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ABSTRACT

Adapter-tuning strategy is an efficient method in machine learning that introduces
lightweight and sparse trainable parameters into a pretrained model without alter-
ing the original parameters (e.g., low-rank adaptation of large language models).
Nevertheless, most existing adapter-tuning approaches are developed for risk-
neutral task objectives and the study on the adaptation of risk-sensitive tasks is
limited. In this paper, we propose a transfer learning-based quantile regression
adapter to improve the estimation of quantile-related risks by leveraging existing
pretrained models. We also establish a theoretical analysis to quantify the efficacy
of our quantile regression adapter. Particularly, we introduce a transferability mea-
sure that characterizes the intrinsic similarity between the pretrained model and
downstream task in order to explain when transferring knowledge can improve
downstream learning. Under appropriate transferability and structural assump-
tions, we establish error bounds for the estimation and out-of-sample prediction
quality by our quantile regression adapter. Compared to vanilla approaches with-
out transfer learning, our method is provably more sample efficient. Extensive
numerical simulations are conducted to demonstrate the superiority and robust-
ness of our method empirically.

1 INTRODUCTION

Transfer learning with large pretrained models has demonstrated great successes recently (Devlin
et al., 2019; Wang et al., 2019; Liu et al., 2023). The significant value of efficiently adapting large,
general pretrained models to specific tasks with limited data has generated extensive interest from
both researchers and practitioners (Pan & Yang, 2009; Kaplan et al., 2020; Zhuang et al., 2020; Han
et al., 2021; Yuan et al., 2020; Ding et al., 2023; Wu et al., 2023; Chen et al., 2024). However,
adapting the large models can be expensive. For example, transformer-based language models like
BERT have around 340 million parameters (Devlin et al., 2019), and GPT-2 has around 1.5 billion
parameters (Radford et al., 2019). Adapting all these parameters is prohibitively costly and even
practically infeasible.

One popular transfer learning approach is adapter-tuning strategy, which leverages knowledge from
pretrained model in a parameter-efficient manner—instead of directly fine-tuning all original param-
eters of the pretrained model, the adapter-tuning strategy introduces lightweight and sparse parame-
ter modules to the pretrained model and only optimizes these modules without altering the original
parameters during fine-tuning. This design offers two key advantages. First, it provides better acces-
sibility by reducing the computational demands, as fine-tuning large pretrained models from scratch
requires vast resources and excessive data. Second, the newly introduced parameter modules can
flexibly learn target representations while preserving knowledge from the source domain, avoiding
catastrophic forgetting. Previous works have shown that the adapter-tuning strategy achieves effec-
tive and computationally economical performance across various downstream tasks (Rebuffi et al.,
2017; Hu et al., 2022; Wang & Liang, 2024; Raffel et al., 2020; Wu et al., 2024).

Despite the seemingly broad applicability of adapter-tuning, most existing approaches focus on
risk-neutral task objectives, and research on the adaptation for risk-sensitive tasks is limited. These
specific downstream tasks are ubiquitous and often critical in practice. For example, in financial
risk management, institutions are concerned with the occurrence of rare, extreme situations in or-
der to ensure sufficient capital reserves (Maiti, 2021; Ayse Demir & Murinde, 2022). In healthcare
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management, identifying patients with high risk for certain conditions is crucial for early diagnosis
and timely intervention. (Chen et al., 2014; Wei et al., 2019; Aktar et al., 2023). Similarly, one of
the primary goals in climate and disaster studies is predicting extreme weather events, such as un-
precedented temperatures or precipitation (Cai & Reeve, 2013; Naess et al., 2013). Although many
existing transfer learning methods aids in predicting averaged risk of these events, the importance of
tail probabilities suggest that the predominant risk-neutral learning objectives might not be adequate.

To address this problem, we investigate the transfer of knowledge in quantile regression, a widely
used model that predicts the conditional quantiles of a variable of interest given fixed contextual
information (Koenker & Hallock, 2001). Compared to the ordinary least squares (OLS) which
focuses on predicting conditional mean values, quantile regression offers greater flexibility in ex-
amining different parts of the outcome distribution, thereby enabling the risk-sensitive prediction of
extreme events. We focus on the following research question:

Is it possible to design a provably effective transfer learning algorithm for quantile regression?

In this paper, we aim to design a quantile regression adapter that leverages the knowledge of the
pretrained models to enhance the performance of adaptation while maintaining the computational
efficiency.

Inspired by the adapter-tuning strategy, we propose a quantile regression adapter that injects task-
specific parameters into a pretrained model. The task-specific parameters are trained through the
empirical quantile loss minimization along with a regularization penalty. The penalty term can
be selected as certain vector or matrix norm in order to maintain a sparse or low-rank structure
of additional parameters. Note that our method can naturally extend beyond vector/matrix-based
parameters to deep neural networks by imposing a low-rank decomposed structure of networks,
following the same principal of low-rank adaptation as in large language models. In this case,
the size of trainable task-specific parameters can drop even more significantly (Hu et al., 2022;
Zhang et al., 2023; He et al., 2023; Kim et al., 2024; Wang & Liang, 2024). Overall, our approach
helps reduce the computational burden and memory usage in training and inference, especially when
leveraging hardware acceleration (Dave et al., 2020; Reuther et al., 2020; Louizos et al., 2018), and
the usage of regularization can also mitigate the risk of overfitting in the fine-tuning of downstream
task using scarce data.

Our main contributions are summarized as follows.

• We propose a transfer learning algorithm to learn quantile information based on the adapter-
tuning strategy. Our adapter injects additional learnable parameters of sparse or low-rank
structure to the pretrained parameters in order to learn from downstream data while lever-
aging the knowledge of pretrained model.

• We borrow the concept of “sparsity” from high-dimensional statistics theory to explain why
the knowledge can be transferred from the pretrained model. Based on this, we establish
performance guarantee for our quantile regression adapter under linear structural model and
quantify the improvement of our approach than vanilla learning without using pretrained
knowledge.

• We evaluate the adaptation performance of our algorithm through numerical simulations on
specific downstream tasks. Compared to baselines, our method achieves better performance
in adaptation and exhibits robustness with heteroscedastic data.

1.1 RELATED WORK

Adapter-tuning strategy. The adapter-tuning strategy is a parameter-efficient transfer learning
method that introduces new trainable modules into a pretrained model while keeping the pretrained
model’s original parameters unchanged. These modules are often specifically designed for compu-
tational efficiency due to excessive model size. For example, LoRA-like modules Hu et al. (2022);
Wang & Liang (2024); Zhang et al. (2023); Kim et al. (2024); Luo et al. (2023) introduce a “low-
rank” structure by decomposing the dense layers into low-rank matrices. Other studies apply net-
work pruning or weight regulations to maintain “sparse” parameters (He et al., 2022; Zeng et al.,
2023; Guo et al., 2021; Fu et al., 2023). More literature on adapter structure design can be found
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in (Hu et al., 2023; Xu et al., 2023). These approaches offer valuable insights for designing new
transfer learning algorithms for quantile regression.

Quantile regression. Quantile regression Koenker & Hallock (2001) is a powerful technique for
estimating conditional quantile functions and is widely utilized across various fields, including eco-
nomics (Bonaccorsi et al., 2020; Maiti, 2021), healthcare (Chen et al., 2014; Wei et al., 2019; Aktar
et al., 2023), and management science (Ban & Rudin, 2019; Shah et al., 2023; Zhang et al., 2024).
In recent years, quantile regression has served as an auxiliary or alternative objective in various ma-
chine learning tasks, such as uncertainty quantification (Romano et al., 2019; Feldman et al., 2023;
Teneggi et al., 2023; Huang et al., 2024), risk-averse reinforcement learning (Dabney et al., 2018;
Yang et al., 2019; Kuznetsov et al., 2020; Shi et al., 2024), and time series prediction (Wen et al.,
2017; Yang et al., 2022; Eisenach et al., 2022; Kan et al., 2022). Our paper mainly focus on solving
quantile regression via adapter-tuning and transfer learning. Within this stream of literature, our
work is most closely related to Zhang & Zhu (2022) and Jin et al. (2023), both studying transfer
learning for the linear quantile regression model. We highlight that their algorithms are not based
on the adapter-tuning strategy but a pooling-then-debiasing technique and, therefore, not applicable
when an existing pretrained model is available. Additionally, it is unclear how their algorithms could
be generalized to nonlinear models even in conceptual.

