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ABSTRACT

In this work we present a novel approach for the utilization of observed relations
between entity pairs in the task of triple argument prediction. The approach is
based on representing observations in a shared, continuous vector space of struc-
tured relations and text. Results on a recent benchmark dataset demonstrate that
the new model is superior to existing sparse feature models. In combination with
state-of-the-art models, we achieve substantial improvements when observed re-
lations are available.

1 INTRODUCTION

The task of automatic knowledge base completion (AKBC) has gained a lot of attention in the past
years, due to the creation of large knowledge bases (KBs), such as DBpedia (Auer et al. (2007)) or
Freebase (FB, Bollacker et al. (2008)). Typically, they store structured information in form of triples
that consist of a relation and its arguments, i.e., subject- and object-entity (entity pair). AKBC aims
at adding missing relations between entity pairs using existing information. Such information can
be extracted from various sources, like structured knowledge bases and unstructured text, usually in
form of direct connections between the entity pair. We call these connections observed relations.

There have been several approaches on solving AKBC, including algorithms exploiting the graph
structure of KBs (e.g., path ranking) (Lao et al. (2011)) or latent feature models (Riedel et al. (2013);
Yang et al. (2014); Toutanova et al. (2015)). While there has been a lot of work on scoring triples
with latent feature models directly, to our knowledge, there has been no attempt on modeling entity-
pairs through observed relations using continuous vector representations.

To this end, we developed a new model that represents observed relations between entity pairs in a
continuous vector space, which allows sharing of latent features. This leads to improved general-
ization over the use of sparse feature representations. Results of our experiments demonstrate that
this approach is superior to prior work, and contributes a significant improvement on triple argument
prediction in combination with existing models, especially when observed relations are present.1.

2 MODELS

For the descriptions in this section we use the following notation. We consider a KB to be a triple
(E,R, T ). R refers to the set of all relation types andE to the set of all KB entities. R = Rkb∪Rtext

is the union of all structured knowledge base- and textual relation types (unique dependency paths).
T denotes the set of all facts containing triples (r, s, o) ∈ T, r ∈ R, s, o ∈ E. R−1 =

{
r−1|r ∈ R

}
is the set of inverse relations and analogous T−1 =

{
(r−1, o, s)|(r, s, o) ∈ T

}
the set of inverse

triples. Rs,o =
{
r|(r, s, o) ∈ T ∪ T−1

}
∪ {rdef} is the set of relations that occur between entities

s and o, including a default relation rdef . Finally, we use v to refer to vectors.

1Implementation at https://github.com/dirkweissenborn/genie-kb, based on TensorFlow
(Abadi et al. (2015)).
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Model Reference Scoring Function
DistMult (D) Yang et al. (2014) fD(r, s, o) = vr � (vs ◦ vo)
Model E Riedel et al. (2013) fE(r, s, o) = vsubj

r � vs + vobj
r � vo

Model F Riedel et al. (2013) fF (r, s, o) = v(s,o) � vr

Model N Riedel et al. (2013) fN (r, s, o) =
∑

r′∈Rs,o\ {r} wr,r′

Model O this work fO(r, s, o) =
∑

r′∈Rs,o\ {r} w(r
′, r, s, o) · v′

r′ � vr

Table 1: Existing scoring models, their reference and respective scoring functions. For brevity, we omit the
application of tanh to the entity and relation representations before scoring, that we found useful because of
regularization effects (see also Yang et al. (2014)).

The presented models are all scoring models. I.e., they define a scoring function f : R×E ×E →
R, which calculates a score for a given triple. The higher the score, the more likely the triple is
considered to be true by the model. See Table 1 for existing models.

Latent Feature Models DistMult, Model E and Model F are three previously introduced models,
that try to capture all knowledge within latent entity(-pair) and/or relation type representations. To
this end, Model F scores a triple by the compatibility between the triple’s entity pair and relation.
DistMult is slightly different in that it represents an entity pair as the element-wise multiplication
of their individual representations. Finally, Model E calculates the compatibility score between the
arguments of a triple with their corresponding argument-position wrt. the relation.

Observed Feature Models Model N is based on the association strength between the triple rela-
tion and all other observed relations between the triple entities. Toutanova & Chen (2015) introduced
other observed feature models, namely NodeFeat & LinkFeat. However, LinkFeat is the same model
as Model N, and NodeFeat can be considered the non-latent varient of Model E, which also performs
similarly to Model E (Toutanova & Chen (2015)). Therefore, we do not consider those here.

Model O In contrast to Model N, we model the association strength of a triple relation and ob-
served relations as their pairwise weighted similarity (dot-product) in a shared vector space.

The simplest weighting for Model O is the uniform weighting (Ou):

wu(r
′, r, s, o) =

1

|Rs,o\{r}|
.

