

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PAYING MORE ATTENTION TO IMAGES IN LARGE- SCALE DATASET COMPRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Dataset pruning (DP) and dataset distillation (DD) fundamentally differ in their outputs: DP selects original image subsets, while DD generates synthetic images. Recently, DD’s increasing reliance on original images suggests a convergence of the two directions. To investigate this convergence trend, we propose a unified dataset compression (DC) benchmark. This benchmark reveals an interesting trade-off for soft-label-DD: while soft labels provide valuable information, they can make the distillation process less essential, as distilled images may not always outperform random subsets. In addition, the benchmark reveals that in current stages, dataset pruning outperforms dataset distillation at small dataset sizes.

Given these observations, we explore hard-label-DC as a complementary approach that emphasizes image quality while offering substantial storage efficiency. Our PCA (Prune, Combine, and Augment) is the first framework that does not rely on soft labels but instead focuses on image quality. (1) “P” means selecting easy samples based on dataset pruning metrics, (2) “C” indicates combining these samples effectively, and (3) “A” is to apply constrained image augmentation during training. Extensive experiments validate that PCA significantly outperforms existing DD and DP methods without soft labels.

1 INTRODUCTION

Modern dataset compression comes in two main types: *dataset pruning* (DP) (Toneva et al., 2019; Paul et al., 2021; Yang et al., 2023; Zheng et al., 2023), which selects a subset of original images, and *dataset distillation* (DD) (Wang et al., 2018; Cazenavette et al., 2022; Yin et al., 2023; Xiao and He, 2024), which creates synthetic images. While both approaches aim to make datasets smaller, they’ve been used for different pruning ratios. Dataset distillation creates very small datasets, often keeping just 10-100 images per class (IPC), which is about more than 90% smaller than the original. Dataset pruning often only removes less than 50% of images while maintaining good performance.

Interestingly, recent DD methods increasingly rely on original images for better performance, making them more similar to DP methods. Specifically, early works (Yin et al., 2023; Yin and Shen, 2024; Shao et al., 2024a; Xiao and He, 2024) gradually optimize random noise to create synthetic images, and more recently, DWA (Du et al., 2024) initializes synthetic images with real images, and RDED (Sun et al., 2024) uses real image patches to create synthetic images in an optimization-free manner. The recent convergence of DD and DP methods motivates our investigation of their comparative effectiveness.

However, there are two significant limitations that hinder unifying DD and DP into a unified approach. **1) Different reliance on soft label.** DD’s reliance on soft labels introduces significant storage, while DP methods avoid such dependencies. Soft labels’ storage requirements are excessive – consuming up to 40 times more storage than the images themselves (Xiao and He, 2024). The complexity increases further when incorporating advanced augmentation techniques like those in DELT (Shen et al., 2024). **2) Different evaluation settings.** Different configurations including batch sizes, loss type, and augmentation parameters, largely affect the evaluated performance.

We propose a unified Dataset Compression (DC) benchmark to fairly evaluate DP and DD. The benchmark includes 1) real, 2) partially real, or 3) completely distilled images. We use prefixes to denote whether soft labels are utilized (soft-label-DC) or not (hard-label-DC). Our benchmark reveals

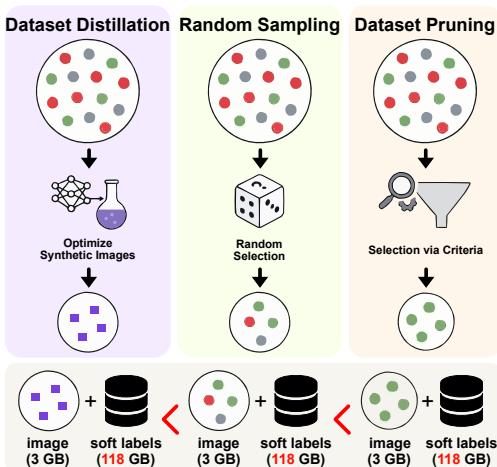


Figure 1: Paradox in Soft-label Dataset Distillation (DD): DD images < random subsets < pruning-based subsets.

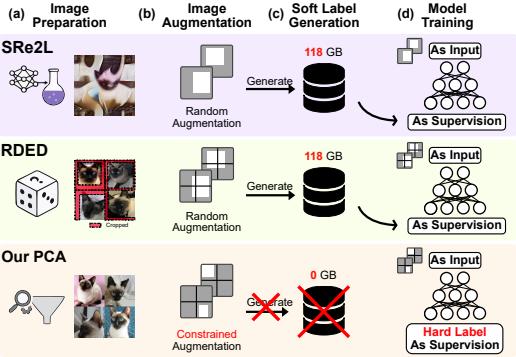


Figure 2: Unlike previous methods (SRe²L (Yin et al., 2023) and RDED (Sun et al., 2024)), our PCA framework introduces four key innovations: (a) pruning-based subset selection, (b) constrained augmentation, (c) elimination of the soft label generation process, and (d) supervision using hard labels instead of soft labels.

a surprising paradox with DD methods: the DD images actually perform worse than simply keeping random subsets of original images when both are equipped with soft labels as shown in Figure 1, particularly more pronounced at large IPCs. In addition, even purely random noise achieves learnable results using soft labels from a pretrained teacher network. These discoveries question the validity of current DD methods and raise fundamental concerns about whether focusing on soft labels over images for dataset compression makes sense at all.

To resolve the paradox in current DD methods, we advocate hard-label-DC and propose the first framework called “Prune, Combine, and Augment (PCA)” that prioritizes image contributions without relying on soft labels, as illustrated in Figure 2. Our PCA framework has four key innovations compared with previous methods. a) **Image Preparation:** PCA leverages pruning insights by selecting simple and representative images based on established pruning principles, then combines them in a cropping-free manner for further compression. b) **Image Augmentation:** PCA applies constrained augmentation to images to adhere to data-scaling laws for the final small-scale datasets during model training. c) **Soft Label Generation:** Unlike prior approaches, PCA does not rely on soft labels generated from pretrained models. d) **Model Training:** PCA uses hard labels exclusively for model supervisions. By avoiding soft labels, PCA is well-suited for scenarios with limited memory, storage, or restricted access to large teacher models.

In summary, our primary contributions include:

1. A unified dataset compression benchmark for DD and DP. Three key observations from the benchmark urge us to propose hard-label-DC.
2. The first hard-label-DC framework, PCA (Prune, Combine, Augment), that eliminates dependency on soft labels while focusing on image contributions.
3. Comprehensive experiments showcasing PCA’s superior performance over both DD and DP methods across different architectures, showing the power of shifting focus from labels to images.

2 RELATED WORKS

Dataset Distillation. Dataset distillation aims to learn compact and synthetic datasets that achieve a similar performance as the full dataset. Researchers have developed many frameworks (Wang et al., 2018; Zhao et al., 2021; Kim et al., 2022; Zhao and Bilen, 2021; Cazenavette et al., 2022; Liu et al., 2023; Lee et al., 2022; Zhao and Bilen, 2023; Wang et al., 2022; Jiang et al., 2022; Du et al., 2023; Shin et al., 2023; Deng and Russakovsky, 2022; Liu et al., 2022a; Zhao and Bilen, 2022; Wang et al., 2023; Lorraine et al., 2020; Nguyen et al., 2021a;b; Vicol et al., 2022; Zhou et al., 2022; Loo et al., 2022; Zhang et al., 2023; Cui et al., 2023; Loo et al., 2023) to effectively learn the synthetic dataset on small scale dataset like MNIST and CIFAR dataset.

108 However, scaling the existing framework to a large dataset suffers from unaffordable consumption in
 109 both memory and time. SRe²L (Yin et al., 2023) on the first time achieves noticeable performance
 110 by decoupling the optimization process into three phases of squeezing, recovering, and relabeling.
 111 Follow-up works (Yin and Shen, 2024; Sun et al., 2024; Du et al., 2024; Shao et al., 2024a; Loo et al.,
 112 2024) mostly focus on addressing the diversity issue of the recovery phase, with more and more
 113 attention paid to the relabeling process (Xiao and He, 2024; Zhang et al., 2024a; Qin et al., 2024a;
 114 Kang et al., 2024; Yu et al., 2025). However, most methods use different evaluation settings without
 115 direct comparison, and overlook the random baseline’s performance under relabeling¹.

116 **Dataset Pruning.** Dataset pruning selects a representative subset by ranking images with different
 117 metrics (Coleman et al., 2020; Toneva et al., 2019; Pleiss et al., 2020; Feldman and Zhang, 2020; Paul
 118 et al., 2021). Most of the reported experiments are focused on small datasets like CIFAR or ImageNet
 119 subsets. Methods that scale to large-scale datasets focus on small or moderate pruning ratio to ensure
 120 minimum performance drop (Xia et al., 2023; Sorscher et al., 2022; Zheng et al., 2023; Zhang et al.,
 121 2024b; Grosz et al., 2024; Abbas et al., 2024). VID (Ben-Baruch et al., 2024) conducts experiments
 122 on data pruning methods using knowledge distillation. However, these experiments did not explore
 123 extreme pruning ratios, and the baselines were not compared with dataset distillation methods.

124 **Combining Dataset Distillation and Dataset Pruning.** Dataset compression intuitively encom-
 125 passes both dataset distillation and dataset pruning, which can work independently. Existing studies
 126 incorporate the pruning process, or coresnet selection, before dataset distillation (Liu et al., 2023; Xu
 127 et al., 2025; Moser et al., 2024; Shen et al., 2024). Additionally, YOCO (He et al., 2024) examines
 128 the pruning rules specifically for distilled datasets. However, given the distinctly different nature and
 129 settings of these two tasks, it remains unclear which method represents the state-of-the-art (SOTA) in
 130 the field of data compression today. This lack of direct comparison may lead to misunderstandings
 131 about the data compression task and result in ineffective combinations of methods.

132 3 BENCHMARKING DATA COMPRESSION

133 **DD and DP’s Difference 1: Soft Label.** As
 134 shown in Table 1, DD methods typically use
 135 soft labels, while DP methods exclusively
 136 use hard labels. However, as mentioned by
 137 Xiao and He and Qin et al., the soft label
 138 storage far exceeds the image storage. For
 139 example, the label storage of ImageNet-10
 140 IPC10 is over 5.8 GB, while the images
 141 are merely 157M, creating a 40× storage
 142 gap. Existing methods (Xiao and He, 2024;
 143 Zhang et al., 2024a) have started to reduce
 144 soft label storage, but pre-generated soft la-
 145 bels still face several disadvantages. (1) Soft
 146 labels are stored in a very different format
 147 from images, and special changes to the dat-
 148 aloader are required; (2) despite GPU-compute intensive, the soft label generation process has
 149 significant memory-transfer bottlenecks, being unfriendly to devices with limited CPU resources.
 150 Last but not least, as more and more data augmentation is introduced; (3) the use of soft labels
 151 becomes increasingly complicated as more advanced augmentation (i.e., RandAugment (Shen et al.,
 152 2024)) is introduced; (4) soft label introduces knowledge beyond the compressed datasets, potentially
 153 biasing the evaluation results.

154 **DD and DP’s Difference 2: Inconsistent Hyper-parameters.** First, DD and DP methods have
 155 different hyper-parameters as shown in Table 1. DP methods often train a fixed number of iterations
 156 as full dataset training, while DD methods train a fixed number of epochs regardless of the dataset
 157 size. Second, DD methods themselves have varying evaluation settings (see Appendix B.2), where
 158 SRe²L (Yin et al., 2023) initially used a batch size of 1024 while later studies (Yin and Shen,
 159 2024; Du et al., 2024; Sun et al., 2024) employed much smaller batches, dramatically affecting

160 Table 1: Inconsistent settings and requirements of
 161 dataset compression methods. [†] denotes actual image
 162 storage is affected by JPEG compression; * indicates
 163 resizing image to 224x224. IPC-10, ImageNet-1K.

	Settings/ Requirements	EL2N	RDED	SRe ² L
Image	DP/DD Real/Distilled Storage [†]	DP Real 118M*	DD Partly Real 130M	DD Distilled 157M
Soft Label	Storage Overhead	-	5.879M (↑45×)	5.822M (↑37×)
	Time Overhead	-	25 mins (↑1.7×)	25 mins (↑1.6×)
Model Training	Batch Size Num. of Iterations	256 300K	128 24K	1024 24K

¹We notice a concurrent work that benchmarks existing dataset distillation methods, and we encourage interested readers to visit <https://github.com/NUS-HPC-AI-Lab/DD-Ranking> (Li et al., 2024).

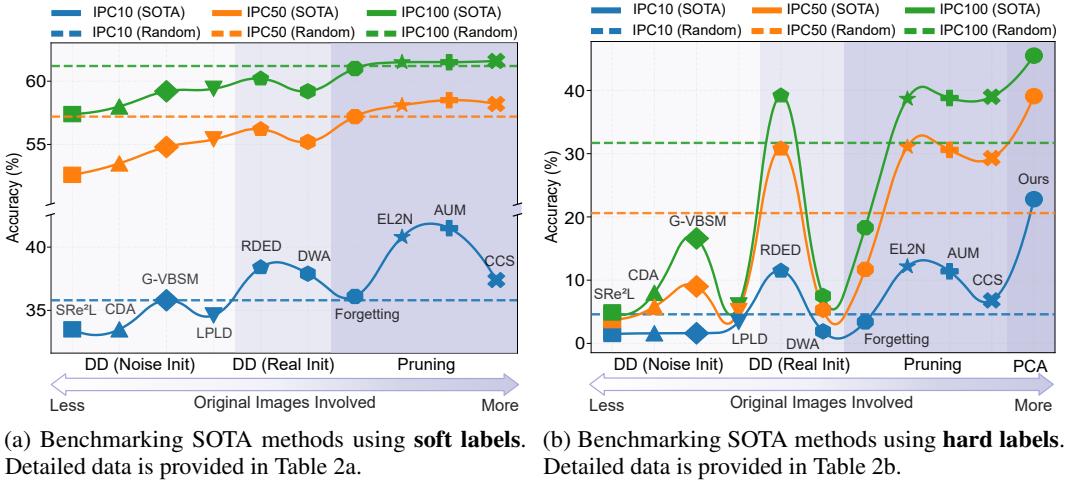


Figure 3: Comparison of SOTA methods using soft labels (left) and hard labels (right) on ImageNet-1K. “DD (Noise Init)” and “DD (Real Init)” denote dataset distillation initialized with noisy images and real images, respectively. Evaluation uses ResNet-18 on ImageNet-1K. Two observations are made: (1) Many methods struggle to outperform the random baseline, particularly at large IPCs. (2) In addition, methods utilizing more original images generally achieve better performance.

