Published as a conference paper at ICLR 2025

CONTEXTUAL AUGMENTED MULTI-MODEL
PROGRAMMING (CAMP): A LoCAL-CLOUD COPILOT
SOLUTION

Yuchen Wang Shangxin Guo

Nanyang Technological University City University of Hong Kong
Singapore Hong Kong
yuchenOll@e.ntu.edu.sg sxguoz2-clmy.cityu.edu.hk
Chee Wei Tan

Nanyang Technological University

Singapore

cheewei.tan@ntu.edu.sg

ABSTRACT

To bridge the strengths of cloud-based Large Language Models (LLMs) in code
generation and the adaptability of locally integrated tools, we introduce CAMP, a
collaborative multi-model copilot framework for Al-assisted programming. CAMP
employs context-aware Retrieval-Augmented Generation (RAG), dynamically re-
trieving relevant information from local codebases to construct optimized prompts
tailored for code generation tasks. This hybrid strategy enhances LLM effective-
ness in local coding environments, yielding a 12.5% performance boost over non-
contextual generation and a 6.3% gain compared to a baseline RAG implemen-
tation. We demonstrate the practical application of Camp through “Copilot for
Xcode,” supporting tasks such as code completion, bug detection, and documen-
tation generation. Its success led to integration with GitHub Copilot, underscoring
the real-world impact and scalability of our approach in evolving Al-driven soft-
ware development practicesﬂ

1 INTRODUCTION

Al-assisted programming has emerged as a transformative force in software engineering, enhancing
productivity by automating tasks, identifying bugs, and improving code quality Wong et al.[(2023)).
By offloading repetitive processes, developers can focus more on creative and complex problem-
solving. Recent advances in Large Language Models (LLMs) have opened new frontiers in this
space, enabling conversational coding assistants that can be integrated into programming workflows
Li et al.| (2022); (Chen et al.| (2021). This vision echoes the early insights of Edsger W. Dijkstra Di-
jkstral ((transcribed), emphasizing the interplay between computational logic and human ingenuity.

Popular LLM-powered tools such as Codeium (Codeium! (2023)), GitHub Copilot |[Friedman| (2021)),
OpenAl ChatGPT |OpenAl| (2023), and Amazon CodeWhisperer [Amazon| (2022) deliver state-of-
the-art code generation capabilities via cloud APIs. Despite their effectiveness, these tools often
incur computational costs and latency, and they may struggle to seamlessly operate within local
development environments.

The advent of Retrieval-Augmented Generation (RAG) has further revolutionized Al-assisted pro-
gramming Lewis et al.| (2020). By incorporating retrieval mechanisms that extract relevant context
from a corpus before feeding it into LLMs, RAG enhances the model’s relevance and adaptability
and shows great potential in enhancing programming tasks.

"This work was originally published as a full paper in IEEE CAI 2025. The current version is a concise
presentation for this workshop, highlighting the key contributions and encouraging further discussion within
the community.

Published as a conference paper at ICLR 2025

Users [code changes IDE @
) ==

suggestions ==

code conte;y
CAMP ﬁ\: code generation

e prompt request . -
Pﬁ engineering —_— @
—_— - H
- response B
%

d
o)

@

Context-Based RAG Context Aware

Module Prompts Cloud LLMs

Figure 1: Overview of Camp: A hybrid Al-assisted programming framework that combines cloud-
based LLMs with local context retrieval using RAG.

This paper presents Camp, a multi-model copilot programming solution that leverages local code
context retrieval and cloud LLMs to optimize context-aware code generation. As shown in Figure[T]
Cawmp integrates cloud LLMs into local development environments, employing a RAG module that
dynamically learns from code context to optimize prompt construction. This methodology is im-
plemented in Copilot for Xcod a tool providing automatic code completion, error detection, and
documentation, synchronized with user interactions and codebase updates. The project was open-
sourced and later integrated into GitHub Copilot for Xcode (Tan et al.| (2023)); |Wang et al.| (2025);
GitHub| (2024).

2 METHODOLOGY

Our proposed RAG module consists of three major components: (I) a context retriever R, (c|x) that
captures contextual information c from the local development environment x, (II) a content retriever
R, (z|x, c) that generates relevant content given the current context and the original input, and (IIT)
a prompt constructor Gy (y;|z, ¢, z,y1.,—1) that creates prompts to assist LLMs from the retrieved
information and user queries.

As presented by Figure [2| given the local development environment at a certain timestamp ¢, the
contextual information c is first obtained and utilized for the retrieval of the top-ranked relevant
content information z. Both the context ¢ and content z are then utilized in prompt construction for
LLMs requests. As the local development environment evolves with ¢, this workflow synchronizes
with user actions and codebase changes, providing on-demand functionalities.

