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Abstract
Density ratio estimation is fundamental to tasks
involving f -divergences, yet existing methods
often fail under significantly different distribu-
tions or inadequately overlapping supports — the
density-chasm and the support-chasm problems.
Additionally, prior approaches yield divergent
time scores near boundaries, leading to insta-
bility. We design D3RE, a unified framework
for robust, stable and efficient density ratio
estimation. We propose the dequantified diffu-
sion bridge interpolant (DDBI), which expands
support coverage and stabilizes time scores via
diffusion bridges and Gaussian dequantization.
Building on DDBI, the proposed dequantified
Schrödinger bridge interpolant (DSBI) incorpo-
rates optimal transport to solve the Schrödinger
bridge problem, enhancing accuracy and effi-
ciency. Our method offers uniform approximation
and bounded time scores in theory, and outper-
forms baselines empirically in mutual informa-
tion and density estimation tasks. Code is avail-
able at https://github.com/Hoemr/Dequantified-
Diffusion-Bridge-Density-Ratio-Estimation.git.

1. Introduction
Quantifying distributional discrepancies via f -divergences-
defined through density ratios r(x) = q1(x)/q0(x) is foun-
dational in tasks such as domain adaptation, generative
modeling, and hypothesis testing. However, directly es-
timating r(x) by modeling q0 and q1 becomes intractable in
high dimensions, motivating density ratio estimation (DRE)
methods that bypass explicit density modeling (Sugiyama
et al., 2012). While DRE underpins modern techniques like
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mutual information estimation (Colombo et al., 2021) and
likelihood-free inference (Thomas et al., 2022), it struggles
with a critical challenge known as the density-chasm prob-
lem, where multi-modal or divergent distributions lead to
unstable ratio estimates (Rhodes et al., 2020).

Existing methods like telescoping ratio estimation (TRE)
(Rhodes et al., 2020) and its continuous extension DRE-∞
(Choi et al., 2022) estimate density ratios via intermediate
steps. TRE improves accuracy by adding more intermediate
variables, but increases model complexity linearly. DRE-
∞ uses continuous-time score matching to avoid this, yet
both face a core challenge in the support-chasm problem
(see Definition 3.1), where supp(q0) ∩ supp(q1) is small or
empty. This leads to inadequately overlapping supports and
ill-defined ratios (Srivastava et al., 2023).

To address the support-chasm problem, we unify the interpo-
lation strategies in prior works as deterministic interpolants
(DI) and propose the diffusion bridge interpolant (DBI),
which uses diffusion bridges to enable diverse trajectory
exploration and smooth transitions between distributions.
By Theorem 3.2 and Corollary 3.3, DBI expands support
coverage and trajectory sets beyond existing approaches.

A second challenge arises in prior methods: As t→ 1−, the
absolute time score Eqt [|∂t log qt|] diverges for both DI and
DBI (Theorem 3.4), leading to unstable estimations at the
boundary. To mitigate this, we propose Gaussian dequan-
tization (GD), which addresses boundary densities q0 and
q1 via Gaussian convolution, ensuring Eqt [|∂t log qt|] re-
mains bounded over t ∈ [0, 1] (Corollary 3.8). The resulting
dequantified diffusion bridge interpolant (DDBI) balances
robustness and computational efficiency.

To further reduce estimation error and improve efficiency,
the dequantified Schrödinger bridge interpolant (DSBI) is
derived by integrating DDBI with optimal transport rear-
rangement (OTR), solving the Schrödinger bridge problem
(Proposition 3.6). Together, applying DDBI and DSBI to
DRE leads to the Dequantified Diffusion Bridge Density
Ratio Estimation (D3RE) framework. We summarize these
developments in Table 1.