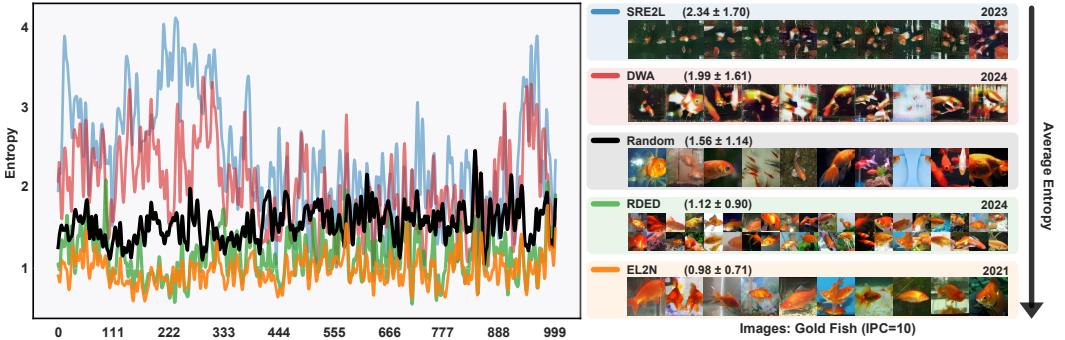


Figure 4: Entropy analysis of different datasets with IPC=10. Images are randomly sampled from the corresponding dataset for visualization. The classifier used for entropy analysis is the pretrained EfficientNet-B0 (Tan and Le, 2019).

performance. These differences create barriers to reproducibility and complicate meaningful cross-method comparisons. We adopt CDA’s setting (Yin and Shen, 2024) as our standard evaluation protocol for both DD and DP methods since it’s widely used.

Our Dataset Compression (DC) Benchmark to unify DD and DP. For fair comparison and training efficiency, we standardize all experiments using the most common evaluation protocol from dataset distillation (CDA (Yin and Shen, 2024)), for both DD and DP methods. To ensure comparability, we keep the training setup identical across all experiments, varying only the input dataset. Additionally, to match the fixed image resolution required by DD methods, we preprocess DP images by cropping along the shorter side and resizing them to 224×224 .

Benchmark Observation 1: (DD + Soft Label) < (Random + Soft Label). Existing dataset distillation (DD) methods do not consider random subsets as a baseline. However, after benchmarking random subsets under the standard evaluation setting with soft labels, we found that most dataset distillation methods (Yin et al., 2023; Yin and Shen, 2024; Du et al., 2024; Xiao and He, 2024) fail to surpass the random baseline, especially at large IPCs as shown in Figure 3a. The high random baseline with soft labels reveals that **the inflated performance gain of DD methods is primarily due to the soft labels**.

Benchmark Observation 2: (Random + Soft Label) < (Pruning + Soft Label). An important research question remains unanswered: *how do DP methods perform with soft labels at the extreme*

216 *pruning ratios typical of DD methods?* Our benchmark demonstrates that DP methods consistently
 217 outperform random subsets when soft labels are applied to DP. This indicates that pruned datasets are
 218 more effective than random subsets and DD datasets. This observation also helps explain why recent
 219 DD methods increasingly incorporate high-quality original images.

220 **Benchmark Observation 3: DD < Random < Pruning.** Given the substantial storage and
 221 computational overhead of soft labels, we investigated whether the performance trends would hold
 222 when using only hard labels. Our experiments show this trend persists with hard labels (Figure 3b),
 223 which are more practical due to lower storage requirements. With hard labels only, the performance
 224 gap between methods widens, confirming that pruning’s advantages stem from image quality, not soft
 225 label utilization. This further validates that **previously observed DD advantages were primarily
 226 due to soft labels, not the distilled images themselves.**

227 These three observations, combined with the substantial storage overhead of soft labels, suggest that
 228 large-scale dataset compression should prioritize image quality over soft label exploitation. To this
 229 end, we are motivated to develop a hard-label-only framework that shifts focus from labels to images.
 230

231 4 FRAMEWORK: PRUNE, COMBINE, AND AUGMENT

232 Figure 5 shows our *Prune, Combine, and Augment (PCA)* framework, which removes soft labels and
 233 supervises models with hard labels.
 234

235 4.1 PRUNE DATASET

236 **Motivation.** Section 3 demonstrates that pruning consistently outperforms distillation. Based on
 237 this finding, we incorporate dataset pruning into our framework by leveraging three key insights: (1)
 238 Class balance becomes increasingly critical as dataset size diminishes (He et al., 2024), (2) Simpler
 239 images yield better performance with small datasets (Sorscher et al., 2022; Zheng et al., 2023; He
 240 et al., 2024), and (3) Pruning should be applied to the complete dataset.
 241

242 **Insight 1: Maintain Perfect Class Balance in Pruning.** Conventional dataset pruning creates an
 243 imbalanced dataset where less important classes are pruned more aggressively. At extreme pruning
 244 ratios, this can completely eliminate certain classes (He et al., 2024). In contrast, dataset distillation
 245 maintains perfect class balance by generating a fixed number of images per class (IPC). We adopt
 246 this balanced approach by pruning to a consistent IPC across all classes.
 247

248 **Insight 2: Prioritize Simpler Images During Pruning.** Prior research (Zheng et al., 2023; He
 249 et al., 2024) demonstrates that simpler images perform better when the dataset size is small. Our
 250 entropy analysis in Figure 4 provides an intuitive explanation for why pruning methods outperform
 251 distillation methods. By measuring dataset complexity through entropy (Coleman et al., 2020; Sun
 252 et al., 2024), we observe that pruned datasets have the lowest average entropy, indicating relative
 253 simplicity. Visual inspection confirms that images retained by pruning methods are indeed simpler
 254 than those created by distillation methods. Based on these findings, we follow He et al. in using the
 255 reversed EL2N metric (Paul et al., 2021) for our pruning strategy.
 256

257 **Insight 3: Apply Pruning to the Full Dataset.** Without soft labels, maximizing information retention
 258 becomes crucial. Therefore, pruning must be conducted on the full dataset rather than on subsets. As
 259 shown in Figure 5 (right), our approach differs from methods like RDED (Sun et al., 2024), which
 260 creates image patches from randomly sampled subsets. Instead, we prune the complete dataset to
 261 ensure all subsequent operations work exclusively with the most informative samples.
 262

263 4.2 CROPPING-FREE IMAGE COMBINATION

264 In our PCA framework, where only hard labels are available and the dataset has already been carefully
 265 pruned, cropping or patch-based selection is unsuitable. This is because pruning makes the dataset
 266 retain only the most important images; any further cropping risks irreversibly discarding important
 267 content that hard-label supervision cannot recover.
 268

269 To formalize this, we clarify the relationships between negative log-likelihood (NLL), cross-entropy,
 270 and entropy. For a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ and model $p_\theta(y|x)$:

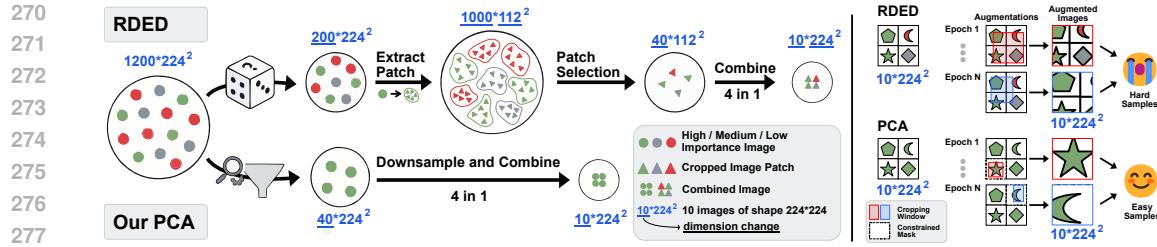


Figure 5: Detailed PCA pipeline. **Left:** illustration of image preparation, where our PCA includes only high-importance images. **Right:** illustration of image augmentation, where our PCA constrains image cropping at a single image patch, creating easy samples favored by the data-scaling law.

$$\text{NLL}(\mathcal{D}; \theta) = -\frac{1}{N} \sum_{i=1}^N \log p_\theta(y_i|x_i) \approx \text{CE}_\mathcal{D}(p_{\text{true}}, p_\theta) = H_{\text{true}} + D_{\text{KL}}(p_{\text{true}} \| p_\theta),$$

where H_{true} is the irreducible entropy of the true conditional distribution. For our analysis, we focus on the model's predictive entropy:

$$H(\mathcal{D}; \theta) = \frac{1}{N} \sum_{i=1}^N H(p_\theta(\cdot|x_i)), \quad \text{where} \quad H(p_\theta(\cdot|x)) = -\sum_{y=1}^C p_\theta(y|x) \log p_\theta(y|x).$$

While ideally one would train separate models on each dataset subset, we use a fixed pretrained model θ_0 as an efficient proxy for evaluation, as pretrained model uncertainty correlates strongly with dataset difficulty and trainability (Coleman et al., 2020). This allows us to write $\text{NLL}(\mathcal{D}) := \text{NLL}(\mathcal{D}; \theta_0)$ and $H(\mathcal{D}) := H(\mathcal{D}; \theta_0)$ for brevity.

Let $\mathcal{C}_{\text{sel}}(\mathcal{D})$ denote selective cropping that chooses optimal crops for each image to minimize NLL, and let $\mathcal{A}_r(\mathcal{D})$ denote random spatial cropping augmentation with ratio $r \in (0, 1]$, where r represents the fraction of area retained. We reveal two fundamental limitations of cropping-based approaches:

Proposition 4.1 (proof in Appendix A.1). *Let $\mathcal{D}' = \mathcal{C}_{\text{sel}}(\mathcal{D})$ be a selectively cropped version of dataset \mathcal{D} . Lower evaluation loss does not guarantee lower entropy:*

$$\text{NLL}(\mathcal{D}') < \text{NLL}(\mathcal{D}) \not\Rightarrow H(\mathcal{D}') < H(\mathcal{D}).$$

Theorem 4.2 (proof in Appendix A.2). *Let $\mathcal{D}' = \mathcal{C}_{\text{sel}}(\mathcal{D})$ be a selectively cropped dataset with lower initial entropy: $H(\mathcal{D}') < H(\mathcal{D})$. There exists a crop ratio $r^* \in (0, 1)$ such that when random cropping augmentation is applied, the entropy advantage is lost:*

$$H(\mathcal{D}') < H(\mathcal{D}) \quad \text{but} \quad H(\mathcal{A}_{r^*}(\mathcal{D}')) \geq H(\mathcal{A}_{r^*}(\mathcal{D})),$$

where $H(\mathcal{A}_r(\cdot))$ represents the expected entropy over all random spatial crops with ratio r .

Interpretation. These results demonstrate a two-fold limitation: (1) cropping to lower NLL doesn't necessarily reduce dataset entropy, which is what matters for performance; and (2) even if entropy is reduced through selective cropping, this advantage is lost or reversed when training-time augmentations are applied. This theoretical analysis, combined with our empirical findings, justifies our choice to avoid cropping and instead combine full, pruned images, ensuring maximal information retention and reliable downstream performance.

4.3 CONSTRAINED AUGMENTATION FOR DATA-SCALING-LAW

The scaling-law usually refers to scaling up the model (Kaplan et al., 2020); however, we refer to the data-scaling-law (Sorscher et al., 2022) which scales the dataset, specifically when scaling down under hard-label-only settings. After acquiring a small-scale dataset, it remains crucial to unveil its potential and effectively harness the available information. Augmentation typically serves as the tool to achieve the goal, but it is imperative that augmentation outcomes should closely adhere to the data-scaling-law. For example, RDED (Sun et al., 2024) selects simple image patches and combines them; however, during training, the Random Resized Crop operation directly applies to the combined image, inadvertently transforming simple images into more complex ones.

324 Table 2: Benchmarking SOTA methods against random baseline under evaluation with **soft labels**
 325 (top) and **hard labels** (bottom). \dagger means optimization-free distillation approaches. All experiments
 326 use ResNet-18 on ImageNet-1K. Tables with standard deviation are provided in Appendix C.

