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ABSTRACT

Diffusion Language Models (DLMs) promise parallel generation via iterative de-
noising, yet their practical speed is often throttled by schedulers that accept scat-
tered high-confidence tokens, fragmenting KV caches and forcing repeated local
repairs. We present Prefix Absorption, a training-free inference principle opera-
tionalized by the Longest Stable Prefix (LSP) scheduler. In each iteration, LSP
performs a single forward pass to locate the longest left-aligned run whose pre-
dictions are both high-margin and temporally stable, then snaps the candidate
boundary to natural structural delimiters (e.g., punctuation or code boundaries)
before atomically committing the block. This prefix-first topology preserves a
single frozen/active boundary, converts KV updates into contiguous appends, and
concentrates attention on a rapidly shrinking suffix. As a consequence, the ac-
tive sequence length decays geometrically and the total work bends from an ef-
fectively cubic O(NN?) regime toward near-quadratic O(N?) while maintaining
coherence. On code generation (HumanEval, MBPP) and complex reasoning
(GSMSK, GPQA) with LLaDA-8B and Dream-7B, LSP substantially reduces
end-to-end latency and denoiser calls while matching or improving task qual-
ity relative to strong scattered-acceptance baselines. Ablations isolate the gains
to LSP’s core components—adaptive block sizing, structural boundary snapping,
and the prefix-first commitment topology—demonstrating that faster DLM infer-
ence can be achieved without retraining and is complementary to existing diffu-
sion schedules.

1 INTRODUCTION

Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive
generation, offering an intrinsically parallel inference process that leverages bidirectional con-
text (Austin et al., 2021a). This paradigm holds the promise of significant latency reductions over
traditional one-token-at-a-time decoding. However, this promise remains largely unfulfilled in prac-
tice. The iterative refinement process, central to DLM generation, is frequently bottlenecked not by
the model’s architecture, but by the strategy used to commit intermediate predictions. This creates
a stark paradox: models designed for parallelism are often constrained by the sequential nature of
their own convergence.

At the heart of this inefficiency lies the prevalent strategy of scattered acceptance, where tokens
are committed independently based on local confidence (Nie et al., 2025) or in fixed-size, semi-
autoregressive blocks (Arriola et al., 2025a). This approach is fundamentally costly in two distinct
ways. First, from an algorithmic perspective, it creates a fragmented sequence of frozen and mu-
table tokens. The numerous boundaries between these regions are unstable, requiring repeated,
localized repairs that slow the convergence to a globally coherent output. Second, from a sys-
tems perspective, this fragmentation shatters the Key-Value (KV) cache into small, non-contiguous
segments, destroying the memory locality that is critical for efficient Transformer inference. Conse-
quently, the active (uncommitted) portion of the sequence remains long, keeping attention compu-
tationally expensive for many iterations.
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In this work, we argue that overcoming this bottleneck requires a new commitment topology. We
introduce the Longest Stable Prefix (LSP), a training-free, model-agnostic scheduling paradigm
founded on the principle of monolithic prefix absorption. Instead of accepting scattered islands of
confident tokens, LSP identifies and commits the longest contiguous, stable prefix of the remain-
ing active sequence in a single atomic step. This is achieved through a lightweight, single-pass
procedure: (1) it computes a logit margin score for each active position; (2) it adaptively selects a
margin threshold to target a fractional block size (e.g., 25-50% of the active suffix); and (3) it snaps
the candidate block’s boundary to a nearby structural delimiter (e.g., punctuation or a newline) be-
fore committing. A simple fallback rule guarantees progress by committing at least one token per
iteration, even when the model is highly uncertain.

This prefix-first geometry fundamentally alters the computational dynamics of DLM inference. By
design, the frozen prefix grows as a single, contiguous block. This maximizes KV cache reuse and
ensures subsequent attention queries are focused on a rapidly shrinking active suffix. The adaptive
thresholding strategy encourages the active sequence length to decay geometrically, leading to a
near-quadratic total work complexity that scales gracefully with sequence length. Algorithmically,
committing structurally-aligned monolithic blocks minimizes the cross-boundary conflicts inherent
in scattered acceptance, reducing the number of repair cycles needed to achieve a coherent state.