Statistical analysis in transfer learning. Previous works have established statistical guarantees
for transfer learning in various high-dimensional regression contexts, including linear regression
(Li et al., 2022; Bastani, 2021; Mousavi Kalan et al., 2020; Lin & Reimherr, 2022), generalized
linear models (Tian & Feng, 2023), non-parametric regression (Cai & Pu, 2024), and quantile re-
gression (Zhang & Zhu, 2022; Jin et al., 2023). Unlike our methods, these studies typically assume
access to both source and target data during the adaptation. They design algorithms that first pool all
pretrained and target data together and then apply debiasing estimators using the target data. Alter-
natively, their analysis depends on specific loss objectives design used to train the pretrained model.
Our theoretical analysis does not impose restrictions on the empirical loss form of the pretrained
model. This flexibility is advantageous because pretrained models may use either unsupervised or
supervised objectives (Devlin et al., 2019; Howard et al., 2019; Ridnik et al., 2021). Additionally,
we focus on the case with only the usage of target data for task-specific module, which does not
require access to source data during adaptation in downstream tasks.

1.2 NOTATIONS

Throughout this paper, we use bold lowercase letter to refer a vector (e.g. x ∈ Rd), and bold
uppercase letters to refer a matrix (e.g., X ∈ Rd×d). For an integer number d, [d] denotes the set
{1, 2, · · · , d}. For any fixed vector x ∈ Rd, its support is the set of indices with non-zero value,
i.e. supp(x) = {j ⊆ [d] : xj ̸= 0}. Let S be a subset of [d], xS ∈ Rd denotes the vector
such that [xS]i = xi if i ∈ S and [xS]i = 0 otherwise. The cardinality of set S is denoted by
|S|. Given a vector x ∈ Rd, ∥x∥p denotes the Lp-norm, p ≥ 1, i.e. ∥x∥p = (

∑d
i=0 |xi|p)1/p

and ∥x∥∞ = maxi≤d |xi|. 1E(·) is the indicator function, which takes value 1 when the event E
happens and 0 otherwise. Lastly, for a matrix X ∈ Rd×d, ∥X∥2 denotes its spectral norm and X1/2

is its matrix square root.

2 ALGORITHM DEVELOPMENT

2.1 PROBLEM SETTING

We start with a brief introduction to the quantile regression problem formulation. Given the covariate
x ∈ Rd and a scalar response y ∈ R, the τ -th conditional quantile function of y conditional on x is
defined as

F−1
y|x(τ) = inf{ξ : Fy|x(ξ) ≥ τ}. (1)

Here Fy|x(·) is the cumulative distribution function of y given x and 0 ≤ τ ≤ 1. The ordinary
quantile regression model assumes that

F−1
y|x(τ) = f(x;θ⋆), (2)
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where function f(x;θ) is a parametric function class parameterized by θ and θ⋆ is the unknown
true parameter. To train quantile regression, a standard loss function defined at population level is

Rτ (θ) = E(x,y)∼p [ρτ (y − f(x;θ))] , (3)

where p is the joint distribution of (x, y) and the ordinary quantile loss (i.e., pinball loss) ρτ (·) is
defined as

ρτ (x) =

{
τ (y − f(x;θ)) , y ≥ f(x;θ),

(1− τ) (f(x;θ)− y) , o.w.
(4)

This objective utilizes an asymmetric convex loss to penalize the prediction error y−f(x;θ). When
the error is negative, the penalty is proportional to τ and otherwise, 1 − τ . When τ = 1/2, the
quantile loss becomes the median absolute deviation loss. Since the true parameter θ⋆ optimizes
Rτ (θ), by minimizing the empirical version of Rτ (θ), we can obtain a good estimator of θ⋆.

Specifically, let D = {(yi,xi)}ni=1 be the dataset of a target downstream task, define

θ̂ = argmin
θ∈Rd

R̂τ (θ) =
1

n

n∑
i=0

ρτ (yi − f(xi;θ)). (5)

Then θ̂ is an approximation of true parameter θ⋆. When sample size n increases, θ̂ converges to θ⋆

at rate of O(n−1/2) under appropriate regularity conditions.

On the other hand, in some scenarios, for a target qunatile regression task, before the empirical
quantile loss is constructed, a pretrained model based on another source data may already exist. We
assume that a pretrained model using source data Ds is obtained via

θ̂s = argmin
θ∈Rd

L(θ;Ds), (6)

where Ds denotes the source dataset and L(·; ·) is the training loss for source task. When the pre-
trained model is correctly specified and the sample size of Ds goes up, θ̂s converges to

θ⋆
s = argmin

θ∈Rd

EDs∼ps
[L(θ;Ds)] , (7)

the minimizer of population loss defined for the source task, where ps is underlying distribution for
source data. As a result, if θ⋆

s is close to θ⋆, then target quantile training appropriately adapted from
θ̂s may accelerate convergence and improve the performance.

2.2 QUANTILE REGRESSION ADAPTER VIA TRANSFER LEARNING

Consider a scenario where the true parameter of the source task θ⋆
s is close to that of target quantile

regression task θ⋆. Let δ⋆ = θ⋆ − θ⋆
s be the difference among two sets of true parameters, which

is close to zero and sparse. If the source data Ds is sufficient and the pretrained model is trained
well, θ⋆ ≈ θ̂s. Then we can use parameter of format θ̂s + δ to learn θ⋆

s as a adaptation, where the
optimization is taken over δ, i.e., approximating the conditional quantile F−1

y|x(τ) as f(x, θ̂s + δ).

On the other hand, since the true parameter difference δ⋆ is sparse and locates near zero, instead
of searching over the whole parameter space Rd, which could be high-dimensional, we can restrict
our attention in low-dimensional subspaces. Equivalently, we add a regularization term on δ in the
ordinary quantile loss to penalize its deviation from zero. Specifically, we propose the following
loss function as the quantile regression adapter for target task

La(δ;D) =
1

n

n∑
i=0

ρτ

(
yi − f(xi; θ̂s + δ)

)
+ λ · g(δ), (8)

where ρτ (·) is the ordinary quantile loss defined in Equation 4 and g(·) is a regularization term for
δ. Tuning parameter λ controls the power of regularization. Regularization disencourages the target
estimator from deviating from the source model θ̂s significantly. If the true source model is indeed
close to the true target model and the pretrained model fits the true source model well, restricting the
target estimator to be close to the pretrained model can provide an effective update direction for the
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target task training. Since the original parameters in pretrained model is frozen during adaptation,
the source knowledge keeps unchanged as well.

From the perspective of high-dimensional statistics, when the dimension of features d is much larger
than the sample size of target task n, the ordinary quantile regression can lead to inconsistent esti-
mation of true parameter (Wainwright, 2019; Geer, 2000). This inconsistency motivates the use of
penalization techniques to eliminate almost regressors whose true population coefficients are zero,
making it possible to recover consistency. In Section 3, we will theoretically define and quantify the
sparsity between the source model and target model, and provide a theoretical understanding of the
behavior of adapter.

By choosing specific form of f(x,θ) and g(δ) in Equation 8, our adapter reduces to several classic
methods in literature. For example, if f is linear and g(·) is L1-norm for δ, denote by ỹi = yi−x′

iθ̂s.
Then our objective is equivalent to the standard quantile Lasso model (Belloni & Chernozhukov,
2011), i.e.,

δ̂ = argmin
δ∈Rd

1

n

n∑
i=0

ρτ (ỹi − x′
iδ) + λ ∥δ∥1 . (9)

When the parameters of the model are matrices or tensors, g(·) should be set as the matrix nuclear
norm to explicitly promote low-rank solutions.

