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ABSTRACT

Dataset pruning (DP) and dataset distillation (DD) fundamentally differ in their
outputs: DP selects original image subsets, while DD generates synthetic images.
Recently, DD’s increasing reliance on original images suggests a convergence of
the two directions. To investigate this convergence trend, we propose a unified
dataset compression (DC) benchmark. This benchmark reveals an interesting
trade-off for soft-label-DD: while soft labels provide valuable information, they
can make the distillation process less essential, as distilled images may not always
outperform random subsets. In addition, the benchmark reveals that in current
stages, dataset pruning outperforms dataset distillation at small dataset sizes.
Given these observations, we explore hard-label-DC as a complementary approach
that emphasizes image quality while offering substantial storage efficiency. Our
PCA (Prune, Combine, and Augment) is the first framework that does not rely on
soft labels but instead focuses on image quality. (1) “P” means selecting easy sam-
ples based on dataset pruning metrics, (2) “C” indicates combining these samples
effectively, and (3) “A” is to apply constrained image augmentation during training.
Extensive experiments validate that PCA significantly outperforms existing DD
and DP methods without soft labels.

1 INTRODUCTION

Modern dataset compression comes in two main types: dataset pruning (DP) (Toneva et al., 2019;
Paul et al., 2021; Yang et al., 2023; Zheng et al., 2023), which selects a subset of original images, and
dataset distillation (DD) (Wang et al., 2018; Cazenavette et al., 2022; Yin et al., 2023; Xiao and He,
2024), which creates synthetic images. While both approaches aim to make datasets smaller, they’ve
been used for different pruning ratios. Dataset distillation creates very small datasets, often keeping
just 10-100 images per class (IPC), which is about more than 90% smaller than the original. Dataset
pruning often only removes less than 50% of images while maintaining good performance.

Interestingly, recent DD methods increasingly rely on original images for better performance, making
them more similar to DP methods. Specifically, early works (Yin et al., 2023; Yin and Shen,
2024; Shao et al., 2024a; Xiao and He, 2024) gradually optimize random noise to create synthetic
images, and more recently, DWA (Du et al., 2024) initializes synthetic images with real images,
and RDED (Sun et al., 2024) uses real image patches to create synthetic images in an optimization-
free manner. The recent convergence of DD and DP methods motivates our investigation of their
comparative effectiveness.

However, there are two significant limitations that hinder unifying DD and DP into a unified approach.
1) Different reliance on soft label. DD’s reliance on soft labels introduces significant storage, while
DP methods avoid such dependencies. Soft labels’ storage requirements are excessive – consuming
up to 40 times more storage than the images themselves (Xiao and He, 2024). The complexity
increases further when incorporating advanced augmentation techniques like those in DELT (Shen
et al., 2024). 2) Different evaluation settings. Different configurations including batch sizes, loss
type, and augmentation parameters, largely affect the evaluated performance.

We propose a unified Dataset Compression (DC) benchmark to fairly evaluate DP and DD. The
benchmark includes 1) real, 2) partially real, or 3) completely distilled images. We use prefixes to
denote whether soft labels are utilized (soft-label-DC) or not (hard-label-DC). Our benchmark reveals
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Figure 1: Paradox in Soft-label Dataset Distil-
lation (DD): DD images < random subsets <
pruning-based subsets.
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Figure 2: Unlike previous methods (SRe2L (Yin
et al., 2023) and RDED (Sun et al., 2024)), our
PCA framework introduces four key innovations:
(a) pruning-based subset selection, (b) constrained
augmentation, (c) elimination of the soft label gen-
eration process, and (d) supervision using hard
labels instead of soft labels.

a surprising paradox with DD methods: the DD images actually perform worse than simply keeping
random subsets of original images when both are equipped with soft labels as shown in Figure 1,
particularly more pronounced at large IPCs. In addition, even purely random noise achieves learnable
results using soft labels from a pretrained teacher network. These discoveries question the validity
of current DD methods and raise fundamental concerns about whether focusing on soft labels over
images for dataset compression makes sense at all.

To resolve the paradox in current DD methods, we advocate hard-label-DC and propose the first
framework called “Prune, Combine, and Augment (PCA)” that prioritizes image contributions
without relying on soft labels, as illustrated in Figure 2. Our PCA framework has four key innovations
compared with previous methods. a) Image Preparation: PCA leverages pruning insights by
selecting simple and representative images based on established pruning principles, then combines
them in a cropping-free manner for further compression. b) Image Augmentation: PCA applies
constrained augmentation to images to adhere to data-scaling laws for the final small-scale datasets
during model training. c) Soft Label Generation: Unlike prior approaches, PCA does not rely on soft
labels generated from pretrained models. d) Model Training: PCA uses hard labels exclusively for
model supervisions. By avoiding soft labels, PCA is well-suited for scenarios with limited memory,
storage, or restricted access to large teacher models.

In summary, our primary contributions include:

1. A unified dataset compression benchmark for DD and DP. Three key observations from the
benchmark urge us to propose hard-label-DC.

2. The first hard-label-DC framework, PCA (Prune, Combine, Augment), that eliminates dependency
on soft labels while focusing on image contributions.

3. Comprehensive experiments showcasing PCA’s superior performance over both DD and DP
methods across different architectures, showing the power of shifting focus from labels to images.

2 RELATED WORKS

Dataset Distillation. Dataset distillation aims to learn compact and synthetic datasets that achieve a
similar performance as the full dataset. Researchers have developed many frameworks (Wang et al.,
2018; Zhao et al., 2021; Kim et al., 2022; Zhao and Bilen, 2021; Cazenavette et al., 2022; Liu et al.,
2023; Lee et al., 2022; Zhao and Bilen, 2023; Wang et al., 2022; Jiang et al., 2022; Du et al., 2023;
Shin et al., 2023; Deng and Russakovsky, 2022; Liu et al., 2022a; Zhao and Bilen, 2022; Wang et al.,
2023; Lorraine et al., 2020; Nguyen et al., 2021a;b; Vicol et al., 2022; Zhou et al., 2022; Loo et al.,
2022; Zhang et al., 2023; Cui et al., 2023; Loo et al., 2023) to effectively learn the synthetic dataset
on small scale dataset like MNIST and CIFAR dataset.
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However, scaling the existing framework to a large dataset suffers from unaffordable consumption in
both memory and time. SRe2L (Yin et al., 2023) on the first time achieves noticeable performance
by decoupling the optimization process into three phases of squeezing, recovering, and relabeling.
Follow-up works (Yin and Shen, 2024; Sun et al., 2024; Du et al., 2024; Shao et al., 2024a; Loo et al.,
2024) mostly focus on addressing the diversity issue of the recovery phase, with more and more
attention paid to the relabeling process (Xiao and He, 2024; Zhang et al., 2024a; Qin et al., 2024a;
Kang et al., 2024; Yu et al., 2025). However, most methods use different evaluation settings without
direct comparison, and overlook the random baseline’s performance under relabeling1.

Dataset Pruning. Dataset pruning selects a representative subset by ranking images with different
metrics (Coleman et al., 2020; Toneva et al., 2019; Pleiss et al., 2020; Feldman and Zhang, 2020; Paul
et al., 2021). Most of the reported experiments are focused on small datasets like CIFAR or ImageNet
subsets. Methods that scale to large-scale datasets focus on small or moderate pruning ratio to ensure
minimum performance drop (Xia et al., 2023; Sorscher et al., 2022; Zheng et al., 2023; Zhang et al.,
2024b; Grosz et al., 2024; Abbas et al., 2024). VID (Ben-Baruch et al., 2024) conducts experiments
on data pruning methods using knowledge distillation. However, these experiments did not explore
extreme pruning ratios, and the baselines were not compared with dataset distillation methods.

Combining Dataset Distillation and Dataset Pruning. Dataset compression intuitively encom-
passes both dataset distillation and dataset pruning, which can work independently. Existing studies
incorporate the pruning process, or coreset selection, before dataset distillation (Liu et al., 2023; Xu
et al., 2025; Moser et al., 2024; Shen et al., 2024). Additionally, YOCO (He et al., 2024) examines
the pruning rules specifically for distilled datasets. However, given the distinctly different nature and
settings of these two tasks, it remains unclear which method represents the state-of-the-art (SOTA) in
the field of data compression today. This lack of direct comparison may lead to misunderstandings
about the data compression task and result in ineffective combinations of methods.

3 BENCHMARKING DATA COMPRESSION

Table 1: Inconsistent settings and requirements of
dataset compression methods. † denotes actual image
storage is affected by JPEG compression; ∗ indicates
resizing image to 224x224. IPC-10, ImageNet-1K.