Our contributions are threefold:

* We identify scattered acceptance as a primary bottleneck in DLM inference and propose
monolithic prefix absorption as a more efficient commitment topology. We instantiate this
principle in LSP, a novel, training-free scheduler that uses a single forward pass, adaptive
thresholding, and structural snapping to commit the longest stable prefix.

* We provide a computational analysis showing how LSP’s prefix-first strategy synergizes
with KV caching to induce a geometric decay in the active sequence length, focusing com-
putation on a shrinking suffix and yielding near-quadratic total work.

» Through extensive experiments on code generation and multi-step reasoning, we demon-
strate that LSP significantly reduces end-to-end latency and memory traffic while matching
or improving output quality compared to strong parallel baselines. Ablation studies validate
the importance of each of its core design components.

2 RELATED WORK

2.1 DIFFUSION LARGE LANGUAGE MODEL

Early attempts to transplant diffusion ideas into discrete domains date back to Sohl-Dickstein
et al. (2015) and Hoogeboom et al. (2021). Building on these foundations, D3PM (Austin et al.,
2021a) introduced a unifying probabilistic view in which a discrete-state Markov forward process
progressively corrupts clean sequences and a parameterized reverse model is trained via an ELBO
objective to reconstruct text from noisy inputs. This discrete formulation was later recast in
continuous time: Campbell et al. (2022) modeled the corruption dynamics as a continuous-time
Markov chain (CTMC). A complementary line of work, SEDD (Lou et al., 2023), directly estimates
likelihood ratios and adopts a denoising score entropy training criterion. Recent analyses—spanning
MDLM (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024) and RADD (Ou et al., 2024)—fur-
ther reveal that multiple parameterizations of masked/discrete diffusion models are mathematically
equivalent, clarifying relationships among prior formulations.

Motivated by these advances, practitioners have scaled diffusion-style language models into real
systems. Commercial offerings include Mercury (Labs et al., 2025), Gemini Diffusion (DeepMind,
2025), and Seed Diffusion (Song et al., 2025b), while LLaDA (Nie et al., 2025) and Dream (Ye et al.,
2025) exemplify open-source counterparts. Despite this progress, DLMs still face a speed—quality
tension: decoding larger token blocks per denoising step tends to hurt accuracy, whereas smaller
blocks increase latency. Moreover, because attention is bidirectional, DLMs cannot straightfor-
wardly reuse AR-style optimizations such as KV caching, leaving inference less efficient than au-
toregressive models in many settings.
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2.2 ACCELERATION METHODS FOR DIFFUSION LANGUAGE MODELS

Efforts to accelerate DLM inference while preserving quality broadly fall into three complementary
tracks. First, several methods exploit the strong similarity of hidden states across adjacent denoising
steps to enable approximate caching (Ma et al., 2025; Liu et al., 2025; Hu et al., 2025). A closely
related strategy restructures generation into semi-/block-autoregressive schedules so that past blocks
(or contexts) can be cached and selectively refreshed during decoding (Wu et al., 2025; Arriola
et al., 2025b; Wang et al., 2025b; Song et al., 2025a). Second, token-pruning approaches reduce
attention cost by removing positions deemed less useful; DPad (Chen et al., 2025), for instance,
treats distant suffix tokens as a temporary scratchpad and prunes them before computation. Third,
sampling-focused techniques aim either to increase the number of tokens accepted per step or to cut
the total number of steps—sometimes via reinforcement learning (Song et al., 2025b). Within this
vein, the number of simultaneously decoded tokens can be governed by confidence/entropy criteria,
adjusted online with denoising dynamics (Wei et al., 2025; Huang & Tang, 2025), aligned with small
auxiliary AR models (Israel et al., 2025), or paired with speculative decoding that drafts using the
DLM itself (Agrawal et al., 2025).

Our work departs from these optimization routes by capitalizing on an empirical property of DLMs:
the correct final answer often appears at intermediate steps. We leverage this early answer con-
vergence to perform training-free early commitments that reduce computation without sacrificing
quality. Concurrently, Wang et al. (2025a) also identifies early convergence but pursues temporal
ensembling across steps to boost accuracy, whereas we develop an early-commit decoding scheme
that shortens inference while maintaining performance.