Lastly, we comment that in our formulation, we add penalty/regularization as an extra term in objec-
tive instead of treating it as a separate constraint. It alleviates the challenge of training in many sce-
narios since equation Equation 8 is a unconstrained optimization and often convex (if f(x, δ), g(δ)
are convex). In practice, people can impose explicit constraints on δ in optimization as well, for
example, ensuring a low-rank neural network structure on weight updates of format a multiplication
of two low-dimensional matrices, i.e., the like LoRA-alike fine-tuning (Hu et al., 2022; Zhang et al.,
2023; Wang & Liang, 2024). Those two types of formulation are closely connected.

3 THEORETICAL ANALYSIS: STATISTICAL GUARANTEES FOR LINEAR
ADAPTER

In this section, we establish a theoretical analysis to our quantile regression adapter. We mainly focus
on the high-dimensional setting where the sample size of target task is much less than the feature
number. Otherwise, direct training is sufficient to recover good solutions and the benefits of transfer
learning is marginal. To simplify, we restrict our discussions to high-dimensional linear model
only. The reasons why we choose linear model as the object of study are twofold. First, statistical
theory on linear models are well-developed, especially in the high-dimensional regime. Therefore,
We can borrow the rich existing tools to analyze the behavior of transfer learning. Second, linear
model is simple enough to clearly illustrate when and why quantile regression adapter can work.
With appropriate tools, those insights can be generalized to nonlinear models like neural network as
well.

Specifically, we assume that the conditional quantile model is linear, i.e., f(x;θ) = x′θ. In this
case, the linear quantile regression can be expressed as y = x′θ⋆ + ϵ, where ϵ denotes the noise in
observation that satisfies the quantile condition P (ϵ ≤ 0) = τ . We choose the vector L1-norm as
the regularization term. Then the objective in Equation 8 becomes

La(δ;D) =
1

n

n∑
i=0

ρτ

(
yi − x′

i(θ̂s + δ)
)
+ λ ∥δ∥1 , (10)

By setting θ = θ̂s + δ, we obtain

θ̂ = argmin
θ∈Rd

1

n

n∑
i=0

ρτ (yi − x′
iθ) + λ

∥∥∥θ − θ̂s

∥∥∥
1
, (11)

which exhibits similar structure as the objective in quantile Lasso method but the center of deviation
penalty becomes θ̂s, the estimated parameter of source task. Such an analogy motivates us to adapt
the quantile Lasso theory to study the properties of linear quantile regression adapter. However,
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since θ̂s is not perfect, the estimation error with true parameter in source task θ⋆ may impact the
performance task parameter estimation. Incorporating this error into the analysis of θ̂ is nontrivial.

Before we present our theoretical results, we first introduce some regularity conditions. We begin
with an assumption about data distribution.
Assumption 3.1 (Data Setting). Each downstream data point in D is i.i.d. drawn from a distribution
(x, y) ∼ p. For covariate x, the conditional density f(y|x) is continuously differentiable with uni-
form upper bounds f̄ and f̄ ′ for value f(y|x) and derivative ∇yf(y|x), respectively. Furthermore,
there exists a positive constant f such that f(y|x) > f > 0 for all y and x. Furthermore, without
loss of generality, we standardize x with zero mean and unit standard error.

In next, we introduce some concepts and assumptions related to distributional shift. We first intro-
duce a condition to quantify the transferability between target and source data.
Definition 3.2 (Restricted Set and Restricted Eigenvalue Condition). Let S = supp(θ) := {j ⊆ [d] :
|θj | > 0} be the support of a fixed vector θ ∈ Rd, we define A (S, α) the restricted set of parameter
α as

A (S, α) = {δ ∈ Rd : ∥δSc∥1 ≤ α ∥δS∥1 , α ≥ 0}.
Moreover, we say the covariance matrix Σ ∈ Rd×d and index set S ⊆ [d] meet the Restricted
Eigenvalue (RE) Condition for constant κ > 0 when

∥δS∥1 ≤
√

|S|
κ

∥∥∥Σ1/2δ
∥∥∥
2
, (12)

for all δ ∈ A (S, α).

The restricted eigenvalue (RE) condition is a standard assumption in the high-dimensional statistics
literature in order to establish convergence rate for Lasso-type estimator in high-dimensional regime
(Tibshirani, 1996; Bickel, 2007; Raskutti et al., 2010; Wainwright, 2019). In general, the identifi-
ability of structural parameter of linear regression depends on the positive-definiteness of sample
covariance matrix. In high-dimensional regime where the feature dimension is much larger than
sample size, the sample covariance matrix in unlikely to be positive-definite for the whole parameter
space. The RE condition relaxes this requirement to a smaller subspace A(S, α) instead. We refer to
Wainwright (2019) for more discussions on the RE condition. In summary, we adopt the RE condi-
tion in this paper to ensure that the bias θ⋆−θ⋆

s is identifiable in the scenario of d ≫ n. Additionally,
if in the non-high-dimensional regime, i.e., n ≫ d, the covariance matrix Σ is positive-definite and
the RE condition is automatically satisfied (Raskutti et al., 2010; Wainwright, 2019).

Based on the RE condition, we impose the following assumption.
Assumption 3.3 (Transferability Condition). Let δ⋆ = θ⋆−θ⋆

s be the difference of true parameters
of target and source data. The restricted eigenvalue condition is satisfied for index set S = supp(δ⋆)
and target covariance matrix Σ with some positive constant κ. Furthermore, the sparsity coefficient
s = |S| is much smaller than feature’s dimension d and target data sample size n.

Assumption 3.3 uses the concept of sparsity to measure distributional shift and assumes that the dif-
ference in true parameters of target and source model is sparse. That is to say, in most dimensions,
the parameters that determine target and source model are the same. It is an appropriate assumption
in our setting since only when the true parameters are largely overlapped, transferring knowledge
from pretrained model to donwstream target task is theoretically beneficial. In this case, the in-
formation stored in the parameters of the pretrained model can be directly applied to target task,
which motivates the adapter-tuning strategy. We only need to use the extra target data to learn the
low-dimensional discrepancy, which is achievable even if target dataset is limited like n ≪ d. In
what follows, we use the sparsity coefficient s to denote the number of non-zero values in θ⋆ − θ⋆

s ,
i.e., s = ∥δ⋆∥0. The sparse coefficient s determines the magnitude of distributional shift, as well
as the intrinsic difficulty of transfer learning. In an extreme case where s = 0, i.e., the source and
target models are exactly the same, applying the pretrained model to target task is trivially good. On
the other hand, if s is close to d, we should not expect transferring knowledge in pretrained model
directly to target model, and thus, it is hard to learn ideally with limited extra data. As a result, our
subsequent theoretical analysis mainly focuses on the nontrivial regime where d ≫ n ≫ s.

Lastly, we impose a regularity condition on the curvature of covariate x’s distribution that ensures
certain growth rate and non-degeneration.
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Assumption 3.4 (Bounded and Restricted Growth Condition). There exists a constant b ∈ R such
that ∥θ⋆∥1 ≤ b. Additionally, we assume that for any target sample xi ∈ Rd, and for any target
estimator θ̂ ̸= θ⋆, the following holds:

q :=
3

8

f3/2

f̄ ′ inf
τ∈(0,1)

E[|x′
i(θ̂ − θ⋆)|2]3/2

E[|x′
i(θ̂ − θ⋆)|3]

> 0.

In assumption 3.4, the upper bound of b is used to characterize the worst-case parameter magnitude
of θ⋆, which is standard. It also measures the relationship between the expected values of the squared
and cubic powers of the residual. Assumption 3.4 is adapted from the statistical literature on quantile
Lasso method (Belloni & Chernozhukov, 2011), which builds the foundation of our analysis. We
will apply restricted growth condition to control the minoration of the quantile regression objective
function by a quadratic function in our proof.

In our setting, since the true parameter of source model is unknown and estimated via the pretrained
model, it is necessary to consider the impact of such an estimation error on the performance of target
task. Let ν = θ̂s−θ⋆

s ∈ Rd be the estimation error of θ̂s. Then if the source dataset is sufficient and
the pretrained model is correctly specified, we expect ν should be small. For example, if the source
task is a linear quantile/lease-square regression with sample size ns ≫ d, under mild conditions, it
holds that ∥ν∥2 = O((d/ns)

1/2). Nevertheless, the presence of a non-zero ν prevents us quoting
the exisitng results of quantile Lasso directly. We have to carefully tailor the quantile Lasso analysis
framework in order to accommodate the interplay of estimation errors in two tasks. With above
preparations, we are ready to present our main theoretical results.

