
Under review as submission to TMLR

Tackling Visual Control via Multi-View Exploration Maxi-
mization

Anonymous authors
Paper under double-blind review

Abstract

We present MEM: Multi-view Exploration Maximization for tackling complex visual control
tasks. To the best of our knowledge, MEM is the first approach that combines multi-view
representation learning and intrinsic reward-driven exploration in reinforcement learning
(RL). More specifically, MEM first extracts the specific and shared information of multi-
view observations to form high-quality features before performing RL on the learned fea-
tures, enabling the agent to fully comprehend the environment and yield better actions.
Furthermore, MEM transforms the multi-view features into intrinsic rewards based on en-
tropy maximization to encourage exploration. As a result, MEM can significantly promote
the sample-efficiency and generalization ability of the RL agent, facilitating solving real-
world problems with high-dimensional observations and spare-reward space. We evaluate
MEM on various tasks from DeepMind Control Suite and Procgen games. Extensive simu-
lation results demonstrate that MEM can achieve superior performance and outperform the
benchmarking schemes with simple architecture and higher efficiency.

1 Introduction

Achieving efficient and robust visual control towards real-world scenarios remains a long-standing challenge
in deep reinforcement learning (RL). The critical problems can be summarized as (i) the partial observability
of environments, (ii) learning effective representations of visual observations, and (iii) sparse or even missing
reward feedback (Mnih et al., 2015; Lillicrap et al., 2016; Kalashnikov et al., 2018; Badia et al., 2020).
To address the problem of partial observability, a simple approach is to construct the state by stacking
consecutive frames (Mnih et al., 2015) or use the recurrent neural network to capture the environment
dynamics (Hausknecht & Stone, 2015). However, most existing RL algorithms only consider observations
from a single view of state space, which are limited by insufficient information. Multiple images captured
from different viewpoints or times can provide more reference knowledge, making the task much easier. For
instance, an autonomous vehicle will use multiple sensors to sense road conditions and take safe actions.
Therefore, Li et al. (2019) propose the concept of multi-view RL and extend the partially observable Markov
decision process (POMDP) to support multiple observation models. As a result, the agent can obtain more
environment information and learn robust policies with higher generalization ability across domains.

However, it is always challenging to learn comprehensive low-dimensional representations from high-
dimensional observations such as raw pixels. To address the problem, Hafner et al. (2019b) use an auto-
encoder to learn the environment dynamics from raw pixels and select actions via fast online planning in
the latent space. Yarats et al. (2021b) insert a deterministic auto-encoder to model-free RL algorithms and
jointly trains the policy and latent state space, which is shown to be successful on tasks with noisy obser-
vations. (Stooke et al., 2021; Schwarzer et al., 2021) use contrastive learning to extract high-level features
from raw pixels and subsequently perform off-policy control using the extracted features. In contrast, Laskin
et al. (2020) propose to perform data augmentations (e.g., random translate and random amplitude scale)
for RL on inputs, enabling simple RL algorithms to outperform complex methods.

Despite their good performance, using visual representation learning produces significant computational
complexity, and imperfect representation learning may incur severe performance loss. Moreover, they cannot

1

Under review as submission to TMLR

Table 1: Comparing MEM with related work. RAD (Laskin et al., 2020), DrAC Raileanu et al. (2021),
CURL (Srinivas et al., 2020), RE3 (Seo et al., 2021), DRIBO (Fan & Li, 2022). Repr.: the method
involves special visual representation learning techniques. Multi-view: the method considers multi-view
observations. Exploration: the method can encourage exploration. Visual: the method works well in
visual RL.

Method Key insight Repr. Multi-view Exploration Visual
RAD Data augmentation 3 3 7 3
DrAC Data augmentation 7 3 7 3
CURL Contrastive learning 3 7 7 3
RE3 Intrinsic reward 7 7 3 3

DRIBO Multi-view
information bottleneck 3 3 7 3

MEM (ours) Multi-view encoding
and intrinsic reward 3 3 3 3

handle environments with sparse reward space, and the learned policies are sensitive to visual distractions
(Schmidhuber, 1991; Oudeyer & Kaplan, 2008; Oudeyer et al., 2007). To address the problem, recent
approaches propose to leverage intrinsic rewards to improve the sample-efficiency and generalization ability
of RL agents (Pathak et al., 2017; Burda et al., 2019b; Stadie et al., 2015). Burda et al. (2019a) demonstrate
that RL agents can achieve surprising performance in various visual tasks using only intrinsic rewards.
Seo et al. (2021) design a state entropy-based intrinsic reward module entitled RE3, which requires no
representation learning and can be combined with arbitrary RL algorithms. Simulation results demonstrate
that RE3 can significantly promote the sample-efficiency of RL agents both in continuous and discrete control
tasks. Meanwhile, (Raileanu & Rocktäschel, 2020) utilize the difference between two consecutive states as
the intrinsic reward, encouraging the agent to take actions that result in large state changes. This allows the
agent to realize aggressive exploration and effectively adapt to the procedurally-generated environments.

In this paper, we deeply consider the three critical challenges above and propose a novel framework entitled
Multi-view Exploration Maximization (MEM) that exploits multi-view environment information to facilitate
visual control tasks. Our contributions can be summarized as follows:

• Firstly, we introduce a novel multi-view representation learning method to learn high-quality features
of multi-view observations to achieve efficient visual control. In particular, our multi-view encoder
has simple architecture and is compatible with any number of viewpoints.

• Secondly, we combine multi-view representation learning and intrinsic reward-driven exploration,
which computes intrinsic rewards using the learned multi-view features and significantly improves
the sample-efficiency and generalization ability of RL algorithms. To the best of our knowledge,
this is the first work that introduces the concept of multi-view exploration maximization. We also
provide a detailed comparison between MEM and other representative methods in Table 1.

• Finally, we test MEM using multiple complex tasks of DeepMind Control Suite and Procgen games.
In particular, we use two cameras to generate observations in the tasks of DeepMind Control Suite
to simulate more realistic multi-view scenarios. Extensive simulation results demonstrate that MEM
can achieve superior performance and outperform the benchmarking methods with higher efficiency
and generalization ability.

2 Related Work

2.1 Multi-View Representation Learning

Multi-view representation learning aims to learn features of multi-view data to facilitate developing predic-
tion models (Zhao et al., 2017). Most existing multi-view representation learning methods can be categorized

2

Under review as submission to TMLR

into three paradigms, namely the joint representation, alignment representation, and shared and specific rep-
resentation, respectively (Jia et al., 2020). Joint representation integrates multiple views via concatenation
(Tao et al., 2017; Srivastava & Salakhutdinov, 2012; Nie et al., 2017) while alignment representation max-
imizes the agreement among representations learned from different views (Chen et al., 2012; Frome et al.,
2013; Jing et al., 2017). However, the former two methods suffer from the problem of information redundancy
and the loss of complementary information, respectively. Shared and specific representation overcomes their
shortcomings by disentangling the shared and specific information of different views and only aligning the
shared part. In this paper, we follow the third paradigm and employ a simple encoder to learn comprehensive
features from multi-view observations.