327 (a) Soft label benchmark. (**Storage overhead of soft labels: $\sim 40 \times$ as images.**)

328 IPC	329 Random	330 DD (Noise Init)				331 DD (Real Init)		332 Pruning Method with Rules			
		333 SRe ² L	334 CDA	335 G-VBSM	336 LPLD	337 RDED ^{\dagger}	338 DWA	339 Forgetting	340 EL2N	341 AUM	342 CCS
10	35.8 ± 0.2	$33.5 \downarrow 2.3$	$33.5 \downarrow 2.3$	$35.8 = 0.0$	$34.6 \downarrow 1.2$	$38.4 \uparrow 2.6$	$37.9 \uparrow 2.1$	$36.1 \uparrow 0.3$	$40.8 \uparrow 5.0$	41.5 $\uparrow 5.7$	$37.4 \uparrow 1.6$
50	57.2 ± 0.2	$52.6 \downarrow 4.6$	$53.5 \downarrow 3.7$	$54.8 \downarrow 2.4$	$55.4 \downarrow 1.8$	$56.2 \downarrow 1.0$	$55.2 \downarrow 2.0$	$57.2 = 0.0$	$58.1 \uparrow 0.9$	58.5 $\uparrow 1.3$	$58.2 \uparrow 1.0$
100	61.2 ± 0.2	$57.4 \downarrow 3.8$	$58.0 \downarrow 3.2$	$59.2 \downarrow 2.0$	$59.4 \downarrow 1.8$	$60.2 \downarrow 1.0$	$59.2 \downarrow 2.0$	$61.0 \downarrow 0.2$	$61.5 \uparrow 0.3$	$61.5 \uparrow 0.3$	61.6 $\uparrow 0.4$

333 (b) Hard label benchmark and Our PCA. (**No storage overhead of soft labels for all IPC.**)

334 IPC	335 Random	336 DD (Noise Init)				337 DD (Real Init)		338 Pruning Method with Rules				339 PCA Ours
		340 SRe ² L	341 CDA	342 G-VBSM	343 LPLD	344 RDED ^{\dagger}	345 DWA	346 Forgetting	347 EL2N	348 AUM	349 CCS	
10	4.6 ± 0.1	$1.5 \downarrow 3.1$	$1.6 \downarrow 3.0$	$1.6 \downarrow 3.0$	$3.4 \downarrow 1.2$	$11.5 \uparrow 6.9$	$1.9 \downarrow 2.7$	$3.4 \downarrow 1.2$	$12.2 \uparrow 7.6$	$11.4 \uparrow 6.8$	$6.8 \uparrow 2.2$	22.8 $\uparrow 18.2$
50	20.6 ± 0.1	$3.8 \downarrow 16.8$	$5.8 \downarrow 14.8$	$9.0 \downarrow 11.6$	$5.1 \downarrow 15.5$	$30.8 \uparrow 10.2$	$5.3 \downarrow 15.3$	$11.7 \downarrow 8.9$	$31.1 \uparrow 10.5$	$30.6 \uparrow 10.0$	$29.3 \uparrow 8.7$	39.1 $\uparrow 18.5$
100	31.7 ± 0.6	$4.9 \downarrow 26.8$	$8.0 \downarrow 23.7$	$16.6 \downarrow 15.1$	$6.0 \downarrow 25.7$	$39.2 \uparrow 7.5$	$7.5 \downarrow 24.2$	$18.3 \downarrow 13.4$	$38.7 \uparrow 7.0$	$38.8 \uparrow 7.1$	$39.0 \uparrow 7.3$	45.5 $\uparrow 13.8$

340 To counteract this issue, we propose to randomly restrict the cropping area within a single patch,
 341 and we refer to it as constrained augmentation. The illustration is provided in Figure 5 (right). Our
 342 constrained augmentation uses a single augmented image instead of four per epoch for training.
 343 Therefore, no additional training overhead is imposed when compared to RDED (Sun et al., 2024).

344 We emphasize the importance of using an effective augmentation strategy. When dealing with a small
 345 number of images, achieving good performance can be challenging. A well-crafted augmentation
 346 method, which adheres to data-scaling-law, can greatly enhance the potential of the images.

348 5 EXPERIMENT

350 All experiments are conducted on ImageNet-1K using CDA’s evaluation settings (see Appendix B.2)
 351 unless otherwise indicated. Additional settings, including dataset, networks, and baseline specifica-
 352 tions, can be found in Appendix B.

354 5.1 PRIMARY RESULTS

355 **Call Attention to Pruning from Soft-label Benchmark.** Table 2a benchmarks existing dataset
 356 distillation methods and dataset pruning methods under the same evaluation setting. We notice that by
 357 increasing the batch size in the evaluation setting, the performance SRe²L (Yin et al., 2023) catches
 358 up with other SOTA methods (Yin and Shen, 2024; Xiao and He, 2024). However, with this being
 359 said, many SOTA methods cannot beat the random baseline. Surprisingly, pruning methods that
 360 are published 3-5 years ago (Toneva et al., 2019; Pleiss et al., 2020; Paul et al., 2021) unanimously
 361 outperform random baselines, and it’s time to call attention to this under-explored topic. As a
 362 result, an interesting observation is that the performance improves as the images include more prior
 363 knowledge of original datasets.

364 **Comparing Hard-label SOTA Methods with PCA.** Table 2b evaluates the SOTA methods in a
 365 more advocated approach that does not introduce any additional storage costs besides the images or
 366 requires pretrained knowledge. By utilizing only the hard labels, most of results show a similar trend
 367 as soft label benchmarks. Our PCA (Prune, Combine, and Augment) framework essentially exceeds
 368 the random baseline and other SOTA methods at all tested IPCs.

369 **Sanity Check on Pruning Rules and Scaling Laws.** Previous pruning methods (Sorscher et al.,
 370 2022; Zheng et al., 2023; He et al., 2024) concluded that with small datasets, (1) easy images are
 371 preferred and (2) class balance is important. However, these findings need verification in our extreme
 372 pruning scenario (IPC10 = 99.2% pruning rate) since prior works (Zheng et al., 2023) used more
 373 moderate ratios or focused on distilled datasets (He et al., 2024). Table 3 confirms these rules hold
 374 even at extreme pruning ratios with real images, as selecting easy images with balanced classes
 375 consistently delivers the best results under both soft and hard label settings. Among pruning metrics,
 376 EL2N (Paul et al., 2021) shows superior performance and requires less computation time, making it
 377 our chosen method for PCA (see Appendix D.2 for analysis of why Forgetting (Toneva et al., 2019)
 378 performs worse).

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
378 Table 3: Performance of pruning methods at extreme pruning ratio. The best setting for each method
379 is marked in **bold**, and the best method is underlined.
380

Method	Soft Label								Hard Label							
	IPC10 (99.22%)				IPC50 (96.97%)				IPC10 (99.22%)				IPC50 (96.97%)			
	hard	hard _B	easy	easy _B	hard	hard _B	easy	easy _B	hard	hard _B	easy	easy _B	hard	hard _B	easy	easy _B
Forgetting	25.9	32.9	6.1	36.1	53.0	56.7	52.3	57.2	0.4	4.4	0.1	3.4	15.3	21.7	0.3	11.6
AUM	27.1	37.4	12.2	41.5	53.7	56.8	45.3	58.5	0.2	1.4	0.1	11.4	1.8	4.4	0.3	30.6
EL2N	28.7	36.0	14.2	40.8	54.4	56.9	46.0	58.1	0.2	1.4	0.2	12.2	3.2	4.2	0.3	31.1

387
388
389
390
391
392
393
394
395
396
397
398
399
400
387 Table 4: Ablation study of the proposed PCA
388 framework. + denotes add-on components.
389 Note that the default augmentation applies un-
390 less marked with [†], denoting the proposed con-
391 strained augmentation. Best results of each set-
392 ting are in **bold**. ResNet-18 on ImageNet-1K.
393

Setting	Method	10	50	100
AdamW	Random	4.6	21.2	31.4
	+ Pruning	12.2 ^{↑7.6}	31.1 ^{↑9.9}	38.8 ^{↑7.4}
	+ Combine	14.4 ^{↑9.8}	32.4 ^{↑11.2}	39.4 ^{↑8.0}
	+ Augment [†]	22.8^{↑18.2}	39.1^{↑17.9}	45.5^{↑14.1}
SGD	Random	5.1	26.6	38.9
	Our PCA	25.6^{↑20.5}	42.1^{↑15.5}	48.6^{↑9.7}

387
388
389
390
391
392
393
394
395
396
397
398
399
400
387 Table 5: Cross-architecture performance of PCA
388 framework (hard-label) on ImageNet-1K. “→
389 SGD” denotes evaluation with SGD setting.
390

Model	Params.	Acc.	10	50	100
ResNet-18 → SGD	11.7 M	69.76	22.8	39.1	45.5
			25.6	42.1	48.6
ResNet-50 → SGD	25.6 M	76.13	23.0	42.3	48.3
			25.3	43.2	50.5
ResNet-101 → SGD	44.5 M	77.37	25.8	42.7	49.6
			25.9	46.3	53.6
MobileNet-V2	3.5 M	71.88	21.9	39.1	45.3
EfficientNet-B0	5.3 M	77.69	25.0	42.4	50.4
Swin-V2-Tiny	28.4 M	82.07	15.3	37.8	48.2

400
401
5.2 MORE EXPERIMENTS402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
128

Table 6: Hard label performance against soft labels. * denotes hard label only. ResNet-18, ImageNet-1K.

Compression Rate	30× SRe ² L	40× CDA	100× LPLD	> 300× PCA*
IPC10	14.1	13.2	9.6	25.6
IPC50	37.2	38.0	33.7	42.4
IPC100	46.7	47.2	44.7	48.8

Table 9: Effects of regularization-based augmentations on PCA (SGD setting). “Crop” refers to *RandomResizedCrop* (0.08-1.00 range). “Mix Probability” indicates the likelihood of applying data mixing, where 1.0 means always applying data mixing. “Label Mixing” combines class labels proportionally to the area of mixed image regions. ResNet-18, IPC10, ImageNet-1K.

Observer	Metric	$N = 5$	$N = 20$	range:=(r , 1.0)	IPC10	IPC50
EfficientNet-B0	NLL	19.0	18.3	$r = 0.01$	22.1	39.0
	Entropy	17.2	18.1	$r = 0.08$	22.8	39.1
ResNet	NLL	18.7	17.1	$r = 0.5$	22.2	38.6
	Entropy	18.0	18.3	$r = 0.8$	21.0	35.5
No Crop		22.8		$r = 1.0$	18.7	34.0

Table 9: Effects of regularization-based augmentations on PCA (SGD setting). “Crop” refers to *RandomResizedCrop* (0.08-1.00 range). “Mix Probability” indicates the likelihood of applying data mixing, where 1.0 means always applying data mixing. “Label Mixing” combines class labels proportionally to the area of mixed image regions. ResNet-18, IPC10, ImageNet-1K.

Crop	Data Mixing	Label Mixing	Mix Probability		
			0.2	0.5	1.0
✓	✗	-		25.6	
✓	CutMix	✓	23.8 \downarrow 1.8	23.0 \downarrow 2.6	17.4 \downarrow 8.2
		✗	25.5 \downarrow 0.1	24.7 \downarrow 0.9	23.0 \downarrow 2.1
✓	Mixup	✓	25.7 \uparrow 0.1	23.0 \downarrow 2.6	7.7 \downarrow 17.1
		✗	25.9 \uparrow 0.3	25.1 \downarrow 0.5	17.6 \downarrow 8.1
✓	Cutout	-	26.2 \uparrow 0.6	25.7 \uparrow 0.1	25.3 \downarrow 0.1

Crop	Data Mixing	Label Mixing	0.2	Mix Probability	0.5	1.0
\times	\times	-		21.6		
\times	CutMix	✓	9.8 \downarrow 11.8	8.1 \downarrow 13.5	10.5 \downarrow 11.1	
		\times	15.6 \downarrow 6.0	14.3 \downarrow 7.3	12.5 \downarrow 9.1	
\times	Mixup	✓	18.9 \downarrow 2.7	17.4 \downarrow 4.2	8.4 \downarrow 13.2	
		\times	19.2 \downarrow 2.4	18.3 \downarrow 3.3	15.6 \downarrow 6.0	
\times	Cutout	-	22.7 \uparrow 1.1	22.4 \uparrow 0.8	21.8 \uparrow 0.2	

challenging examples during training. Among all options, Table 9 shows that Cutout demonstrates the best performance, while CutMix and Mixup exhibit notable performance degradation as mixing probability increases, especially in the presence of label mixing. This performance advantage is attributed to being best aligned with scaling law. Details are provided in Appendix D.1.

PCA with Different Pruning Methods. Table 10 shows PCA results with various pruning methods under hard-label settings. Both EL2N (Paul et al., 2021) and AUM (Pleiss et al., 2020) significantly outperform random baselines. While AUM shows better results at higher IPCs, we selected EL2N as our baseline for efficiency, as it requires only 10 epochs of training data compared to AUM’s 90 epochs. Forgetting (Toneva et al., 2019), though performing worse than EL2N and AUM, still consistently beats the random baselines. We include Forgetting’s results for analysis of Forgetting’s limitations.

Table 10: PCA framework with different pruning methods. ResNet-18 with AdamW optimizer.

IPC	Random	Forgetting	EL2N	AUM
10	4.6 \pm 0.1	8.6 \pm 0.2	22.8 \pm 0.3	21.9 \pm 0.3
50	20.6 \pm 0.1	24.1 \pm 0.4	39.1 \pm 0.2	39.2 \pm 0.1
100	31.7 \pm 0.6	36.2 \pm 0.3	45.5 \pm 0.4	46.4 \pm 0.2

Additional Discussion (Appendix D). Additional discussions are provided in Appendix D, including training with purely noisy data (Appendix D.3), SRE²L with real images as initialization (Appendix D.4), random baseline in soft-label-DD (Appendix D.5), relationship between data balance and data stratification (Appendix D.6), mosaic augmentation (Appendix D.7), computation cost analysis (Appendix D.8), and comparison with RDED (Appendix D.9).

Visualization. Visualizations of our PCA including baseline methods are provided in Appendix F.

6 CONCLUSION

Our unified dataset compression benchmark revealed a paradox: distilled images with soft labels underperform random subsets, while pruned datasets consistently outperform both, suggesting contemporary DD gains stem from soft labels, which impose up to 40x storage overhead, rather than from distilled images. We address this with our *Prune, Combine, and Augment (PCA)* framework, which selects easy and balanced samples via pruning metrics, combines them effectively, and applies constrained augmentation aligned with data-scaling laws. By using only hard labels, PCA eliminates pretrained resource dependencies and significantly reduces storage requirements while consistently outperforming existing random baselines, particularly at extreme compression ratios.