Theorem 3.5 (Convergence Rate of Linear Quantile Regression Adapter). Let θ̂ be the optimal
solution to optimization Equation 11 and the regularization hyperparameter λ is set as

λ⋆ ≍ max


√

log(d) + u

n
, d ∥ν∥2

 . (13)

Under assumptions 3.1, 3.3, and 3.4, with probability at least 1 − exp(−u) for some u > 0, the
estimation error of our linear quantile regression adapter is upper bounded as∥∥∥θ̂ − θ⋆

∥∥∥
1
≤ O

(
max

{
s

√
log(d) + u

n
, ds ∥ν∥2

})
. (14)

Theorem 3.5 establishes the convergence rate of the target task estimation error. To highlight the
insights, we only present the impact of factors s, d, n, ν in Theorem 3.5 and omit other constant
factors which are problem-specific. Note that our error bound is the maximum of two terms. The
first term primarily depends on sparsity parameter s linearly and decays to zero at rate of n−1/2.
The dependency on d is logarithmic. The second term is inherited from the source task estimation
error ν. If the source dataset sample size ns is sufficiently large and the pretrained model fits well,
then ∥ν∥2 is of order O(n

−1/2
s ) and thus, negligible. In this case, the first term dominates.

As contrast, if we do not use transfer learning or pretrained model adaptation, and rely on target data
only to train the quantile regression model, the convergence rate for estimation error is expected to
depend on feature’s dimension d linearly rather than s, which is trivial in high-dimensional regime.
Such a comparison shows the power of our quantile regression adapter. Additionally, Theorem 3.5
also requires an appropriate magnitude of the regularization hyperparameter λ in order to ensure
the desired convergence rate. Intuitively, if λ is too large, the target estimator may fail to learn new
knowledge from the target data. Similarly, λ cannot be too small, as the target model needs to retain
and leverage the general representations learned from the pretrained model. Our insights largely
match the results in classic quantile Lasso theory as well (Belloni & Chernozhukov, 2011).

As a corollary of Theorem 3.5, we can also establish the bound for the prediction error in target task.
Specifically, consider a clipped target estimator defined as θ̂CLIP = θ̂ if ∥θ̂∥1 ≤ 2b where 2b is the
maximal possible L1 norm of the true parameter, and θ̂CLIP = 0 otherwise. Similarly, setting the
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tuning parameter λ as

λ⋆ ≍ max


√

log(bdn)

n
, d ∥ν∥2

 . (15)

Then the expected out-of-sample prediction error for any new input x can be upper bounded

E
[∥∥∥x′θ̂CLIP − x′θ⋆

∥∥∥
1

]
= O

(
max

{
s ∥x∥∞√

n
log(dn), ds ∥ν∥2 ∥x∥∞

})
. (16)

4 EXPERIMENT

In this section, we conduct numerical experiments to demonstrate the performance of our quantile
regression adapter and verify theoretical results. We aim to answer the following questions: (1)
Under what conditions is quantile adaptation efficient for new downstream task? (2) Does quantile
adapter perform better than Lasso-style adapter?

Data setting: We perform a simulation study with sample sizes ns = 1000 for the source data,
n = 150 for the target data and neval = 1000 for the evaluation data. The ns source observations,
denoted as x, are drawn from a d-dimensional multivariate standard normal distribution with d =
100. The first n samples of the source data observations are used as target data observations, and the
evaluation data observations are generated independently in the same way. The true parameter for
the source domain is fixed as θ⋆

s = {1, . . . , 1}′ ∈ Rd. To obtain the target model θ⋆, we generate δ⋆
by uniformly setting s elements to 0.9 and the remaining elements to 0. The responses are generated
as ys = x′

sθ
⋆
s + ϵs for the source pairs (xs, ys) ∼ Ds, y = x′θ⋆ + ϵ for the target pairs (x, y) ∼ D,

and yeval = x′
evalθ

⋆+ ϵeval for the evaluation data. All noise terms are i.i.d. from the standard normal
distribution N (0, 1).

Under what conditions is quantile adaptation efficient for new downstream task? To assess the
efficiency of our quantile adaptation method, we first instantiate the pretrained model by optimizing
sample mean squared error (MSE). We then train our quantile estimator to predict the median of
the responses using Equation 10, with quantile level τ = 0.5, and evaluate it with δ̂ + θ̂s. We
refer to our adapter as QAdapter. We compare our method against three baselines: (1) Direct
Training (DT) that directly optimizes the linear quantile estimator without utilizing the pretrained
model; (2) Zero-shot that directly evaluates the performance of the pretrained model on the test
data without any adaption. (3) Average that combines the parameters of the pretrained model and
DT by α1θ̂s + (1 − α1)θ̂, where α1 ∈ (0, 1). Following previous works as in (Bastani, 2021; Jin
et al., 2023; Li et al., 2022), we use MSE to evaluate the estimation performance of the downstream
models, i.e., ∥θ̂ − θ⋆∥2.

Figure 1a illustrates the performance of estimation task under different values of the similarity coef-
ficient s. Our results show that QAdapter achieves state-of-the-art performance when estimating the
true target model in downstream tasks. We attribute the failure of Zero-shot estimation to the dis-
crepancy between the source and target true models. Meanwhile, DT performs poorly when target
data are scarce, as it fails to utilize the knowledge of the pretrained model. We also note that, when
the source model is equal to the target model (s = 0), the performance of QAdapter is close to that
of Zero-shot. However, as s increases to 100, QAdapter’s performance deteriorates to that of DT,
suggesting that the pretrained model becomes less useful for the downstream task. In addition, the
estimation error of the QAdapter increases linearly as s increases. These observations are consistent
with our Theorem 3.5.

Figures 1b and 1c depicts the performance of the estimation task under different values of λ and
n, respectively. Specifically, we fix the sparsity coefficient at |S| = 20 and, iterate over λ and n
with fixed step sizes respectively to show the trend of estimation error. As the Figure 1b shown, the
choice of λ can substantially affect the adaptation performance. Figure 1c show that the estimation
error seemingly degrade at the rate of O(n−1/2) and our transfer learning algorithm has significant
benefit when target sample is small. More details of the above implementation and prediction results
can be found in the Appendix B.

Does quantile adapter perform better than Lasso-style adapter? For the second part of our
numerical experiments, we compare QAdapter with another Lasso objective as appeared in Bastani
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(a) Effect of Sparsity Coefficient
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(b) Effect of λ (s = 20)
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(c) Effect of Sample Size (s = 20)
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Figure 1: Analysis of various factors affecting estimation error of model, measured using ∥θ̂−θ⋆∥2
on the y-axis. (a) The effect of the sparsity coefficient s. Our QAdapter method consistently achieves
lower estimation errors compared to other methods. (b) The effect of λ. Using excessively high and
low values of λ can degrade performance. (c) The effect of target data n. The lower the amount of
data for downstream tasks, the greater the necessity of using the quantile adapter.
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Figure 2: We evaluate the downstream estimation error of different adaptation methods under het-
eroscedastic downstream tasks. The target sample is generated as yi = x′

iθ
⋆+N (0, 1)×(1+scale×

xi1). As the scale coefficient increases, the extent of disturbance from heteroscedastic noise is en-
hanced, causing LAdapter to collapse. On the other hand, the performance of QAdapter (τ = 0.5)
exhibits lower disturbance.

(2021) and Li et al. (2022), where the task-specific parameters are trained by

LAdapter: δ̂L = argmin
δ∈Rd

1

n

n∑
i=0

(
y − x′(θ̂s + δ)

)2
+ ∥δ∥1 . (17)

We refer to this method as LAdapter. To demonstrate the robustness of adapting pretrained models
to heteroscedastic data, where the variance of the noise is not consistent across all data points, we
generate the target data by yi = x′

iθ
⋆ +N (0, 1)× (1 + scale × xi1) for i = 1, . . . , n with s = 20,

and keep other settings unchanged. Figure 2 compares the estimation performance across different
values of the scale coefficient. The results show that LAdapter struggles to capture the true model
information when subjected to heteroscedastic noise.