2.2 Representation Learning in RL

A common and effective workflow for visual control tasks is to learn representations from raw observations
before training RL agents using the learned representations. Lee et al. (2020) integrate stochastic model
learning and RL into a single method, achieving higher sample-efficiency and good asymptotic performance
of model-free RL. (Hafner et al., 2019a; 2020) leverage variational inference to learn world models and
solve long-horizon tasks by latent imagination. Mazoure et al. (2020) maximize concordance between rep-
resentations using an auxiliary contrastive objective to increase predictive properties of the representations
conditioned on actions. Schwarzer et al. (2021) train the agent to predict future states generated by a
target encoder and learn temporally predictive and consistent representations of observations from different
views, which significantly promotes the data efficiency of DRL agents. Yarats et al. (2020) demonstrate
that data augmentation effectively promotes performance in visual control tasks and proposes an optimality
invariant image transformation method for action-value function. In this paper, we consider multi-view
observation space and use multi-view representation learning to extract low-dimensional features from raw
observations. A closely related work to us is DRIBO proposed by (Fan & Li, 2022). DRIBO introduces
a multi-view information bottleneck to capture task-relevant information from multi-view observations and
produces robust policies to visual distractions that can be generalized to unseen environments Federici et al.
(2019). However, DRIBO overemphasizes the shared information of different viewpoints, resulting in the
leak of complementary information. Moreover, the experiments performed in (Fan & Li, 2022) only use a
single camera and apply background replacement to generate multi-view observations, which may provide
insufficient multi-view information.

2.3 Intrinsic Reward-Driven Exploration

Intrinsic rewards have been widely combined with standard RL algorithms to improve the exploration and
generalization ability of RL agents (Ostrovski et al., 2017; Badia et al., 2020; Yu et al., 2020; Yuan et al.,
2022a). Strehl & Littman (2008) proposes to use state visitation counts as exploration bonuses in tabular
settings to encourage the agent to revisit infrequently-seen states. Bellemare et al. (2016) further extend
such methods to high-dimensional state space. Kim et al. (2019) define the exploration bonus by applying a
Jensen-Shannon divergence-based lower bound on mutual information across subsequent frames. Badia et al.
(2020) combine episodic state novelty and life-long state novelty as exploration bonuses, which prevents the
intrinsic rewards from decreasing with visits and provides sustainable exploration incentives. Yuan et al.
(2022b) propose to maximize the Rényi entropy of state visitation distribution and transform it into particle-
based intrinsic rewards. In this paper, we compute intrinsic rewards using multi-view features to realize
multi-view exploration maximization, which enables the agent to explore the environment from multiple
perspectives and obtain more comprehensive information.

3 Preliminaries

3.1 Multi-View Reinforcement Learning

In this paper, we study the visual control problem considering a multi-view MDP (Li et al., 2019), which
can be defined as a tuple M = 〈S,A, P,O1, P

1
obs, . . . ,ON , PNobs, ř, γ〉. Here, S is the state space, A is the

action space, P : S × A × S → [0, 1]) is the state-transition model, Oi is the observation space of the i-th

3

Under review as submission to TMLR

Multi-view
state

Agent

Multi-view
Encoder

Action

Multi-view
intrinsic rewards

Specific 𝒚1

Shared 𝒙1

Shared 𝒙𝑁

Specific 𝒚𝑁

⋮

⋮

Avg.

Concat.

𝑦1

𝑦𝑁

෤𝑦1

෤𝑦𝑁

⋮ ⋮

ҧ𝑥 ҧ𝑥𝑘

Dist.

Dist.

Dist.

View 1

View 𝑁

⋮

Multi-view
Encoder 𝐹𝜽

View 1

View 𝑁

⋮

Reinforcement
Learning

Shared
Information 𝒙1:𝑁

Specific
Information 𝒚1:𝑁

Avg.

Concat. 𝒚1

𝒚𝑁

෥𝒚1

෥𝒚𝑁

⋮ ⋮

ഥ𝒙 ഥ𝒙𝑘

Dist.

Dist.

Dist.

𝒚2 ෥𝒚2
Dist.

Multi-view
Intrinsic

Reward Module

Figure 1: An overview of the MEM. Here, avg. represents the average operation, concat. represents the
concatenate operation, and dist. represents the Euclidean distance.

viewpoint, P iobs : S × Oi → [0, 1] is the observation model of the i-th viewpoint, ř : S × A → R is the
reward function, and γ ∈ [0, 1) is a discount factor. In particular, we use ř to distinguish the extrinsic
reward from the intrinsic reward r̂ in the sequel. At each time step t, we construct the state st by encoding
consecutive multi-view observations {oit,oit−1,o

i
t−2, . . . }Ni=1, where oit ∼ P iobs(·|st). Denoting by π(at|st) the

policy of the agent, the objective of RL is to learn a policy that maximizes the expected discounted return
Rt = Eπ

[∑∞
k=0 γ

křt+k+1
]
(Sutton & Barto, 2018).

3.2 Fast Entropy Estimation

In the following sections, we compute the multi-view intrinsic rewards based on Shannon entropy of state
visitation distribution (Shannon, 1948). Since it is non-trivial to evaluate the entropy when handling complex
environments with high-dimensional observations, a convenient estimator is introduced to realize efficient
entropy estimation. Let X1, . . . , Xn denote the independent and identically distributed samples drawn from
a distribution with density p, and the support of p is a set X ⊆ Rq. The entropy of p can be estimated using
a particle-based estimator (Leonenko et al., 2008):

Ĥk
n(p) = 1

n

n∑
i=1

log n · ‖Xi − X̃i‖q2 · π̂
q
2

k · Γ(q2 + 1) + log k −Ψ(k) ∝ 1
n

n∑
i=1

log ‖Xi − X̃i‖2, (1)

where X̃i is the k-nearest neighbor of Xi among {Xi}ni=1, Γ(·) is the Gamma function, π̂ ≈ 3.14159, and
Ψ(·) is the Digamma function.

4 MEM

In this section, we propose the MEM framework that performs visual control based on multi-view observa-
tions. As illustrated in Figure 1, MEM is composed of two key components, namely the multi-view encoder
and the multi-view intrinsic reward module, respectively. At each time step, the multi-view encoder trans-
forms the multi-view observations into shared and specific information, which is used to make an action.
Meanwhile, the shared and specific information is sent to the multi-view intrinsic reward module to compute
intrinsic rewards. Finally, the policy will be updated using the augmented rewards.

4.1 Multi-View Encoding

Figure 2 illustrates the architecture of our multi-view encoder, which has an encoding network and dis-
criminator. Let Fθ denote the encoding network with parameters θ that has two branches to extract the
inter-view shared and intra-view specific information of the observation, respectively. For the observation oi
from the i-th viewpoint, we have

(xi,yi) = Fθ(oi), (2)

4

Under review as submission to TMLR

View 1

View 𝑁

⋮

Specific 𝒚1

Shared 𝒙1

Shared 𝒙𝑁

Specific 𝒚𝑁

Shared
Weights

⋮

Discriminator

Encoding
Network

Adversarial
Losses

Contrastive
Losses

Sparse and
Cosine

Constraint

Figure 2: The architecture of the multi-view encoder.

where xi is the inter-view shared information and yi is the intra-view specific information. To separate the
shared and specific information, we propose the following mixed constraints:

Ldiff = max
{

< xi,yi >

‖xi‖2 · ‖yi‖2
, 0
}

+ ‖xi‖1 + ‖yi‖1. (3)

The first term of Eq. (3) is the cosine similarity of xi and yi to disentangle the two kinds of information. In
particular, Liu et al. (2019) found that sparse representations can contribute to control tasks by providing
locality and avoiding catastrophic interference. Therefore, the `1-norm of xi and yi are leveraged to increase
the sparsity of the learned features to improve the generalization ability.