Settings/
Requirements EL2N RDED SRe2L

Image
DP/DD DP DD DD
Real/Distilled Real Partly Real Distilled
Storage† 118M∗ 130M 157M

Soft Label
Storage Overhead - 5,879M 5,822M

- (↑45×) (↑37×)

Time Overhead - 25 mins 25 mins
- (↑1.7×) (↑1.6×)

Model Training Batch Size 256 128 1024
Num. of Iterations 300K 24K 24K

DD and DP’s Difference 1: Soft Label. As
shown in Table 1, DD methods typically use
soft labels, while DP methods exclusively
use hard labels. However, as mentioned by
Xiao and He and Qin et al., the soft label
storage far exceeds the image storage. For
example, the label storage of ImageNet-10
IPC10 is over 5.8 GB, while the images
are merely 157M, creating a 40× storage
gap. Existing methods (Xiao and He, 2024;
Zhang et al., 2024a) have started to reduce
soft label storage, but pre-generated soft la-
bels still face several disadvantages. (1) Soft
labels are stored in a very different format
from images, and special changes to the dat-
aloader are required; (2) despite GPU-compute intensive, the soft label generation process has
significant memory-transfer bottlenecks, being unfriendly to devices with limited CPU resources.
Last but not least, as more and more data augmentation is introduced; (3) the use of soft labels
becomes increasingly complicated as more advanced augmentation (i.e., RandAugment (Shen et al.,
2024)) is introduced; (4) soft label introduces knowledge beyond the compressed datasets, potentially
biasing the evaluation results.

DD and DP’s Difference 2: Inconsistent Hyper-parameters. First, DD and DP methods have
different hyper-parameters as shown in Table 1. DP methods often train a fixed number of iterations
as full dataset training, while DD methods train a fixed number of epochs regardless of the dataset
size. Second, DD methods themselves have varying evaluation settings (see Appendix B.2), where
SRe2L (Yin et al., 2023) initially used a batch size of 1024 while later studies (Yin and Shen,
2024; Du et al., 2024; Sun et al., 2024) employed much smaller batches, dramatically affecting

1We notice a concurrent work that benchmarks existing dataset distillation methods, and we encourage
interested readers to visit https://github.com/NUS-HPC-AI-Lab/DD-Ranking (Li et al., 2024).
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(a) Benchmarking SOTA methods using soft labels.
Detailed data is provided in Table 2a.
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(b) Benchmarking SOTA methods using hard labels.
Detailed data is provided in Table 2b.

Figure 3: Comparison of SOTA methods using soft labels (left) and hard labels (right) on ImageNet-
1K. “DD (Noise Init)” and “DD (Real Init)” denote dataset distillation initialized with noisy images
and real images, respectively. Evaluation uses ResNet-18 on ImageNet-1K. Two observations are
made: (1) Many methods struggle to outperform the random baseline, particularly at large IPCs. (2)
In addition, methods utilizing more original images generally achieve better performance.
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2024

2024

2021

DWA         (1.99 ± 1.61)

Random   (1.56 ± 1.14)
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Figure 4: Entropy analysis of different datasets with IPC=10. Images are randomly sampled from
the corresponding dataset for visualization. The classifier used for entropy analysis is the pretrained
EfficientNet-B0 (Tan and Le, 2019).

performance. These differences create barriers to reproducibility and complicate meaningful cross-
method comparisons. We adopt CDA’s setting (Yin and Shen, 2024) as our standard evaluation
protocol for both DD and DP methods since it’s widely used.

Our Dataset Compression (DC) Benchmark to unify DD and DP. For fair comparison and training
efficiency, we standardize all experiments using the most common evaluation protocol from dataset
distillation (CDA (Yin and Shen, 2024)), for both DD and DP methods. To ensure comparability, we
keep the training setup identical across all experiments, varying only the input dataset. Additionally,
to match the fixed image resolution required by DD methods, we preprocess DP images by cropping
along the shorter side and resizing them to 224×224.

Benchmark Observation 1: (DD + Soft Label) < (Random + Soft Label). Existing dataset
distillation (DD) methods do not consider random subsets as a baseline. However, after benchmarking
random subsets under the standard evaluation setting with soft labels, we found that most dataset
distillation methods (Yin et al., 2023; Yin and Shen, 2024; Du et al., 2024; Xiao and He, 2024) fail
to surpass the random baseline, especially at large IPCs as shown in Figure 3a. The high random
baseline with soft labels reveals that the inflated performance gain of DD methods is primarily
due to the soft labels.

Benchmark Observation 2: (Random + Soft Label) < (Pruning + Soft Label). An important
research question remains unanswered: how do DP methods perform with soft labels at the extreme

4
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pruning ratios typical of DD methods? Our benchmark demonstrates that DP methods consistently
outperform random subsets when soft labels are applied to DP. This indicates that pruned datasets are
more effective than random subsets and DD datasets. This observation also helps explain why recent
DD methods increasingly incorporate high-quality original images.

Benchmark Observation 3: DD < Random < Pruning. Given the substantial storage and
computational overhead of soft labels, we investigated whether the performance trends would hold
when using only hard labels. Our experiments show this trend persists with hard labels (Figure 3b),
which are more practical due to lower storage requirements. With hard labels only, the performance
gap between methods widens, confirming that pruning’s advantages stem from image quality, not soft
label utilization. This further validates that previously observed DD advantages were primarily
due to soft labels, not the distilled images themselves.

These three observations, combined with the substantial storage overhead of soft labels, suggest that
large-scale dataset compression should prioritize image quality over soft label exploitation. To this
end, we are motivated to develop a hard-label-only framework that shifts focus from labels to images.

4 FRAMEWORK: PRUNE, COMBINE, AND AUGMENT

Figure 5 shows our Prune, Combine, and Augment (PCA) framework, which removes soft labels and
supervises models with hard labels.

4.1 PRUNE DATASET

Motivation. Section 3 demonstrates that pruning consistently outperforms distillation. Based on
this finding, we incorporate dataset pruning into our framework by leveraging three key insights: (1)
Class balance becomes increasingly critical as dataset size diminishes (He et al., 2024), (2) Simpler
images yield better performance with small datasets (Sorscher et al., 2022; Zheng et al., 2023; He
et al., 2024), and (3) Pruning should be applied to the complete dataset.

Insight 1: Maintain Perfect Class Balance in Pruning. Conventional dataset pruning creates an
imbalanced dataset where less important classes are pruned more aggressively. At extreme pruning
ratios, this can completely eliminate certain classes (He et al., 2024). In contrast, dataset distillation
maintains perfect class balance by generating a fixed number of images per class (IPC). We adopt
this balanced approach by pruning to a consistent IPC across all classes.

Insight 2: Prioritize Simpler Images During Pruning. Prior research (Zheng et al., 2023; He
et al., 2024) demonstrates that simpler images perform better when the dataset size is small. Our
entropy analysis in Figure 4 provides an intuitive explanation for why pruning methods outperform
distillation methods. By measuring dataset complexity through entropy (Coleman et al., 2020; Sun
et al., 2024), we observe that pruned datasets have the lowest average entropy, indicating relative
simplicity. Visual inspection confirms that images retained by pruning methods are indeed simpler
than those created by distillation methods. Based on these findings, we follow He et al. in using the
reversed EL2N metric (Paul et al., 2021) for our pruning strategy.

Insight 3: Apply Pruning to the Full Dataset. Without soft labels, maximizing information retention
becomes crucial. Therefore, pruning must be conducted on the full dataset rather than on subsets. As
shown in Figure 5 (right), our approach differs from methods like RDED (Sun et al., 2024), which
creates image patches from randomly sampled subsets. Instead, we prune the complete dataset to
ensure all subsequent operations work exclusively with the most informative samples.

4.2 CROPPING-FREE IMAGE COMBINATION

In our PCA framework, where only hard labels are available and the dataset has already been carefully
pruned, cropping or patch-based selection is unsuitable. This is because pruning makes the dataset
retain only the most important images; any further cropping risks irreversibly discarding important
content that hard-label supervision cannot recover.

To formalize this, we clarify the relationships between negative log-likelihood (NLL), cross-entropy,
and entropy. For a dataset D = {(xi, yi)}Ni=1 and model pθ(y|x):

5
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Figure 5: Detailed PCA pipeline. Left: illustration of image preparation, where our PCA includes
only high-importance images. Right: illustration of image augmentation, where our PCA constrains
image cropping at a single image patch, creating easy samples favored by the data-scaling law.

NLL(D; θ) = − 1

N

N∑
i=1

log pθ(yi|xi) ≈ CED(ptrue, pθ) = Htrue +DKL(ptrue∥pθ),

where Htrue is the irreducible entropy of the true conditional distribution. For our analysis, we focus
on the model’s predictive entropy:

H(D; θ) =
1

N

N∑
i=1

H(pθ(·|xi)), where H(pθ(·|x)) = −
C∑

y=1

pθ(y|x) log pθ(y|x).

While ideally one would train separate models on each dataset subset, we use a fixed pretrained model
θ0 as an efficient proxy for evaluation, as pretrained model uncertainty correlates strongly with dataset
difficulty and trainability (Coleman et al., 2020). This allows us to write NLL(D) := NLL(D; θ0)
and H(D) := H(D; θ0) for brevity.