Additionally, we consider the downstream task of extreme value prediction. We generate target
data by randomly assigning 10% of the samples to follow yi = x′

iθ
⋆ +N (0, 1) while keeping the

remaining 90% as yi = 0+N (0, 1). In this case, the 90% of the data provides no information about
the model coefficients, and the 10% represents rare, worst-case events that are highly informative
yet costly.We evaluate the accuracy of the adapters in estimating the true parameters, as shown
in Table 1. Our results indicate that LAdapter fails to learn the true model due to the scarcity of
informative data; in contrast, the quantile adapter with τ = 0.9 performs significantly better, as its
design allows it to capture this portion of the distribution more effectively.
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Table 1: Comparison of Adaptation Methods in Extreme Value Prediction (s = 20)

QAdapter (τ = 0.9) QAdapter (τ = 0.5) LAdapter

∥θ̂ − θ⋆∥2 0.18± 0.01 2.75± 0.24 36.77± 6.40
Quantile Loss 3.93± 0.06 4.90± 0.40 23.66± 2.29

5 CONCLUSION

In this work, we propose an efficient quantile regression algorithm via transfer learning, specifically
designed to transfer knowledge to risk-sensitive downstream tasks. We introduce a measure to the-
oretically quantify the transferability of knowledge and provide statistical guarantees for adaptation
efficiency under a linear structural model. An interesting direction for future research could involve
relaxing the linear form assumption and extending the method to more general adaptation functions.
We also believe that developing practical implementations of quantile transfer learning methods for
real-world downstream tasks can be an important direction for future work.
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We have adhered to the ethical standards and practices as suggested in the ICLR Code of Ethics.
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A PROOF OF THEOREM 3.5 AND COROLLARY

In this section, we will show the detailed proof for the parameter estimation error of the linear esti-
mator in Equation 10. In Subsection A.1, we introduce several additional pieces of useful notation
and formulation throughout the section for convenience. Secondly, we establish some technical
lemmas for our proof in Subsection A.2. Lastly, we provide the completed proof in Subsection A.3.

A.1 QUANTILE TRANSFER LEARNING IN LINEAR CASES

In Section 3, we propose the statistics results for our transfer learning framework under linear target
estimator. Recall that we assume that the response of the downstream task can be formulated as a
linear function, that is {

y = x′θ⋆ + ϵ
P (ϵ ≤ 0) = τ,

∀(x, y) ∼ p. (18)

In that case, we use the linear approximation function f(x,θ + δ) = x′(θ + δ) to estimate the true
coefficient of target model, our optimization objective in downstream task can be written as

1

n

n∑
i=0

ρτ

(
yi − x′

i(θ̂s + δ)
)
+ λ∥δ∥1, (19)

where ρτ (x) = x(τ − 1x≤0) is the standard quantile loss function with quantile level τ ∈ (0, 1).
Note that the only trainable parameter in adaptation stage is δ. We define the accumulated empirical
quantile loss in D as

R̂τ (δ) :=
1

n

n∑
i=0

ρτ (yi − x′
i(θ̂s + δ)),

and Rτ (δ) := E(x,y)∼pR̂τ . The our estimator is then simply θ̂ = θ̂s + δ̂, where δ̂ is estimated
in Equation 19. Similarly, the true target estimator is θ⋆ = θ̂s + δ̃, where δ̃ can be obtained in the
following objective

δ̃ = argmin
δ∈Rd

Rτ (δ) + λ ∥δ∥1 . (20)

We will alternately use these two notations in our proof, which are unambiguous and equivalent:∥∥∥δ̂ − δ̃
∥∥∥
1
=
∥∥∥θ̂ − θ̂s − θ⋆ + θ̂s

∥∥∥
1
=
∥∥∥θ̂ − θ⋆

∥∥∥
1
. (21)

Moreover, we denote the following event J(δ,δ′) by

J(δ,δ′) :=

{
sup

∥δ−δ′∥1≤t

∥∥∥R̂τ (δ)− R̂τ (δ
′)− (Rτ (δ)−Rτ (δ

′))
∥∥∥
1
≤ λ0t

}
,

where t and λ0 are some positive scalar. We define the complement of the event as:

J C
(δ,δ′) :=

{
sup

∥δ−δ′∥1≤t

∥∥∥R̂τ (δ)− R̂τ (δ
′)− (Rτ (δ)−Rτ (δ

′))
∥∥∥
1
> λ0t

}
.

A.2 TECHNICAL LEMMAS FOR THEOREM 3.5

We next establish several useful lemmas for our proof.

Lemma A.1 (Lipschitz Continuity). For any vector x ∈ Rd, scalar y ∈ R and quantile level
τ ∈ (0, 1), the quantile loss function ρτ (y − x′θ) is Lipschitz continuous with a Lipschitz constant
Lτ > 0 that depends on τ . Specifically, for different two parameters θ1,θ2 ∈ Rd, we have

∥ρτ (y − x′θ1)− ρτ (y − x′θ2)∥1 ≤ Lτ ∥x′(θ1 − θ2)∥1 .

The proof is completed by a categorical discussion of the intervals of the quantile loss function.
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Lemma A.2 (Control the empirical error of R̂τ ). With λ0 ≥
√
8L2

τ/n, we have,

P
(
J(δ̂,δ̃)

)
≥ 1− 8d · exp

(
−λ2

0 · n · κ2

32L2
τ

)
.

Proof of Lemma A.2. To simplify notation, we denote:

∆ :=
∥∥∥δ̂ − δ̃

∥∥∥
1
.

The proof is mainly based on the symmetrization lemma for probabilities. Using the Corollary 3.4
in (Geer, 2000), we have for λ0 ≥

√
8L2

τ/n,

P
(
J C

(δ̂,δ̃)

)
≤ 4P

(
sup
∆≤t

∥∥∥∥∥ 1n
n∑

i=1

Wi ·
(
ρτ

(
yi − x′

i(δ̂ + θ̂s)
)
− ρτ

(
yi − x′

i(δ̃ + θ̂s)
))∥∥∥∥∥

1

>
λ0t

4

)

≤ 4P

(
sup
∆≤t

∥∥∥∥∥Lτ

n

n∑
i=1

Wi · x′
i

(
θ̂ − θ⋆

)∥∥∥∥∥
1

>
λ0t

4

)
,

(22)

where (W1, ....Wn) is the Rademacher sequence independent of samples D, and i.i.d. with proba-
bility P(Wi = 1) = P(Wi = −1) = 1

2 , and the last inequality holds by Lemma A.1. Moreover,
by the Cauchy–Schwarz inequality, we have for any vector a, b ∈ Rd, ∥ab∥1 = ∥a∥1 ∥b∥∞. With
a = θ⋆ − θ̂ and b =

∑n
i=1 Wixi, we can obtain the following inequality∥∥∥∥∥

n∑
i=1

Wi · x′
i(θ̂ − θ⋆)

∥∥∥∥∥
1

≤
∥∥∥θ̂ − θ⋆

∥∥∥
1
max
j≤d

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

. (23)

where, d is the dimension of vector x, and xij denotes the jth component of vector xi. Hence,
applying the markov inequality to further bound the right-hand side of Equation 22, we have for any
ξ > 0,

4P

(
sup
∆≤t

∥∥∥∥∥Lτ

n

n∑
i=1

Wi · x′
i(θ̂ − θ⋆)

∥∥∥∥∥
1

>
λ0t

4

)

≤min
ξ>0

4 exp
−ξλ0t

4
· E

[
exp

(
ξLτ

n
sup
∆≤t

∥∥∥∥∥
n∑

i=1

Wi · x′
i(θ̂ − θ⋆)

∥∥∥∥∥
1

)]