To guarantee the discriminability of the specific information from multiple viewpoints, we follow the insight
of the Siamese network that maximizes the distance between samples from different classes (Chopra et al.,
2005). For a mini-batch, we define the contrastive loss as follows (Jia et al., 2020):

Lcon = 1
2M

M∑
j=1

[
‖yj − µsame‖22 + max2(Margin− ‖yj − µdiff‖2, 0)

]
, (4)

where M is the batch size, µsame is the average of samples in this mini-batch from the same viewpoint with
yi, and µdiff is the average of samples in this mini-batch from the different viewpoint with yi.

To extract the shared information, we follow (Jia et al., 2020) who design the similarity constraint using a
generative adversarial pattern Goodfellow et al. (2014). More specifically, the encoding network is regarded as
the generator, and the shared information is considered as the generated results. Meanwhile, a classification
network is leveraged to serve as the discriminator. Therefore, the discriminator aims to judge the viewpoint
of each shared information while the generator aims to fool the generator. Denoting by Dφ the discriminator
represented by a neural network with parameters φ, the loss function is

Ladv = min
θ

max
φ

M∑
j=1

N∑
i=1

lij · logP (xij), (5)

where P (xij) = Dψ(xij) is the probability that xij is generated from the i-th viewpoint. Then the generator
and discriminator will be trained until the discriminator cannot distinguish the differences between shared
information of different viewpoints. Finally, the total loss of the multi-view encoder is

Ltotal = λ1 · Ldiff + λ2 · Lcon + λ3 · Ladv, (6)

5

Under review as submission to TMLR

where λ1, λ2, λ3 are the weighting coefficients.

Equipped with the shared and specific information, we define the state of timestep t as

st = Concatenate(y1
t , . . . ,y

N
t , x̄t), (7)

where x̄t = 1
N

∑N
i=1 x

i
t is the average of the shared inforamtion of N viewpoints. Then the learned s is sent

to the agent to make actions.

4.2 Multi-View Intrinsic Reward

Next, we transform the learned features into intrinsic rewards to encourage exploration and promote sample-
efficiency of the RL agent. Inspired by the work of Seo et al. (2021) and Yuan et al. (2022b), we propose to
maximize the following entropy:

H(d) = −Eoi∼d(oi)[log d(oi)], (8)

where d(oi) is the observation visitation distribution of the i-th viewpoint induced by policy π. Given
multi-view observations of T steps {o1

0,o
1
1, . . . ,o

1
T ,o

N
0 ,o

N
1 , . . . ,o

N
T }, using Eq. (1), we define the multi-view

intrinsic reward of the time step t as

r̂t = 1
N + 1

[(
N∑
i=1

log(‖yit − ỹit‖2 + 1)
)

+ log(‖x̄t − x̄kt ‖2 + 1)
]
, (9)

where ỹit is the k-nearest neighbor of yit among {yit}Tt=0 and x̄kt is the k-nearest neighbor of x̄t.

We highlight the advantages of the proposed intrinsic reward. Firstly, r̂t measures the distance between
observations in the representation space. It encourages the agent to visit as many distinct parts of the
environment as possible. Similar to RIDE of (Raileanu & Rocktäschel, 2020), r̂t can also lead the agent to take
actions that result in large state changes, which can facilitate solving procedurally-generated environments.
Moreover, r̂t evaluates the visitation entropy of multiple observation spaces and reflects the global exploration
extent more comprehensively. Finally, the generation of r̂t requires no memory model or database, which
will not vanish as the training goes on and can provide sustainable exploration incentives.

4.3 Training Objective

Equipped with the intrinsic reward, the total reward of each transition (st,at, st+1) is computed as

rtotal
t = ř(st,at) + βt · r̂(st), (10)

where βt = β0(1−κ)t ≥ 0 is a weighting coefficient that controls the exploration preference, and κ is a decay
rate. In particular, this intrinsic reward can be leveraged to perform unsupervised pre-training without
extrinsic rewards ř. Then the pre-trained policy can be employed in the downstream task adaptation with
extrinsic rewards. Letting πϕ denote the policy represented by a neural network with parameters ϕ, the
training objective of MEM is to maximize the expected discounted return Eπϕ

[∑T
k=0 γ

krtotal
t+k+1

]
. Finally,

the detailed workflows of MEM with off-policy RL and on-policy RL are summarized in Algorithm 1 and
Appendix C, respectively.

5 Experiments

In this section, we designed the experiments to answer the following questions:

• Does the learned multi-view information contribute to achieving higher performance in visual control
tasks? (See Figures 3 & 6 & 7)

• Can MEM outperform other schemes that involve multi-view representation learning and other
representation learning techniques, such as contrastive learning? (See Figure 4 & 7)

6

Under review as submission to TMLR

Algorithm 1: MEM with Off-policy RL
Initialize encoding network Fθ and discriminator Dφ;
Initialize policy network πϕ, maximum environment steps tmax, coefficient β0, decay rate κ, and replay
buffer B ← ∅;

for step t = 1, . . . , tmax do
Get multi-view observation {o1

t , . . . ,o
N
t };

for i = 1, . . . , N do
xit,y

i
t = Fθ(oit);

end
Get state st = Concatenate(y1

t , . . . ,y
N
t , x̄t);

Sample an action at ∼ πϕ(·|st);
B ← B ∪ {o1:N

t ,at, řt,o
1:N
t+1};

Sample a random mini-batch {o1:N
j ,aj , řj ,o

1:N
j+1}Bj=1 ∼ B;

Get representations {x1:N
j ,y1:N

j }Bj=1 ;
for j = 1, . . . , B do

Compute the intrinsic reward r̂j using Eq. (9);
Update βt = β0(1− κ)t;
Let rtotal

j = řj + βt · r̂j ;
end
Update the policy network with {o1:N

j ,aj , r
total
j ,o1:N

j+1}Bj=1 using any off-policy RL algorithms;
Update θ,φ to minimize Ltotal in Eq. (6).

end

• How does MEM compare to other intrinsic reward-driven methods? (See Figures 4 & 6 & 7 &
Table 3)

• Can MEM achieve remarkable performance in robotic manipulation tasks with sparse-reward space?
(See Figure 6)

• How about the generalization ability of MEM in procedurally-generated environments? (See Table 2
& 3)

5.1 DeepMind Control Suite

5.1.1 Setup

We first tested MEM on six complex visual control tasks of DeepMind Control Suite, namely the Cheetah
Run, Finger Turn Hard, Hopper Hop, Quadruped Run, Reacher Hard, and Walker Run, respectively (Tassa
et al., 2018). To evaluate the sample-efficiency of MEM, two representative model-free RL algorithms Soft
Actor-Critic (SAC) (Haarnoja et al., 2018) and Data Regularized Q-v2 (DrQ-v2) (Yarats et al., 2021a),
were selected to serve as the baselines. For comparison with schemes that involve multi-view representation
learning, we selected DRIBO of (Fan & Li, 2022) as the benchmarking method, which introduces a multi-view
information bottleneck to maximize the mutual information between sequences of observations and sequences
of representations. For comparison with schemes that involve contrastive representation learning, we selected
CURL of (Srinivas et al., 2020), which maximizes the similarity between different augmentations of the same
observation. For comparison with other exploration methods, we selected RE3 of (Seo et al., 2021) that
maximizes the Shannon entropy of state visitation distribution using a random encoder and considered the
combination of RE3 and DrQ-v2. The following results were obtained by setting k = 3, β0 = 0.05 and
κ = 0.000025, and more details are provided in Appendix A.