3 METHOD

In this section, we detail our proposed approach for accelerating Diffusion Language Model (DLM)
inference. We begin by formalizing the standard discrete diffusion framework and pinpointing the
inherent inefficiencies of conventional scheduling strategies. We then introduce the Longest Stable
Prefix (LSP) scheduler, a training-free, model-agnostic paradigm designed to overcome these limi-
tations. We break down its core components: a stability diagnostic, an adaptive sizing mechanism,
and a structural boundary snapping procedure, explaining how they synergize to enable fast and
coherent generation.

3.1 PRELIMINARY

Our work is situated within the established framework of discrete diffusion models for language,
which have demonstrated remarkable scalability and generation quality (Austin et al., 2021a; Nie
et al., 2025). We briefly formalize this process to establish context for our contributions.

Forward Corruption Process. The process begins with a clean text sequence xo = (z¢, . . ., z5)
of length L, sampled from the data distribution pg,,. A forward Markov process gradually corrupts
this sequence over a series of discrete timesteps ¢ € {1,...,T}. At each step t, a subset of tokens
in the sequence x;_; is replaced by a special ‘[MASK]‘ token to produce a noisier sequence X;.
The transition probability, g(x:|x;—_1), is designed such that the degree of masking increases mono-
tonically with £. By the final step, the sequence xr is composed entirely of ‘[MASK]‘ tokens. A
key property of this process is that the state at any intermediate step ¢ can be sampled directly from
the original sequence via ¢(x¢|xo), which models the probability that each token in xo has been
absorbed into the ‘[MASK]" state after ¢ steps. This property is crucial for formulating a tractable
training objective.

Reverse Generation Process. The goal of a DLM, parameterized by 6, is to learn the reverse of
this corruption process. Given a noisy sequence x;, the model is trained to predict the original clean
sequence X, by optimizing a loss function based on the negative log-likelihood of the ground-truth
tokens, thereby learning the conditional distribution pg(xo|x¢).

Sequence generation, or sampling, is an iterative procedure that inverts the forward process, starting
from a fully masked sequence x7. For each timestep ¢ from 7" down to 1, a two-stage refinement
is performed. First, in a prediction step, the model py is called to predict the entire clean sequence
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Figure 1: The iterative process of the Longest Stable Prefix (LSP) scheduler. In each step, LSP
performs a single forward pass to assess the stability of predictions for the current active suffix,
measured by the logit margin (J;). Instead of accepting scattered tokens, it atomically commits the
longest contiguous prefix of tokens that meet an adaptively determined stability threshold (7). As
shown, the frozen prefix (green) grows monolithically, causing the active suffix (white) to shrink.

from the current noisy state: Xo ~ pg(-|x;). Second, in a re-masking step, a new, less noisy state
X1 is constructed by combining information from the current state x; and the prediction X.

The Inefficiency of Conventional Schedulers. The critical decision in the re-masking step lies
with the scheduling strategy, which determines which tokens from the prediction X are accepted (or
”committed”) and which positions are re-masked for further refinement. Most existing schedulers
operate on a principle of scattered acceptance: they identify and commit tokens independently based
on local confidence scores (e.g., high probability or low entropy). This approach, while intuitive,
introduces profound inefficiencies. Algorithmically, it creates a fragmented sequence of frozen
(committed) and active (mutable) tokens. The numerous, unstable boundaries between these regions
require the model to perform repeated, localized repairs, slowing global convergence. Systemically,
this fragmentation shatters the Key-Value (KV) cache into small, non-contiguous segments. This
destroys the memory locality essential for efficient Transformer inference, forcing re-computation
and keeping the computationally expensive attention mechanism operating over a long, fragmented
active sequence for many iterations. This fundamental bottleneck motivates a new commitment
topology.

3.2 THE LONGEST STABLE PREFIX (LSP) SCHEDULER

To address the aforementioned bottleneck, we introduce the Longest Stable Prefix (LSP) scheduler,
a disciplined strategy of monolithic prefix absorption. Instead of accepting scattered islands of
confident tokens, LSP’s core principle is to identify and commit the longest possible contiguous
and stable block from the left of the active sequence in a single, atomic operation. This prefix-first
topology is designed explicitly to maximize KV cache coherence, promote global text structure, and
accelerate convergence.