≤min
ξ>0

4 exp
−ξλ0t

4
· E

[
exp

(
ξLτ

n
sup
∆≤t

[∥∥∥θ̂ − θ⋆
∥∥∥
1
max
j≤d

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

])]
,

(24)

where the last inequality holds by Equation 23. We obtain

sup
∆≤t

[∥∥∥θ̂ − θ⋆
∥∥∥
1
max
j≤d

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

]
≤ sup

∆≤t

[
∆ ·max

j≤d

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

]

= t ·max
j≤d

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

,

(25)

where the supremum is eliminated since the maximum value is attained when ∆ = t. Moreover,
note that with the exchange rule of the expectation and maximum, we have such inequality:

E

[
max
j≤d

exp

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

]
≤ dmax

j≤d
E

[
exp

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

]
. (26)
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Therefore, we combine Equation 25 and Equation 26, we then proceed to bound the right hand side
of Equation 24, that is

min
ξ>0

4 exp
−ξλ0t

4
· E

[
exp

(
ξLτ

n
· sup
∆≤t

[∥∥∥θ⋆ − θ̂
∥∥∥
1
·max

j≤d

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

])]
(27)

≤min
ξ>0

4 exp
−ξλ0t

4
· E

[
exp

(
ξLτ

n
· t ·max

j≤d

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

)]
(28)

≤min
ξ>0

max
j≤d

4d · exp −ξλ0t

4
· E

[
exp

(
ξLτ

n
· t ·

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

)]
, (29)

where the first and second inequality holds by applying Equation 25 and Equation 26. Next, to
eliminate the expectation, we adapt from the intermediate proof of the Hoeffding inequality, for
self-contained purposes, we next show detailed derivation. For any scalar a > 0, and any column
0 ≤ j ≤ d, we have

E

[
exp

(
a ·

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

)]
= E

[
E

[
exp

(
a ·

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

)∣∣∣∣∣ xij

]]
(30)

≤ E

[
E

[
exp

(
a ·

n∑
i=1

Wixij

)
+ exp

(
−a ·

n∑
i=1

Wixij

)∣∣∣∣∣ xij

]]
(31)

=

n∏
i=1

E [E [exp (a ·Wixij) + exp (−a ·Wixij)| xij ]] (32)

=

n∏
i=1

E [exp (a · xij) + exp (−a · xij)] (33)

≤ 2E exp

(
n∑

i=1

a2x2
ij

2

)
(34)

= 2 exp
(
a2 · n

2

)
, (35)

where the first equality holds by the law of iterated expectation, the next inequality by extension
the absolute value and the monotone increase of exponential function, and the third and fourth
equality holds by the property of the Rademacher sequence (W1, ....Wn), the last inequality holds by
comparing Taylor’s expansions of both sides. Last equality holds since we standardize the feature for
each column j. Hence, applying the above result, we can simplify the right-hand side of Equation 27,
that is

min
ξ>0

max
j≤d

4d · exp −ξλ0t

4
· E

[
exp

(
ξLτ

n
· t ·

∥∥∥∥∥
n∑

i=1

Wixij

∥∥∥∥∥
1

)]

≤min
ξ>0

8d · exp −ξλ0t

4
· exp

((
ξLτ t

n

)2

· n
2

)

=min
ξ>0

8d · exp

((
Lτ t√
2n

)2

ξ2 − λ0t

4
ξ

)

=8d · exp
(
−λ2

0 · n
32L2

τ

)
,

(36)

where the last equality holds by optimizing objective exp(aξ2 + bξ) with ξ = −b/2a. Combining
Equation 22 and Equation 24 and Equation 27, and Equation 36, we can obtain

P
(
J C

(δ̂,δ̃)

)
≤ 8d · exp

(
−λ2

0 · n
32L2

τ

)
. (37)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Therefore, we have the event J(δ̂,δ̃) holds with a high probability, i.e.

P
(
J(δ̂,δ̃)

)
= 1− P

(
J C

(δ̂,δ̃)

)
≥ 1− 8d · exp

(
−λ2

0 · n
32L2

τ

)
.

(38)

Lemma A.3. On the event J(δ̂,δ̃), and if assumption 3.1, 3.3, 3.4 holds, we have with λ ≥ 2λ0 ≥√
8L2

τ/n ∥∥∥θ̂ − θ⋆
∥∥∥
1
≤

fd

λ
∥ν∥22 + 8 ∥ν∥1 +

8λs

fκ2
.

provided s obeys the growth condition

4q ≥
fd

3
2

λ
∥ν∥22 + 8

√
d ∥ν∥1 +

8λs
√
d

fκ2
. (39)

Proof of Lemma A.3. Proof by contradiction method. To simplify notation, let

∆ :=
∥∥∥δ̂ − δ̃

∥∥∥
1
, t :=

fd

λ
∥ν∥22 + 8 ∥ν∥1 +

8λs

fκ2

Recall that the δ̂ is any solution of the optimization problem in Equation 19. Given the Event J(δ̂,δ̃)

and assumption 3.3, we want show the event that

min
∆≥t

R̂τ (δ̂)− R̂τ (δ̃) + λ
∥∥∥δ̂∥∥∥

1
− λ

∥∥∥δ̃∥∥∥
1
< 0 (40)

is impossible, which suffices to prove the bound. Furthermore, we know that the objective function
R̂τ is convex, and the left-hand side of the inequality in Equation 40 is convex. Hence we can
replace ∆ ≥ t with ∆ = t in Equation 40 while preserving the validity of our proof:

min
∆=t

R̂τ (δ̂)− R̂τ (δ̃) + λ
∥∥∥δ̂∥∥∥

1
− λ

∥∥∥δ̃∥∥∥
1
< 0. (41)

To ultimately invoke the transferability measure assumption 3.3, we need to express δ̂ in terms of its
components in the index set. Recall that the notation of the bias term is denoted as δ⋆ := θ⋆ −θ⋆

s ∈
Rd. By definition and the triangle inequality, we have such a relationship.∥∥∥δ̂∥∥∥

1
=
∥∥∥δ̂S∥∥∥

1
+
∥∥∥δ̂Sc∥∥∥

1

≥ ∥δ⋆S∥1 −
∥∥∥δ̂S − δ⋆S

∥∥∥
1
+
∥∥∥δ̂Sc∥∥∥

1
,

(42)

where Sc refers to the set of indices of a vector except for S = supp(θ⋆−θ⋆
s ). Similarly, noting that

∥δ⋆Sc∥1 = 0 by definition of S, we have∥∥∥δ̃∥∥∥
1
= ∥δ⋆ − ν∥1
≤ ∥δ⋆S∥1 + ∥ν∥1 ,

(43)

where ν = θ̂s − θ⋆
s . Combining Equation 42 and Equation 43 and substituting into Equation 41, it

further implies

min
∆=t

R̂τ (δ̂)− R̂τ (δ̃)− λ
∥∥∥δ̂S − δ⋆S

∥∥∥
1
+ λ

∥∥∥δ̂Sc∥∥∥
1
− λ ∥ν∥1 < 0. (44)

Furthermore, under the event J(δ̂,δ̃) holds and λ ≥ 2λ0, we can replace the R̂τ (·) with Rτ (·), we
have

min
∆=t

Rτ (δ̂)−Rτ (δ̃)−
1

2
λt− λ

∥∥∥δ̂S − δ⋆S

∥∥∥
1
+ λ

∥∥∥δ̂Sc∥∥∥
1
− λ ∥ν∥1 < 0. (45)
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According to Knight (1998), for any two scalars w and v, we have

ρτ (w − v)− ρτ (w) = −v(τ − 1{w ≤ 0}) +
∫ v

0

(1{w ≤ z} − 1{w ≤ 0})dz. (46)

Using Equation 46 with w = y − x′(δ̃ + θ̂s) and v = x′(δ̃ − δ̂), and taking the expectation of
both side in Equation 46, we conclude E[−v(u− 1{w ≤ 0})] = 0. Let Fy|x denote the conditional
distribution of y given target sample x. Using the law of iterated expectations and the expansion of
the mean value, we obtain for z̃x,z ∈ [0, z],

Rτ (δ̂)−Rτ (δ̃) = E

[∫ x′(δ̃−δ̂)