Limitations, future works, and broader impacts are discussed in Appendix G, Appendix H, and Appendix I, respectively.

486 REFERENCES
487

488 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
489 and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
490 learning. In *Proc. Int. Conf. Learn. Represent.*, 2019.

491 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
492 Finding important examples early in training. In *Proc. Adv. Neural Inform. Process. Syst.*, pages
493 20596–20607, 2021.

494 Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
495 training data by examining generalization influence. In *Proc. Int. Conf. Learn. Represent.*, 2023.

496 Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coresset selection for high
497 pruning rates. In *Proc. Int. Conf. Learn. Represent.*, 2023.

498 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv
500 preprint arXiv:1811.10959*, 2018.

501 George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
502 distillation by matching training trajectories. In *Proc. IEEE Conf. Comput. Vis. Pattern Recog.*,
503 2022.

504 Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at
505 imangenet scale from a new perspective. In *Proc. Adv. Neural Inform. Process. Syst.*, 2023.

506 Lingao Xiao and Yang He. Are large-scale soft labels necessary for large-scale dataset distillation?
507 In *Proc. Adv. Neural Inform. Process. Syst.*, 2024.

508 Zeyuan Yin and Zhiqiang Shen. Dataset distillation via curriculum data synthesis in large data era.
509 *Transactions on Machine Learning Research*, 2024.

510 Shitong Shao, Zeyuan Yin, Muxin Zhou, Xindong Zhang, and Zhiqiang Shen. Generalized large-scale
511 data condensation via various backbone and statistical matching. In *Proc. IEEE Conf. Comput. Vis.
512 Pattern Recog.*, 2024a.

513 Jiawei Du, Xin Zhang, Juncheng Hu, Wenxin Huang, and Joey Tianyi Zhou. Diversity-driven
514 synthesis: Enhancing dataset distillation through directed weight adjustment. In *Proc. Adv. Neural
515 Inform. Process. Syst.*, 2024.

516 Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An
517 efficient dataset distillation paradigm. In *Proc. IEEE Conf. Comput. Vis. Pattern Recog.*, 2024.

518 Zhiqiang Shen, Ammar Sherif, Zeyuan Yin, and Shitong Shao. Delt: A simple diversity-driven
519 earlylate training for dataset distillation, 2024.

520 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
521 *Proc. Int. Conf. Learn. Represent.*, 2021.

522 Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong,
523 Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameteri-
524 zation. In *Proc. Int. Conf. Mach. Learn.*, 2022. URL <https://github.com/snu-mllab/Efficient-Dataset-Condensation>.

525 Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In *Proc.
526 Int. Conf. Mach. Learn.*, pages 12674–12685, 2021.

527 Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. DREAM: Efficient
528 dataset distillation by representative matching. *arXiv preprint arXiv:2302.14416*, 2023.

529 Hae Beom Lee, Dong Bok Lee, and Sung Ju Hwang. Dataset condensation with latent space
530 knowledge factorization and sharing. *arXiv preprint arXiv:2208.10494*, 2022.

531 Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In *Proc. IEEE Winter
532 Conf. Appl. Comput. Vis.*, pages 6514–6523, 2023.

540 Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
 541 Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In *Proc.
 542 IEEE Conf. Comput. Vis. Pattern Recog.*, pages 12196–12205, 2022.

543

544 Zixuan Jiang, Jiaqi Gu, Mingjie Liu, and David Z Pan. Delving into effective gradient matching for
 545 dataset condensation. *arXiv preprint arXiv:2208.00311*, 2022.

546

547 Jiawei Du, Yidi Jiang, Vincent TF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accu-
 548 mulated trajectory error to improve dataset distillation. In *Proc. IEEE Conf. Comput. Vis. Pattern
 549 Recog.*, 2023.

550

551 Seungjae Shin, Heesun Bae, Donghyeok Shin, Weonyoung Joo, and Il-Chul Moon. Loss-curvature
 552 matching for dataset selection and condensation. In *International Conference on Artificial Intelli-
 553 gence and Statistics*, pages 8606–8628, 2023.

554

555 Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable
 556 memories for neural networks. In *Proc. Adv. Neural Inform. Process. Syst.*, 2022.

557

558 Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
 559 factorization. In *Proc. Adv. Neural Inform. Process. Syst.*, 2022a.

560

561 Bo Zhao and Hakan Bilen. Synthesizing informative training samples with GAN. In *NeurIPS 2022
 562 Workshop on Synthetic Data for Empowering ML Research*, 2022.

563

564 Kai Wang, Jianyang Gu, Daquan Zhou, Zheng Zhu, Wei Jiang, and Yang You. Dim: Distilling dataset
 565 into generative model. *arXiv preprint arXiv:2303.04707*, 2023.

566

567 Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
 568 implicit differentiation. In *International Conference on Artificial Intelligence and Statistics*, pages
 569 1540–1552, 2020.

570

571 Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
 572 regression. In *Proc. Int. Conf. Learn. Represent.*, 2021a.

573

574 Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely
 575 wide convolutional networks. In *Proc. Adv. Neural Inform. Process. Syst.*, pages 5186–5198,
 576 2021b.

577

578 Paul Vicol, Jonathan P Lorraine, Fabian Pedregosa, David Duvenaud, and Roger B Grosse. On
 579 implicit bias in overparameterized bilevel optimization. In *Proc. Int. Conf. Mach. Learn.*, pages
 580 22234–22259, 2022.

581

582 Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
 583 sion. In *Proc. Adv. Neural Inform. Process. Syst.*, 2022.

584

585 Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using
 586 random feature approximation. In *Proc. Adv. Neural Inform. Process. Syst.*, 2022.

587

588 Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao
 589 Li, and Dongkuan Xu. Accelerating dataset distillation via model augmentation. In *Proc. IEEE
 590 Conf. Comput. Vis. Pattern Recog.*, 2023.

591

592 Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k
 593 with constant memory. In *Proc. Int. Conf. Mach. Learn.*, pages 6565–6590. PMLR, 2023.

594

595 Noel Loo, Ramin Hasani, Mathias Lechner, and Daniela Rus. Dataset distillation with convexified
 596 implicit gradients. In *Proc. Int. Conf. Mach. Learn.*, 2023.

597

598 Noel Loo, Alaa Maalouf, Ramin Hasani, Mathias Lechner, Alexander Amini, and Daniela Rus. Large
 599 scale dataset distillation with domain shift. In *Proc. Int. Conf. Mach. Learn.*, 2024.

600

601 Xin Zhang, Jiawei Du, Ping Liu, and Joey Tianyi Zhou. Breaking class barriers: Efficient dataset
 602 distillation via inter-class feature compensator. *arXiv preprint arXiv:2408.06927*, 2024a.

594 Tian Qin, Zhiwei Deng, and David Alvarez-Melis. A label is worth a thousand images in dataset
 595 distillation. In *Proc. Adv. Neural Inform. Process. Syst.*, 2024a.
 596

597 Seoungyoon Kang, Youngsun Lim, and Hyunjung Shim. Label-augmented dataset distillation. *arXiv*
 598 *preprint arXiv:2409.16239*, 2024.

599 Ruonan Yu, Songhua Liu, Jingwen Ye, and Xinchao Wang. Teddy: Efficient large-scale dataset
 600 distillation via taylor-approximated matching. In *Proc. Eur. Conf. Comput. Vis.*, pages 1–17.
 601 Springer, 2025.

602 Zekai Li, Xinhao Zhong, Zhiyuan Liang, Yuhao Zhou, Mingjia Shi, Ziqiao Wang, Wangbo Zhao,
 603 Xuanlei Zhao, Haonan Wang, Ziheng Qin, Dai Liu, Kaipeng Zhang, Tianyi Zhou, Zheng Zhu,
 604 Kun Wang, Guang Li, Junhao Zhang, Jiawei Liu, Yiran Huang, Lingjuan Lyu, Jiancheng Lv,
 605 Yaochu Jin, Zeynep Akata, Jindong Gu, Rama Vedantam, Mike Shou, Zhiwei Deng, Yan Yan,
 606 Yuzhang Shang, George Cazenavette, Xindi Wu, Justin Cui, Tianlong Chen, Angela Yao, Manolis
 607 Kellis, Konstantinos N. Plataniotis, Bo Zhao, Zhangyang Wang, Yang You, and Kai Wang. Dd-
 608 ranking: Rethinking the evaluation of dataset distillation. GitHub repository, 2024. URL <https://github.com/NUS-HPC-AI-Lab/DD-Ranking>.
 609

610 Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
 611 Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
 612 learning. In *Proc. Int. Conf. Learn. Represent.*, 2020.

613 Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data
 614 using the area under the margin ranking. In *Proc. Adv. Neural Inform. Process. Syst.*, pages
 615 17044–17056, 2020.

616 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
 617 tail via influence estimation. In *Proc. Adv. Neural Inform. Process. Syst.*, pages 2881–2891, 2020.

618 Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coresnet: A universal
 619 method of data selection for real-world data-efficient deep learning. In *Proc. Int. Conf. Learn.
 620 Represent.*, 2023.

621 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
 622 scaling laws: beating power law scaling via data pruning. In *Proc. Adv. Neural Inform. Process.
 623 Syst.*, pages 19523–19536, 2022.

624 Xin Zhang, Jiawei Du, Yunsong Li, Weiying Xie, and Joey Tianyi Zhou. Spanning training progress:
 625 Temporal dual-depth scoring (tdds) for enhanced dataset pruning. In *Proceedings of the IEEE/CVF
 626 Conference on Computer Vision and Pattern Recognition*, pages 26223–26232, 2024b.

627 Steven Grosz, Rui Zhao, Rajeev Ranjan, Hongcheng Wang, Manoj Aggarwal, Gerard Medioni,
 628 and Anil Jain. Data pruning via separability, integrity, and model uncertainty-aware importance
 629 sampling. In *International Conference on Pattern Recognition*, pages 398–413. Springer, 2024.

630 Amro Kamal Mohamed Abbas, Evgenia Rusak, Kushal Tirumala, Wieland Brendel, Kamalika
 631 Chaudhuri, and Ari S. Morcos. Effective pruning of web-scale datasets based on complexity of
 632 concept clusters. In *Proc. Int. Conf. Learn. Represent.*, 2024.

633 Emanuel Ben-Baruch, Adam Botach, Igor Kviatkovsky, Manoj Aggarwal, and Gérard Medioni.
 634 Distilling the knowledge in data pruning. *arXiv preprint arXiv:2403.07854*, 2024.

635 Yue Xu, Yong-Lu Li, Kaitong Cui, Ziyu Wang, Cewu Lu, Yu-Wing Tai, and Chi-Keung Tang. Distill
 636 gold from massive ores: Bi-level data pruning towards efficient dataset distillation. In *Proc. Eur.
 637 Conf. Comput. Vis.*, pages 240–257. Springer, 2025.

638 Brian B Moser, Federico Raue, Tobias C Nauen, Stanislav Frolov, and Andreas Dengel. Distill the
 639 best, ignore the rest: Improving dataset distillation with loss-value-based pruning. *arXiv preprint
 640 arXiv:2411.12115*, 2024.

641 Yang He, Lingao Xiao, and Joey Tianyi Zhou. You only condense once: Two rules for pruning
 642 condensed datasets. In *Proc. Adv. Neural Inform. Process. Syst.*, 2024.

648 Tian Qin, Zhiwei Deng, and David Alvarez-Melis. Distributional dataset distillation with subtask
 649 decomposition. *arXiv preprint arXiv:2403.00999*, 2024b.
 650

651 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
 652 In *Proc. Int. Conf. Mach. Learn.*, pages 6105–6114. PMLR, 2019.

653 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 654 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 655 *arXiv preprint arXiv:2001.08361*, 2020.

656

657 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
 658 Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings*
 659 *of the IEEE/CVF conference on computer vision and pattern recognition*, pages 12009–12019,
 660 2022b.

661 Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokania.
 662 Calibrating deep neural networks using focal loss. *Advances in neural information processing*
 663 *systems*, 33:15288–15299, 2020.

664

665 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 666 hierarchical image database. In *Proc. IEEE Conf. Comput. Vis. Pattern Recog.*, pages 248–255.
 667 Ieee, 2009.

668

669 Shitong Shao, Zikai Zhou, Huanran Chen, and Zhiqiang Shen. Elucidating the design space of dataset
 condensation. *arXiv preprint arXiv:2404.13733*, 2024b.

670

671 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 672 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proc. Int.*
 673 *Conf. Comput. Vis.*, pages 6023–6032, 2019.

674

675 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

676

677 Hongyi Zhang. mixup: Beyond empirical risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

678

679 Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
 accuracy of object detection. *arXiv preprint arXiv:2004.10934*, 2020.