7

Under review as submission to TMLR

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500

600

700

Ep
iso

de
 R

et
ur

n
Cheetah Run

DrQ-v2
DrQ-v2+MEM
SAC
SAC+MEM

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Finger Turn Hard
DrQ-v2
DrQ-v2+MEM
SAC
SAC+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

Hopper Hop
DrQ-v2
DrQ-v2+MEM
SAC
SAC+MEM

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400

450

Ep
iso

de
 R

et
ur

n

Quadruped Run
DrQ-v2
DrQ-v2+MEM
SAC
SAC+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500
Ep

iso
de

 R
et

ur
n

Reacher Hard
DrQ-v2
DrQ-v2+MEM
SAC
SAC+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Walker Run
DrQ-v2
DrQ-v2+MEM
SAC
SAC+MEM

Figure 3: Performance on six complex control tasks from DeepMind Control Suite over 10 random seeds.
MEM significantly promotes the sample efficiency of DrQ-v2. The solid line and shaded regions represent
the mean and standard deviation, respectively.

5.1.2 Results

Figure 3 illustrates the comparison of the average episode return of six complex control tasks. Note that here
SAC and DrQ-v2 only used single-view observations to perform RL. It is obvious that MEM significantly
improved the sample-efficiency of DrQ-v2 on various tasks. In Finger Turn Hard task, DrQ-V2+MEM
achieved an average episode return of 350.0, producing a big performance gain when compared to the vanilla
DrQ-v2 agent. The multi-view observations allow the agent to observe the robot posture from multiple
viewpoints, providing more straightforward feedback on the taken actions. As a result, the agent can adapt
to the environment faster and achieve a higher convergence rate, especially for the Hopper Hop task and
Reacher Hard task. In contrast, the SAC agent achieved low score in most tasks due to its performance
limitation, and MEM only slightly promoted its sample-efficiency. Figure 3 proves that the multi-view
observations indeed provide more comprehensive information about the environment, which helps the agent
to fully comprehend the environment and make better decisions.

Next, we compared MEM with other methods that consider representation learning and intrinsic reward-
driven exploration. As shown in Figure 4, DrQ-v2+MEM achieved the highest policy performance on all
six tasks. Meanwhile, DrQ-v2+RE3 also performed impressive performance on various tasks, which also
significantly promoted the sample-efficiency of the DrQ-v2 agent. In particular, DrQ-v2+MEM achieved an
average episode return of 220.0 in Hopper Hop task, while DRIBO and CURL failed to solve the task. We
also observed that CURL and DRIBO had lower convergence rates on various tasks, which may be caused
by complex representation learning. Even if the design of representation learning is more sophisticated, the
information extracted from single-view observations is still limited. In contrast, multi-view observations nat-
urally contain more abundant information, and appropriate representation learning techniques will produce
more helpful guidance for the agent.

8

Under review as submission to TMLR

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500

600

700

Ep
iso

de
 R

et
ur

n
Cheetah Run

DrQ-v2+MEM
DrQ-v2+RE3
DRIBO
CURL

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Finger Turn Hard
DrQ-v2+MEM
DrQ-v2+RE3
DRIBO
CURL

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

Hopper Hop
DrQ-v2+MEM
DrQ-v2+RE3
DRIBO
CURL

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Quadruped Run
DrQ-v2+MEM
DrQ-v2+RE3
DRIBO
CURL

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500
Ep

iso
de

 R
et

ur
n

Reacher Hard
DrQ-v2+MEM
DrQ-v2+RE3
DRIBO
CURL

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Walker Run
DrQ-v2+MEM
DrQ-v2+RE3
DRIBO
CURL

Figure 4: Performance on six complex control tasks from DeepMind Control Suite over 10 random seeds.
MEM outperforms the benchmarking schemes in all the tasks. The solid line and shaded regions represent
the mean and standard deviation, respectively.

Figure 5: Rendered image observations for three robotic manipulation tasks: Place Brick, Reach Duplo, and
Reach Site (from top to bottom).

To further investigate the increments of multi-view observations, we tested MEM on three robotic manip-
ulation tasks with sparse rewards, which can evaluate its adaptability to real-world scenarios. Figure 5
illustrates the rendered image examples of these tasks. Figure 6 illustrates the performance comparison
between MEM, RE3, and vanilla DrQ-v2 agents. MEM achieved the highest performance in all three tasks,
especially in the Reach Duplo task. On the one hand, MEM provides high-quality intrinsic rewards to the
agent to overcome the sparse reward space and promote sample-efficiency. On the other hand, multi-view
observations provide more spatial and location information, enabling the agent to achieve more accurate
positioning and movement. Therefore, MEM can effectively solve the manipulation tasks with fewer training

9

Under review as submission to TMLR

steps. Meanwhile, the combination of DrQ-v2 and RE3 also obtained remarkable performance on these
tasks, which demonstrates the high effectiveness and efficiency of the intrinsic reward-driven exploration.

0 1 2 3 4 5
Environment Steps (x105)

100

150

200

250

300

350

400

450

Ep
iso

de
 R

et
ur

n

Place Brick
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

Reach Duplo
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

100

150

200

250

300

350

400

450

Ep
iso

de
 R

et
ur

n

Reach Site
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM

Figure 6: Performance on three manipulation tasks with sparse rewards over 10 random seeds. MEM can
still achieve remarkable performance by providing high-quality intrinsic rewards. The solid line and shaded
regions represent the mean and standard deviation, respectively.

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500

600

700

Ep
iso

de
 R

et
ur

n

Cheetah Run
DrQ-v2
DrQ-v2+MV
DrQ-v2+MEM (No IR)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Finger Turn Hard
DrQ-v2
DrQ-v2+MV
DrQ-v2+MEM (No IR)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

Hopper Hop
DrQ-v2
DrQ-v2+MV
DrQ-v2+MEM (No IR)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Quadruped Run
DrQ-v2
DrQ-v2+MV
DrQ-v2+MEM (No IR)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

Reacher Hard
DrQ-v2
DrQ-v2+MV
DrQ-v2+MEM (No IR)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Walker Run
DrQ-v2
DrQ-v2+MV
DrQ-v2+MEM (No IR)
DrQ-v2+MEM

Figure 7: Performance on six complex control tasks from DeepMind Control Suite over 10 random seeds. The
intrinsic reward module is shut down in DrQ-v2+MEM (No IR). The vanilla DrQ-v2 agent cannot handle
multi-view observations. The solid line and shaded regions represent the mean and standard deviation,
respectively.

5.2 Ablations

Since MEM benefits from two components: multi-view representation learning and intrinsic reward-driven
exploration, we performed a number of ablations to emphasize the importance of each component used by

10

Under review as submission to TMLR

our method. First, DrQ-v2+MV was an ablation that learns directly from multi-view observations without
using other representation learning techniques. This ablation helps disentangle the effect of using multi-
view observations from the impact of using multi-view representation learning. Figure 7 illustrates the
performance comparison between DrQ-v2, DrQ-v2+MV, DrQ-v2+MEM (No IR), and DrQ-v2+MEM on
six complex control tasks, where the intrinsic reward module is shut down in DrQ-v2+MEM (No IR). The
introduction of multi-view observations significantly improved the performance in Finger Turn Hard and
Reacher Hard. However, DrQ-v2+MV failed to learn in Cheetah Run and Hopper Hop. In contrast, DrQ-
v2+MEM (No IR) outperformed DrQ-v2+MV in all the tasks, which indicates that our multi-view encoding
network can extract low-dimensional features from the observations effectively.