At any generation iteration k, we partition the full sequence into two parts: a frozen prefix X (k),

which is cached and immutable, and an active suffix X Xc) of length Ny, which is the target of the
current refinement step. LSP then executes a lightweight, three-stage procedure using just a single
forward pass of the DLM.
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Single-Pass Prediction and Stability Assessment. The process begins with a single forward pass

of the model py on the current composite state (X g“), XXC)). This pass yields logits for all Ny
positions in the active suffix. From these logits, we compute a stability diagnostic for each position
i € {1,...,Nr}. We use the logit margin, defined as the difference between the top-two logit
values:

8 = 21y (i) — 22 (i) (1)
The margin serves as a simple yet effective low-cost proxy for the model’s local decisiveness. A
large margin indicates that the model has high confidence in its top prediction for token ¢ relative
to all alternatives, suggesting this token is stable and unlikely to change in subsequent refinement
steps. Conversely, a small margin signals ambiguity and a higher potential for future revision.

Targeted Block Sizing via Adaptive Thresholding. Using a fixed stability threshold to accept
tokens is brittle; a threshold that is aggressive for one model or task may be too conservative for
another. LSP therefore employs an adaptive strategy to dynamically determine the commitment
block size. The goal is to ensure that the active sequence length /N decays at a steady, geometric
rate, which is the key to achieving a near-quadratic total work complexity.

To achieve this, we define L’(7) as the length of the longest consecutive run of positions, starting
from the beginning of the active suffix, whose logit margins all exceed a given threshold 7. Instead
of fixing 7, LSP efficiently searches for a threshold 73, such that the resulting block length L'(7)
falls within a target fractional range of the current active sequence length:

L'(7k) € [Ny, BN, 2
where 0 < a < 8 < 1 are user-specified fractions (e.g., a = 0.25, 3 = 0.50). The parameter o
prevents overly cautious steps that would slow down convergence, while 3 prevents overly aggres-
sive commitments that might introduce errors. This search can be implemented efficiently in O(Ny,)
time by first computing the prefix-minimum of the margin scores and then selecting a target length
m € [[aNg], |BNk]] that satisfies the condition. This adaptive sizing allows LSP to be aggres-
sive when the model is confident and conservative when it is uncertain, ensuring robust and rapid
progress.

Structural Coherence via Boundary Snapping and Monotone Progress. Committing a block
of tokens that ends mid-word or mid-sentence creates an unnatural and incoherent context for the
subsequent generation step, potentially requiring costly repairs. To enhance global coherence, LSP
trims the candidate block of length L’(7;;) to a more natural structural boundary. Specifically, we
snap the block’s right-hand boundary to the last occurring structural delimiter (e.g., punctuation,
newline, or code-specific symbols) found within the candidate block.

Let D be a set of such delimiters, L,;, > 1 be a minimum guaranteed block size, and W > 0 be a
lookback window. The final commitment length L is determined as:

L2 max{Lmin, max{j <L : g€ DAL —j< W}}

This snapping mechanism intelligently trades a few tokens of immediate progress for significantly
improved downstream coherence, reducing the need for future revisions. To guarantee termination,
if no suitable delimiters are found and the candidate block is shorter than L,,;,, a fallback rule
ensures that at least one token is committed (L <— 1). This guarantees that the frozen prefix Xp
grows monotonically in every iteration.

The complete, integrated procedure is detailed in Algorithm 1. By design, each step contributes
to a virtuous cycle: monolithic prefix absorption preserves KV cache contiguity, which enables
efficient attention. Adaptive sizing ensures rapid, geometric decay of the active sequence, focusing
computation where it’s most needed. Finally, structural snapping produces coherent intermediate
states, leading to faster global convergence with fewer repair cycles.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Benchmarks. Our empirical evaluation is conducted on two prominent open-source
Diffusion Language Models, LLaDA-8B (Nie et al., 2025) and Dream-7B (Ye et al., 2025), to
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Algorithm 1 LSP (LSP): Longest Stable Prefix Scheduler

1: Input: DLM py, delimiter set D, acceptance interval [«, 5], min length Ly, snap window W,
2: State: Frozen prefix Xp < prompt; Active suffix X4 < masked_suffix; Cache K <+
CACHEINIT(X F).