Experimental results show that D3RE improves robustness
and efficiency in downstream tasks such as density ratio
estimation, mutual information estimation, and density esti-
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Table 1. Comparison of advantages of interpolants in this work.

diffusion bridge GD OTR
(robust & stable) (stable) (efficient)

DI (previous)
DBI (ours) ✓

DDBI (ours) ✓ ✓
DSBI (ours) ✓ ✓ ✓

(a) DI (previous) (b) DBI (ours)

(c) DDBI (ours) (d) DSBI (ours)

Figure 1. Trajectory sets comparison among DI, DBI, DDBI and
DSBI. Our methods yield broader trajectory sets, with interme-
diate distributions exhibiting wider support than those of DI. The
entropically regularized transport losses for subfigures (a-d) are
44.17, 31.14, 31.15, and 8.26, respectively (See Equation (17) for
details.). Lower loss indicates increased path diversity.

mation. Figure 1 illustrates a comparison of interpolation
strategies among DI, DBI, DDBI, and DSBI, with light blue
points representing intermediate samples drawn from q0 and
q1. Our proposed methods (DBI, DDBI, and DSBI) enable
broader exploration of alternative trajectories, producing
intermediate distributions with larger support compared to
DI, consistent with Theorem 3.2 and Corollary 3.3 below.

The main contributions of this work are as follows:

• We propose D3RE, the first unified framework to ad-
dress both the density-chasm and support-chasm prob-
lems via uniformly approximated density ratio estima-
tion (Proposition 3.5). Our interpolants expand both
the support (Theorem 3.2) and trajectory sets (Corol-
lary 3.3), alleviating the support-chasm problem.

• We incorporate guidance mechanisms to improve inter-
polant quality: GD improves the stability of time score
functions at boundary (Theorem 3.4,Corollary 3.8),
while OTR leads to more accurate (Theorem 3.7) and
efficient (Figure 8) estimation.

• Experiments demonstrate D3RE’s superiority in den-
sity ratio estimation, mutual information estimation,
and density estimation.

2. Background
Let X0 ∼ q0(x) and X1 ∼ q1(x) be random variables in Rd

with set-theoretic supports supp(q0) and supp(q1). Upper
cases X0 and X1 denote random variable, while lower cases
x0 and x1 denote the samples of random variables.

2.1. Density Ratio Estimation

Density ratio estimation (DRE) aims to estimate the density
ratio r⋆(x) = q1(x)

q0(x)
using i.i.d. samples from both distribu-

tions. A common approach is density ratio matching via
Bregman divergence minimization (Sugiyama et al., 2012),
which optimizes a parameterized ratio rθ by minimizing

BD(rθ) = −Eq0(x0)
q1(x1)

[
log 1

1+rθ(x0)
+ log rθ(x1)

1+rθ(x1)

]
, (1)

where θ denotes the trainable parameters of rθ. The mini-
mizer of Eq. (1) satisfies rθ⋆ = r⋆. However, DRE suffers
from the density-chasm problem (Rhodes et al., 2020).

TRE mitigates this by employing a divide-and-conquer
strategy. It partitions the interval [0, 1] into M ∈ Z+ sub-
intervals with endpoints {m/M}Mm=0, constructing interme-
diate variables Xm/M ∼ qm/M (x) via linear interpolation

Xm/M =
√

1− η2m/MX0 + ηm/MX1, (2)

where ηm/M increases from 0 to 1. The density ratio de-
composes into a telescoping product

r⋆(x) =
q1(x)

q0(x)
=

M−1∏
m=0

q(m+1)/M (x)

qm/M (x)

=

M−1∏
m=0

r⋆m/M (x) ≈
M−1∏
m=0

rθm
(x),

(3)

where r⋆m/M is the target intermediate density ratio, esti-
mated by a parameterized neural network rθm

with trainable
parameters θm. In this case, M networks must be trained.
While a larger M improves accuracy, it increases compu-
tational cost and may still fail to sufficiently reduce the
KL divergence, KL(qm/M∥q(m+1)/M ), leaving the density-
chasm problem unaddressed.

DRE-∞ (Choi et al., 2022) extends TRE to M →∞, rep-
resenting the log ratio as an integral of the time score

log r⋆(x) =

∫ 1

0

∂t log qt(x)dt ≈
∫ 1

0

stθ⋆(x, t)dt, (4)

where ∂t log qt(x) ≈ (log qt+∆t(x) − log qt(x))/∆t with
an infinitesimal gap ∆t = limM→∞ 1/M denotes the time
score. The time score model stθ approximates the time score
via minimization of

L1 = Eq(t)qt(x)

[
λ(t)

∣∣∂t log qt(x)− stθ(x, t)
∣∣2] , (5)
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where λ(·) : [0, 1] → R+ is a time-dependent weighting
function, and q(t) = U [0, 1] is the uniform distribution
over the interval [0,1]. When the time score model satisfies
∂t log qt(x) = stθ⋆(x, t), the loss function reaches its mini-
mum value L1(θ

⋆). Unlike in TRE, only one network, stθ,
needs to be trained in DRE-∞.