2.1 CONTEXT RETRIEVER

The context retriever obtains contextual information from the local development environment that
maximizes the insights brought to the next step. We define 7. to be the upper limit of the contextual
entries to include and have

Rn’ (l‘) = agg([anCo, 77/1017 s 7"7;067—(;])
= agg([nofo(zo), mfr(z1),- ... 07 fr.(27.)])
= agg(n' - f(z))

where f;(-) represents the detailed data processing for each contextual entry and agg represents the
aggregation method. We normalize by setting ¥, = 1 and assign a larger value to 7 to increase
the influence of the corresponding ¢;. For null entries, where the number of selected components is
below the limit 7., we set 7, = 0.

We eventually select “cursor position”, “absolute repository path”, “cached build artifacts”, and
“index information” as our sources of contextual information based on trials and errors. With the
assumption that the relative importance of different factors in the local development environment
remains stable, we can obtain a fixed set of optimal 7’ values over time and across data (X,).

https://github.com/intitni/CopilotForXcode

https://github.com/intitni/CopilotForXcode

Published as a conference paper at ICLR 2025

Alg.1 Gradient Descent Based Algorithm to Train Alg.2 Ranking Based Algorithm to Train Ranking
Weight and Heuristc Parameters Parameters

input X : . ((c) Prompt Constructor ¢
/= : by L T
o v)
code base : X Yy > y
By ‘T
Se ’
- \ J

file path

@?

user quries|

P
output

"

auto- o code
completion suggestions
\

dynamic code N N
symbol indexing embpcs;(x)

Figure 2: Overview of the RAG module. (a) Context retriever R, that retrieves contextual in-
formation from the local development environment. (b) Content retriever R,, that searches for the
most relevant information from local content. (¢) Prompt constructor Gy that creates context-aware
prompts.

2.2 CONTENT RETRIEVER

The objective of the content retriever is to deliver highly relevant content z that enhances prompt
construction with local, context-aware information. This aligns with the core principle of RAG,
which provides “documents” to transform general models into specialized ones. The retrieved con-
textual information c serves two purposes in this step: supporting codebase embedding and facili-
tating content search.

To balance the modeling power of neural network based encoders with the computational efficiency
of lightweight methods, we propose and employ dynamic code symbol indexing (“DCSI’) which
enables precise source code analysis by capturing each coding token’s symbol information, position,
relationships with neighboring tokens, and dependencies within the programming graph. It also sup-
ports dynamic updates, adapting to changes such as codebase edits and maintaining synchronization
with the local context, while remaining computationally efficient. We thus have the following sim-
plified model where the consistent embedding function makes the heuristic H a square matrix.

exp (embpcsi(2)” Hembpcsi(z))
_rexp (embpcsi(2/)T Hembpesi(z))

pn(2lz,c) = 5 (1
We present a gradient descent algorithm to obtain the optimal values of H and other parameters.
Given the embedding function and heuristic matrix, the content retriever identifies
Ry(x,c) = argmax p(c|H, g*)
z€emb(x)
where ¢ represents the optional user query which is provided in cases involving user interactions,
such as in Q&A scenarios.

The goal of the prompt constructor is to determine the optimal combination and ranking of the
components. Denote the ith prompt as 3; and the kth configurable component as y*. Without loss
of generality, let 7 represent the maximum number of configurable components. Each y; is thus an
ordered array of y*. Consequently, we have

g0($70,27y1:i71) =Y = Order([y17y27 cee 7ka])
=0 02 ... Ok]T[yl ¥ yk]T

where 60}, are standard unit vectors that mark the component located on the kth position of y;.

2.3 IMPLEMENTATION DETAILS ON XCODE

We demonstrate the practical utility of CaMp by implementing it as a plugin for Xcode. This serves
as a pilot trial to validate the methodology’s robustness in challenging coding environments with
sandboxed architecture that imposes strict restrictions and offers limited access to local contextual
information. To address these challenges, we employed: 1) XPC service-level communication to
enable interaction with language servers and facilitate real-time code suggestions in the UI, and
2) the Accessibility APTI to capture rich contextual data. These solutions enable accurate

Published as a conference paper at ICLR 2025

Table 1: Evaluation Results for Code Generation Tasks on CoderEval. The performance of CAMP is
compared to baseline models.

Model class-runnable file-runnable project-runnable
Pass@1 Pass@5 Pass@10 | Pass@] Pass@5 Pass@10 | Pass@] Pass@5 Pass@10

CloudOnly 873% 12.57% 1455% | 21.03% 29.09% 32.35% 937% 12.08% 13.04%
BaseRAG 19.84% 35.06% 4091% | 24.98% 3594% 39.01% | 15.66% 21.89% 24.62%
FileContext | 31.23% 43.41% 47.30% | 29.52% 37.80% 42.30% | 11.08% 16.87% 17.92%
Camp 2896% 41.72% 46.07% | 35.30% 43.45% 45.80% | 21.91% 25.05% 26.43%

prompt construction and effective integration with the IDE environment, laying the groundwork
for future expansions to other IDEs. When users update their code, CaMP retrieves contextual
information, constructs enriched prompts, and facilitates real-time Al-assisted programming. The
system dynamically interacts with Xcode to deliver tailored code suggestions and handle questions
through the chat panel, thereby enhancing developer productivity and overall coding experience.