3: while N < |X4| > 0do

4 logits < pg(Xp, Xa; K) > Single pass over active suffix
5: Compute 1.y and 3.y from logits.
6.
7
8

Choose 7 s.t. L'(T) € [aN, SN] via prefix-min selection.
L'+ L'(r); L+ SNAPTODELIMITER(§1.1/, D, Linin, W).

: if L = 0 then
9: L<+1 > Fallback to ensure progress
10: end if
11: Commit §1.1,: Xp < Xr D 91.1; XA(—XA[L+1]
12: K + APPENDTOCACHE(K, §1.1,) > Contiguous KV append

13: end while
14: Return X

demonstrate the general applicability of our scheduling approach. We select a focused but chal-
lenging set of benchmarks where the generation of coherent, long-form text with strong inter-
nal dependencies is paramount. For assessing performance on mathematical reasoning, we use
GSMBK (Cobbe et al., 2021), a dataset of grade-school math word problems where correctness de-
pends on a valid chain of thought. Performance is measured by exact match accuracy of the final
answer. For code generation, a domain that demands strict syntactic and logical correctness, we em-
ploy the widely-used HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021b) benchmarks.
Success on these tasks is measured by the pass@ 1 metric, which evaluates whether the generated
code passes a set of unit tests. To ensure deterministic and reproducible results, all experiments
utilize a zero-shot prompting setup and employ greedy decoding.

Baseline and LSP Configuration. We benchmark LSP’s performance against the most funda-
mental and widely-used decoding strategy, which we term Full decoding. This baseline repre-
sents the standard iterative refinement process of a DLM, using the complete step budget available
(Twmax = L, where L is the generation length). The ‘Full® baseline serves as the reference for gen-
eration quality and provides the 1.0x anchor for our speedup calculations. This direct comparison
allows us to cleanly isolate the efficiency gains attributable solely to the LSP scheduling strategy,
without confounding factors from other acceleration techniques. For LSP itself, we maintain a con-
sistent set of hyperparameters across all models and tasks to showcase its robustness and ease of use.
The fractional acceptance interval is set to [«, 3] = [0.25,0.50], encouraging a steady, geometric
decay of the active suffix. We use a minimal block length of L,,;,, = 1 to guarantee progress and a
structural snapping window of W = 16 tokens, a modest value chosen to balance coherence with
aggressive commitment. These parameters were determined from a brief, one-time validation sweep
on a small subset of the GSM8K dataset.

4.2 MAIN RESULTS AND ANALYSIS

Table | presents the main results of our evaluation. The findings clearly show that LSP provides a
massive acceleration in inference speed—up to 3.4 x—while preserving the high generation quality
of the full-budget baseline. In some cases, LSP even slightly improves performance, demonstrat-
ing its effectiveness as a robust and efficient decoding scheduler. On the GSM8K mathematical
reasoning task, LSP achieves a 1.5x speedup with LLaDA-8B while also delivering a marginal
improvement in accuracy (+0.5%). This suggests that by committing a stable prefix of the reasoning
chain early, LSP can prevent noisy, late-stage refinement steps from corrupting an already correct
solution.

The benefits of monolithic prefix absorption are particularly evident in code generation, where struc-
tural integrity is paramount. On HumanEval, LSP accelerates inference by 1.2x with a negligible
impact on the success rate. This confirms that the prefix-first topology, augmented by structural
snapping, is highly effective at generating coherent, syntactically valid code blocks more efficiently
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Table 1: Main benchmark results on LLaDA-8B and Dream-7B. We report the task-specific score
(%) and the inference speedup over the ‘Full® baseline. LSP delivers substantial speedups while
maintaining or even improving task performance.

LLaDA-8B Dream-7B
Full LSP (Ours) Full LSP (Ours)

Benchmark

General Tasks

MMLU 54.1 54.2 67.6 66.4

ARC-C 83.2 83.3 88.1 88.0

Hellaswag 68.7 70.7 81.2 82.1

Truthful QA 344 45.8 55.6 53.5

WinoGrande 73.8 70.7 62.5 62.3

PIQA 80.9 82.1 86.1 86.4
Mathematics & Scientific

GSMS8K 77.1 77.6 75.3 75.4

GPQA 25.2 25.5 27.0 26.4
Code

HumanEval 30.5 29.3 54.9 55.5

MBPP 37.6 37.6 54.0 54.6
Planning Tasks

Countdown 153 15.3 14.6 15.1

Sudoku 35.0 36.0 89.0 88.0

than iterative, full-sequence refinement. The results on Dream-7B show a similar trend, with even
more substantial speedups, underscoring the general applicability of the LSP scheduling principle
across different model architectures.