680

681 Duo Su, Junjie Hou, Weizhi Gao, Yingjie Tian, and Bowen Tang. D^4m: Dataset distillation via
 682 disentangled diffusion model. In *Proc. IEEE Conf. Comput. Vis. Pattern Recog.*, pages 5809–5818,
 June 2024.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 703 704 705 Appendix 706 707

708 A PROOFS

709 A.1 PROOF OF PROPOSITION 4.1

710
711 **Proposition A.1** (Restated). *Let $\mathcal{D}' = \mathcal{C}_{\text{sel}}(\mathcal{D})$ be a selectively cropped version of dataset \mathcal{D} . Lower
712 evaluation loss does not guarantee lower entropy:*

$$713 \quad \text{NLL}(\mathcal{D}') < \text{NLL}(\mathcal{D}) \not\Rightarrow H(\mathcal{D}') < H(\mathcal{D}).$$

714
715 *Proof.* We prove this by constructing an explicit counterexample using a two-sample dataset and a
716 fixed model p_{θ_0} .
717

718 **Counterexample Construction.** Consider a binary classification task with dataset $\mathcal{D} =$
719 $\{(x_1, y_1), (x_2, y_2)\}$ where $y_1 = y_2 = 1$. Let the model's predictions on the original images be:

$$720 \quad p_{\theta_0}(y = 1|x_1) = 0.7, \quad H(p_{\theta_0}(\cdot|x_1)) = h(0.7) = 0.6109 \quad (1)$$

$$721 \quad p_{\theta_0}(y = 1|x_2) = 0.2, \quad H(p_{\theta_0}(\cdot|x_2)) = h(0.2) = 0.5004 \quad (2)$$

722 where $h(p) = -p \ln p - (1-p) \ln(1-p)$ is the binary entropy function using natural logarithm.
723

724 The original dataset metrics are:

$$725 \quad \text{NLL}(\mathcal{D}) = \frac{1}{2}[-\ln(0.7) - \ln(0.2)] = \frac{1}{2}[0.3567 + 1.6094] = 0.9831$$

$$726 \quad H(\mathcal{D}) = \frac{1}{2}[0.6109 + 0.5004] = 0.5557$$

727 **Selective Cropping Operation.** Define the selective cropping \mathcal{C}_{sel} as follows: for x_1 , retain the
728 original image (no cropping needed as the model already performs well); for x_2 , apply a crop that
729 removes confounding background elements. Suppose this crop transforms x_2 into x'_2 such that:

$$730 \quad p_{\theta_0}(y = 1|x'_2) = 0.5, \quad H(p_{\theta_0}(\cdot|x'_2)) = h(0.5) = 0.6931$$

731 The intuition here is that removing context from a difficult image makes the model more uncertain
732 even though it assigns higher probability to the correct class. This models real scenarios where
733 background removal eliminates both distractors and helpful context.
734

735 **Verification of the Counterexample.** For the selectively cropped dataset $\mathcal{D}' = \{(x_1, y_1), (x'_2, y_2)\}$:

$$736 \quad \text{NLL}(\mathcal{D}') = \frac{1}{2}[-\ln(0.7) - \ln(0.5)] = \frac{1}{2}[0.3567 + 0.6931] = 0.5249 < 0.9831 = \text{NLL}(\mathcal{D})$$

$$737 \quad H(\mathcal{D}') = \frac{1}{2}[0.6109 + 0.6931] = 0.6520 > 0.5557 = H(\mathcal{D})$$

738 Thus we have constructed a concrete example where $\text{NLL}(\mathcal{D}') < \text{NLL}(\mathcal{D})$ yet $H(\mathcal{D}') > H(\mathcal{D})$,
739 proving that lower NLL does not imply lower entropy.
740

□

741 A.2 PROOF OF THEOREM 4.2

742 **Theorem A.2** (Restated). *Let $\mathcal{D}' = \mathcal{C}_{\text{sel}}(\mathcal{D})$ be a selectively cropped dataset with lower initial
743 entropy: $H(\mathcal{D}') < H(\mathcal{D})$. Under Assumption A.3, there exists a crop ratio $r^* \in (0, 1)$ such that
744 when random cropping augmentation is applied, the entropy advantage is lost:*

$$745 \quad H(\mathcal{D}') < H(\mathcal{D}) \quad \text{but} \quad H(\mathcal{A}_{r^*}(\mathcal{D}')) \geq H(\mathcal{A}_{r^*}(\mathcal{D})),$$

746 where $H(\mathcal{A}_r(\cdot))$ represents the expected entropy over all random spatial crops with ratio r .
747

756 **Assumption A.3** (Compounding Information Loss). For the selectively cropped dataset $\mathcal{D}' = \mathcal{C}_{\text{sel}}(\mathcal{D})$,
 757 there exists a dataset-dependent threshold $r_0 \in (0, 1)$ such that for all $r \in (0, r_0)$, aggressive random
 758 cropping causes more severe entropy increase than for the original dataset:

$$759 \quad 760 \quad H(\mathcal{A}_r(\mathcal{D}')) > H(\mathcal{A}_r(\mathcal{D}))$$

761 *Justification:* This assumption is natural because \mathcal{D}' has already lost spatial context through selective
 762 cropping. When an image has been pre-cropped to remove “hard” regions, the remaining content has
 763 less redundancy. Further random cropping of this already-reduced image is more likely to remove
 764 critical discriminative features, leading to higher prediction uncertainty compared to random cropping
 765 of the original, full images. We provide empirical validation in Table 11.

766 *Proof.* We establish the existence of r^* where the entropy advantage is lost using the Intermediate
 767 Value Theorem.

768 **Setup.** Define the entropy functions for both datasets under random cropping augmentation with
 769 parameter $r \in (0, 1]$:

$$770 \quad 771 \quad f(r) := H(\mathcal{A}_r(\mathcal{D})) = \mathbb{E}_{\text{crop} \sim \mathcal{A}_r} \left[\frac{1}{N} \sum_{i=1}^N H(p_{\theta_0}(\cdot | \text{crop}(x_i))) \right] \quad (3)$$

$$772 \quad 773 \quad f'(r) := H(\mathcal{A}_r(\mathcal{D}')) = \mathbb{E}_{\text{crop} \sim \mathcal{A}_r} \left[\frac{1}{N} \sum_{i=1}^N H(p_{\theta_0}(\cdot | \text{crop}(x'_i))) \right] \quad (4)$$

774 where the expectation is taken over all possible random crops with area ratio r .

775 **Continuity.** Both $f(r)$ and $f'(r)$ are continuous functions on $(0, 1]$. This follows from the compo-
 776 sition of continuous operations: random cropping operations employ bilinear interpolation, ensuring
 777 continuous transformations as r varies; the neural network p_{θ_0} consists of continuous activation func-
 778 tions; the entropy function $H(p) = -\sum_y p(y) \ln p(y)$ is continuous in the probability distribution
 779 p ; and the expectation operation preserves continuity when integrated over a continuous parameter
 780 space.

781 **Boundary Analysis.** At $r = 1$ (no effective cropping):

$$782 \quad 783 \quad f(1) = H(\mathcal{D}) \quad (5)$$

$$784 \quad 785 \quad f'(1) = H(\mathcal{D}') \quad (6)$$

786 By hypothesis, $f'(1) = H(\mathcal{D}') < H(\mathcal{D}) = f(1)$.

787 **Application of the Intermediate Value Theorem.** Define the difference function:

$$788 \quad 789 \quad g(r) := f'(r) - f(r) = H(\mathcal{A}_r(\mathcal{D}')) - H(\mathcal{A}_r(\mathcal{D}))$$

790 Having defined the difference function $g(r) := f'(r) - f(r)$, we can now establish its key properties.
 791 First, at the boundary $r = 1$, we have $g(1) = H(\mathcal{D}') - H(\mathcal{D}) < 0$ by our initial hypothesis that the
 792 selectively cropped dataset has lower entropy. Second, Assumption A.3 guarantees that $g(r) > 0$
 793 for all $r \in (0, r_0)$, reflecting the compounding information loss under aggressive cropping. Finally,
 794 since both f and f' are continuous functions on $(0, 1]$, their difference g inherits this continuity on
 795 the same domain.

796 Since g is continuous on $[r_0/2, 1]$, with $g(r_0/2) > 0$ and $g(1) < 0$, the Intermediate Value Theorem
 797 guarantees the existence of at least one $r^* \in (r_0/2, 1) \subset (0, 1)$ such that $g(r^*) = 0$. This establishes:

$$798 \quad 799 \quad H(\mathcal{A}_{r^*}(\mathcal{D}')) = H(\mathcal{A}_{r^*}(\mathcal{D}))$$

800 Therefore, there exists $r^* \in (0, 1)$ where the initial entropy advantage is completely lost. \square

810
 811 Table 11: Validation of Assumption A.3: $g(r) = H(\mathcal{A}_r(\mathcal{D}')) - H(\mathcal{A}_r(\mathcal{D})) > 0$ for small r . We
 812 model $H(\mathcal{A}_r(\mathcal{D}))$ with single crops and $H(\mathcal{A}_r(\mathcal{D}'))$ with consecutive crops (each with ratio \sqrt{r} ,
 813 total effective ratio r).
 814

Crop Ratio	Quantity	Easy Only	Easy+Bal.	Random	Hard+Bal.	Hard Only
$r = 0.08$	$H(\mathcal{A}_r(\mathcal{D}))$	0.21	0.30	0.63	0.26	0.23
	$H(\mathcal{A}_r(\mathcal{D}'))$	0.22	0.35	0.84	0.32	0.27
	$g(r) = \Delta H$	+0.01	+0.05	+0.21	+0.06	+0.04
$r = 0.2$	$H(\mathcal{A}_r(\mathcal{D}))$	0.12	0.15	0.44	0.16	0.13
	$H(\mathcal{A}_r(\mathcal{D}'))$	0.15	0.19	0.55	0.21	0.17
	$g(r) = \Delta H$	+0.03	+0.04	+0.11	+0.05	+0.04
$r = 0.5$	$H(\mathcal{A}_r(\mathcal{D}))$	0.09	0.08	0.21	0.10	0.09
	$H(\mathcal{A}_r(\mathcal{D}'))$	0.13	0.12	0.28	0.15	0.12
	$g(r) = \Delta H$	+0.04	+0.04	+0.07	+0.05	+0.03
$r = 0.8$	$H(\mathcal{A}_r(\mathcal{D}))$	0.07	0.06	0.10	0.07	0.06
	$H(\mathcal{A}_r(\mathcal{D}'))$	0.10	0.09	0.14	0.10	0.09
	$g(r) = \Delta H$	+0.03	+0.03	+0.04	+0.03	+0.03

829
 830 **Empirical Validation of Assumption A.3.** Table 11 validates our compounding assumption by
 831 computing $g(r) = H(\mathcal{A}_r(\mathcal{D}')) - H(\mathcal{A}_r(\mathcal{D}))$ across different crop ratios. We model $H(\mathcal{A}_r(\mathcal{D}))$
 832 using single crops with ratio r , and $H(\mathcal{A}_r(\mathcal{D}'))$ using consecutive crops (two crops each with ratio
 833 \sqrt{r} , giving effective ratio r), representing the compounding effect of selective cropping followed by
 834 random augmentation.
 835

836 All values of $g(r)$ are positive across all dataset types and crop ratios tested, with the effect most
 837 pronounced at $r = 0.08$ where $g(r) = 0.21$ for random datasets, representing a 33% relative increase
 838 in entropy. The monotonic decrease of $g(r)$ as r increases is consistent with our theoretical analysis,
 839 as the compounding effect diminishes when crops retain more of the original image. This empirical
 840 evidence strongly supports Assumption A.3.
 841

Lemma A.4 (Uncertainty and Generalization). *In small-data regimes and under typical calibration
 842 assumptions, datasets exhibiting lower average predictive entropy $H(Y|X; \theta)$ tend to be more
 843 trainable and yield better downstream generalization performance. This relationship has been
 844 observed in multiple empirical studies (Mukhoti et al., 2020; Coleman et al., 2020).*
 845

Practical Implications. The combination of Lemma A.4 and Theorem 4.2 offers a cautionary
 846 insight: while selective cropping may reduce entropy during dataset preparation, this advantage is
 847 lost (or reversed) under standard training augmentations. In small-data regimes where lower entropy
 848 correlates with better generalization, such loss means that models trained on selectively cropped
 849 datasets may underperform compared to those trained on uncropped, pruned datasets. This supports
 850 our PCA framework’s design choice to avoid cropping and instead combine full, pruned images,
 851 preserving maximum information and ensuring reliable downstream performance.
 852

853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **B EXPERIMENT SETTINGS**865 **B.1 DATASET AND NETWORK**

866 **Dataset.** The ImageNet-1K dataset (Deng et al., 2009), also known as ILSVRC-2012, is a large-scale
 867 image classification dataset containing $N = 1.28$ million training images and 50,000 validation
 868 images across $K = 1,000$ object categories. Each image is manually annotated with a single class
 869 label. The dataset contains approximately 1,200 images per class in the training set. Images have an
 870 average resolution of 469×387 pixels but are typically pre-processed to a standard size of 224×224
 871 pixels for model training. This dataset has become a de facto benchmark for evaluating deep learning
 872 models in computer vision tasks, particularly for image classification problems.
 873

874 **Network.** For all networks, we use common network definition from
 875 <https://pytorch.org/vision/main/models.html>. Networks are trained for 300 epochs by default;
 876 detailed settings are provided in Appendix B.2.
 877

878 **B.2 STANDARD EVALUATION SETTING**

879 Table 12 provides a more comprehensive comparison among baseline dataset distillation methods.
 880 We have adopted the CDA’s setting (Yin and Shen, 2024) as the **standard evaluation setting** for two
 881 main reasons: (1) many other studies, such as LPLD (Xiao and He, 2024) and DWA (Du et al., 2024),
 882 have used this setting; and (2) it applies to most methods, being designed explicitly for datasets that
 883 include combined image patterns, in contrast to patch shuffling. Note that baseline dataset pruning
 884 methods also adhere to the **standard evaluation setting** for fair comparison.
 885

886 It’s important to note that using alternative settings or additional techniques is **NOT** incorrect;
 887 however, we have chosen a common standard evaluation setting to facilitate a clearer comparison
 888 among the different methods.
 889

890 Table 12: Inconsistent evaluation settings of Dataset Distillation on ImageNet-1K. Values marked in
 891 **bold** are settings different from SRe²L. [†] represents the IPC-dependent.
 892