3 EVALUATION

We evaluate the performance of Camp using the CoderEval benchmark|Yu et al.|(2024])), a pragmatic
code generation evaluation dataset designed to measure the performance of generative pre-trained
models. The benchmark comprises 230 test cases categorized into six runnable levels, from single-
function to project-level tasks. For our experiments, we selected the top three categories with the
highest runnable levels, representing the most common real-world use cases and encompassing di-
verse contexts. We compare CAMP against the following baseline models, using GPT-3.5-Turbo as
the cloud-based LLM.

* CloudOnly: Inputs are processed solely by the cloud-based model, with no local process-
ing or context retrieval.

* BaseRAG: Implements standard RAG techniques as proposed by [Lewis et al.|(2020).

* FileContext: A variant of CaMp that prioritizes context retrieved from the currently open
files in the IDE. This lightweight version balances performance and resource efficiency.

The results, as summarized in Table [T} demonstrate its superiority over baseline models in code
completion tasks across varying complexities, as well as its effectiveness in real-world programming
scenarios. Typically, it achieves a 12.5% and 6.3% improvement over CloudOnly and BaseRAG,
respectively, in Pass@1 accuracy for the project-runnable category. Compared to the CloudOnly
model, Camp achieves advantageous results in all tasks, demonstrating the impact of retrieved con-
tent in enhancing LLM prompts. Similarly, CAMP outperforms the BaseRAG model, highlighting
the effectiveness of its context-based retrieval mechanisms in understanding the codebase and gen-
erating context-aware solutions. The FileContext model shows comparable performance to CaAmMP
for lower runnable levels, such as class-runnable tasks, but falls behind in cross-file and project-level
scenarios. This outcome emphasizes the necessity of broader context retrieval, a key advantage en-
abled by RAG techniques. The results also suggest that dynamically adjusting the retrieval scope
based on task complexity can optimize computational resource without compromising accuracy. For
instance, narrowing the retrieval range to specific files for class-level tasks can reduce computational
overhead while maintaining high performance.

4 CONCLUSION

This paper presented CAMP, a multi-model programming copilot solution that leverages context-
based Retrieval-Augmented Generation (RAG) to enhance Al-assisted programming. By introduc-
ing dynamic context retrieval from local codebases, CAMP optimizes context-aware prompt con-
struction, bridging the gap between the generative capabilities of cloud-based LLMs and the con-
textual efficiency of local models. It also fosters dynamic collaboration between cloud LLMs and
local models, paving the way for advanced Al-assisted programming solutions. By enabling seam-
less integration of human expertise with Al tools, CamP aligns with Dijkstra’s vision of augmenting
human intelligence in software development, advancing toward more efficient, reliable, and user-
centric programming practices.

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research was supported by the Singapore Ministry of Education Academic Research Fund under
Grant RG91/22.

REFERENCES

CodeWhisperer Amazon. Al code generator - amazon codewhisperer. https://aws.amazon
.com/codewhisperer, 2022. Accessed on June 1, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Exafunction Codeium. Codeium - free Al code completion & chat. https://codeium.com/}
2023. Accessed on June 1, 2023.

Edsger Wybe Dijkstra. A preliminary investigation into computer assisted programming. E. W.
Dijkstra Archive (EWD 237), (transcribed) 2007.

Nat Friedman. Introducing github copilot: your Al pair programmer, 2021.

GitHub. Github copilot code completion in xcode is now available in public preview. https:
//github.blog/changelog/2024-10-29-github-copilot—-code—completio
n-in-xcode—is—now—available—-in-public—-preview/, October 2024. Accessed:
January 5, 2025.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared
Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Automating code review activities by large-scale
pre-training. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2022.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Chee Wei Tan, Shangxin Guo, Man Fai Wong, and Ching Nam Hang. Copilot for Xcode: ex-
ploring Al-assisted programming by prompting cloud-based large language models. preprint
arXiv:2307.14349, 2023.

Yuchen Wang, Shangxin Guo, and Chee Wei Tan. From code generation to software testing: Al
Copilot with context-based RAG. IEEE Software, pp. 1-9, 2025. doi: 10.1109/MS.2025.3549628.

Man-Fai Wong, Shangxin Guo, Ching-Nam Hang, Siu-Wai Ho, and Chee-Wei Tan. Natural lan-
guage generation and understanding of big code for Al-assisted programming: A review. Entropy,
25(6):888, 2023.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianx-
iang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1-12, 2024.

https://aws.amazon.com/codewhisperer
https://aws.amazon.com/codewhisperer
https://codeium.com/
https://github.blog/changelog/2024-10-29-github-copilot-code-completion-in-xcode-is-now-available-in-public-preview/
https://github.blog/changelog/2024-10-29-github-copilot-code-completion-in-xcode-is-now-available-in-public-preview/
https://github.blog/changelog/2024-10-29-github-copilot-code-completion-in-xcode-is-now-available-in-public-preview/

	Introduction
	Methodology
	Context Retriever
	Content Retriever
	Implementation Details on Xcode

	Evaluation
	Conclusion

