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ABSTRACT

Large amount of Electronic Health Record (EHR) data have been collected over
millions of patients over multiple years. The rich longitudinal EHR data docu-
mented the collective experiences of physicians including diagnosis, medication
prescription and procedures. We argue it is possible now to leverage the EHR
data to model how physicians behave, and we call our model Doctor AI. Towards
this direction of modeling clinical behavior of physicians, we develop a success-
ful application of Recurrent Neural Networks (RNN) to jointly forecast the future
disease diagnosis and medication prescription along with their timing. Unlike tra-
ditional classification models where a single target is of interest, our model can as-
sess the entire history of patients and make continuous and multilabel predictions
based on patients’ historical data. We evaluate the performance of the proposed
method on a large real-world EHR data over 260K patients over 8 years. We
observed Doctor AI can perform differential diagnosis with similar accuracy to
physicians. In particular, Doctor AI achieves up to 79% recall@30, significantly
higher than several baselines. Moreover, we demonstrate great generalizability of
Doctor AI by applying the resulting models on data from a completely different
medication institution achieving comparable performance.

1 INTRODUCTION

The broad adoption of Electronic Health Records (EHR) has continuously generated large amount of
patient data that documents rich clinical interactions over time. This high-dimensional longitudinal
data has created an opportunity to perform sophisticated temporal analysis that was not possible
before. Forecasting clinical events for patients is an especially challenging, yet important task. Our
goal is to develop a temporal prediction model that mimics physician practice based on the collective
memory of many physicians, i.e., large amount of EHR data over a long period of time. Successfully
forecasting clinical events can not only facilitate patient-specific care and timely intervention, but
also potentially reduce healthcare cost.

Although related problems such as disease progression modeling have been studied by many re-
searchers over several decades, e.g. (Heckerman, 1990; Chapman et al., 2001; Lange et al., 2015),
most works do not achieve required accuracy and scalability, or need excessive expert domain knowl-
edge, partly due to the lack of rich longitudinal EHR data and scalable computational architecture.
Thanks to the recent advances in recurrent neural network, we propose Doctor AI system that can
diagnose multiple disease conditions and prescribe relevant medications based on historical EHR
data. Furthermore, the Doctor AI tries to predict when the patient will make the next visit. Our
ultimate goal is to have Doctor AI help both health providers and patients.

The problem in general can be described as a multilabel marked point process modeling task. The
task is different from common sequential learning tasks such as those in natural language processing
as it requires prediction of multiple categories over the continuous time axis. The key challenge in
this task is to find a flexible model that is capable of predicting multiple event types for patients.
The two main classes of techniques, continuous-time Markov chain based models (Nodelman et al.,
2002; Lange et al., 2015; Johnson & Willsky, 2013), and intensity based point process modeling
techniques such as Hawkes processes (Liniger, 2009; Zhu, 2013; Choi et al., 2015b) have been
proposed but they are expensive to generalize to nonlinear and multilabel settings. Furthermore,
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Figure 1: Doctor AI extracts clinical events as multilable point process data from EHR and learns
a model for patient status dynamics. Given a new patient’s record, it can forecast the patient’s
diagnoses (Dx), prescribed medications (Rx), and the time until his/her next visit.

they often make strong assumptions about the data generation process which might not be valid in
large-scale EHR datasets.

The key idea of this paper is to learn an effective representation of the patient status over time and
to leverage such representation to predict future clinical events of the patients such as diagnoses
and medication prescriptions and their timings. To learn such patient representations we propose
to use recurrent neural networks (RNN), considering the fact that patients have different length of
medical records and that recurrent neural networks have been shown to be particularly successful
for representation learning in sequential data, e.g. (Graves, 2013; Graves & Jaitly, 2014; Sutskever
et al., 2014; Kiros et al., 2014; Zaremba & Sutskever, 2014).

Figure 2: Joint forecast of next visits’ time and the codes
assigned during each visit. After an embedding layer, the
recurrent units (here two layers) learn the status of the
patient at each timestamp as a real-valued vector. Given
the status vector, we use two dense layers to generate
the codes observed in the next timestamp and the du-
ration until next visit. We use Gated Recurrent Units
(GRU) (Chung et al., 2014) as it is shown to achieve sim-
ilar performance to Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997; Graves et al., 2009)
while being simpler. [𝑑", 𝒙"] [𝑑%&",𝒙%&"] [𝑑%,𝒙𝒊]
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In particular, we make the following main contributions in this paper1: (i) We demonstrate a success-
ful application of RNNs in representing the status of patients, predicting the future clinical events
and the timing of the events. The trained RNN is able to achieve above 64% (79%) recall in its
top 10 (30) predicted diagnosis codes, demonstrating great potential as a computerized differen-
tial diagnosis guide. (ii) We propose an efficient initialization scheme for RNNs using Skip-gram
embedding (Mikolov et al., 2013) and show that it improves the performance of the RNN in both
accuracy and speed. (iii) We empirically confirm that RNNs can be used to transfer knowledge
across multiple medical institutions. This suggests that hospitals with insufficient patient records
can adopt the models learned from larger data of other health institutions to improve the quality of
their clinical service.