In reality, however, many observed textual relations between entities are either noise or do not in-
dicate a relation. Since one observation can suffice to indicate a relation, an approach that weighs
relation indicating observations stronger might be preferable. This can be achieved with a selective
weighting approach (Os):

wm(r′, r, s, o) =
es(r

′,r)∑
r′′∈Rs,o\ {r} e

s(r′′,r)
, where s(r′, r) = v′

r′ � vr .

The advantages of Model O compared to Model N are: 1) use of shared latent features among
observed relations, and 2) vector representations for observed relations can be computed by a com-
position function, e.g., ConvNN (Toutanova et al. (2015)) or RNN. Both advantages should lead to
an improved generalization.

Combined Models The idea of combining different scoring models has been exploited in other
works as well Riedel et al. (2013); Toutanova & Chen (2015), however, they were combined us-
ing a weighted sum with fixed weights, either uniform or optimized on a validation set via grid
search. In this work, we trained those combination weights jointly with the combined models. E.g.,
fD+E+O(r, s, o) = fD(r, s, o) + αE · fE(r, s, o) + αO · fO(r, s, o). We initialize all α with 1.

Training-Loss We optimize the per triple cross-entropy loss on the softmax of the positive and 200
sampled, corrupted (negative) triple scores. The corruption process closely follows the methodology
of Toutanova & Chen (2015) that employs type constraints during negative sampling. Corrupted
triples are sampled for each given positive triple and argument position (s and o).
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MRR HITS@10
Model a t nt a t nt
N - 22.1 - - 32.7 -
Ou - 26.2 - - 51.4 -
Os - 29.5 - - 47.2 -
D+E 28.2 28.7 28.0 45.4 45.7 45.3
D+E+N 27.4 26.1 27.9 43.5 43.1 43.6
D+E+Ou 30.0 40.0 26.1 46.6 63.2 40.1
D+E+Os 30.9 38.8 27.8 48.7 57.7 45.1

Table 2: MRR (scaled by 100) and
HITS@10 (in %) performance of triple ar-
gument prediction on FB15k-237. a - re-
sults for all test triples, t - triples with entity
pairs having textual mentions, nt - triples
with entity pairs having no mentions.

3 EXPERIMENTS

We experimented with the FB15k-237 dataset (Toutanova et al. (2015)), which consists of
272,115/17,535/20,466 train/validation/test triples derived from FB and about 4M textual triples
from the annotated ClueWeb12 corpus Gabrilovich et al. (2013).

Mini-batch (B = 1, 000 positive examples) training with ADAM (β1 = 0.0, β2 = 0.999, learning
rate 0.01)(Kingma & Ba (2014)) is applied for all models. We randomly sample with probability τ
a batch of textual triples or else FB triples. We perform a grid search on various hyper-parameter
settings.2. Early stopping is done base on the MRR (Mean reciprocal rank) on the validation set.

For validation and evaluation, we follow the setup of Toutanova & Chen (2015). We report the
mean reciprocal rank (MRR) and HITS@103 of scored test triples that are ranked together with
their respective negative triples.

4 RESULTS

We compared the performance of models that exploit observations for triple scoring, namely Model
O and N, and their combinations with model DistMult (D) and E, namely D+E, D+E+N and
D+E+O.4 The focus lies on column t (28.1% of a), because only triples of t are directly affected
by Model O and N. Results are presented in Table 2.

The results clearly show the superiority of Model O compared to N, with large improvements on t.
Combining Model N with D and E even hurts performance slightly in our setup, which we believe
stems from over-fitting on sparse observations. In contrast, Model O in combination with D and E
improves performance especially for t, where improvements are substantial. However, there is a
slight decrease in performance on nt. We believe this is due to the strong performance of Model O
on training triples with textual mentions, for which the other models do not need to learn additional
entity related information. Nevertheless, model D+E+Os shows the best overall performance.

Another interesting finding is that the two variations of Model O show mixed results. Os alone
performs better in terms of MRR, but Ou shows better results on HITS@10. We believe that Os
captures the connection between very indicative observations and their corresponding relations bet-
ter than Ou. On the other hand, Ou seems to provide better generalization, since all observations
(in contrast to only the most likely as in Os) are trained to have representations similar to their
corresponding triple relation.

5 CONCLUSION

In this paper we presented a novel approach for scoring knowledge base triples by exploiting ob-
served relations between entity pairs. It is based on representing observed relations in a shared
vector space. Results demonstrate that it is superior to sparse feature models with substantial im-
provements when textual mentions are observed. Future directions involve modeling representations
of observed relations through composition functions to further improve generalization.

2τ ∈ {0.4, 0.6, 0.8} (τ = 0.935 corresponds to Text/FB dataset ratio); representation dim. ∈ {10, 20, 40}
3fraction of test triples ranked within top 10
4Only textual triples are used as observed features.
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