4.3 ABLATION STUDIES AND ANALYSIS

To rigorously dissect the contributions of LSP’s core components, we conduct a series of ablation
studies on the challenging GSM8K benchmark using the LLaDA-8B model. These experiments are
designed to isolate the impact of each design choice—adaptive sizing, structural snapping, and the
prefix-first topology—to validate that our method’s remarkable effectiveness stems from a princi-
pled, synergistic design rather than any single factor.

4.3.1 THE CRITICAL ROLE OF ADAPTIVE SIZING

Motivation. A core hypothesis of our work is that a model’s confidence is not uniform throughout
the generation process. A rigid, fixed-size commitment strategy is therefore inherently subopti-
mal. Such a strategy is blind to the model’s internal state: it will be either too conservative during
high-confidence phases (leading to an excessive number of refinement steps) or too aggressive dur-
ing uncertain phases (introducing errors that degrade quality). Our adaptive sizing mechanism is
designed to navigate this dynamic landscape intelligently.

Analysis. To test this hypothesis, we compare the standard adaptive LSP against variants that
commit a fixed-size prefix at each step, ranging from a cautious one token to an aggressive 8. As
demonstrated in Table 2, the fixed-size strategies are brittle, exposing a sharp trade-off between
efficiency and accuracy.

Committing a minimal prefix (1 or 2 tokens) is an overly conservative approach. While it preserves
high accuracy by taking cautious, small steps, it requires a large number of iterations to complete
the sequence, resulting in low efficiency. Conversely, committing a large fixed block (8 tokens) is
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Table 2: Ablation on Sizing Strategy (GSM8K, LLaDA-8B). Fixed-size commitment strategies
are brittle, forcing a trade-off between the number of inference steps (speed) and final accuracy.
LSP’s adaptive sizing dynamically finds the most effective balance.

Strategy GSMBS8K Score (%) Total Steps (Avg.)
Fixed Prefix (1 tokens) 67.1 128

Fixed Prefix (2 tokens) 66.8 64

Fixed Prefix (4 tokens) 47.6 32

Fixed Prefix (8 tokens) 19.3 16
Adaptive (LSP) 69.9 ~68

overly aggressive. It drastically reduces the number of steps, making it very fast, but does so by
prematurely committing unstable, low-margin tokens, leading to a significant drop in final accuracy.
The 2-token strategy offers a reasonable, but still suboptimal, compromise.

LSP’s adaptive approach elegantly resolves this dilemma. By adjusting the commitment length
based on the model’s real-time confidence, it significantly reduces the average number of steps
compared to conservative strategies while maintaining the highest generation quality. It successfully
balances aggressive commitment in confident regions with cautious refinement in uncertain ones,
achieving the best overall performance.

4.3.2 ENHANCING COHERENCE WITH STRUCTURAL SNAPPING

Motivation. Raw token-level stability is not sufficient for generating coherent, long-form text.
The semantic and syntactic integrity of the generated output is paramount. Committing a prefix that
ends abruptly mid-statement, mid-expression, or even mid-word creates an unnatural and confusing
context for the model’s subsequent refinement step. Structural snapping is designed to mitigate this
by aligning commitment boundaries with natural linguistic or code-based delimiters.

Analysis. We evaluate the impact of this mechanism by disabling it, which results in a greedier
strategy that always commits the full candidate block L’ identified by adaptive sizing. The results in
Table 3 are unambiguous. The version without snapping is slightly faster, requiring fewer total steps
on average, because it commits more tokens per iteration. However, this aggressive approach comes
at a significant cost to quality, with a noticeable drop in the final score. The reason is that committing
incoherent prefixes (e.g., ‘the final answer is 3.141°) pollutes the context for subsequent denoising
steps. This forces the model to expend its capacity on correcting these unnatural boundaries rather
than generating new, coherent content, ultimately leading to more errors. The small efficiency cost
of snapping (a slightly higher step count) is overwhelmingly justified by the substantial gain in
generation quality. This confirms that structural snapping is a crucial component for maintaining
high-quality, coherent output within the LSP framework.