893 Configuration	894 Value	895 SRe ² L (Yin et al.)	896 CDA (Yin and Shen)	897 LPLD (Xiao and He)	898 DWA (Du et al.)	899 RDED (Sun et al.)	900 G-VBSM (Shao et al.)	901 EDC (Shao et al.)
Epochs	300	✓	✓	✓	✓	✓	✓	✓
Optimizer	AdamW	✓	✓	✓	✓	✓	✓	✓
Model LR	0.001	✓	✓	✓	✓	✓	✓	✓
LR	Smooth LR	✗	✗	✗	✗	✓	✗	✓
LR Scheduler	CosineAnnealing	✓	✓	✓	✓	✓	✓	✓
Batch Size	1024	1024	128	128	128	100 [†]	1024	100
Soft Label	Single / Ensemble	Single	Single	Single	Single	Single	Ensemble	Ensemble
Loss Type	KL / MSE+0.1xGT	KL	KL	KL	KL	KL	MSE	MSE
EMA-based	✗	✗	✗	✗	✗	✗	✗	✓
	PatchShuffle	✗	✗	✗	✗	✓	✗	✗
	ResizedCrop	✓	✓	✓	✓	✓	✓	✓
Augmentation	CropRange	(0.08, 1)	(0.08, 1)	(0.08, 1)	(0.08, 1)	(0.5, 1)	(0.08, 1)	(0.5, 1)
	Flip	✓	✓	✓	✓	✓	✓	✓
	Cut-Mix	✓	✓	✓	✓	✓	✓	✓

902 **Remark:** Table 12 does not cover all the different settings. For example, EDC (Shao et al., 2024b)
 903 uses EMA-based evaluation while other methods do not include it.
 904

905 **B.3 FAIR STORAGE OF PRUNING DATASETS**

906 When considering the pruning ratio in state-of-the-art (SOTA) pruning methods, it is important to
 907 note that the pruning ratio does not directly correspond to the dataset distillation setting. Existing
 908 pruning techniques primarily focus on tracking the ranking of images (i.e., the indices) rather than
 909 storing the actual dataset, which leads to the neglect of the true size of the ImageNet-1K images.
 910 Additionally, dataset distillation limits image resolution to 224×224 pixels. Therefore, it is unfair,
 911 in terms of information content and storage, to directly store the actual ImageNet-1K images, which
 912 have a higher average resolution of 469×387 pixels. To address this, we choose to crop the images
 913 based on their shortest side and then resize them to 224×224 pixels.
 914

918 B.4 BASELINES SPECIFICATIONS
919920 In this section, we provide more specifications of each baseline.
921922 **Dataset Distillation Baselines:**

- 923 • **SRe²L (Yin et al., 2023)**: No special adjustments. Dataset recovered following
924 <https://github.com/VILA-Lab/SRe2L>.
- 925 • **CDA (Yin and Shen, 2024)**: No special adjustments; results reported are from the original
926 paper. Dataset recovered following <https://github.com/VILA-Lab/CDA>.
- 927 • **G-VBSM (Shao et al., 2024a)**: No special adjustments. Dataset recovered following
928 https://github.com/shaoshitong/G_VBSM_Dataset_Condensation.
- 929 • **LPLD (Xiao and He, 2024)**: No special adjustments; results reported are from the original
930 paper. Dataset provided in <https://github.com/he-y/soft-label-pruning-for-dataset-distillation>.
- 931 • **DWA (Du et al., 2024)**: No special adjustments; results reported are from the original paper.
932 Dataset recovered following <https://github.com/AngusDujw/Diversity-Driven-Synthesis>.
- 933 • **RDED (Sun et al., 2024)**: IPC10 and IPC50 selects patch from $m = 300$
934 patches, and IPC100 selects from $m = 600$ patches. Dataset recovered following
935 <https://github.com/LINs-lab/RDED>.

936 **Dataset Pruning Baselines:** We create datasets by using the data ranking scores provided by Zheng
937 et al. (<https://github.com/haizhongzheng/Coverage-centric-coreset-selection>). After obtaining the
938 ranking, we post-process the datasets into images of resolution 224×224 , according to Appendix B.3.

- 939 • **Forgetting (Toneva et al., 2019)**: Images with low “forgetting events” are selected; if
940 images have a same number of “forgetting events”, we randomly sample the images. Strict
941 class balance is enforced.
- 942 • **EL2N (Paul et al., 2021)**: Images with low “EL2N Scores” are selected; and strict class
943 balance is enforced.
- 944 • **AUM (Pleiss et al., 2020)**: Images with high “accumulated margin” are selected; strict class
945 balance is enforced.
- 946 • **CCS (Zheng et al., 2023)**: For the base pruning metric, we use AUM (Pleiss et al., 2020)
947 following the original experiment setting. In addition, we prune away 30% “mislabeled”
948 data for IPC10 and IPC50, and 20% “mislabeled” data are removed for IPC100 due to strict
949 class balance requiring enough images for each class.

950 C RESULTS WITH STANDARD DEVIATION
951952 Table 13 provides the standard deviation of the performance of dataset compression methods under
953 the same evaluation setting.954
955 Table 13: Benchmarking SOTA methods against random baseline under evaluation with **soft labels**
956 (top) and **hard labels** (bottom) with standard deviation. \dagger means optimization-free distillation
957 approaches. All experiments use ResNet-18 on ImageNet-1K. Standard deviations are computed
958 from three independent runs.959 (a) Soft label benchmark with standard deviation.
960

IPC	Random	DD (Noise Init)				DD (Real Init)		Pruning Method with Rules			
		SRe ² L	CDA	G-VBSM	LPLD	RDED \dagger	DWA	Forgetting	EL2N	AUM	CCS
10	35.8 ± 0.2	33.5 ± 0.2	33.5 ± 0.3	35.8 ± 0.7	34.6 ± 0.9	38.4 ± 0.1	37.9 ± 0.2	36.1 ± 0.3	40.8 ± 0.4	41.5 ± 0.1	37.4 ± 0.2
50	57.2 ± 0.2	52.6 ± 0.1	53.5 ± 0.3	54.8 ± 0.2	55.4 ± 0.3	56.2 ± 0.2	55.2 ± 0.2	57.2 ± 0.1	58.1 ± 0.1	58.5 ± 0.1	58.2 ± 0.1
100	61.2 ± 0.2	57.4 ± 0.3	58.0 ± 0.2	59.2 ± 0.1	59.4 ± 0.2	60.2 ± 0.1	59.2 ± 0.3	61.0 ± 0.1	61.5 ± 0.2	61.5 ± 0.1	61.6 ± 0.1

961 (b) Hard label benchmark with standard deviation.
962

IPC	Random	DD (Noise Init)				DD (Real Init)		Pruning Method with Rules				PCA Ours \dagger
		SRe ² L	CDA	G-VBSM	LPLD	RDED \dagger	DWA	Forgetting	EL2N	AUM	CCS	
10	4.6 ± 0.1	1.5 ± 0.1	1.6 ± 0.1	1.6 ± 0.1	3.4 ± 0.1	11.5 ± 0.1	1.9 ± 0.0	3.4 ± 0.1	12.2 ± 0.3	11.4 ± 0.0	6.8 ± 0.3	22.8 ± 0.3
50	20.6 ± 0.1	3.8 ± 0.0	5.8 ± 0.3	9.0 ± 0.6	5.1 ± 0.1	30.8 ± 0.4	5.3 ± 0.2	11.7 ± 0.2	31.1 ± 0.3	30.6 ± 0.1	29.3 ± 0.4	39.1 ± 0.2
100	31.7 ± 0.6	4.9 ± 0.2	8.0 ± 0.1	16.6 ± 0.6	6.0 ± 0.1	39.2 ± 0.6	7.5 ± 0.1	18.3 ± 0.2	38.7 ± 0.1	38.8 ± 0.2	39.0 ± 0.4	45.5 ± 0.4

972 **D ADDITIONAL EXPERIMENTS AND ANALYSIS**
973974 **D.1 REGULARIZATION-BASED DATA AUGMENTATION**
975976 Table 9 presents a comprehensive evaluation of various data augmentation strategies, including
977 CutMix (Yun et al., 2019), Cutout (DeVries and Taylor, 2017), and Mixup (Zhang, 2017). The
978 experimental results demonstrate the **crucial role of appropriate augmentation selection** in data-
979 scarce scenarios. The incorporation of *RandomResizedCrop* proves to be fundamental, substantially
980 improving performance from 21.6% to 25.6%.
981982 Among the regularization-based augmentation techniques, Cutout demonstrates a better performance,
983 maintaining consistent accuracy levels (26.2%, 25.7%, and 25.3% with *RandomResizedCrop*). This
984 superiority can be attributed to two key factors: First, Cutout preserves label integrity by avoiding
985 label mixing, which is particularly beneficial in data-scarce regimes. Second, its augmentations
986 are performed on individual images without cross-sample interactions, adhering to the principle of
987 maintaining sample simplicity during training. In contrast, both CutMix and Mixup show notable
988 performance degradation with increased mixing probabilities, which is especially evident in scenarios
989 with label mixing. When label mixing is employed, performance deteriorates significantly (from
990 25.5% to 23.8% for CutMix, and from 25.9% to 25.7% for Mixup at 0.2 mixing probability with
991 *RandomResizedCrop*). This degradation becomes more severe at higher mixing probabilities, with
992 performance dropping to 17.4% and 7.7%, respectively, at 1.0 mixing probability.
993994 These findings align with our theoretical framework, suggesting that augmentation strategies maintaining
995 sample simplicity are more effective in data-scarce regimes. The empirical evidence demonstrates
996 that methods introducing complex regularization through label mixing and cross-sample interactions
997 may be detrimental to model performance when training data is limited, supporting our scaling law
998 observations regarding the preference for simpler training samples.
9991000 Setting for each strategy:
10011002

- CutMix (Yun et al., 2019): We follow the original implementation which samples from
Beta(α, α), where $\alpha = 1$, which is basically uniform sampling from (0, 1). For the label
mixing part, we rescale λ following <https://github.com/clovaai/CutMix-PyTorch>.
- Mixup (Zhang, 2017): We follow the original implementation which samples from
Beta(α, α), where $\alpha = 1$, which is basically uniform sampling from (0, 1).
- Cutout (DeVries and Taylor, 2017): We use a common cutout size which is 0.5.

1003 **Remark:** In the original implementation of SRe²L, CutMix and Mixup do not incorporate label
1004 mixing because distillation loss is used.
10051006 **D.2 POOR PERFORMANCE USING FORGETTING (TONEVA ET AL., 2019)**
10071008 Figure 6 illustrates the distribution of various score metrics, specifically EL2N (Paul et al., 2021),
1009 Forgetting (Toneva et al., 2019), and AUM (Pleiss et al., 2020) Scores. These distributions are
1010 organized into two rows, with the top row representing the full dataset and the bottom row depicting
1011 the “easiest” IPC10 subset.
10121013 In the analysis of the **EL2N Score**, the histogram for the full dataset shows an unimodal distribution
1014 that peaks around a score of 10, indicating that most scores are concentrated in this range. Additionally,
1015 there is a long tail in the distribution towards lower scores.
10161017 Examining the **Forgetting Score**, the Full dataset displays a bimodal distribution with significant
1018 frequencies at scores of 0 and 10. This bimodality indicates the presence of two prevalent score
1019 categories within the complete dataset. Conversely, the IPC10 Forget Score distribution is dominated
1020 by a sharp peak at score 0, reflecting a substantial proportion of instances with no forgetting behavior
1021 in the IPC10 subset.
10221023 Regarding the **AUM Score**, the Full dataset illustrates a symmetric distribution centered around a
1024 score of 0, indicating balanced score dispersion. The IPC10 AUM Score distribution, however, shows
1025 a broader range with a prominent peak near 56 and a gradual decline as scores approach 60. This
shift suggests that the IPC10 subset experiences a different range of AUM Scores compared to the
full dataset.
1026

The poor performance of forgetting can possibly be explained by the score distribution (see Figure 6). We can clearly see that the easiest IPC10 subsets of forgetting scores all have a value of "0," indicating that no forgetting occurs. Because of the nature of the forgetting approach, many images experience no forgetting events at all. In fact, there are approximately 110,000 images without any forgetting events, and we randomly selected 10,000 (roughly 9.1%) of these images to create our IPC10 dataset. As a result, the 10,000 images are **indistinguishable** from the remaining images (90.9%) that also have zero forgetting counts.

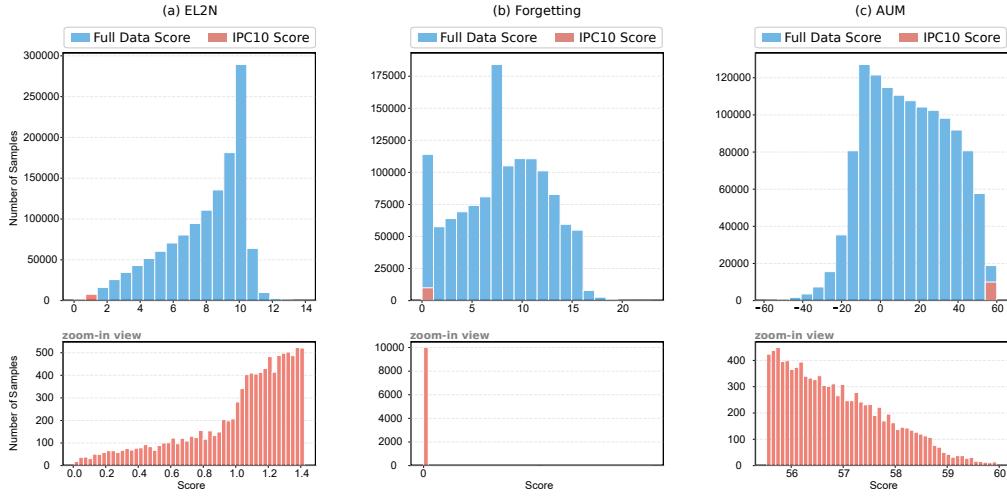


Figure 6: Sample distribution over the score of different pruning metrics: (a) EL2N, (b) Forgetting, and (c) AUM. Top row: both the sample distribution of full and IPC10 datasets. Bottom row: zoomed-in view of the distribution of IPC10 dataset. IPC10 datasets are selected from the “easiest” samples.