Let Csel(D) denote selective cropping that chooses optimal crops for each image to minimize NLL,
and let Ar(D) denote random spatial cropping augmentation with ratio r ∈ (0, 1], where r represents
the fraction of area retained. We reveal two fundamental limitations of cropping-based approaches:
Proposition 4.1 (proof in Appendix A.1). Let D′ = Csel(D) be a selectively cropped version of
dataset D. Lower evaluation loss does not guarantee lower entropy:

NLL(D′) < NLL(D) ⇏ H(D′) < H(D).

Theorem 4.2 (proof in Appendix A.2). Let D′ = Csel(D) be a selectively cropped dataset with
lower initial entropy: H(D′) < H(D). There exists a crop ratio r∗ ∈ (0, 1) such that when random
cropping augmentation is applied, the entropy advantage is lost:

H(D′) < H(D) but H(Ar∗(D′)) ≥ H(Ar∗(D)),

where H(Ar(·)) represents the expected entropy over all random spatial crops with ratio r.

Interpretation. These results demonstrate a two-fold limitation: (1) cropping to lower NLL doesn’t
necessarily reduce dataset entropy, which is what matters for performance; and (2) even if entropy is
reduced through selective cropping, this advantage is lost or reversed when training-time augmenta-
tions are applied. This theoretical analysis, combined with our empirical findings, justifies our choice
to avoid cropping and instead combine full, pruned images, ensuring maximal information retention
and reliable downstream performance.

4.3 CONSTRAINED AUGMENTATION FOR DATA-SCALING-LAW

The scaling-law usually refers to scaling up the model (Kaplan et al., 2020); however, we refer to
the data-scaling-law (Sorscher et al., 2022) which scales the dataset, specifically when scaling down
under hard-label-only settings. After acquiring a small-scale dataset, it remains crucial to unveil its
potential and effectively harness the available information. Augmentation typically serves as the tool
to achieve the goal, but it is imperative that augmentation outcomes should closely adhere to the
data-scaling-law. For example, RDED (Sun et al., 2024) selects simple image patches and combines
them; however, during training, the Random Resized Crop operation directly applies to the
combined image, inadvertently transforming simple images into more complex ones.

6
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Table 2: Benchmarking SOTA methods against random baseline under evaluation with soft labels
(top) and hard labels (bottom). † means optimization-free distillation approaches. All experiments
use ResNet-18 on ImageNet-1K. Tables with standard deviation are provided in Appendix C.

(a) Soft label benchmark. (Storage overhead of soft labels: ∼ 40× as images.)
DD (Noise Init) DD (Real Init) Pruning Method with Rules

IPC Random SRe2L CDA G-VBSM LPLD RDED† DWA Forgetting EL2N AUM CCS

10 35.8±0.2 33.5↓2.3 33.5↓2.3 35.8=0.0 34.6↓1.2 38.4↑2.6 37.9↑2.1 36.1↑0.3 40.8↑5.0 41.5↑5.7 37.4↑1.6
50 57.2±0.2 52.6↓4.6 53.5↓3.7 54.8↓2.4 55.4↓1.8 56.2↓1.0 55.2↓2.0 57.2=0.0 58.1↑0.9 58.5↑1.3 58.2↑1.0
100 61.2±0.2 57.4↓3.8 58.0↓3.2 59.2↓2.0 59.4↓1.8 60.2↓1.0 59.2↓2.0 61.0↓0.2 61.5↑0.3 61.5↑0.3 61.6↑0.4

(b) Hard label benchmark and Our PCA. (No storage overhead of soft labels for all IPC.)
DD (Noise Init) DD (Real Init) Pruning Method with Rules PCA

IPC Random SRe2L CDA G-VBSM LPLD RDED† DWA Forgetting EL2N AUM CCS Ours

10 4.6±0.1 1.5↓3.1 1.6↓3.0 1.6↓3.0 3.4↓1.2 11.5↑6.9 1.9↓2.7 3.4↓1.2 12.2↑7.6 11.4↑6.8 6.8↑2.2 22.8↑18.2
50 20.6±0.1 3.8↓16.8 5.8↓14.8 9.0↓11.6 5.1↓15.5 30.8↑10.2 5.3↓15.3 11.7↓8.9 31.1↑10.5 30.6↑10.0 29.3↑8.7 39.1↑18.5
100 31.7±0.6 4.9↓26.8 8.0↓23.7 16.6↓15.1 6.0↓25.7 39.2↑7.5 7.5↓24.2 18.3↓13.4 38.7↑7.0 38.8↑7.1 39.0↑7.3 45.5↑13.8

To counteract this issue, we propose to randomly restrict the cropping area within a single patch,
and we refer to it as constrained augmentation. The illustration is provided in Figure 5 (right). Our
constrained augmentation uses a single augmented image instead of four per epoch for training.
Therefore, no additional training overhead is imposed when compared to RDED (Sun et al., 2024).

We emphasize the importance of using an effective augmentation strategy. When dealing with a small
number of images, achieving good performance can be challenging. A well-crafted augmentation
method, which adheres to data-scaling-law, can greatly enhance the potential of the images.

5 EXPERIMENT

All experiments are conducted on ImageNet-1K using CDA’s evaluation settings (see Appendix B.2)
unless otherwise indicated. Additional settings, including dataset, networks, and baseline specifica-
tions, can be found in Appendix B.

5.1 PRIMARY RESULTS

Call Attention to Pruning from Soft-label Benchmark. Table 2a benchmarks existing dataset
distillation methods and dataset pruning methods under the same evaluation setting. We notice that by
increasing the batch size in the evaluation setting, the performance SRe2L (Yin et al., 2023) catches
up with other SOTA methods (Yin and Shen, 2024; Xiao and He, 2024). However, with this being
said, many SOTA methods cannot beat the random baseline. Surprisingly, pruning methods that
are published 3-5 years ago (Toneva et al., 2019; Pleiss et al., 2020; Paul et al., 2021) unanimously
outperform random baselines, and it’s time to call attention to this under-explored topic. As a
result, an interesting observation is that the performance improves as the images include more prior
knowledge of original datasets.

Comparing Hard-label SOTA Methods with PCA. Table 2b evaluates the SOTA methods in a
more advocated approach that does not introduce any additional storage costs besides the images or
requires pretrained knowledge. By utilizing only the hard labels, most of results show a similar trend
as soft label benchmarks. Our PCA (Prune, Combine, and Augment) framework essentially exceeds
the random baseline and other SOTA methods at all tested IPCs.

Sanity Check on Pruning Rules and Scaling Laws. Previous pruning methods (Sorscher et al.,
2022; Zheng et al., 2023; He et al., 2024) concluded that with small datasets, (1) easy images are
preferred and (2) class balance is important. However, these findings need verification in our extreme
pruning scenario (IPC10 = 99.2% pruning rate) since prior works (Zheng et al., 2023) used more
moderate ratios or focused on distilled datasets (He et al., 2024). Table 3 confirms these rules hold
even at extreme pruning ratios with real images, as selecting easy images with balanced classes
consistently delivers the best results under both soft and hard label settings. Among pruning metrics,
EL2N (Paul et al., 2021) shows superior performance and requires less computation time, making it
our chosen method for PCA (see Appendix D.2 for analysis of why Forgetting (Toneva et al., 2019)
performs worse).
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Table 3: Performance of pruning methods at extreme pruning ratio. The best setting for each method
is marked in bold, and the best method is underlined.

Method

Soft Label Hard Label

IPC10 (99.22%) IPC50 (96.97%) IPC10 (99.22%) IPC50 (96.97%)

hard hardB easy easyB hard hardB easy easyB hard hardB easy easyB hard hardB easy easyB

Forgetting 25.9 32.9 6.1 36.1 53.0 56.7 52.3 57.2 0.4 4.4 0.1 3.4 15.3 21.7 0.3 11.6
AUM 27.1 37.4 12.2 41.5 53.7 56.8 45.3 58.5 0.2 1.4 0.1 11.4 1.8 4.4 0.3 30.6
EL2N 28.7 36.0 14.2 40.8 54.4 56.9 46.0 58.1 0.2 1.4 0.2 12.2 3.2 4.2 0.3 31.1

Table 4: Ablation study of the proposed PCA
framework. + denotes add-on components.
Note that the default augmentation applies un-
less marked with †, denoting the proposed con-
strained augmentation. Best results of each set-
ting are in bold. ResNet-18 on ImageNet-1K.

Setting Method 10 50 100

AdamW

Random 4.6 21.2 31.4
+ Pruning 12.2↑7.6 31.1↑9.9 38.8↑7.4
+ Combine 14.4↑9.8 32.4↑11.2 39.4↑8.0
+ Augment† 22.8↑18.2 39.1↑17.9 45.5↑14.1

SGD Random 5.1 26.6 38.9
Our PCA 25.6↑20.5 42.1↑15.5 48.6↑9.7

Table 5: Cross-architecture performance of PCA
framework (hard-label) on ImageNet-1K. “→
SGD” denotes evaluation with SGD setting.