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500

600

700

Ep
iso

de
 R

et
ur

n

Cheetah Run
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM (No Repr.)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400
Ep

iso
de

 R
et

ur
n

Finger Turn Hard
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM (No Repr.)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

Hopper Hop
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM (No Repr.)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Quadruped Run
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM (No Repr.)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

Reacher Hard
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM (No Repr.)
DrQ-v2+MEM

0 1 2 3 4 5
Environment Steps (x105)

0

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

Walker Run
DrQ-v2
DrQ-v2+RE3
DrQ-v2+MEM (No Repr.)
DrQ-v2+MEM

Figure 8: Performance on six complex control tasks from DeepMind Control Suite over 10 random seeds.
The multi-view representation learning module is shut down in DrQ-v2+MEM (No Repr.). The intrinsic
rewards derived by multi-view features produce significant sample-efficiency gain as compared to RE3. The
solid line and shaded regions represent the mean and standard deviation, respectively.

The second ablation is DrQ-v2+MEM (No Repr.), in which the representation learning module is shut
down. This ablation helps disentangle the effect of using multi-view representation learning from the impact
of using multi-view intrinsic rewards. Moreover, it compares the increments produced by multi-view and
single-view intrinsic rewards (RE3). Figure 7 illustrates the performance comparison between DrQ-v2, DrQ-
v2+RE3, DrQ-v2+MEM (No Repr.), and DrQ-v2+MEM on six complex control tasks. The multi-view
intrinsic rewards achieved higher performance than RE3 in five tasks, especially in Finger Turn Hard task.
Considering the first ablation experiments, it is natural to find that the multi-view intrinsic rewards produce
increments of MEM in most tasks, and multi-view features make the reward generation more accurate.

These results are consistent with our claim that (i) multi-view observations can effectively promote the agent
performance under the supervision of multi-view representation learning, and (ii) evaluating intrinsic rewards
with multiple observation spaces can enable the agent to explore the environment fully, and promote the
sample efficiency significantly.

11

Under review as submission to TMLR

5.3 Procgen Games

Table 2: Performance on train levels after training 25M environment steps. The mean and standard deviation
are computed over 10 random seeds.

Game PPO UCB-DrAC PPO+RE3 PPO+RIDE PPO+MEM
BigFish 9.2±2.7 12.8±1.8 8.5±1.3 9.6±2.2 19.1±1.2
BossFight 8.0±0.4 8.1±0.4 9.6±0.4 9.4±0.2 9.7±0.4
CaveFlyer 6.7±0.6 5.8±0.9 4.9±0.6 5.7±0.3 6.0±0.3
Chaser 4.1±0.3 7.0±0.6 4.1±1.1 5.6±0.0 5.4±0.4
Climber 6.9±1.0 8.6±0.6 9.6±0.4 9.3±0.2 9.8±0.4
CoinRun 9.4±0.3 9.4±0.2 10.0±0.7 10.0±0.5 10.0±0.4
Dodgeball 5.3±2.3 7.3±0.8 3.2±0.2 4.4±0.3 5.4±0.4
FruitBot 28.8±0.6 29.3±0.5 28.9±1.5 29.5±1.8 30.3±0.3
Heist 7.1±0.5 6.2±0.6 4.7±0.3 5.2±0.3 5.7±0.4
Jumper 8.3±0.2 8.2±0.1 7.6±0.3 8.4±0.7 8.9±0.0
Leaper 5.5±0.4 5.0±0.9 4.2±0.3 4.3±0.3 4.2±0.4
Maze 9.1±0.2 8.5±0.3 5.9±0.3 5.9±0.7 6.6±0.4
Miner 11.7±0.5 12.0±0.3 10.6±0.1 12.2±1.7 12.4±0.2
Ninja 7.3±0.3 8.0±0.4 9.3±0.7 9.6±0.9 9.5±0.5
Plunder 6.1±0.8 10.2±1.76 10.3±0.8 11.2±0.6 13.2±1.3
StarPilot 29.0±1.1 33.1±1.3 33.0±1.3 33.5±2.1 37.1±0.6

Table 3: Performance on test levels after training 25M environment steps. The mean and standard deviation
are computed over 10 random seeds.

Game PPO UCB-DrAC PPO+RE3 PPO+RIDE PPO+MEM
BigFish 3.7±1.3 9.2±2.0 6.5±1.3 8.5±3.5 18.1±2.6
BossFight 7.4±0.4 7.8±0.6 9.2±0.2 8.8±0.8 9.9±0.4
CaveFlyer 5.1±0.4 5.0±0.8 4.7±0.6 4.7±0.7 4.8±0.4
Chaser 3.5±0.9 6.3±0.6 6.2±0.7 5.2±0.0 6.2±0.4
Climber 5.6±0.5 6.3±0.6 7.5±0.3 6.5±0.3 7.5±0.1
CoinRun 8.6±0.2 8.6±0.2 9.2±0.5 9.3±0.5 9.5±0.3
Dodgeball 1.6±0.1 4.2±0.9 2.7±0.1 2.7±0.1 3.4±1.0
FruitBot 26.2±1.2 27.6±0.4 27.9±1.5 28.6±0.6 30.0±0.4
Heist 2.5±0.6 3.5±0.4 3.4±0.0 3.4±0.3 3.7±0.2
Jumper 5.9±0.2 6.2±0.3 6.0±0.5 6.3±0.4 6.7±0.2
Leaper 4.9±2.2 4.8±0.9 3.6±0.3 3.6±0.7 4.2±0.7
Maze 5.5±0.3 6.3±0.1 5.7±1.0 5.4±0.3 5.9±0.5
Miner 8.4±0.7 9.2±0.6 5.8±1.3 6.7±0.0 9.6±0.5
Ninja 5.9±0.2 6.6±0.4 5.9±0.6 6.1±1.5 5.5±0.3
Plunder 5.2±0.6 8.3±1.1 11.2±0.1 12.1±0.3 12.5±0.9
StarPilot 24.9±1.0 30.0±1.3 32.7±2.0 34.1±2.4 32.5±2.7

5.3.1 Setup

Next, we tested MEM on nine Procgen games with graphic observations and discrete action space (Cobbe
et al., 2020). Since Procgen games have procedurally-generated environments, it provides a direct measure
to evaluate the generalization ability of an RL agent. We selected Proximal Policy Optimization (PPO)
as the baseline (Schulman et al., 2017), and three approaches were selected to serve as the benchmarking
methods, namely RIDE, RE3, and UCB-DrAC, respectively (Raileanu et al., 2021; Seo et al., 2021; Raileanu
& Rocktäschel, 2020). RIDE uses the difference between consecutive states as intrinsic rewards, motivating

12

Under review as submission to TMLR

the agent to take actions that result in significant state changes. In contrast, UCB-DrAC tackles visual
control tasks via data augmentation and uses upper confidence bound algorithm to automatically select an
effective transformation for a given task. The following results were obtained by setting k = 5, β0 = 0.1 and
κ = 0.00001, and more details are provided in Appendix B.

5.3.2 Results

Table 2 and Table 3 illustrates the performance comparison between AIRS and benchmarking schemes on
the full Procgen benchmark. For the train levels, the combination of PPO and MEM achieves a higher
average episode return as compared to the vanilla PPO agent in most games. Meanwhile, MEM outper-
formed the UCB-DrAC in eleven games by combining the advantages of multi-view observations and intrinsic
reward-driven exploration. UCB-DrAC beat the vanilla PPO agent in ten games and achieved the highest
performance in the Dodgeball game. In addition, RE3 and RIDE outperformed the vanilla PPO agent in
seven games and eleven games, and RIDE achieved the highest performance in the Ninja game.