D.3 TRAINING WITH NOISY IMAGES

From Table 14, we can see that even with **purely noisy images**, the student network is able to learn from the teacher network by matching the soft labels. This is surprising, as noisy images are typically not expected to contain any useful information for the network’s learning process. Nevertheless, the performance of 0.5% is significant compared to the purely random network’s performance of 0.1%.

Table 14: Distillation training with pure noise on ResNet-18 on ImageNet-1K.

	Expected Acc.	Batch Size =128	Batch Size =1024
IPC50	0.1 %	0.5 %	0.3 %

D.4 USE REAL IMAGES AS INITIALIZATION FOR DATASET DISTILLATION

As shown in Figure 3a, we categorize existing literature into three distinct sections. The first section encompasses dataset distillation with **noise** initialization, where no images from the original dataset are directly involved. The representative work in this category is SRe²L (Yin et al., 2023), which pioneered this approach. The second section comprises dataset distillation with **real** image initialization, where the number of original images directly involved equals the distilled dataset size (specifically, IPC \times 1000 images). An exception is RDED (Sun et al., 2024), which randomly samples m images and combines crops, utilizing $m \times 1000$ images, where $m > \text{IPC}$. The final section focuses on dataset pruning methods, which evaluate the entire dataset to identify optimal subsets, thereby involving all images directly in the dataset compression process.

To validate the significance of incorporating more original images, we reimplemented SRe²L with real images as initialization. Table 15 demonstrates that merely initializing with real images consistently improves performance across both soft-label and hard-label benchmarks.

1080
1081
1082 Table 15: Performance of SRe²L with real images as initialization.
1083
1084
1085
1086
1087

	Soft Label			Hard Label		
	Random	SRe ² L	SRe ² L _{Real}	Random	SRe ² L	SRe ² L _{Real}
10	35.8 _{±0.2}	33.5 _{±0.2}	35.3 _{±0.5}	4.6 _{±0.1}	1.5 _{±0.1}	2.5 _{±0.0}
50	57.2 _{±0.2}	52.6 _{±0.1}	53.9 _{±0.3}	20.6 _{±0.1}	3.8 _{±0.0}	6.3 _{±0.2}
100	61.2 _{±0.2}	57.4 _{±0.3}	58.3 _{±0.1}	31.7 _{±0.6}	4.9 _{±0.2}	7.9 _{±0.2}

1088
1089
1090 D.5 RANDOM BASELINE IN SOFT LABEL DATASET DISTILLATION
10911092 Many soft-label-DD methods (Yin et al., 2023; Yin and Shen, 2024; Du et al., 2024) overlook the
1093 random baseline, and we find, when equipped with soft labels, random baselines can attain a good
1094 performance. In addition, we provide the random baselines with most common batch sizes, and we
1095 advocate that random baselines should be included for comparison in future works.
10961097 Table 16: Random Baseline with Soft Label Distillation.
1098

IPC/BS	ResNet-18			ResNet-50		ResNet-101
	32	128	1024	32	128	128
1	4.1 _{±0.2}	4.3 _{±0.1}	1.9 _{±0.1}	3.7 _{±0.2}	3.6 _{±0.1}	3.1 _{±0.5}
10	37.7 _{±0.4}	35.8 _{±0.2}	23.6 _{±0.3}	42.9 _{±0.6}	39.3 _{±1.6}	37.7 _{±1.3}
20	49.6 _{±0.7}	48.5 _{±0.1}	38.2 _{±0.3}	54.8 _{±0.6}	55.5 _{±0.2}	52.9 _{±3.0}
50	58.0 _{±0.1}	57.2 _{±0.2}	52.4 _{±0.2}	64.3 _{±0.2}	64.2 _{±0.1}	62.1 _{±2.2}
100	61.5 _{±0.1}	61.2 _{±0.2}	58.3 _{±0.0}	67.4 _{±0.1}	67.0 _{±0.2}	65.8 _{±0.9}
200	64.9 _{±0.5}	64.2 _{±0.1}	61.6 _{±0.0}	68.6 _{±0.2}	68.8 _{±0.1}	69.1 _{±0.1}

1100
1101
1102
1103
1104
1105
1106
1107 D.6 STRICT DATA BALANCE IS AN IMPLICIT STRATIFICATION1108
1109
1110 Figure 7 (Top) illustrates the distribution of samples across different classes. A clear severe class
1111 imbalance is observed when samples are selected solely based on pruning scores, as shown by the
1112 red histogram. Some classes have no images at all, while others contain more than 100 images. This
1113 imbalance is particularly noticeable when using Forgetting as the pruning metric.
11141115 By enforcing strict class balance, the difficulty of the subset increases as long as class imbalance
1116 persists. This is demonstrated in Figure 7 (Bottom), where higher scores in EL2N and Forgetting
1117 indicate a harder dataset, while a lower score in AUM suggests the opposite. Consequently, strict
1118 class balance implicitly achieves data stratification (Zheng et al., 2023) among easy samples, and
1119 it can partly explain Table 17 why adding additional explicit stratification does not improve the
1120 performance as suggested by CCS (Zheng et al., 2023). Additional stratification applied after strict
1121 balancing increases dataset complexity, with particularly noticeable effects in small IPC scenarios.
11221123 Table 17: CCS performance comparison on soft and hard label settings. CCS_{AUM} denotes stratifica-
1124 tion performed on AUM.
1125

Setting	IPC	Random	Forgetting	AUM	EL2N	CCS _{AUM}
Soft	10	35.8 _{±0.2}	36.1 _{±0.3}	41.5_{±5.7}	40.8 _{±5.0}	37.4 _{±1.6}
	50	57.2 _{±0.2}	57.2 _{±0.0}	58.5_{±1.3}	58.1 _{±0.9}	58.2 _{±1.0}
	100	61.2 _{±0.2}	61.0 _{±0.2}	61.5 _{±0.3}	61.5 _{±0.3}	61.6_{±0.4}
Hard	10	4.6 _{±0.1}	3.4 _{±1.2}	11.4 _{±6.8}	12.2_{±7.6}	6.8 _{±2.2}
	50	20.6 _{±0.1}	11.7 _{±8.9}	30.6 _{±10.0}	31.1_{±10.5}	29.3 _{±8.7}
	100	31.7 _{±0.6}	18.3 _{±13.4}	38.7 _{±7.0}	38.8 _{±7.1}	39.0_{±7.3}

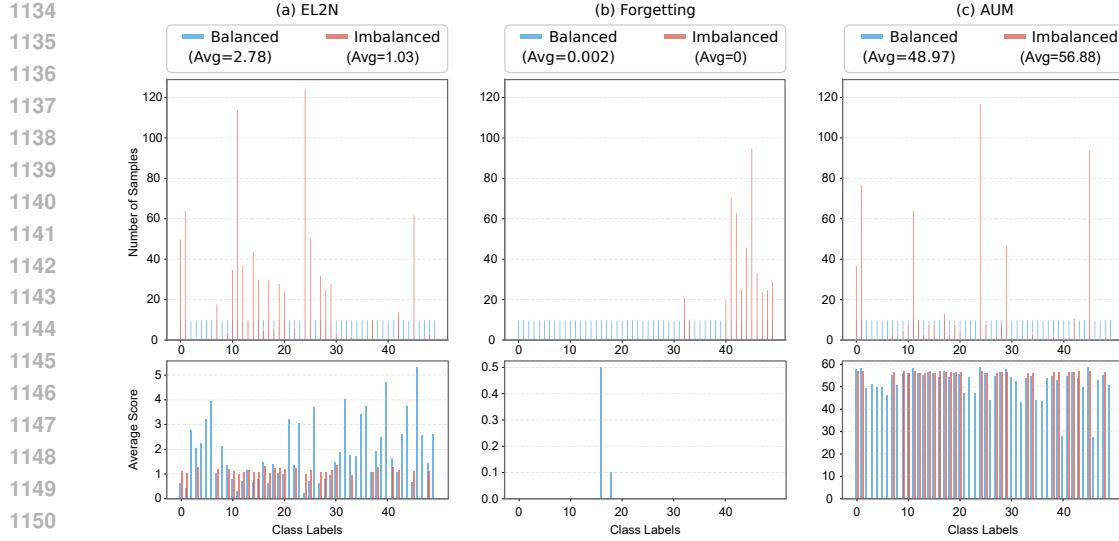


Figure 7: Sample and score distribution over class on both balanced and imbalanced cases. Top row: the sample distribution. Bottom row: the score distribution over class. For visualization purposes, only the first 50 classes are presented. IPC10 datasets are visualized and are selected from the “easiest” samples.

D.7 DIFFERENCE BETWEEN MOSAIC AUGMENTATION

One approach similar to the “combining” process is Mosaic Augmentation, introduced in YOLOv4 (Bochkovskiy et al., 2020) for object detection tasks, as shown in Figure 8. However, the motivation behind it differs significantly. Combining images consolidates information from multiple sources into a single composite image, thereby saving storage space. In contrast, Mosaic Augmentation mixes multiple (i.e., four) images to facilitate the detection of objects outside their normal context. Additionally, at the implementation level, Mosaic Augmentation loads four times as many images per given batch size, necessitating four times the storage. Nevertheless, the non-uniform combination method could potentially be leveraged in our “combining” approach, which we leave for future study.

Figure 8: Mosaic Augmentation. (Image directly taken from YOLOv4 (Bochkovskiy et al., 2020))

D.8 COMPUTATION COST ANALYSIS

One significant advantage of our PCA framework is its efficiency. Table 18 compares the costs associated with the traditional dataset compression framework, SRe²L, and our PCA method. Among the three stages of SRe²L, the “squeeze” stage is the most time-consuming, particularly when applied to ResNet with the entire ImageNet-1K dataset, which is quite resource-intensive. The parameter storage is 0.04 GB (44M). The second most time-consuming process is the “recover” stage. In

1188 contrast, the “relabel” process takes the least amount of time; however, it can become lengthy if the
 1189 IPC is large due to the introduction of extensive labels, as noted by Xiao and He.
 1190

1191 A detailed breakdown of the timing is provided in Table 19. This table shows that the device-to-host
 1192 transfer time (i.e., move soft labels from GPU to CPU) significantly contributes to the overall CPU
 1193 time. This indicates the soft label generation process is GPU-compute intensive with significant
 1194 memory-transfer bottlenecks, and such a case can be problematic for devices with limited CPU
 1195 resources.
 1196

1197 On the contrary, let us consider EL2N (Paul et al., 2021), which serves as an example in our primary
 1198 experiments. The time of the “prune” process involves acquiring the training dynamics, which can be
 1199 considerably shorter than training the entire model. Furthermore, since our approach is optimization-
 1200 free, there are no additional costs incurred for combining the images, and we exclusively utilize hard
 1201 labels instead of soft labels.
 1202

1203 Table 18: Computation Cost of Dataset Compression between Traditional Framework and PCA.
 1204 IPC-10, ImageNet-1K.
 1205

SRe ² L	Squeeze	Recover	Relabel	PCA	Prune	Combine
Time ²	90 epochs	580 mins	33 mins	Time	10 epochs	-
Storage (GB)	0.04	0.15	5.67	Storage (GB)	-	0.15

1206
 1207
 1208
 1209
 1210
 1211 Table 19: Relabel Cost Breakdown
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221

Operation	CPU		GPU	
	Time (ms)	Memory (MB)	Time (ms)	Memory (MB)
Move Data to GPU	3.36	0.00	3.26	86717.81
Mix Augmentation	0.44	1.14	0.12	0.00
Model Inference	4.42	0.00	25.33	0.46
Move Soft Label to CPU	22.04	-0.68	0.01	0.00
Write Soft Label to Disk	0.72	0.00	0.00	0.00
Others (83 ops)	0.95	10.22	0.87	164057.58

1222
 1223 D.9 COMPARISON WITH RDED
 1224

1225 D.9.1 METHODOLOGICAL INNOVATIONS
 1226

1227 While RDED (Sun et al., 2024) serves as a notable baseline in dataset distillation, PCA introduces
 1228 fundamental improvements that extend beyond marginal patch selection enhancements. Table 20
 1229 delineates the key distinctions across three critical stages of the distillation pipeline.
 1230

1231 A significant divergence occurs in image preparation, where RDED’s random cropping approach in-
 1232 herently fragments the dataset through multiple patches per image, resulting in substantial information
 1233 loss. In contrast, PCA employs full dataset pruning combined with strategic image scaling, thereby
 1234 preserving global contextual information throughout the distillation process. Additionally, PCA
 1235 eliminates the computational burden associated with soft label generation, which is a requirement
 1236 in RDED that necessitates teacher model dependencies and incurs considerable storage overhead.
 1237 Although constrained augmentation naturally complements collage-based methods with one-hot
 1238 labels, its implementation within PCA represents a systematic optimization specifically tailored for
 1239 small-scale datasets, contrasting sharply with RDED’s conventional augmentation strategy that lacks
 1240 such targeted specialization.
 1241

²All time data have been tested on a single RTX3030 GPU card.