Model Params. Acc. 10 50 100

ResNet-18 11.7 M 69.76 22.8 39.1 45.5
→ SGD 25.6 42.1 48.6

ResNet-50 25.6 M 76.13 23.0 42.3 48.3
→ SGD 25.3 43.2 50.5

ResNet-101 44.5 M 77.37 25.8 42.7 49.6
→ SGD 25.9 46.3 53.6

MobileNet-V2 3.5 M 71.88 21.9 39.1 45.3
EfficientNet-B0 5.3 M 77.69 25.0 42.4 50.4
Swin-V2-Tiny 28.4 M 82.07 15.3 37.8 48.2

5.2 MORE EXPERIMENTS

Ablation Study. Table 4 demonstrates the improvements contributed by each component under hard-
label-only settings. Every component in PCA is essential and advantageous to the final performance.
Especially, constrained augmentation has the most impact on the final performance. This validates our
design principle that adhering to the data-scaling-law is crucial. Additionally, since the evaluation
settings for pruning methods use SGD with an initial learning rate of 0.1, we have also conducted
evaluations under this configuration. Our observations reveal that even random baselines benefit from
using SGD (0.1), showing a distinct advantage over AdamW (0.01). In all cases, the proposed PCA
framework yields significant improvements over random baselines.

Cross Architecture Performance. Table 5 demonstrates a good generalization ability of the proposed
framework. For all validation models, the performance scales well with the dataset size. In addition,
the framework scales well with improved model capacity, with one exception on the transformer-
based Swin-V2-Tiny model (Liu et al., 2022b). Since the transformer-based model is extremely
data-hungry, a trend is also observed in previous works (Xiao and He, 2024; Sun et al., 2024).

Performance Against Soft Labels. Despite having inevitable drawbacks and unfairness as mentioned
in Section 3, the cumbersome storage of soft labels can be addressed in some degree. Table 6 shows
our hard-label-only framework can perform on par or even surpass previous methods using part of
soft labels. In theory, the maximum soft label compression rate is limited to 300× in ImageNet-1K
setting, as each image requires a soft label per epoch for 300 epochs. Since we do not use soft labels
at all, our soft label compression rate is > 300×.

Effect of Cropping. In addition to the theoretical analysis of the effects of cropping (Section 4.2),
we conducted experiments to validate our findings. It is important to note that cropping can be
performed both before and during training. We refer to cropping the dataset before training a model
as dataset cropping, which is irreversible. Table 7 shows that regardless of the metric and observer
used to select patches from a well-pruned dataset, dataset cropping negatively impacts performance.
This behavior can be explained by Theorem 4.2. Another cropping operation occurs during training
augmentation (specifically, RandomResizedCrop), which is “recoverable” because the original image
remains unchanged, and the cropping operation in each epoch is independent. Table 8 presents
performance under different training crop ratios.

Regularization-based Data Augmentation. In addition to common augmentation techniques such
as random resized crop and horizontal flips, data mixing augmentation (i.e., Mixup, Cutout, and
CutMix) is a regularization-based data augmentation that reduces overfitting by providing diverse and
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Table 6: Hard label performance
against soft labels. * denotes hard-
label only. ResNet-18, ImageNet-1K.

Compression 30× 40× 100× > 300×
Rate SRe2L CDA LPLD PCA*

IPC10 14.1 13.2 9.6 25.6
IPC50 37.2 38.0 33.7 42.4
IPC100 46.7 47.2 44.7 48.8

Table 7: Dataset cropping configs.
N is number of extracted patches.

Observer Metric N = 5 N = 20

EfficientNet-B0 NLL 19.0 18.3
Entropy 17.2 18.1

ResNet NLL 18.7 17.1
Entropy 18.0 18.3

No Crop 22.8

Table 8: Crop ratio (r)
during training.

range:=(r, 1.0) IPC10 IPC50

r = 0.01 22.1 39.0
r = 0.08 22.8 39.1
r = 0.5 22.2 38.6
r = 0.8 21.0 35.5
r = 1.0 18.7 34.0

Table 9: Effects of regularization-based augmentations on PCA (SGD setting). “Crop” refers to
RandomResizedCrop (0.08-1.00 range). “Mix Probability” indicates the likelihood of applying data
mixing, where 1.0 means always applying data mixing. “Label Mixing” combines class labels
proportionally to the area of mixed image regions. ResNet-18, IPC10, ImageNet-1K.

Crop Data
Mixing

Label
Mixing

Mix Probability
0.2 0.5 1.0

✓ ✗ - 25.6

✓ CutMix ✓ 23.8↓1.8 23.0↓2.6 17.4↓8.2
✗ 25.5↓0.1 24.7↓0.9 23.0↓2.6

✓ Mixup ✓ 25.7↑0.1 23.0↓2.6 7.7↓17.9
✗ 25.9↑0.3 25.1↓0.5 17.6↓8.0

✓ Cutout - 26.2↑0.6 25.7↑0.1 25.3↓0.3

Crop Data
Mixing

Label
Mixing

Mix Probability
0.2 0.5 1.0

✗ ✗ - 21.6

✗ CutMix ✓ 9.8↓11.8 8.1↓13.5 10.5↓11.1
✗ 15.6↓6.0 14.3↓7.3 12.5↓9.1

✗ Mixup ✓ 18.9↓2.7 17.4↓4.2 8.4↓13.2
✗ 19.2↓2.4 18.3↓3.3 15.6↓6.0

✗ Cutout - 22.7↑1.1 22.4↑0.8 21.8↑0.2

challenging examples during training. Among all options, Table 9 shows that Cutout demonstrates
the best performance, while CutMix and Mixup exhibit notable performance degradation as mixing
probability increases, especially in the presence of label mixing. This performance advantage is
attributed to being best aligned with scaling law. Details are provided in Appendix D.1.

Table 10: PCA framework with differ-
ent pruning methods. ResNet-18 with
AdamW optimizer.

IPC Random Forgetting EL2N AUM

10 4.6±0.1 8.6±0.2 22.8±0.3 21.9±0.3

50 20.6±0.1 24.1±0.4 39.1±0.2 39.2±0.1

100 31.7±0.6 36.2±0.3 45.5±0.4 46.4±0.2

PCA with Different Pruning Methods. Table 10 shows
PCA results with various pruning methods under hard-
label settings. Both EL2N (Paul et al., 2021) and
AUM (Pleiss et al., 2020) significantly outperform ran-
dom baselines. While AUM shows better results at higher
IPCs, we selected EL2N as our baseline for efficiency, as
it requires only 10 epochs of training data compared to
AUM’s 90 epochs. Forgetting (Toneva et al., 2019), though
performing worse than EL2N and AUM, still consistently beats random baselines. See Appendix D.2
for analysis of Forgetting’s limitations.

Additional Discussion (Appendix D). Additional discussions are provided in Appendix D, in-
cluding training with purely noisy data (Appendix D.3), SRe2L with real images as initialization
(Appendix D.4), random baseline in soft-label-DD (Appendix D.5), relationship between data balance
and data stratification (Appendix D.6), mosaic augmentation (Appendix D.7), computation cost
analysis (Appendix D.8), and comparison with RDED (Appendix D.9).

Visualization. Visualizations of our PCA including baseline methods are provided in Appendix F.

6 CONCLUSION

Our unified dataset compression benchmark revealed a paradox: distilled images with soft labels
underperform random subsets, while pruned datasets consistently outperform both, suggesting
contemporary DD gains stem from soft labels, which impose up to 40× storage overhead, rather than
from distilled images. We address this with our Prune, Combine, and Augment (PCA) framework,
which selects easy and balanced samples via pruning metrics, combines them effectively, and applies
constrained augmentation aligned with data-scaling laws. By using only hard labels, PCA eliminates
pretrained resource dependencies and significantly reduces storage requirements while consistently
outperforming existing random baselines, particularly at extreme compression ratios.

Limitations, future works, and broader impacts are discussed in Appendix G, Appendix H, and
Appendix I, respectively.
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Appendix
A PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proposition A.1 (Restated). Let D′ = Csel(D) be a selectively cropped version of dataset D. Lower
evaluation loss does not guarantee lower entropy:

NLL(D′) < NLL(D) ⇏ H(D′) < H(D).

Proof. We prove this by constructing an explicit counterexample using a two-sample dataset and a
fixed model pθ0 .

Counterexample Construction. Consider a binary classification task with dataset D =
{(x1, y1), (x2, y2)} where y1 = y2 = 1. Let the model’s predictions on the original images be:

pθ0(y = 1|x1) = 0.7, H(pθ0(·|x1)) = h(0.7) = 0.6109 (1)
pθ0(y = 1|x2) = 0.2, H(pθ0(·|x2)) = h(0.2) = 0.5004 (2)

where h(p) = −p ln p− (1− p) ln(1− p) is the binary entropy function using natural logarithm.