2 EXPERIMENTS

Initializing the RNN with Skip-gram vectors Instead of using a binary vector as an input to the
RNN and projecting it to a latent space via the embedding layer, we can use the sum of the rep-
resentations for each medical code (e.g. diagnosis, medication, procedure codes) occurring within
a visit and plug it into the RNN directly. The code representations are trained by applying Skip-
gram (Mikolov et al., 2013) to a sequence of visits the patient made over time. The learned vectors
will capture the hidden relationships among diverse medical codes, thus provide more detailed in-
formation to the RNN than a simple binary vector.

Experimental results We use a health records dataset provided by Sutter Health. It includes EHR
records for 263,706 patients, where the record for each patient includes the medical codes he has
been assigned and the time of the visit. There are 38,594 unique codes in the dataset. Table 1

1The long version of the paper can be found at (Choi et al., 2015a).
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Table 1: Accuracy of algorithms in forecasting future medical activities. The RNN initialized with
Skip-gram vectors is denoted as RNN-IR.

Dx Only Recall @k Rx Only Recall @k Dx,Rx,Time Recall @k
Algorithms k = 10k = 20k = 30 k = 10k = 20k = 30 k = 10k = 20k = 30 R2

Last visit 29.17 13.81 26.25 —
Most freq. 56.63 67.39 71.68 62.99 69.02 70.07 48.11 60.23 66.00 —
Logistic (L=1) 22.97 32.20 36.58 28.01 39.75 43.79 17.66 26.12 31.23 0.0013
MLP (L=1) 26.09 39.19 48.04 32.27 51.12 61.50 19.49 30.80 38.13 0.0017
Logistic (L=5) 26.04 39.17 48.19 32.39 51.06 61.03 18.79 29.13 35.63 0.0013
MLP (L=5) 26.14 39.41 48.28 32.39 51.18 61.66 19.32 30.77 38.08 0.0002
Feature Ext. 26.12 39.33 48.20 32.27 51.12 61.65 19.60 30.80 38.13 0.0022
RNN-1 63.12 73.11 78.49 67.99 79.55 85.53 53.86 65.10 71.24 0.2519
RNN-2 63.32 73.32 78.71 67.87 79.47 85.43 53.61 64.93 71.14 0.2528
RNN-1-IR 63.24 73.33 78.73 68.31 79.77 85.52 54.37 65.68 71.85 0.2492
RNN-2-IR 64.30 74.31 79.58 68.16 79.74 85.48 54.96 66.31 72.48 0.2534

Figure 3: The impact of pre-training on improv-
ing the performance on smaller datasets. In the
first experiment, we first train the model on a small
dataset (red curve). In the second experiment, we
pre-train the model on our large dataset and use it
for initializing the training of the smaller dataset.
This procedure results in more than 20% improve-
ment in the performance.
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compares the results of different algorithms with RNN based Doctor AI. We report the results in
three settings: when we are interested in (1) only predicting disease codes (Dx), (2) only medication
codes (Rx), and (3) jointly predicting Dx, Rx, and time to next visit. The results confirm that the
proposed approach is able to outperform the baseline algorithms by a large margin. Note that the
recall values for the joint task are lower than those for single Dx or Rx prediction because the
hypothesis space is larger for the joint prediction task.

The superior performance of RNN based approaches can be attributed to the efficient representation
that they learn for patients at each visit (Bengio et al., 2013; Schmidhuber, 2015). RNNs are able to
learn succinct vector representations of patients by accumulating the relevant information from their
history and the current set of codes. Comparing RNN-based and most frequent past pattern algorithm
with the lagged multilayer perceptron algorithm, we postulate that the status of the patients in this
dataset depends on more than 5 lags. This can be because this dataset is collected for study of heart
failure which shows long-term dynamics.

Transferring knowledge across hospitals. As we observed from the previous experiments, the
dynamics of clinical events are complex, which requires models with a high representative power.
However, many institutions have not yet collected large scale datasets, and training such models
could easily lead to overfitting. To address this challenge, we resort to the recent advances in domain
adaptation techniques for deep neural networks (Mesnil et al., 2012; Bengio, 2012; Yosinski et al.,
2014; Hoffman et al., 2014; Paine et al., 2014).

A clinical dataset of 7,653 patients from Vanderbilt University was chosen to conduct the experi-
ment. This dataset differs from the Sutter dataset in that it consists of demographically and diagnos-
tically different patients. The number of unique diagnosis code in this dataset is 1092, which is a
subset of Sutter dataset. From the dataset, we extracted sequences of 3-digit ICD-9 codes. We chose
5,000 patients for training, 2,683 for testing. We performed two experiments. First, we trained the
model only on the target dataset. Second, we initialized the coefficients of the model with the values
learned from Sutter data, then we refined the coefficients with the target dataset. Figure 3 shows the
vast improvement of the prediction performance induced by the knowledge transfer from the Sutter
data. It is interesting that the model trained on the Sutter dataset without any refinement achieves a
significantly higher recall, and further refinements improve the recall up to 15%.
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