0

Fy|x

(
x′(δ̂ + θ̂s) + z

)
− Fy|x

(
x′(δ̃ + θ̂s)

)
dz

]

= E

[∫ x′(δ̃−δ̂)

0

zfy|x

(
x′(δ̂ + θ̂s)

)
+

z2

2
f ′
y|x

(
x′(δ̃ + θ̂s) + z̃x,z

)
dz

]

≥ 1

2
f
∥∥∥Σ1/2(δ̃ − δ̂)

∥∥∥2
2
− 1

6
f̄ ′E

[∣∣∣x′(δ̃ − δ̂)
∣∣∣3] ,

(47)

Under the growth condition 39 in the lemma, which implies that

1

2
fE
[∣∣∣x′(δ̃ − δ̂)

∣∣∣2] > 1

3
f̄ ′E

[∣∣∣x′(δ̃ − δ̂)
∣∣∣3] . (48)

Applying the result of Equation 47 and Equation 48, we can rewrite Equation 45 as

min
∆=t

1

4
f
∥∥∥Σ1/2(δ̃ − δ̂)

∥∥∥2
2
− 1

2
λt− λ

∥∥∥δ̂S − δ⋆S

∥∥∥
1
+ λ

∥∥∥δ̂Sc∥∥∥
1
− λ ∥ν∥1 < 0. (49)

Then, we want to apply the assumption 3.3 to δ = δ̂ − δ⋆ to bound ∥δ̂S − δ⋆S∥1, this require the
δ̂− δ⋆ in the restricted set, which may not always hold in general. To address this, we perform case
analysis based on whether ∥ν∥1 ≤ ∥δ̂S − δ⋆S∥1. We will show that when ∥ν∥1 ≤ ∥δ̂S − δ⋆S∥1 holds
ture, assumption 3.3 to δ = δ̂ − δ⋆ can be used to finish our proof, while ∥ν∥1 > ∥δ̂S − δ⋆S∥1 also
provide a control over the error of the estimator.

First, we discuss the case when ∥ν∥1 ≤ ∥δ̂S − δ⋆S∥1. According to Equation 24, there exist at least
one δ̂ such that ∆ = t and

1

4
f
∥∥∥Σ1/2(δ̃ − δ̂)

∥∥∥2
2
− 1

2
λ
∥∥∥δ̂ − δ̃

∥∥∥
1
− λ

∥∥∥δ̂S − δ⋆S

∥∥∥
1
+ λ

∥∥∥δ̂Sc∥∥∥
1
− λ ∥ν∥1 < 0 (50)

holds true. Rearrange the inequality by moving the negative term to the right hand side, we obtain

1

4
f
∥∥∥Σ1/2(δ̃ − δ̂)

∥∥∥2
2
+ λ

∥∥∥δ̂Sc∥∥∥
1
<

1

2
λ
∥∥∥δ̂ − δ̃

∥∥∥
1
+ λ

∥∥∥δ̂S − δ⋆S

∥∥∥
1
+ λ ∥ν∥1 . (51)

Observing that ∥∥∥δ̂ − δ̃
∥∥∥
1
=
∥∥∥δ̂ − δ⋆ + ν

∥∥∥
1

≤
∥∥∥δ̂S − δ⋆S

∥∥∥
1
+
∥∥∥δ̂Sc∥∥∥

1
+ ∥ν∥1 ,

(52)

so we can further simplify Equation 51 to

1

4
f
∥∥∥Σ1/2(δ̃ − δ̂)

∥∥∥2
2
+

λ

2

∥∥∥δ̂Sc∥∥∥
1
<

3λ

2

∥∥∥δ̂S − δ⋆S

∥∥∥
1
+

3λ

2
∥ν∥1

≤ 3λ
∥∥∥δ̂S − δ⋆S

∥∥∥
1
,

(53)

where the second inequality holds by ∥ν∥1 ≤ ∥δ̂S − δ⋆S∥1. Dropping the first non-negative term on
the left hand side, we can observe that δ̂ − δ⋆ meets the definition of the restricted set A(S, α)with
α = 6 and S = supp(θ⋆ − θ⋆

s ). That is∥∥∥δ̂Sc − δ⋆Sc
∥∥∥
1
≤ 6

∥∥∥δ̂S − δ⋆S

∥∥∥
1
.
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and we can apply the assumption 3.3 to process. This yields

λ
∥∥∥δ̂S − δ⋆S

∥∥∥
1
≤ λ

√
s

κ

∥∥∥Σ1/2(δ̂ − δ⋆)
∥∥∥
2

(54)

≤ 1

8
f
∥∥∥Σ1/2(δ̂ − δ⋆)

∥∥∥2
2
+

2λ2s

fκ2
(55)

≤ 1

4
f
∥∥∥Σ1/2(δ̂ − δ̃)

∥∥∥2
2
+

1

4
f
∥∥∥Σ1/2ν

∥∥∥2
2
+

2λ2s

fκ2
, (56)

where the second inequality holds since ab ≤ a2/4 + b2 and the last inequality holds by (a+ b)2 ≤
2a2 + 2b2. Moreover, note that the variance matrix for target data Σ ∈ Rd×d is a square matrix, we
have ∥∥∥Σ1/2ν

∥∥∥
2
≤
∥∥∥Σ1/2

∥∥∥
2
∥ν∥2

≤
√

tr (Σ) ∥ν∥2
=

√
d ∥ν∥2 ,

(57)

where the first inequality holds by the definition of matrix norm, and the second inequality holds by
the Jensen’s inequality, and the last equality holds since we standardize the covariance matrices in
assumption 3.1, which implies that sum of the diagonal elements of Σ equals to d. According to
Equation 56 and Equation 57, we observe that

λ
∥∥∥δ̂S − δ⋆S

∥∥∥
1
≤ 1

4
f
∥∥∥Σ1/2(δ̂ − δ̃)

∥∥∥2
2
+

1

4
fd ∥ν∥22 +

2λ2s

fκ2
. (58)

Using these facts in Equation 52 and Equation 58 to bound the ∥δ̂Sc∥1 and ∥δ̂S − δ⋆S∥1 respectively
in Equation 49, we obtain such relation

λt < fd ∥ν∥22 + 4λ ∥ν∥1 +
8λ2s

fκ2
. (59)

which is impossible according to the value of t.

Lastly, we remain to discuss the case ∥δ̂S − δ⋆S∥1 ≤ ∥ν∥1. Using the intermediate result in Equa-
tion 52 to replace the ∥δ̂Sc∥1 in Equation 49 again, we get

min
∆=t

1

4
f
∥∥∥Σ1/2(δ̃ − δ̂)

∥∥∥2
2
+

1

2
λt− 2λ

∥∥∥δ̂S − δ⋆S

∥∥∥
1
− 2λ ∥ν∥1 < 0. (60)

Applying ∥δ̂S − δ⋆S∥1 ≤ ∥ν∥1, we have

min
∆=t

1

4
f
∥∥∥Σ1/2(δ̃ − δ̂)

∥∥∥2
2
+

1

2
λt− 4λ ∥ν∥1 < 0. (61)

Dropping the first non-negative term 1/4 · f∥Σ1/2(δ̃ − δ̂)∥22, we obtain such relation

λt < 8λ ∥ν∥1 . (62)

is impossible according to the value of t.

A.3 PROOF OF THEOREM 3.5 AND COROLLARY

Proof. By Lemma A.2 and Lemma A.3, we have with λ ≥ 2λ0,

P
(∥∥∥θ̂ − θ⋆

∥∥∥
1
≤

fd

λ
∥ν∥22 + 8 ∥ν∥1 +

8λs

fκ2

)
≥ P(J(δ̂,δ̃))

≥ 1− 8d · exp
(
−λ2

0 · n
32L2

τ

)
.

(63)
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Recall that λ0 is theoretical coefficient about event J(δ̂,δ̃), we can choose to optimize our bound.