2.2. Denoising Diffusion Bridge Model

Denoising diffusion models (DDMs) simulate a diffusion
process {Xt}t∈[0,1], which serves as a continuous bridge be-
tween X0 and X1. This process is described by the solution
to an Itô stochastic differential equation (SDE)

dXt = f(Xt, t)dt+ g(t)dWt, (6)

where {Wt}t∈[0,1] is a standard Wiener process, f : Rd ×
[0, 1]→ Rd and g : [0, 1]→ R are termed as the drift coef-
ficient and scalar diffusion coefficient of Xt, respectively.

Conventional DDMs (Li et al., 2023; Song et al., 2021; Li
et al., 2024a; Xu et al., 2024) require either q0 or q1 to be
a simple, tractable distribution (e.g., isotropic Gaussian),
which limits their ability to bridge arbitrary complex distri-
butions and restricts applications such as DRE.

Denoising diffusion bridge models (Zhou et al., 2024a) over-
come this limitation by simulating stochastic processes that
interpolate between paired distributions with X1 as end-
points. These processes are derived from the SDE in Eq. (6)
via Doob’s h-transform (Doob & Doob, 1984)

dXt = f̃(Xt, t,X1)dt+ g(t)dWt, (7)

where f̃(Xt, t,X1) = f(Xt, t)+g2(t)h(Xt, t,X1) denotes
the shifted drift and h(Xt, t,X1) = ∇xt log pt(X1 | Xt) is
the h function representing the gradient of the log transition
kernel from time t to 1. The process explicitly depends on
X1 and, given X0 and X1, it forms a diffusion bridge with
transition kernel qt(x | X0,X1). A special case of the dif-
fusion bridge, termed the Brownian bridge, arises under the
conditions f(Xt, t) := 0, g(t) := 1 and h(Xt, t,X1) :=
X1−Xt

1−t . The Brownian bridge is defined as the solution to
dBt =

B1−Bt

1−t dt+ dWt and its transition kernel is given
by q(Bt | B0,B1) = N ((1− t)B0 + tB1, t(t− 1)Ed).

3. Method
In this section, we we extend prior works into a unified
framework called Dequantified Diffusion-bridge Density-
Ratio Estimation (D3RE). D3RE offers a robust and ef-
ficient solution for density ratio estimation, theoretically
mitigating the density-chasm and support-chasm problems.

3.1. Support-chasm Problem

Deterministic Interpolant. We summarize the interpolants
used in prior works, such as TRE and DRE-∞, to determin-

istic interpolant (DI), defined as

I(X0,X1, t) = αtX0 + βtX1, (8)

where I : Rd × Rd × [0, 1]→ Rd is an interpolant contin-
uously differentiable in (X0,X1, t) and the time-indexed
coefficients αt, βt ∈ C2[0, 1] are monotonic with αt de-
creasing and βt increasing in t. They are strictly positive and
satisfy boundary conditions α0 = β1 = 1 and α1 = β0 = 0,
with constraints αt + βt = 1 or α2

t + β2
t = 1,∀t ∈ [0, 1].

Prior methods, such as TRE (Rhodes et al., 2020) and DRE-
∞ (Choi et al., 2022), are specific cases of DI distinguished
by their choices of αt and βt (see Appendix B.1).

However, DRE with DI suffers from the support-chasm
problem, where minimal overlap between supp(q0) and
supp(q1) leads to ill-defined ratios (Srivastava et al., 2023).

Definition 3.1 (Support-chasm Problem). Let q0, q1 be
probability density functions with supports supp(q0) and
supp(q1), respectively. For a given threshold ε > 0, if
µ (supp(q0) ∩ supp(q1)) < ε, then a support-chasm exists
between q0 and q1, where µ is the Lebesgue measure.

Diffusion Bridge Interpolant. To mitigate the support-
chasm, we introduce a Brownian bridge {Bt}t∈[0,1], leading
to the diffusion bridge interpolant (DBI)

Xt = I(X0,X1, t) + γBt, (9)

where γ ∈ R≥0 is the noise factor controlling the stochastic
component Bt. This factor provides flexibility by adjusting
the variability introduced by the bridge at different stages
of interpolation. When γ = 0, DBI reduces to DI.