Table 2 and Table 3 illustrate the performance comparison between AIRS and benchmarking schemes on the
full Procgen benchmark. For the train levels, the combination of PPO and MEM achieves a higher average
episode return than the vanilla PPO agent in most games. Meanwhile, MEM outperformed the UCB-DrAC
in eleven games by combining multi-view observations and intrinsic reward-driven exploration advantages.
UCB-DrAC beat the vanilla PPO agent in ten games and achieved the highest performance in the Dodgeball
game. In addition, RE3 and RIDE outperformed the vanilla PPO agent in seven games and eleven games,
and RIDE achieved the highest performance in the Ninja game.

The game complexity of test levels is much higher than the train levels, which provides a direct measure
to evaluate the generalization ability of the agents. PPO+MEM achieved the highest performance in nine
out of sixteen games, while UCB-DrAC won three. RE3 obtained the best score in the Climber game, while
RIDE won the StarPilot game. However, the vanilla PPO agent still achieved the highest performance in the
CaveFlyer game, while the other methods achieved relatively low performance. For a procedurally-generated
environment like Procgen games, the agent must quickly adapt to the dynamically changing scenes. To that
end, multi-view observations can provide more reference information, while intrinsic rewards allow the agent
to comprehend the environment thoroughly. Therefore, MEM can achieve higher generalization ability and
facilitate solving real-world problems.

6 Conclusion

In this paper, we investigated the visual control problem and proposed a novel method entitled MEM.
MEM is the first approach that combines multi-view representation learning and intrinsic reward-driven
exploration in RL. MEM first extracts high-quality features from multi-view observations before performing
RL on the learned features, which allows the agent to fully comprehend the environment. Moreover, MEM
transforms the multi-view features into intrinsic rewards to improve the sample-efficiency and generalization
ability of the RL agent, facilitating solving real-world problems with sparse-reward and complex observation
space. Finally, we evaluated MEM on various tasks from DeepMind Control Suite and Procgen games.
Extensive simulation results demonstrated that MEM could outperform the benchmarking schemes with
simple architecture and higher efficiency. This work is expected to stimulate more subsequent research on
multi-view reinforcement learning and intrinsic reward-driven exploration.

13

Under review as submission to TMLR

References
Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven Kapturowski,
Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles Blundell. Never give
up: Learning directed exploration strategies. In Proceedings of the International Conference on Learning
Representations, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Uni-
fying count-based exploration and intrinsic motivation. Proceedings of Advances in Neural Information
Processing Systems, 29:1471–1479, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros. Large-scale
study of curiosity-driven learning. Proceedings of the International Conference on Learning Representa-
tions, pp. 1–17, 2019a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
Proceedings of the 7th International Conference on Learning Representations, pp. 1–17, 2019b.

Xiaohong Chen, Songcan Chen, Hui Xue, and Xudong Zhou. A unified dimensionality reduction framework
for semi-paired and semi-supervised multi-view data. Pattern Recognition, 45(5):2005–2018, 2012.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with applica-
tion to face verification. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pp. 539–546. IEEE, 2005.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark
reinforcement learning. In International conference on machine learning, pp. 2048–2056. PMLR, 2020.

Jiameng Fan and Wenchao Li. Dribo: Robust deep reinforcement learning via multi-view information
bottleneck. In International Conference on Machine Learning, pp. 6074–6102. PMLR, 2022.

Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust represen-
tations via multi-view information bottleneck. In International Conference on Learning Representations,
2019.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato, and Tomas
Mikolov. Devise: A deep visual-semantic embedding model. Advances in neural information processing
systems, 26, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Proceedings of Advances in neural information
processing systems, 27:2672–2680, 2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In International conference on machine learning, pp.
2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. In International Conference on Learning Representations, 2020.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In 2015
aaai fall symposium series, 2015.

14

Under review as submission to TMLR

Xiaodong Jia, Xiao-Yuan Jing, Xiaoke Zhu, Songcan Chen, Bo Du, Ziyun Cai, Zhenyu He, and Dong
Yue. Semi-supervised multi-view deep discriminant representation learning. IEEE transactions on pattern
analysis and machine intelligence, 43(7):2496–2509, 2020.

Xiao-Yuan Jing, Fei Wu, Xiwei Dong, Shiguang Shan, and Songcan Chen. Semi-supervised multi-view
correlation feature learning with application to webpage classification. In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement learning for
vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–673. PMLR, 2018.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi: Exploration
with mutual information. In International Conference on Machine Learning, pp. 3360–3369. PMLR, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforcement
learning with augmented data. Advances in neural information processing systems, 33:19884–19895, 2020.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. Advances in Neural Information Processing Systems,
33:741–752, 2020.

Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of rényi information estimators for multidimen-
sional densities. The Annals of Statistics, 36(5):2153–2182, 2008.

Minne Li, Lisheng Wu, Jun Wang, and Haitham Bou Ammar. Multi-view reinforcement learning. Advances
in neural information processing systems, 32, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR (Poster), 2016.
URL http://arxiv.org/abs/1509.02971.

Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse representations
for control in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4384–4391, 2019.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon Hjelm. Deep
reinforcement and infomax learning. Advances in Neural Information Processing Systems, 33:3686–3698,
2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Feiping Nie, Guohao Cai, Jing Li, and Xuelong Li. Auto-weighted multi-view learning for image clustering
and semi-supervised classification. IEEE Transactions on Image Processing, 27(3):1501–1511, 2017.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with neural
density models. In Proceedings of the International Conference on Machine Learning, pp. 2721–2730, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. How can we define intrinsic motivation? In the 8th International
Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University
Cognitive Studies, Lund: LUCS, Brighton, 2008.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for autonomous
mental development. IEEE transactions on evolutionary computation, 11(2):265–286, 2007.

15

http://arxiv.org/abs/1509.02971

Under review as submission to TMLR

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 16–17, 2017.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. In Proceedings of the International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rkg-TJBFPB.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic data
augmentation for generalization in reinforcement learning. Advances in Neural Information Processing
Systems, 34:5402–5415, 2021.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural con-
trollers. In Proc. of the international conference on simulation of adaptive behavior: From animals to
animats, pp. 222–227, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman. Data-
efficient reinforcement learning with self-predictive representations. In International Conference on Learn-
ing Representations, 2021. URL https://openreview.net/forum?id=uCQfPZwRaUu.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy maximiza-
tion with random encoders for efficient exploration. In Proceedings of the 38th International Conference
on Machine Learning, pp. 9443–9454, 2021.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical journal, 27
(3):379–423, 1948.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. 2020.

Nitish Srivastava and Russ R Salakhutdinov. Multimodal learning with deep boltzmann machines. Advances
in neural information processing systems, 25, 2012.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning from
reinforcement learning. In International Conference on Machine Learning, pp. 9870–9879. PMLR, 2021.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hong Tao, Chenping Hou, Feiping Nie, Jubo Zhu, and Dongyun Yi. Scalable multi-view semi-supervised
classification via adaptive regression. IEEE Transactions on Image Processing, 26(9):4283–4296, 2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control: Im-
proved data-augmented reinforcement learning. In International Conference on Learning Representations,
2021a.

16

https://openreview.net/forum?id=rkg-TJBFPB
https://openreview.net/forum?id=uCQfPZwRaUu

Under review as submission to TMLR

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving sample
efficiency in model-free reinforcement learning from images. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 10674–10681, 2021b.

Xingrui Yu, Yueming Lyu, and Ivor Tsang. Intrinsic reward driven imitation learning via generative model.
In Proceedings of the International Conference on Machine Learning, pp. 10925–10935, 2020.

Mingqi Yuan, Bo Li, Xin Jin, and Wenjun Zeng. Rewarding episodic visitation discrepancy for exploration
in reinforcement learning. In Deep RL Workshop NeurIPS 2022, 2022a.