1242
1243
1244 Table 20: Comprehensive comparison between RDED and PCA methodologies.
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

1244 Stage	1244 RDED (Sun et al., 2024)	1244 PCA (Ours)
1245 Image Preparation	1. Random subset (300 images) 2. 5 random crops per image 3. Patch selection 4. Patch combination → Information loss	1. Full dataset pruning 2. Image combination by scaling → Maintains global information
1250 Soft Label Generation	1. Requires relabeling process 2. Relies on teacher model → High storage and compute cost	Not required → No dependency on teacher models
1254 Dataset Training	Traditional augmentation → No special emphasis	Constrained augmentation → Optimized for small datasets

1256
1257 D.9.2 TRUE CONTRIBUTION OF IMAGES
1258

1259 To provide a comprehensive and fair comparison with RDED, we conducted experiments applying
1260 our constrained augmentation strategy to both methods under identical conditions. As shown
1261 in Table 21, we evaluate RDED in its original form, with shuffle augmentation, and with our
1262 proposed constrained augmentation strategy, comparing these against our PCA framework that also
1263 employs constrained augmentation. The results demonstrate that while both methods benefit from the
1264 constrained augmentation approach, with RDED improving from 11.4 to 19.2 at IPC10, our PCA
1265 framework consistently maintains superior performance across all settings. Specifically, even when
1266 both methods utilize identical augmentation strategies, PCA outperforms RDED with constrained
1267 augmentation by 6.4, 4.4, and 4.4 percentage at IPC10, IPC50, and IPC100 respectively. This
1268 consistent improvement, highlighted in the last row, validates that the performance gains stem from
1269 our core methodological innovations rather than merely the augmentation strategy.
1270

1271 Table 21: Performance comparison across different methods and IPC settings

1272 Method	1272 IPC10	1272 IPC50	1272 IPC100
1273 RDED	1273 11.4	1273 30.6	1273 39.8
1274 RDED + Shuffle	1274 12.9	1274 32.8	1274 41.4
1275 RDED + Constrained Aug	1275 19.2	1275 37.7	1275 44.2
1276 Our PCA (with Constrained Aug)	1276 25.6	1276 42.1	1276 48.6
1277 True Contribution of Images	1277 ↑6.4	1277 ↑4.4	1277 ↑4.4

1280 E COMPUTE RESOURCES
1281

1282 Experiments of small batch sizes (e.g., batch size 32, 128) are conducted on RTX3090 GPU cards.
1283 Experiments of large batch sizes (e.g., batch size 1024) and large networks (e.g., ResNet-50, ResNet-
1284 101, SwinV2-Tiny) are conducted on A100 80GB GPU cards.
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 F VISUALIZATION
1297
1298
1299
13001301 F.1 VISUALIZATION OF DATASET DISITILLATIOIN METHODS
1302
1303

1304 Figure 9 visualizes the result of SRe²L (Yin et al., 2023). Figure 10 visualizes the result of CDA (Yin
1305 and Shen, 2024). Figure 11 visualizes the result of G-VBSM (Shao et al., 2024a). Figure 12 visualizes
1306 the result of LPLD (Xiao and He, 2024). Figure 13 visualizes the result of DWA (Du et al., 2024).
1307 Figure 14 visualizes the result of RDED (Sun et al., 2024). For all distillation methods (except for
1308 RDED (Sun et al., 2024)), images undergo strong distortion.

1330 Figure 9: SRe²L (Yin et al., 2023)
1331

Figure 10: CDA (Yin and Shen, 2024)

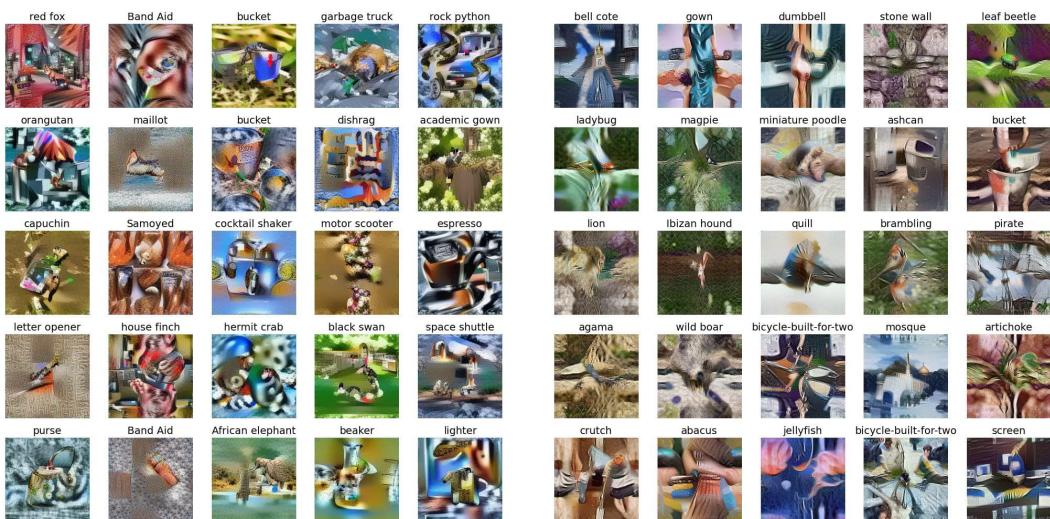


Figure 11: G-VBSM (Shao et al., 2024a)

Figure 12: LPLD (Xiao and He, 2024)

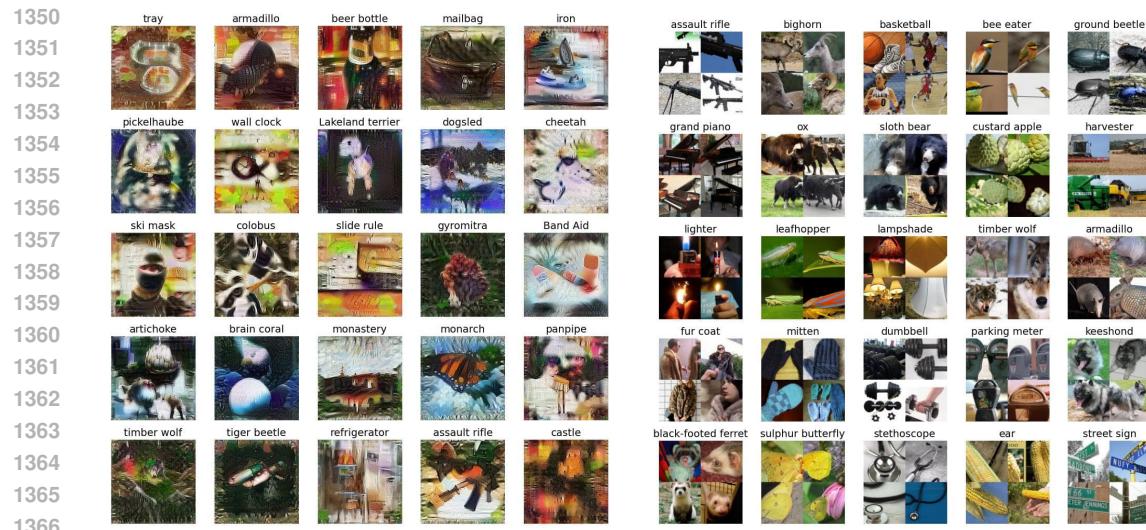


Figure 13: DWA (Du et al., 2024)

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 14: RDED (Sun et al., 2024)

1404
1405

F.2 VISUALIZATION OF DATASET PRUNING METHODS

1406
1407
1408
1409
1410

Figure 15 visualizes the result of Forgetting (Toneva et al., 2019). Figure 16 visualizes the result of AUM (Pleiss et al., 2020). Figure 17 visualizes the result of EL2N (Paul et al., 2021). Figure 18 visualizes the result of CCS (Zheng et al., 2023). The visualization results of all pruning methods followed the pruning rules, allowing for the clear observation that most of the selected images are distinct and visually easy to identify.

1411

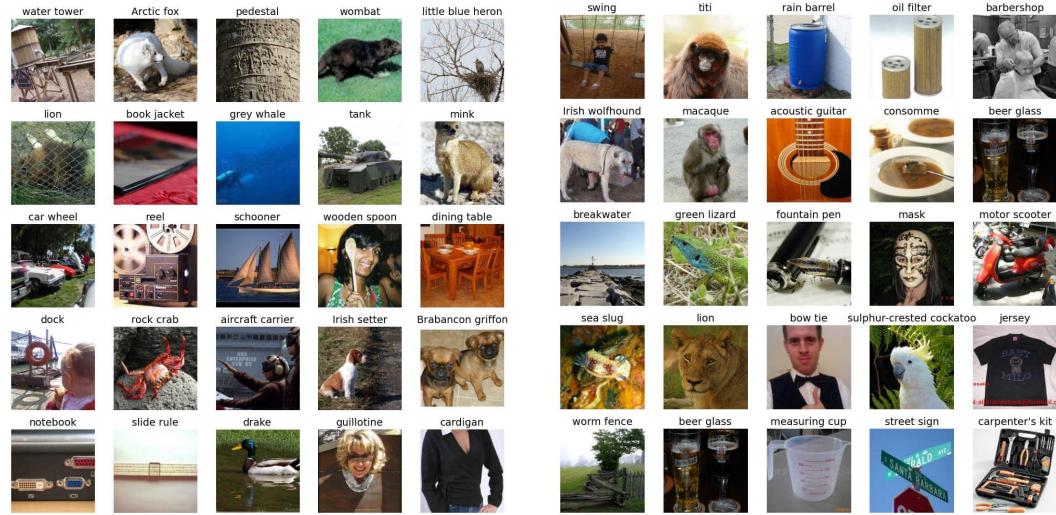
1429
1430

Figure 15: Forgetting (Toneva et al., 2019)

Figure 16: AUM (Pleiss et al., 2020)

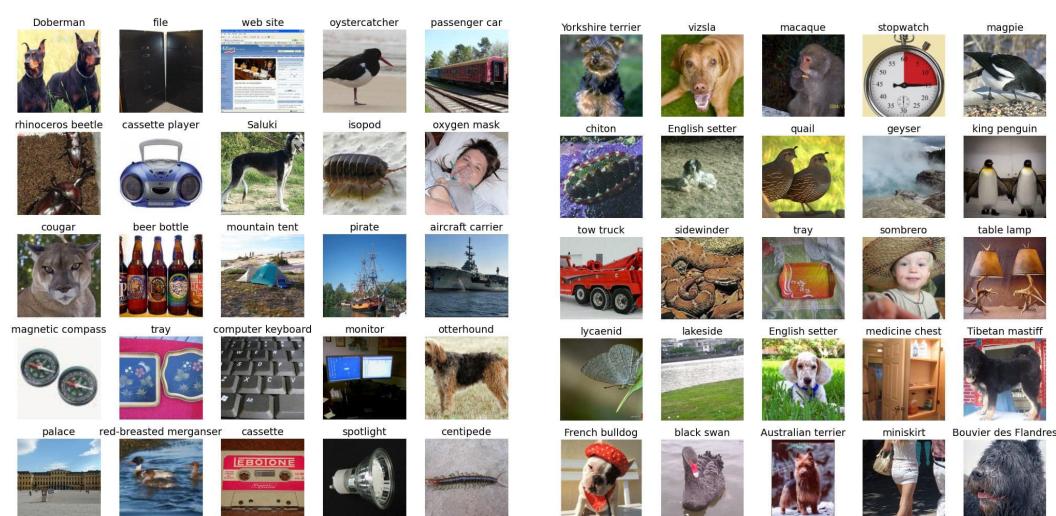
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
14471448
1449
1450

Figure 17: EL2N (Paul et al., 2021)

Figure 18: CCS (Zheng et al., 2023)

1451
1452

F.3 VISUALIZATION OF PCA

1453
1454
1455
1456
1457

Figure 19 shows the images of our PCA framework which uses EL2N (Paul et al., 2021) as the selection metric. Even when adhering to pruning rules, the combined images may not appear visually similar. For example, the “sax” class (first row, second column) demonstrates distinct contexts (i.e., placing the sax on a purple background or a musician playing the sax). This further demonstrates the importance of scaling-law aware augmentation, as inappropriate subsequent training augmentations can lead to a significant difficulty increase in the images.

Figure 19: Ours (PCA based on EL2N).

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 G LIMITATION

1514 Our augmentation procedures, including patch extraction, are heuristically designed. While they
1515 demonstrate strong empirical effectiveness, their optimality is not theoretically guaranteed.
1516

1517 H FUTURE WORK

1519 Given that the proposed PCA functions as a framework, there is potential to explore **different choices**
1520 of the modules, such as pruning metrics, combining strategies, and specific augmentation methods.
1521 It is notable that pruning can extend beyond the original dataset. Instead of only developing new
1522 pruning metrics, one could target different datasets. In this paper, the primary reason for pruning
1523 on the original dataset is that most existing dataset distillation methods do not outperform random
1524 baselines, indicating that original images are sufficiently effective. Hence, there is **significant value**
1525 in considering pruning on potentially high-performing distilled datasets (e.g., YOCO (He et al., 2024))
1526 or on generated datasets (e.g., diffusion-based DD methods (Su et al., 2024)). Beyond accuracy,
1527 future frameworks might also jointly optimize additional metrics, such as robustness, fairness, or
1528 interpretability, while maintaining the same compressed dataset constraint.
1529

1530 I BROADER IMPACTS

1532 This paper addresses pressing challenges in dataset compression by establishing a benchmark for fair
1533 comparison across dataset distillation and pruning techniques. By highlighting inconsistencies in
1534 previous evaluations, we draw attention to the need for standardized practices that enhance repro-
1535 ducibility and fairness. Our proposed *Prune, Combine, and Augment* (PCA) framework prioritizes
1536 image data and utilizes only hard labels, thereby reducing storage and computational demands
1537 traditionally associated with soft labels. This approach not only makes dataset compression more
1538 practical and accessible but also shifts the research focus back to the images themselves, potentially
1539 leading to more balanced and efficient methods. Through these efforts, we aim to foster responsible
1540 advancements in large-scale machine learning while ensuring the benefits are accessible to a wider
1541 range of practitioners.
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565