Since Bt is a Gaussian process with zero mean and variance
t(1− t), the transition kernel of the DBI is given by qt(x |
x0,x1) = N (I(x0,x1, t), t(1 − t)γ2Ed), leading to an
equivalent form of DBI

Xt = I(X0,X1, t) +
√
t(1− t)γ2Zt, (10)

where Zt ∼ N (0,Ed), ensuring analytical tractability and
efficient implementation. The term

√
t(1− t)γ2Zt adds

controlled variability and provides robustness and flexibility
to the interpolant, expanding the support of qt.

Theorem 3.2 (Support Set Expansion). Let X0 and X1 be
random variables. Let qt(x) and q′t(x) denote the marginal
densities under DI and DBI, respectively. Then, for any
t ∈ (0, 1), the support of q′t includes or expands beyond the
support of qt, i.e., supp(q′t) ⊇ supp(qt).

See Appendix A.1 for detailed derivation. This result shows
that DBI covers a larger or equal region of the space com-
pared to DI, providing theoretical justification for its ability
to mitigate the support-chasm problem in D3RE.
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Corollary 3.3 (Trajectory Set Expansion). Under the same
setup as in Theorem 3.2, let the trajectory sets generated by
the DI and the DBI be denoted by T = {{xt}t∈[0,1];xt ∈
supp(qt)} and T′ = {{x′

t}t∈[0,1];x
′
t ∈ supp(q′t)}, respec-

tively. Then, T′ contains T, i.e., T′ ⊇ T.

See Appendix A.2 for details. This generalizes the support
expansion result to entire paths, implying that DBI, by in-
jecting noise, explores a broader set of trajectories than DI.
As a result, it provides better coverage of the interpolation
space, enhancing robustness across diverse distributions.

3.2. Gaussian Dequantization for Mollified Time Score

A second fundamental challenge in conventional inter-
polants such as DI and DBI is the divergence of the absolute
time score, as shown in Theorem 3.4.

Theorem 3.4. Let {Xt}t∈[0,1] be a DI defined in Equa-
tion (8). Under Assumption A.1 and Assumption A.2, the
time score for any t ∈ (0, 1) satisfies

Eqt [|∂t log qt|] ≥ d

(
(1− L)

|α̇t|
αt
− L
|β̇t|
βt

)

−O
(√

Eqt [∥∇ log qt∥2]
)
,

(11)

where L is the Lipschitz constant in Assumption A.2. More-
over, if L < 1, this lower bound diverges to infinity

lim
t→1−

Eqt [|∂t log qt|] = +∞. (12)

Proofs can be found in Appendix A.3.

Dequantified Diffusion Bridge Interpolant. To stabilize
the time score near the boundary, we introduce Gaussian
dequantization (GD) by adding controlled perturbations to
boundary samples, effectively handling the boundary den-
sities and resulting uniformly bounded time score across
[0, 1] (see Corollary 3.8 for details).

Specifically, for xi ∼ qi, its dequantified form x′
i can be

obtained by

x′
i = xi + zε, zε ∼ N (0, εEd), i ∈ {0, 1}, (13)

where ε ∈ R+ is small. The resulting dequantified densities
are obtained via Gaussian convolution, q′i = qi ∗N (0, εEd).
This smoothing ensures bounded time scores near t = 0
and t = 1 (see Theorem 3.7 and Corollary 3.8 for details),
improving stability in DRE.

Incorporating GD into the DBI yields the dequantified diffu-
sion bridge interpolant (DDBI), formulated as

X′
t = I(X′

0,X
′
1, t) +

√
t(1− t)γ2Zt. (14)

The DDBI can be expressed in terms of the original DBI
by defining perturbed variables as X′

i = Xi + Zε, where
Zε ∼ N (0, εEd). This results in

X′
t = I(X0,X1, t)+

√
t(1− t)γ2 + (α2

t + β2
t )εZt. (15)

Here, the additional term (α2
t + β2

t )ε reflects the effect
of GD, yielding smoother interpolation. As a result, the
transition kernel of the DDBI, q′t(x | x0,x1), is given
by N (I(x0,x1, t),

(
t(1− t)γ2 + (α2

t + β2
t )ε
)
Ed), which

shares the same mean trajectory as DBI (see Equation (10)).