Mingqi Yuan, Man-On Pun, and Dong Wang. Rényi state entropy maximization for exploration acceleration
in reinforcement learning. IEEE Transactions on Artificial Intelligence, 2022b.

Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview: Recent progress and new
challenges. Information Fusion, 38:43–54, 2017.

17

Under review as submission to TMLR

A Details on DeepMind Control Suite Experiments

A.1 Environment Setting

We evaluated the performance of MEM on several tasks from DeepMind Control Suite (Tassa et al., 2018).
To construct the multi-view observations, each environment was first rendered using two cameras to form
observations of two viewpoints. Then the background of the observation from one viewpoint was removed
to form the third viewpoint. Figure 9 illustrates the derived multi-view observations of six control tasks.
For each viewpoint, we stacked three consecutive frames as one observation, and these frames were further
cropped to the size of (84, 84) to reduce the computational resource request.

Reacher Hard Cheetah Run Finger Turn Hard Hopper Hop Walker Run Quadruped Run

Figure 9: Multi-view observations of DeepMind Control Suite environments.

A.2 Experiment Setting

MEM. In this work, we used the publicly released implementation of SAC (https://github.com/haarnoja/
sac) and DrQ-v2 (https://github.com/facebookresearch/drqv2) to update the policy with rtotal

t =
řt+βt · r̂t. For each task, we trained the agent for 500K environment steps and the maximum length of each
episode was set as 1000 to compare performance across tasks. Take DrQ-v2 for instance, we first randomly
sampled for 2000 steps for initial exploration. After that, we sampled 256 pieces of transitions in each step to
compute intrinsic rewards. Then the augmented transitions were used to update the policy using an Adam
optimizer with a learning rate of 0.0001 (Kingma & Ba, 2014). As for newly introduced hyperparameters, we
used k = 3 and performed hyperparameter search over the initial exploration degree β0 ∈ {0.01, 0.05, 0.1},
and the decay rate κ ∈ {0.00001, 0.000025, 0.00005}. We found that the best values were β0 = 0.05 and
κ = 0.000025, which were used to obtain the results reported here.

Figure 10 illustrates the employed architectures of the encoding network, policy network, and value net-
work. Four convolutional layers with a ReLU function were used to extract features from the multi-view
observations, and two separate linear layers were used to generate the shared features and specific features,
respectively. Here the latent dimension p of the shared and specific features was set as 64, and a layer nor-
malization operation was applied to the mini-batch. After that, a linear layer with a softmax function was
used to output the classification score and compute the adversarial losses. For the policy network and value
network, they accepted the concatenation of the shared and specific features as input and used three linear

18

https://github.com/haarnoja/sac
https://github.com/haarnoja/sac
https://github.com/facebookresearch/drqv2

Under review as submission to TMLR

3x3 Conv. 32, ReLU

3x3 Conv. 32, ReLU

3x3 Conv. 32, ReLU

3x3 Conv. 32, ReLU

Dense 𝑝, Norm. Dense 𝑝, Norm.

Specific featuresShared features

Dense 𝑁, softmax Scores

Dense 1024, ReLU

Specific featuresShared features

Dense 1024, ReLU

Dense 1024, ReLU
Dense 1024, ReLU

Dense |𝒜|

Dense 1

Gaussian distribution

Predicted valuesActions

Observations

Encoding
network

Policy network Value network

Figure 10: The networks architectures of the multi-view encoder, policy network, and value network.

layers to generate actions and predicted values, respectively. More detailed parameters of DrQ-v2+MEM
and SAC+MEM can be found in Table 5 and Table 4.

Table 4: Hyperparameters of DrQ-v2+MEM used for DeepMind Control Suite experiments.
Hyperparameter Value
Number of viewpoints 3
Gamma 0.99
Maximum episode length 1000
Observation downsampling (84, 84)
Stacked frames No
Action repeat 2
Environment steps 500000
Replay buffer size 500000
Exploration steps 2000
Seed frames 4000
Optimizer Adam
Batch size 256
Learning rate 0.0001
n-step returns 3
Critic Q-function soft-update rate 0.01
Latent dimension p 64
k 3
Margin 1.0
β0 0.05
κ 0.000025
Number of eval. episodes 10
Eval. every steps 10000

19

Under review as submission to TMLR

Table 5: Hyperparameters of SAC+MEM used for DeepMind Control Suite experiments.
Hyperparameter Value
Number of viewpoints 3
Gamma 0.99
Maximum episode length 1000
Observation downsampling (84, 84)
Stacked frames No
Action repeat 4
Environment steps 500000
Replay buffer size 100000
Exploration steps 1000
Optimizer Adam
Batch size 256
Learning rate of actor & critic 0.001
Initial temperature 0.1
Temperature learning rate 0.0001
Critic Q-function soft-update rate 0.01
Critic encoder soft-update rate 0.05
Critic target update frequency 2
Latent dimension p 64
Margin 1.0
k 3
β0 0.05
κ 0.000025
Number of eval. episodes 10
Eval. every steps 10000

DRIBO. (Fan & Li, 2022) For DRIBO, we followed the implementation in the publicly released repository
(https://github.com/BU-DEPEND-Lab/DRIBO). To get multi-view observations, the environment was ren-
dered using the 0-th camera, and a "random crop" operation was applied to the rendered images. During
training, the encoder was trained using a combination of DRIBO loss and Kullback–Leibler (KL) balancing,
and the weight of KL balancing was slowly increased from 0.0001 to 0.001. At the beginning of training,
the agent first randomly sampled for 1000 steps for initial exploration. The replay buffer size was set as
1000000, the batch size was set as 8× 32, and an Adam optimizer with a learning rate of 0.00005 was used
to update the policy network. In addition, the initial temperature was 0.1, and the target update weights of
Q-network and encoder were 0.01 and 0.05, respectively.

RE3. (Seo et al., 2021) For RE3, we followed the implementation in the publicly released repository (https:
//github.com/younggyoseo/RE3). Here, the intrinsic reward is computed as r̂t = ‖et − ẽt‖2, where et =
g(st) and g is a random and fixed encoder. The total reward of time step t is computed as rtotal = řt+βt · r̂t,
where βt = β0(1 − κ)t. As for hyperparameters related to exploration, we used k = 3, β0 = 0.05 and
performed hyperparameter search over κ ∈ {0.00001, 0.000025}. Finally, the policy was updated using
DrQv2.

CURL. (Srinivas et al., 2020) For CURL, we followed the implementation in the publicly released repository
(https://github.com/MishaLaskin/curl). To obtain observations, the environment was rendered using
the 0-th camera to generate 100×100 pixel images. To generate the query-key pair for contrastive learning,
we used the "random crop" of (Laskin et al., 2020) to perform the image augmentation, which crops the
original observations randomly to 84×84 pixels. During training, the replay buffer size was set as 100000,
the batch size was 512, the critic target update frequency was 2, and an Adam optimizer with a learning
rate of 0.0001 was utilized.

20

https://github.com/BU-DEPEND-Lab/DRIBO
https://github.com/younggyoseo/RE3
https://github.com/younggyoseo/RE3
https://github.com/MishaLaskin/curl

Under review as submission to TMLR

A.3 Computation Efficiency

We compare the computation efficiency between MEM and benchmarks considering training speed and
computational source request. All the experiments were performed using a AMD Ryzen9 7950X CPU and a
NVIDIA RTX4090 GPU.