The original dataset metrics are:

NLL(D) =
1

2
[− ln(0.7)− ln(0.2)] =

1

2
[0.3567 + 1.6094] = 0.9831

H(D) =
1

2
[0.6109 + 0.5004] = 0.5557

Selective Cropping Operation. Define the selective cropping Csel as follows: for x1, retain the
original image (no cropping needed as the model already performs well); for x2, apply a crop that
removes confounding background elements. Suppose this crop transforms x2 into x′

2 such that:

pθ0(y = 1|x′
2) = 0.5, H(pθ0(·|x′

2)) = h(0.5) = 0.6931

The intuition here is that removing context from a difficult image makes the model more uncertain
even though it assigns higher probability to the correct class. This models real scenarios where
background removal eliminates both distractors and helpful context.

Verification of the Counterexample. For the selectively cropped dataset D′ = {(x1, y1), (x
′
2, y2)}:

NLL(D′) =
1

2
[− ln(0.7)− ln(0.5)] =

1

2
[0.3567 + 0.6931] = 0.5249 < 0.9831 = NLL(D)

H(D′) =
1

2
[0.6109 + 0.6931] = 0.6520 > 0.5557 = H(D)

Thus we have constructed a concrete example where NLL(D′) < NLL(D) yet H(D′) > H(D),
proving that lower NLL does not imply lower entropy.

A.2 PROOF OF THEOREM 4.2

Theorem A.2 (Restated). Let D′ = Csel(D) be a selectively cropped dataset with lower initial
entropy: H(D′) < H(D). Under Assumption A.3, there exists a crop ratio r∗ ∈ (0, 1) such that
when random cropping augmentation is applied, the entropy advantage is lost:

H(D′) < H(D) but H(Ar∗(D′)) ≥ H(Ar∗(D)),

where H(Ar(·)) represents the expected entropy over all random spatial crops with ratio r.
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Assumption A.3 (Compounding Information Loss). For the selectively cropped dataset D′ = Csel(D),
there exists a dataset-dependent threshold r0 ∈ (0, 1) such that for all r ∈ (0, r0), aggressive random
cropping causes more severe entropy increase than for the original dataset:

H(Ar(D′)) > H(Ar(D))

Justification: This assumption is natural because D′ has already lost spatial context through selective
cropping. When an image has been pre-cropped to remove “hard” regions, the remaining content has
less redundancy. Further random cropping of this already-reduced image is more likely to remove
critical discriminative features, leading to higher prediction uncertainty compared to random cropping
of the original, full images. We provide empirical validation in Table 11.

Proof. We establish the existence of r∗ where the entropy advantage is lost using the Intermediate
Value Theorem.

Setup. Define the entropy functions for both datasets under random cropping augmentation with
parameter r ∈ (0, 1]:

f(r) := H(Ar(D)) = Ecrop∼Ar

[
1

N

N∑
i=1

H(pθ0(·|crop(xi)))

]
(3)

f ′(r) := H(Ar(D′)) = Ecrop∼Ar

[
1

N

N∑
i=1

H(pθ0(·|crop(x′
i)))

]
(4)

where the expectation is taken over all possible random crops with area ratio r.

Continuity. Both f(r) and f ′(r) are continuous functions on (0, 1]. This follows from the compo-
sition of continuous operations: random cropping operations employ bilinear interpolation, ensuring
continuous transformations as r varies; the neural network pθ0 consists of continuous activation func-
tions; the entropy function H(p) = −

∑
y p(y) ln p(y) is continuous in the probability distribution

p; and the expectation operation preserves continuity when integrated over a continuous parameter
space.

Boundary Analysis. At r = 1 (no effective cropping):

f(1) = H(D) (5)

f ′(1) = H(D′) (6)

By hypothesis, f ′(1) = H(D′) < H(D) = f(1).

Application of the Intermediate Value Theorem. Define the difference function:

g(r) := f ′(r)− f(r) = H(Ar(D′))−H(Ar(D))

Having defined the difference function g(r) := f ′(r)− f(r), we can now establish its key properties.
First, at the boundary r = 1, we have g(1) = H(D′)−H(D) < 0 by our initial hypothesis that the
selectively cropped dataset has lower entropy. Second, Assumption A.3 guarantees that g(r) > 0
for all r ∈ (0, r0), reflecting the compounding information loss under aggressive cropping. Finally,
since both f and f ′ are continuous functions on (0, 1], their difference g inherits this continuity on
the same domain.

Since g is continuous on [r0/2, 1], with g(r0/2) > 0 and g(1) < 0, the Intermediate Value Theorem
guarantees the existence of at least one r∗ ∈ (r0/2, 1) ⊂ (0, 1) such that g(r∗) = 0. This establishes:

H(Ar∗(D′)) = H(Ar∗(D))

Therefore, there exists r∗ ∈ (0, 1) where the initial entropy advantage is completely lost.
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Table 11: Validation of Assumption A.3: g(r) = H(Ar(D′)) − H(Ar(D)) > 0 for small r. We
model H(Ar(D)) with single crops and H(Ar(D′)) with consecutive crops (each with ratio

√
r,

total effective ratio r).

Crop Quantity Easy Easy+Bal. Random Hard+Bal. Hard
Ratio Only Only

r = 0.08
H(Ar(D)) 0.21 0.30 0.63 0.26 0.23
H(Ar(D′)) 0.22 0.35 0.84 0.32 0.27
g(r) = ∆H +0.01 +0.05 +0.21 +0.06 +0.04

r = 0.2
H(Ar(D)) 0.12 0.15 0.44 0.16 0.13
H(Ar(D′)) 0.15 0.19 0.55 0.21 0.17
g(r) = ∆H +0.03 +0.04 +0.11 +0.05 +0.04

r = 0.5
H(Ar(D)) 0.09 0.08 0.21 0.10 0.09
H(Ar(D′)) 0.13 0.12 0.28 0.15 0.12
g(r) = ∆H +0.04 +0.04 +0.07 +0.05 +0.03

r = 0.8
H(Ar(D)) 0.07 0.06 0.10 0.07 0.06
H(Ar(D′)) 0.10 0.09 0.14 0.10 0.09
g(r) = ∆H +0.03 +0.03 +0.04 +0.03 +0.03

Empirical Validation of Assumption A.3. Table 11 validates our compounding assumption by
computing g(r) = H(Ar(D′)) − H(Ar(D)) across different crop ratios. We model H(Ar(D))
using single crops with ratio r, and H(Ar(D′)) using consecutive crops (two crops each with ratio√
r, giving effective ratio r), representing the compounding effect of selective cropping followed by

random augmentation.

All values of g(r) are positive across all dataset types and crop ratios tested, with the effect most
pronounced at r = 0.08 where g(r) = 0.21 for random datasets, representing a 33% relative increase
in entropy. The monotonic decrease of g(r) as r increases is consistent with our theoretical analysis,
as the compounding effect diminishes when crops retain more of the original image. This empirical
evidence strongly supports Assumption A.3.
Lemma A.4 (Uncertainty and Generalization). In small-data regimes and under typical calibration
assumptions, datasets exhibiting lower average predictive entropy H(Y |X; θ) tend to be more
trainable and yield better downstream generalization performance. This relationship has been
observed in multiple empirical studies (Mukhoti et al., 2020; Coleman et al., 2020).

Practical Implications. The combination of Lemma A.4 and Theorem 4.2 offers a cautionary
insight: while selective cropping may reduce entropy during dataset preparation, this advantage is
lost (or reversed) under standard training augmentations. In small-data regimes where lower entropy
correlates with better generalization, such loss means that models trained on selectively cropped
datasets may underperform compared to those trained on uncropped, pruned datasets. This supports
our PCA framework’s design choice to avoid cropping and instead combine full, pruned images,
preserving maximum information and ensuring reliable downstream performance.
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B EXPERIMENT SETTINGS

B.1 DATASET AND NETWORK

Dataset. The ImageNet-1K dataset (Deng et al., 2009), also known as ILSVRC-2012, is a large-scale
image classification dataset containing N = 1.28 million training images and 50, 000 validation
images across K = 1, 000 object categories. Each image is manually annotated with a single class
label. The dataset contains approximately 1, 200 images per class in the training set. Images have an
average resolution of 469× 387 pixels but are typically pre-processed to a standard size of 224× 224
pixels for model training. This dataset has become a de facto benchmark for evaluating deep learning
models in computer vision tasks, particularly for image classification problems.

Network. For all networks, we use common network definition from
https://pytorch.org/vision/main/models.html. Networks are trained for 300 epochs by default;
detailed settings are provided in Appendix B.2.

B.2 STANDARD EVALUATION SETTING

Table 12 provides a more comprehensive comparison among baseline dataset distillation methods.
We have adopted the CDA’s setting (Yin and Shen, 2024) as the standard evaluation setting for two
main reasons: (1) many other studies, such as LPLD (Xiao and He, 2024) and DWA (Du et al., 2024),
have used this setting; and (2) it applies to most methods, being designed explicitly for datasets that
include combined image patterns, in contrast to patch shuffling. Note that baseline dataset pruning
methods also adhere to the standard evaluation setting for fair comparison.

It’s important to note that using alternative settings or additional techniques is NOT incorrect;
however, we have chosen a common standard evaluation setting to facilitate a clearer comparison
among the different methods.

