %) Acc. F1 (LM %)

k=3 89.93 89.53 96.78 87.86 87.30 95.69
k=5 90.80 90.44 96.54 88.49 88.09 95.37
k=10 90.76 90.42 95.93 88.82 88.40 94.93
k=16 90.57 90.23 95.54 88.85 88.42 94.53
k=32 90.40 90.07 95.27 88.73 88.31 94.25
k=64 89.95 89.60 94.94 87.69 87.14 93.78
k=75 89.63 89.24 94.75 87.08 86.49 93.47
k=128 89.66 89.29 94.64 85.98 85.44 92.91
k=150 89.36 88.98 94.42 83.14 82.50 93.32

Table 11: Results of tested models on the CLINC150 dataset for varying k-values. (LM %) denotes the LM’s
success rate given the correct intent label is within the list of candidates.
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