Thus, by choosing λ0 =
√
32L2

τ (log(8d) + u)/n for any u > 0, we have with probability at least
1− e−u, ∥∥∥θ̂ − θ⋆

∥∥∥
1
≤

fd

λ
∥ν∥22 + 8 ∥ν∥1 +

8λs

fκ2
. (64)

By inspection, plugging in

λ⋆ = Cmax


√

128L2
τ (log(8d) + u)

n
, d ∥ν∥2

 ,

with tuning parameter C > 1. We obtain with probability at least 1− e−u,∥∥∥θ̂ − θ⋆
∥∥∥
1
≤ O

(
max

{
s

√
log(d) + u

n
, ds ∥ν∥2

})
. (65)

Next, we remain to derive the expected out-of-sample prediction error. For convenience let

w :=
fd

λ
∥ν∥22 + 8 ∥ν∥1 +

8λs

fκ2
.

By Hölder’s inequality, we have

E
[∥∥∥x′(θ̂CLIP − θ⋆)

∥∥∥
1

]
≤ E

[∥∥∥θ̂CLIP − θ⋆
∥∥∥
1

]
· ∥x∥∞ , (66)

where ∥x∥∞ is the largest magnitude among each element of vector x. To bound E[∥θ̂CLIP −θ⋆∥1],
We can proceed by conducting some case analysis. Recall that the definition of the event J(δ̂,δ̃) is

J(δ̂,δ̃) :=

 sup
∥δ̂−δ̃∥

1
≤t

∥∥∥R̂τ (δ̂)− R̂τ (δ̃)− (Rτ (δ̂)−Rτ (δ̃))
∥∥∥
1
≤ λ0t

 .

That yields

E
[∥∥∥θ̂CLIP − θ⋆

∥∥∥
1

]
=E

[∥∥∥θ̂CLIP − θ⋆
∥∥∥
1

∣∣∣ J(δ̂,δ̃)

]
· P[J(δ̂,δ̃)]+

E
[∥∥∥θ̂CLIP − θ⋆

∥∥∥
1

∣∣∣ J C
(δ̂,δ̃)

]
· P[J C

(δ̂,δ̃)
].

(67)

To bound the first expectation on the right-hand side of Equation 67, we further define a new event

B =
(∥∥∥θ̂∥∥∥

1
≤ 2b

)
.

Recall the definition of θ̂CLIP, we know that θ̂CLIP = θ̂ when B holds, and θ̂CLIP = 0 otherwise.
Then,

E
[∥∥∥θ̂CLIP − θ⋆

∥∥∥
1

∣∣∣ J(δ̂,δ̃)

]
=E

[∥∥∥θ̂CLIP − θ⋆
∥∥∥
1

∣∣∣ B ∩ J(δ̂,δ̃)

]
· P [B] + E

[∥∥∥θ̂CLIP − θ⋆
∥∥∥
1

∣∣∣ BC ∩ J(δ̂,δ̃)

]
· P
[
BC
]

=E
[∥∥∥θ̂ − θ⋆

∥∥∥
1

∣∣∣ B ∩ J(δ̂,δ̃)

]
· P [B] + E

[
∥θ⋆∥1

∣∣∣ BC ∩ J(δ̂,δ̃)

]
· P
[
BC
]
.

(68)

Now, note that on the event BC ∩ J(δ̂,δ̃), we have both that∥∥∥θ̂ − θ⋆
∥∥∥
1
≤ w,

∥∥∥θ̂∥∥∥
1
≥ 2b ≥ 2 ∥θ⋆∥1 .

Combining these facts together, we have on the event BC ∩ J(δ̂,δ̃),

∥θ⋆∥1 ≤
∥∥∥θ̂∥∥∥

1
− ∥θ⋆∥1 ≤

∥∥∥θ̂ − θ⋆
∥∥∥
1
≤ w,
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always holds using the triangle inequality. Thus first expectation on the right-hand side of Equa-
tion 67 can obtain

E
[∥∥∥θ̂CLIP − θ⋆

∥∥∥
1

∣∣∣ J(δ̂,δ̃)

]
≤ w · P[B] + E

[
∥θ⋆∥1

∣∣∣ BC ∩ J(δ̂,δ̃)

]
· P
[
BC
]

≤ w · P [B] + w · P
[
BC
]

= w.

(69)

Next, we continue to bound the second expectation on the right-hand side of Equation 67. Regardless
of the events J(δ̂,δ̃) and B, using the triangle inequality, we have∥∥∥θ̂CLIP − θ⋆

∥∥∥
1
≤
∥∥∥θ̂CLIP

∥∥∥
1
+ ∥θ⋆∥1 ≤ 3b. (70)

Combining Equation 67, Equation 69 and Equation 70, we have

E
[∥∥∥θ̂CLIP − θ⋆

∥∥∥
1

]
= w · P[J(δ̂,δ̃)] + 3b · P[J C

(δ̂,δ̃)
]

≤ w + 3b · P[J C
(δ̂,δ̃)

]

≤ w + 24bd · exp
(
− λ2 · n
128L2

τ

)
.

(71)

where the last inequality holds by using the result in Lemma A.2 with λ0 = λ/2. Taking the
regularization hyperparameter λ to be

λ⋆ = Cmax


√

128L2
τ log(24bdn)

n
, d ∥ν∥2

 ,

which yields expected out-of-sample prediction error for any new coming input x as

E
[∥∥∥x′θ̂ − x′θ⋆

∥∥∥
1

]
≤ O

(
max

{
s ∥x∥∞√

n
log(dn), ds ∥ν∥2 ∥x∥∞

})
.

B EXPERIMENT DETAILS

B.1 PRACTICAL IMPLEMENTATION

We evaluate the adaptation efficiency of QAdapter by comparing it with baselines, including DT,
Zero-shot, Average, and Lasso, in simulation. Our transfer learning algorithm is divided into two
main steps:

1. Pretraining with Source Data: In the first step, we pretrain the model using the source data. In
the simulation, our pretrained model is trained as follows:

θ̂s = argmin
θ

1

n

n∑
i=0

ρτ (yi − x′
iθ), (xi, y) ∼ Ds. (72)

2. Adapting for Downstream Tasks: In this step, we train additional task-specific parameters to
adapt to downstream tasks by D.

Our code is implemented in Python, and we optimize all baseline objective functions using
CVXPY: an open-source Python package for convex optimization problems. We run 100 seeds
for each experiment and record the mean of MSE and quantile loss. We plot the results under
different similarity coefficients |S| = {0, 5, 10, 20, 30, . . . , d}, λ = {0, 0.05, 0.1, . . . , 0.4}, and
n = {150, 200, 300, . . . , 1000} on the x-axis of Figure 1.
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B.2 BASELINES

For DT, we directly train the target estimator using target data D:

θ̂DT = argmin
θ

1

n

n∑
i=0

(
y − x′(θ̂s + δ)

)2
. (73)

We then evaluate the performance on test data with θ̂DT , without any transfer learning step.

For Zero-shot, we directly evaluate the pretrained model θ̂s on test data without additional parame-
ter updates. The pretrained θ̂s comes from Equation 72.

For QAdapter, we optimize Equation 10 to obtain the adapter and perform inference on test data
using δ̂ + θ̂s. We set τ = 0.5 by default and use λ = 0.01 for quantile adaptation in Figure 1, and
λ = 0.1 for the extreme value prediction task.

For LAdapter, we train with the lasso objective:

δ̂L = argmin
δ

1

n

n∑
i=0

(
y − x′(θ̂s + δ)

)2
+ λ ∥δ∥1 , (74)

where λ is the same as for QAdapter. LAdapter performs inference with δ̂L + θ̂s.

For Average, the estimator is α1θ̂s + (1 − α1)θ̂, α1 ∈ (0, 1). We choose α = 0.7 based on cross-
validation methods and perform inference on test data.

B.3 ADDITIONAL RESULTS

Here we report the quantile loss (τ = 0.5) about the prediction error of adapter in test data in the
following figures.

(a) Effect of Sparsity Coefficient
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Sparsity Coefficient s
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(b) Effect of λ (s = 20)
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(c) Effect of Sample Size (s = 20)
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Figure 3: Analysis of various factors affecting model performance, measured using the quantile loss
(τ = 0.5) on the y-axis.
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Figure 4: Additional result in heteroscedastic experiment.
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