Table 12: Inconsistent evaluation settings of Dataset Distillation on ImageNet-1K. Values marked in
bold are settings different from SRe2L. † represents the IPC-dependent.

Configuration Value SRe2L CDA LPLD DWA RDED G-VBSM EDC
(Yin et al.) (Yin and Shen) (Xiao and He) (Du et al.) (Sun et al.) (Shao et al.) (Shao et al.)

Epochs 300 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Optimizer AdamW ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model LR 0.001 ✓ ✓ ✓ ✓ ✓ ✓ ✓
LR Smooth LR ✗ ✗ ✗ ✗ ✓ ✗ ✓
LR Scheduler CosineAnnealing ✓ ✓ ✓ ✓ ✓ ✓ ✓

Batch Size 1024 1024 128 128 128 100† 1024 100
Soft Label Single / Ensemble Single Single Single Single Single Ensemble Ensemble
Loss Type KL / MSE+0.1xGT KL KL KL KL KL MSE MSE
EMA-based ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Augmentation

PatchShuffle ✗ ✗ ✗ ✗ ✓ ✗ ✗
ResizedCrop ✓ ✓ ✓ ✓ ✓ ✓ ✓
CropRange (0.08, 1) (0.08, 1) (0.08, 1) (0.08, 1) (0.5, 1) (0.08, 1) (0.5, 1)

Flip ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cut-Mix ✓ ✓ ✓ ✓ ✓ ✓ ✓

Remark: Table 12 does not cover all the different settings. For example, EDC (Shao et al., 2024b)
uses EMA-based evaluation while other methods do not include it.

B.3 FAIR STORAGE OF PRUNING DATASETS

When considering the pruning ratio in state-of-the-art (SOTA) pruning methods, it is important to
note that the pruning ratio does not directly correspond to the dataset distillation setting. Existing
pruning techniques primarily focus on tracking the ranking of images (i.e., the indices) rather than
storing the actual dataset, which leads to the neglect of the true size of the ImageNet-1K images.
Additionally, dataset distillation limits image resolution to 224× 224 pixels. Therefore, it is unfair,
in terms of information content and storage, to directly store the actual ImageNet-1K images, which
have a higher average resolution of 469× 387 pixels. To address this, we choose to crop the images
based on their shortest side and then resize them to 224× 224 pixels.
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B.4 BASELINES SPECIFICATIONS

In this section, we provide more specifications of each baseline.

Dataset Distillation Baselines:

• SRe2L (Yin et al., 2023): No special adjustments. Dataset recovered following
https://github.com/VILA-Lab/SRe2L.

• CDA (Yin and Shen, 2024): No special adjustments; results reported are from the original
paper. Dataset recovered following https://github.com/VILA-Lab/CDA.

• G-VBSM (Shao et al., 2024a): No special adjustments. Dataset recovered following
https://github.com/shaoshitong/G VBSM Dataset Condensation.

• LPLD (Xiao and He, 2024): No special adjustments; results reported are from the original
paper. Dataset provided in https://github.com/he-y/soft-label-pruning-for-dataset-distillation.

• DWA (Du et al., 2024): No special adjustments; results reported are from the original paper.
Dataset recovered following https://github.com/AngusDujw/Diversity-Driven-Synthesis.

• RDED (Sun et al., 2024): IPC10 and IPC50 selects patch from m = 300
patches, and IPC100 selects from m = 600 patches. Dataset recovered following
https://github.com/LINs-lab/RDED.

Dataset Pruning Baselines: We create datasets by using the data ranking scores provided by Zheng
et al. (https://github.com/haizhongzheng/Coverage-centric-coreset-selection). After obtaining the
ranking, we post-process the datasets into images of resolution 224×224, according to Appendix B.3.

• Forgetting (Toneva et al., 2019): Images with low “forgetting events” are selected; if
images have a same number of “forgetting events”, we randomly sample the images. Strict
class balance is enforced.

• EL2N (Paul et al., 2021): Images with low “EL2N Scores” are selected; and strict class
balance is enforced.

• AUM (Pleiss et al., 2020): Images with high “accumulated margin” are selected; strict class
balance is enforced.

• CCS (Zheng et al., 2023): For the base pruning metric, we use AUM (Pleiss et al., 2020)
following the original experiment setting. In addition, we prune away 30% “mislabeled”
data for IPC10 and IPC50, and 20% “mislabeled” data are removed for IPC100 due to strict
class balance requiring enough images for each class.

C RESULTS WITH STANDARD DEVIATION

Table 13 provides the standard deviation of the performance of dataset compression methods under
the same evaluation setting.

Table 13: Benchmarking SOTA methods against random baseline under evaluation with soft labels
(top) and hard labels (bottom) with standard deviation. † means optimization-free distillation
approaches. All experiments use ResNet-18 on ImageNet-1K. Standard deviations are computed
from three independent runs.

(a) Soft label benchmark with standard deviation.

DD (Noise Init) DD (Real Init) Pruning Method with Rules
IPC Random SRe2L CDA G-VBSM LPLD RDED† DWA Forgetting EL2N AUM CCS

10 35.8±0.2 33.5±0.2 33.5±0.3 35.8±0.7 34.6±0.9 38.4±0.1 37.9±0.2 36.1±0.3 40.8±0.4 41.5±0.1 37.4±0.2

50 57.2±0.2 52.6±0.1 53.5±0.3 54.8±0.2 55.4±0.3 56.2±0.2 55.2±0.2 57.2±0.1 58.1±0.1 58.5±0.1 58.2±0.1

100 61.2±0.2 57.4±0.3 58.0±0.2 59.2±0.1 59.4±0.2 60.2±0.1 59.2±0.3 61.0±0.1 61.5±0.2 61.5±0.1 61.6±0.1

(b) Hard label benchmark with standard deviation.

DD (Noise Init) DD (Real Init) Pruning Method with Rules PCA
IPC Random SRe2L CDA G-VBSM LPLD RDED† DWA Forgetting EL2N AUM CCS Ours†

10 4.6±0.1 1.5±0.1 1.6±0.1 1.6±0.1 3.4±0.1 11.5±0.1 1.9±0.0 3.4±0.1 12.2±0.3 11.4±0.0 6.8±0.3 22.8±0.3

50 20.6±0.1 3.8±0.0 5.8±0.3 9.0±0.6 5.1±0.1 30.8±0.4 5.3±0.2 11.7±0.2 31.1±0.3 30.6±0.1 29.3±0.4 39.1±0.2

100 31.7±0.6 4.9±0.2 8.0±0.1 16.6±0.6 6.0±0.1 39.2±0.6 7.5±0.1 18.3±0.2 38.7±0.1 38.8±0.2 39.0±0.4 45.5±0.4
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D ADDITIONAL EXPERIMENTS AND ANALYSIS

D.1 REGULARIZATION-BASED DATA AUGMENTATION

Table 9 presents a comprehensive evaluation of various data augmentation strategies, including
CutMix (Yun et al., 2019), Cutout (DeVries and Taylor, 2017), and Mixup (Zhang, 2017). The
experimental results demonstrate the crucial role of appropriate augmentation selection in data-
scarce scenarios. The incorporation of RandomResizedCrop proves to be fundamental, substantially
improving performance from 21.6% to 25.6%.

Among the regularization-based augmentation techniques, Cutout demonstrates a better performance,
maintaining consistent accuracy levels (26.2%, 25.7%, and 25.3% with RandomResizedCrop). This
superiority can be attributed to two key factors: First, Cutout preserves label integrity by avoiding
label mixing, which is particularly beneficial in data-scarce regimes. Second, its augmentations
are performed on individual images without cross-sample interactions, adhering to the principle of
maintaining sample simplicity during training. In contrast, both CutMix and Mixup show notable
performance degradation with increased mixing probabilities, which is especially evident in scenarios
with label mixing. When label mixing is employed, performance deteriorates significantly (from
25.5% to 23.8% for CutMix, and from 25.9% to 25.7% for Mixup at 0.2 mixing probability with
RandomResizedCrop). This degradation becomes more severe at higher mixing probabilities, with
performance dropping to 17.4% and 7.7%, respectively, at 1.0 mixing probability.

These findings align with our theoretical framework, suggesting that augmentation strategies maintain-
ing sample simplicity are more effective in data-scarce regimes. The empirical evidence demonstrates
that methods introducing complex regularization through label mixing and cross-sample interactions
may be detrimental to model performance when training data is limited, supporting our scaling law
observations regarding the preference for simpler training samples.

Setting for each strategy:

• CutMix (Yun et al., 2019): We follow the original implementation which samples from
Beta(α, α), where α = 1, which is basically uniform sampling from (0, 1). For the label
mixing part, we rescale λ following https://github.com/clovaai/CutMix-PyTorch.

• Mixup (Zhang, 2017): We follow the original implementation which samples from
Beta(α, α), where α = 1, which is basically uniform sampling from (0, 1).

• Cutout (DeVries and Taylor, 2017): We use a common cutout size which is 0.5.