Table 6: Computation efficiency comparison for training 500000 frames.
Method Frames Per Second Training Time GPU Memory
DrQ-v2 135.8 5016.9s 2518MiB
DrQ-v2+RE3 125.6 4063.4s 2610MiB
DrQ-v2+MEM 75.4 15051.2s 3314MiB

As shown in Figure 6, MEM does not significantly increase the consumption of GPU memory compared as
compared to the vanilla DrQ-v2 agent. But the training speed of MEM is lower than DrQ-v2+RE3 and
DrQ-v2. This is mainly because MEM needs to process image inputs at the same time, and multi-view
representation learning also produces more training time costs. However, the loss of computational efficiency
is worthwhile considering the significant improvement in sampl-efficiency and policy performance. We will
further optimize the architecture to improve efficiency while ensuring performance in future work.

21

Under review as submission to TMLR

B Details on Procgen Games Experiments

B.1 Environment Setting

We evaluated the generalization ability of MEM on various Procgen games (Cobbe et al., 2020). We followed
(Raileanu et al., 2021) to construct the multi-view observations using visual augmentations. In particular,
the augmentation types were selected based on the best-reported augmentation types for each environment in
Raileanu et al. (2021), which is shown in Table 7. Figure 11 illustrates the derived multi-view observations
of six Procgen games. For each viewpoint, the frames were cropped to the size of (64, 64) to reduce the
computational resource request.

StarPilot
Cutout

StarPilot
Cutout

Jumper
Random-Conv

FruitBot
Cutout

DodgeBall
Cutout

CoinRun
Random-Conv

Figure 11: Multi-view observations of DeepMind Control Suite environments.

Table 7: Augmentation type used for each game.
Game BigFish StarPilot FruitBot BossFight
Augmentation crop crop crop flip
Game Jumper Chaser Climber Dodgeball
Augmentation random-conv crop color-jitter crop
Game Ninja Plunder CaveFlyer CoinRun
Augmentation color-jitter crop rotate random-conv
Game Heist Leaper Maze Miner
Augmentation crop crop crop color-jitter

B.2 Experiment Setting

MEM. In this work, we used the publicly released implementation of PPO (https://github.com/
ikostrikov/pytorch-a2c-ppo-acktr-gail) to update the policy with rtotal

t = řt+βt · r̂t. For each task, we
trained the agent for 25 million environment steps with 64 parallel environments. In each episode, the agent
first sampled for 256 steps before computing the intrinsic rewards. After that, the augmented transitions
were used to update the policy using an Adam optimizer with a learning rate of 0.0005 (Kingma & Ba,
2014). For multi-view encoder training, we used similar network architectures and procedures in Appendix
A. As for newly introduced hyperparameters, we used k = 5 and performed hyperparameter search over the
initial exploration degree β0 ∈ {0.01, 0.05, 0.1}, and the decay rate κ ∈ {0.00001, 0.000025, 0.00005}. We
found that the best values were β0 = 0.1 and κ = 0.000025, which were used to obtain the results reported
here. More detailed parameters of PPO+MEM are provided in Table 8

22

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Under review as submission to TMLR

Table 8: Hyperparameters of PPO+MEM used for Procgen experiments.
Hyperparameter Value
Number of viewpoints 2
Observation downsampling (64, 64)
Gamma 0.99
Number of steps per rollout 265
Number of epochs per rollout 3
Number of parallel environments 64
Stacked frames No
Environment steps 25000000
Reward normalization Yes
Clip range 0.2
Entropy bonus 0.01
Optimizer Adam
Batch size 256
Learning rate 0.0005
Latent dim p 128
Margin 1.0
k 5
β0 0.1
κ 0.00001
Number of eval. episodes 10
Eval. every steps 10000

UCB-DrAC. (Raileanu et al., 2021) For UCB-DrAC, we followed the implementation in the publicly released
repository (https://github.com/rraileanu/auto-drac). For each update, we first sampled a mini-batch
from the replay buffer before selecting a data augmentation method from "crop", "random-conv", "grayscale",
"flip", "rotate", "cutout", "cutout-color", and "color-jitter". The exploration coefficient was set as 0.1 and the
length of sliding window was set as 10. After that, the augmented observations were sent to compute the
data-regularized loss with a weighting coefficient of 0.1. Finally, the policy was updated following the PPO
pattern.

RE3. (Seo et al., 2021) Here, the intrinsic reward is computed as r̂t = log(‖et− ẽt‖2 + 1), where et = g(st)
and g is a random and fixed encoder. The total reward of time step t is computed as rtotal = řt + βt · r̂t,
where βt = β0(1− κ)t. Moreover, the average distance of et and its k-nearest neighbors was used to replace
the single k nearest neighbor to provide a less noisy state entropy estimate. As for hyperparameters related
to exploration, we used k = 5, β0 = 0.1 and performed hyperparameter search over κ ∈ {0.00001, 0.000025}.
Finally, the policy was updated using PPO.

RIDE. (Raileanu & Rocktäschel, 2020) For RIDE, we followed the implementation in the publicly re-
leased repository (https://github.com/facebookresearch/impact-driven-exploration). In practice,
we trained a single forward dynamics model g to predict the encoded next-state φ(st+1) based on the
current encoded state and action (φ(st),at), whose loss function was ‖g(φ(st),at) − φ(st+1)‖2. Then the
intrinsic reward was computed as r̂(st) = ‖φ(st+1)−φ(st)‖2√

Nep(st+1)
, where Nep is the state visitation frequency during

the current episode. To estimate the state visitation frequency of st+1, we leveraged a pseudo-count method
that approximates the frequency using the distance between φ(st) and its k-nearest neighbor within episode
(Badia et al., 2020).

C MEM with On-policy RL

23

https://github.com/rraileanu/auto-drac
https://github.com/facebookresearch/impact-driven-exploration

Under review as submission to TMLR

Algorithm 2: MEM with On-policy RL
Initialize encoding network Fθ and discriminator Dφ;
Initialize policy network πϕ, maximum number of episodes E, coefficient β0, decay rate κ, and replay
buffer B;

for episode ` = 1, . . . , E do
t← 0;
repeat

Get multi-view observation {o1
t , . . . ,o

N
t };

for i = 1, . . . , N do
xit,y

i
t = Fθ(oit);

end
Get state st = Concatenate(y1

t , . . . ,y
N
t , x̄t);

Sample an action at ∼ π(·|st);
B ← B ∪ {o1:N

t ,at, řt,o
1:N
t+1};

t← t+ 1;
until terminal;
Update β` = β0(1− κ)`;
Get representations {x1:N

j ,y1:N
j }tj=1;

for j = 1, . . . , t do
Compute the intrinsic reward r̂j using Eq. (9);
Let rtotal

j = řj + β` · r̂j ;
end
Update the policy network with {o1:N

j ,aj , r
total
j ,o1:N

j+1}Bj=1 using any on-policy RL algorithms;
Update θ,φ to minimize Ltotal in Eq. (6).

end

24

	Introduction
	Related Work
	Multi-View Representation Learning
	Representation Learning in RL
	Intrinsic Reward-Driven Exploration

	Preliminaries
	Multi-View Reinforcement Learning
	Fast Entropy Estimation

	MEM
	Multi-View Encoding
	Multi-View Intrinsic Reward
	Training Objective

	Experiments
	DeepMind Control Suite
	Setup
	Results

	Ablations
	Procgen Games
	Setup
	Results

	Conclusion
	Details on DeepMind Control Suite Experiments
	Environment Setting
	Experiment Setting
	Computation Efficiency

	Details on Procgen Games Experiments
	Environment Setting
	Experiment Setting

	MEM with On-policy RL