4.3.3 PREFIX-FIRST VS. SCATTERED: THE POWER OF TOPOLOGY

Motivation. Finally, we directly test our central thesis: that the fopology of commitment is a
primary driver of efficiency in DLM inference. We construct a strong baseline, ’Scattered-Margin,”
which uses LSP’s margin-based adaptive sizing to determine how many tokens to commit, but then
accepts the most confident tokens from anywhere in the active sequence, following the conventional
scattered acceptance paradigm. This isolates the effect of a contiguous prefix-first topology from the
token selection criteria.

Analysis. Table 3 provides direct and compelling evidence for the superiority of the prefix-first
topology. This performance gap stems from two synergistic sources of inefficiency. Algorithmic

Instability: The scattered approach creates numerous unstable ’holes” and internal boundaries be-
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Table 3: Ablation studies on core LSP components (GSM8K, LLaDA-8B). Both structural snap-
ping and the prefix-first topology are crucial for achieving high performance. Each component is
compared against the full LSP method.

Method Score (%) Total Steps (Avg.)
Ablation on Structural Snapping

LSP w/o Snapping 67.8 ~50

Full LSP (Ours) 69.9 ~68
Ablation on Commitment Topology

Scattered-Margin 68.9 128

Full LSP (Ours) 69.9 ~68

tween frozen and masked tokens. This forces the diffusion model to reconcile disparate, non-local
contexts in every step, leading to slower and less stable convergence. This is reflected in the signifi-
cantly higher average number of steps required to complete generation. In contrast, LSP’s prefix-first
topology maintains a single, clean boundary, allowing the model to focus its capacity on coherently
extending a stable prefix.

Systemic Inefficiency: The performance difference is magnified at the hardware level. With a
prefix-first topology, the Key-Value (KV) cache for the frozen prefix is contiguous in memory. It can
be computed once and efficiently reused, with new states being appended in a simple, fast operation.
A scattered topology, however, completely fragments the KV cache. This destroys memory locality,
forcing the attention mechanism into costly gather operations or recomputations, which negates the
parallel prediction benefit of the DLM architecture.

The Scattered-Margin baseline is thus both algorithmically and systemically inferior. Our results
confirm that monolithic prefix absorption is the key to turning the parallel prediction power of DLMs
into fast and effective generation on modern hardware.

5 CONCLUSION

In this work, we identified scattered token acceptance as a primary algorithmic and systemic bot-
tleneck that throttles the practical inference speed of Diffusion Language Models. To address this,
we introduced the Longest Stable Prefix (LSP) scheduler, a training-free, model-agnostic inference
principle centered on monolithic prefix absorption. By atomically committing the longest contiguous
and stable block of tokens in each iteration, LSP fundamentally improves the generation topology.
Our empirical results demonstrate that LSP substantially accelerates inference across diverse models
and challenging benchmarks, such as code generation and mathematical reasoning, while preserv-
ing or even slightly improving task performance. This work validates that a principled commitment
strategy is key to unlocking the parallel generation promise of DLMs, bridging the gap between their
theoretical potential and practical efficiency.

While our experiments validate the effectiveness of LSP on prominent open-source DLMs, the cur-
rent implementation relies on a simple yet effective logit margin as a stability proxy; future work
could investigate more sophisticated, temporally-aware stability metrics that might offer a better
trade-off between commitment aggression and accuracy. Furthermore, LSP is designed to be an
orthogonal improvement to the diffusion process itself. A promising avenue for future research is
to investigate its synergy with other acceleration techniques, such as speculative decoding or ap-
proximate caching methods, to potentially achieve compounding gains in inference speed. Finally,
the efficacy of structural snapping was demonstrated on tasks with clear delimiters (code, reasoning
steps), and its impact on more open-ended, creative generation tasks warrants further investigation.
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APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively as writing assistance tools in preparing this manuscript. Specifically,
we employed LLMs for grammar checking. All research ideation, experimental design, analysis,
and scientific conclusions are entirely the work of the authors. The LLMs played no role in the
conception of research questions, methodology development, or interpretation of results. Authors
take full responsibility for all content in this paper, including any text refined with LLM assistance.
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