Remark: In the original implementation of SRe2L, CutMix and Mixup do not incorporate label
mixing because distillation loss is used.

D.2 POOR PERFORMANCE USING FORGETTING (TONEVA ET AL., 2019)

Figure 6 illustrates the distribution of various score metrics, specifically EL2N (Paul et al., 2021),
Forgetting (Toneva et al., 2019), and AUM (Pleiss et al., 2020) Scores. These distributions are
organized into two rows, with the top row representing the full dataset and the bottom row depicting
the “easiest” IPC10 subset.

In the analysis of the EL2N Score, the histogram for the full dataset shows an unimodal distribution
that peaks around a score of 10, indicating that most scores are concentrated in this range. Additionally,
there is a long tail in the distribution towards lower scores.

Examining the Forgetting Score, the Full dataset displays a bimodal distribution with significant
frequencies at scores of 0 and 10. This bimodality indicates the presence of two prevalent score
categories within the complete dataset. Conversely, the IPC10 Forget Score distribution is dominated
by a sharp peak at score 0, reflecting a substantial proportion of instances with no forgetting behavior
in the IPC10 subset.

Regarding the AUM Score, the Full dataset illustrates a symmetric distribution centered around a
score of 0, indicating balanced score dispersion. The IPC10 AUM Score distribution, however, shows
a broader range with a prominent peak near 56 and a gradual decline as scores approach 60. This
shift suggests that the IPC10 subset experiences a different range of AUM Scores compared to the
full dataset.
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The poor performance of forgetting can possibly be explained by the score distribution (see Figure 6).
We can clearly see that the easiest IPC10 subsets of forgetting scores all have a value of ”0,” indicating
that no forgetting occurs. Because of the nature of the forgetting approach, many images experience
no forgetting events at all. In fact, there are approximately 110,000 images without any forgetting
events, and we randomly selected 10,000 (roughly 9.1%) of these images to create our IPC10 dataset.
As a result, the 10,000 images are indistinguishable from the remaining images (90.9%) that also
have zero forgetting counts.
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Figure 6: Sample distribution over the score of different pruning metrics: (a) EL2N, (b) Forgetting,
and (c) AUM. Top row: both the sample distribution of full and IPC10 datasets. Bottom row: zoomed-
in view of the distribution of IPC10 dataset. IPC10 datasets are selected from the “easiest” samples.

D.3 TRAINING WITH NOISY IMAGES

From Table 14, we can see that even with purely noisy images, the student network is able to learn
from the teacher network by matching the soft labels. This is surprising, as noisy images are typically
not expected to contain any useful information for the network’s learning process. Nevertheless, the
performance of 0.5% is significant compared to the purely random network’s performance of 0.1%.

Table 14: Distillation training with pure noise on ResNet-18 on ImageNet-1K.

Expected Acc. Batch Size =128 Batch Size =1024

IPC50 0.1 % 0.5 % 0.3 %

D.4 USE REAL IMAGES AS INITIALIZATION FOR DATASET DISTILLATION

As shown in Figure 3a, we categorize existing literature into three distinct sections. The first
section encompasses dataset distillation with noise initialization, where no images from the original
dataset are directly involved. The representative work in this category is SRe2L (Yin et al., 2023),
which pioneered this approach. The second section comprises dataset distillation with real image
initialization, where the number of original images directly involved equals the distilled dataset
size (specifically, IPC× 1000 images). An exception is RDED (Sun et al., 2024), which randomly
samples m images and combines crops, utilizing m × 1000 images, where m > IPC. The final
section focuses on dataset pruning methods, which evaluate the entire dataset to identify optimal
subsets, thereby involving all images directly in the dataset compression process.

To validate the significance of incorporating more original images, we reimplemented SRe2L with real
images as initialization. Table 15 demonstrates that merely initializing with real images consistently
improves performance across both soft-label and hard-label benchmarks.
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Table 15: Performance of SRe2L with real images as initialization.

Soft Label Hard Label

Random SRe2L SRe2LReal Random SRe2L SRe2LReal

10 35.8±0.2 33.5±0.2 35.3±0.5 4.6±0.1 1.5±0.1 2.5±0.0

50 57.2±0.2 52.6±0.1 53.9±0.3 20.6±0.1 3.8±0.0 6.3±0.2

100 61.2±0.2 57.4±0.3 58.3±0.1 31.7±0.6 4.9±0.2 7.9±0.2

D.5 RANDOM BASELINE IN SOFT LABEL DATASET DISTILLATION

Many soft-label-DD methods (Yin et al., 2023; Yin and Shen, 2024; Du et al., 2024) overlook the
random baseline, and we find, when equipped with soft labels, random baselines can attain a good
performance. In addition, we provide the random baselines with most common batch sizes, and we
advocate that random baselines should be included for comparison in future works.

Table 16: Random Baseline with Soft Label Distillation.

ResNet-18 ResNet-50 ResNet-101
IPC/BS 32 128 1024 32 128 128

1 4.1±0.2 4.3±0.1 1.9±0.1 3.7±0.2 3.6±0.1 3.1±0.5

10 37.7±0.4 35.8±0.2 23.6±0.3 42.9±0.6 39.3±1.6 37.7±1.3

20 49.6±0.7 48.5±0.1 38.2±0.3 54.8±0.6 55.5±0.2 52.9±3.0

50 58.0±0.1 57.2±0.2 52.4±0.2 64.3±0.2 64.2±0.1 62.1±2.2

100 61.5±0.1 61.2±0.2 58.3±0.0 67.4±0.1 67.0±0.2 65.8±0.9

200 64.9±0.5 64.2±0.1 61.6±0.0 68.6±0.2 68.8±0.1 69.1±0.1

D.6 STRICT DATA BALANCE IS AN IMPLICIT STRATIFICATION

Figure 7 (Top) illustrates the distribution of samples across different classes. A clear severe class
imbalance is observed when samples are selected solely based on pruning scores, as shown by the
red histogram. Some classes have no images at all, while others contain more than 100 images. This
imbalance is particularly noticeable when using Forgetting as the pruning metric.

By enforcing strict class balance, the difficulty of the subset increases as long as class imbalance
persists. This is demonstrated in Figure 7 (Bottom), where higher scores in EL2N and Forgetting
indicate a harder dataset, while a lower score in AUM suggests the opposite. Consequently, strict
class balance implicitly achieves data stratification (Zheng et al., 2023) among easy samples, and
it can partly explain Table 17 why adding additional explicit stratification does not improve the
performance as suggested by CCS (Zheng et al., 2023). Additional stratification applied after strict
balancing increases dataset complexity, with particularly noticeable effects in small IPC scenarios.

Table 17: CCS performance comparison on soft and hard label settings. CCSAUM denotes stratifica-
tion performed on AUM.

Setting IPC Random Forgetting AUM EL2N CCSAUM

Soft
10 35.8±0.2 36.1↑0.3 41.5↑5.7 40.8↑5.0 37.4↑1.6

50 57.2±0.2 57.2=0.0 58.5↑1.3 58.1↑0.9 58.2↑1.0

100 61.2±0.2 61.0↓0.2 61.5↑0.3 61.5↑0.3 61.6↑0.4

Hard
10 4.6±0.1 3.4↓1.2 11.4↑6.8 12.2↑7.6 6.8↑2.2

50 20.6±0.1 11.7↓8.9 30.6↑10.0 31.1↑10.5 29.3↑8.7

100 31.7±0.6 18.3↓13.4 38.7↑7.0 38.8↑7.1 39.0↑7.3
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Figure 7: Sample and score distribution over class on both balanced and imbalanced cases. Top row:
the sample distribution. Bottom row: the score distribution over class. For visualization purposes,
only the first 50 classes are presented. IPC10 datasets are visualized and are selected from the “easiest”
samples.

D.7 DIFFERENCE BETWEEN MOSAIC AUGMENTATION

One approach similar to the “combining” process is Mosaic Augmentation, introduced in
YOLOv4 (Bochkovskiy et al., 2020) for object detection tasks, as shown in Figure 8. However,
the motivation behind it differs significantly. Combining images consolidates information from
multiple sources into a single composite image, thereby saving storage space. In contrast, Mosaic
Augmentation mixes multiple (i.e., four) images to facilitate the detection of objects outside their
normal context. Additionally, at the implementation level, Mosaic Augmentation loads four times as
many images per given batch size, necessitating four times the storage. Nevertheless, the non-uniform
combination method could potentially be leveraged in our “combining” approach, which we leave for
future study.

Figure 8: Mosaic Augmentation. (Image directly taken from YOLOv4 (Bochkovskiy et al., 2020))

D.8 COMPUTATION COST ANALYSIS

One significant advantage of our PCA framework is its efficiency. Table 18 compares the costs
associated with the traditional dataset compression framework, SRe2L, and our PCA method. Among
the three stages of SRe2L, the “squeeze” stage is the most time-consuming, particularly when applied
to ResNet with the entire ImageNet-1K dataset, which is quite resource-intensive. The parameter
storage is 0.04 GB (44M). The second most time-consuming process is the “recover” stage. In
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contrast, the “relabel” process takes the least amount of time; however, it can become lengthy if the
IPC is large due to the introduction of extensive labels, as noted by Xiao and He.

A detailed breakdown of the timing is provided in Table 19. This table shows that the device-to-host
transfer time (i.e., move soft labels from GPU to CPU) significantly contributes to the overall CPU
time. This indicates the soft label generation process is GPU-compute intensive with significant
memory-transfer bottlenecks, and such a case can be problematic for devices with limited CPU
resources.

On the contrary, let us consider EL2N (Paul et al., 2021), which serves as an example in our primary
experiments. The time of the “prune” process involves acquiring the training dynamics, which can be
considerably shorter than training the entire model. Furthermore, since our approach is optimization-
free, there are no additional costs incurred for combining the images, and we exclusively utilize hard
labels instead of soft labels.

Table 18: Computation Cost of Dataset Compression between Traditional Framework and PCA.
IPC-10, ImageNet-1K.

SRe2L Squeeze Recover Relabel

Time2 90 epochs 580 mins 33 mins
Storage (GB) 0.04 0.15 5.67

PCA Prune Combine

Time 10 epochs -
Storage (GB) - 0.15

Table 19: Relabel Cost Breakdown

Operation CPU GPU
Time (ms) Memory (MB) Time (ms) Memory (MB)

Move Data to GPU 3.36 0.00 3.26 86717.81
Mix Augmentation 0.44 1.14 0.12 0.00
Model Inference 4.42 0.00 25.33 0.46
Move Soft Label to CPU 22.04 -0.68 0.01 0.00
Write Soft Label to Disk 0.72 0.00 0.00 0.00
Others (83 ops) 0.95 10.22 0.87 164057.58

D.9 COMPARISON WITH RDED

D.9.1 METHODOLOGICAL INNOVATIONS

While RDED (Sun et al., 2024) serves as a notable baseline in dataset distillation, PCA introduces
fundamental improvements that extend beyond marginal patch selection enhancements. Table 20
delineates the key distinctions across three critical stages of the distillation pipeline.

A significant divergence occurs in image preparation, where RDED’s random cropping approach in-
herently fragments the dataset through multiple patches per image, resulting in substantial information
loss. In contrast, PCA employs full dataset pruning combined with strategic image scaling, thereby
preserving global contextual information throughout the distillation process. Additionally, PCA
eliminates the computational burden associated with soft label generation, which is a requirement
in RDED that necessitates teacher model dependencies and incurs considerable storage overhead.
Although constrained augmentation naturally complements collage-based methods with one-hot
labels, its implementation within PCA represents a systematic optimization specifically tailored for
small-scale datasets, contrasting sharply with RDED’s conventional augmentation strategy that lacks
such targeted specialization.

2All time data have been tested on a single RTX30390 GPU card.
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Table 20: Comprehensive comparison between RDED and PCA methodologies.

Stage RDED (Sun et al., 2024) PCA (Ours)
Image Preparation 1. Random subset (300 images)

2. 5 random crops per image
3. Patch selection
4. Patch combination
→ Information loss

1. Full dataset pruning
2. Image combination by scaling

→ Maintains global information

Soft Label Generation 1. Requires relabeling process
2. Relies on teacher model
→ High storage and compute cost

Not required

→ No dependency on teacher models

Dataset Training Traditional augmentation
→ No special emphasis

Constrained augmentation
→ Optimized for small datasets

D.9.2 TRUE CONTRIBUTION OF IMAGES

To provide a comprehensive and fair comparison with RDED, we conducted experiments applying
our constrained augmentation strategy to both methods under identical conditions. As shown
in Table 21, we evaluate RDED in its original form, with shuffle augmentation, and with our
proposed constrained augmentation strategy, comparing these against our PCA framework that also
employs constrained augmentation. The results demonstrate that while both methods benefit from the
constrained augmentation approach, with RDED improving from 11.4 to 19.2 at IPC10, our PCA
framework consistently maintains superior performance across all settings. Specifically, even when
both methods utilize identical augmentation strategies, PCA outperforms RDED with constrained
augmentation by 6.4, 4.4, and 4.4 percentage at IPC10, IPC50, and IPC100 respectively. This
consistent improvement, highlighted in the last row, validates that the performance gains stem from
our core methodological innovations rather than merely the augmentation strategy.

Table 21: Performance comparison across different methods and IPC settings

Method IPC10 IPC50 IPC100

RDED 11.4 30.6 39.8
RDED + Shuffle 12.9 32.8 41.4
RDED + Constrained Aug 19.2 37.7 44.2
Our PCA (with Constrained Aug) 25.6 42.1 48.6
True Contribution of Images ↑6.4 ↑4.4 ↑4.4

E COMPUTE RESOURCES

Experiments of small batch sizes (e.g., batch size 32, 128) are conducted on RTX3090 GPU cards.
Experiments of large batch sizes (e.g., batch size 1024) and large networks (e.g., ResNet-50, ResNet-
101, SwinV2-Tiny) are conducted on A100 80GB GPU cards.
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F VISUALIZATION

F.1 VISUALIZATION OF DATASET DISITILLATIOIN METHODS

Figure 9 visualizes the result of SRe2L (Yin et al., 2023). Figure 10 visualizes the result of CDA (Yin
and Shen, 2024). Figure 11 visualizes the result of G-VBSM (Shao et al., 2024a). Figure 12 visualizes
the result of LPLD (Xiao and He, 2024). Figure 13 visualizes the result of DWA (Du et al., 2024).
Figure 14 visualizes the result of RDED (Sun et al., 2024). For all distillation methods (except for
RDED (Sun et al., 2024)), images undergo strong distortion.

Figure 9: SRe2L (Yin et al., 2023) Figure 10: CDA (Yin and Shen, 2024)

Figure 11: G-VBSM (Shao et al., 2024a) Figure 12: LPLD (Xiao and He, 2024)
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Figure 13: DWA (Du et al., 2024) Figure 14: RDED (Sun et al., 2024)
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F.2 VISUALIZATION OF DATASET PRUNING METHODS

Figure 15 visualizes the result of Forgetting (Toneva et al., 2019). Figure 16 visualizes the result of
AUM (Pleiss et al., 2020). Figure 17 visualizes the result of EL2N (Paul et al., 2021). Figure 18
visualizes the result of CCS (Zheng et al., 2023). The visualization results of all pruning methods
followed the pruning rules, allowing for the clear observation that most of the selected images are
distinct and visually easy to identify.

Figure 15: Forgetting (Toneva et al., 2019) Figure 16: AUM (Pleiss et al., 2020)

Figure 17: EL2N (Paul et al., 2021) Figure 18: CCS (Zheng et al., 2023)

F.3 VISUALIZATION OF PCA

Figure 19 shows the images of our PCA framework which uses EL2N (Paul et al., 2021) as the
selection metric. Even when adhering to pruning rules, the combined images may not appear visually
similar. For example, the “sax” class (first row, second column) demonstrates distinct contexts (i.e.,
placing the sax on a purple background or a musician playing the sax). This further demonstrates the
importance of scaling-law aware augmentation, as inappropriate subsequent training augmentations
can lead to a significant difficulty increase in the images.
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Figure 19: Ours (PCA based on EL2N).
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G LIMITATION

Our augmentation procedures, including patch extraction, are heuristically designed. While they
demonstrate strong empirical effectiveness, their optimality is not theoretically guaranteed.

H FUTURE WORK

Given that the proposed PCA functions as a framework, there is potential to explore different choices
of the modules, such as pruning metrics, combining strategies, and specific augmentation methods.
It is notable that pruning can extend beyond the original dataset. Instead of only developing new
pruning metrics, one could target different datasets. In this paper, the primary reason for pruning
on the original dataset is that most existing dataset distillation methods do not outperform random
baselines, indicating that original images are sufficiently effective. Hence, there is significant value
in considering pruning on potentially high-performing distilled datasets (e.g., YOCO (He et al., 2024))
or on generated datasets (e.g., diffusion-based DD methods (Su et al., 2024)). Beyond accuracy,
future frameworks might also jointly optimize additional metrics, such as robustness, fairness, or
interpretability, while maintaining the same compressed dataset constraint.

I BROADER IMPACTS

This paper addresses pressing challenges in dataset compression by establishing a benchmark for fair
comparison across dataset distillation and pruning techniques. By highlighting inconsistencies in
previous evaluations, we draw attention to the need for standardized practices that enhance repro-
ducibility and fairness. Our proposed Prune, Combine, and Augment (PCA) framework prioritizes
image data and utilizes only hard labels, thereby reducing storage and computational demands
traditionally associated with soft labels. This approach not only makes dataset compression more
practical and accessible but also shifts the research focus back to the images themselves, potentially
leading to more balanced and efficient methods. Through these efforts, we aim to foster responsible
advancements in large-scale machine learning while ensuring the benefits are accessible to a wider
range of practitioners.
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