We have also analyzed the uniform approximation of density
ratio using the DDBI. The relationship between r(x) and
r′(x) =

q′1(x)
q′0(x)

is characterized by Proposition 3.5.

Proposition 3.5. Let r(x) and r′(x) be the density ratios
with and without GD, respectively. Then, r′ is a uniform
apporximation of r, with the error bounded by:

∥r′ − r∥L∞ ≤ O(ε). (16)

Thus, as ε→ 0, r′(x)→ r(x) in the uniform norm.

See Appendix A.4 for detailed derivation. Proposition 3.5
confirms that the dequantified density ratio r′(x) is a uni-
form approximation of r(x) for sufficiently small ε.

3.3. Optimal Transport Rearrangement

To further reduce estimation error and improve efficiency of
DRE, we extend the probability path of DDBI by aligning it
with the entropically regularized optimal transport (OT)

π2γ2 = argmin
π∈Π(q′0,q

′
1)

∫
∥x0 − x1∥2dπ − 2γ2H(π), (17)

where Π(q′0, q
′
1) is the set of all probability paths with

marginals q′0 and q′1, andH(π) is the entropy of π. The coef-
ficient 2γ2 is regularization factor (details in Appendix B.2).

We apply the scalable Sinkhorn algorithm (Cuturi, 2013)
to mini-batches {xn

0}Nn=1∼q′0(x) and {xn
1}Nn=1∼q′1(x), ob-

taining rearranged pairs {x̂n
0 , x̂

n
1}Nn=1∼π2γ2 . This proce-

dure is termed as optimal transport rearrangement (OTR)
for convenience.

Dequantified Schrödinger Bridge Interpolant. Applying
OTR followed by DDBI with αt = 1− t and βt = t yields
the dequantified Schrödinger bridge interpolant (DSBI)

Xt = I(X̂′
0, X̂

′
1, t)+

√
t(1− t)γ2 + (α2

t + β2
t )εZt, (18)

where I(X̂′
0, X̂

′
1, t) = (1− t)X̂′

0 + tX̂′
1.

We show that rearranging the mini-batches via OTR leads to
an interpolant that naturally solves the Schrödinger bridge
(SB) problem (Schrödinger, 1932).
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Proposition 3.6. The probability path defined by DSBI
solves the SB problem

π⋆ = argmin
π∈Π(q′0,q

′
1)

KL(π∥πref), (19)

where πref is a Wiener process scaled by γ.

See Appendix A.5 for proof. This result suggests that
DSBI, as a principled integration of DDBI and OTR, implic-
itly solves the SB problem and provides a minimum-cost
stochastic interpolation between q′0 and q′1.

Furthermore, to rigorously quantify the improvement
brought by OTR, we establish the following result com-
paring the upper error bounds of DDBI and DSBI.
Theorem 3.7. Consider the DDBI and DSBI with coef-
ficients αt = 1 − t, βt = t. Let π ∈ Π(q′0, q

′
1) be

an arbitrary coupling for DDBI and π2γ2 the entropi-
cally OT coupling for DSBI. Define the error functional
E :=

∣∣ ∫ 1

0
∂t log q

′
t dt − log

q′1
q′0

∣∣. Then, the upper bound of
Eπ2γ2 [E2DSBI] is less than or equal to that of Eπ[E2DDBI].

Corollary 3.8. For all t ∈ [0, 1], the time score of DDBI is
uniformly bounded by

Eq′t
[|∂t log q′t|] ≤

√
1

σ2
t

Eπ

[
∥X′

0 −X′
1∥

2
]
+

σ̇4
t d

2σ4
t

, (20)

where σ2
t = t(1− t)γ2+(2t2− 2t+1)ε is strictly positive.

See Appendix A.6 and Appendix A.7 for detailed deriva-
tions of Theorem 3.7 and Corollary 3.8. These results es-
tablish that both DDBI and DSBI admit a bounded time-
integrated time score, Eq′t

[|∂t log q′t|], in contrast to the di-
vergent lower bound exhibited by DI (see Theorem 3.4).
Moreover, it provides a formal justification for the error
reduction achieved by DSBI through the coupling π2γ2 .

3.4. Dequantified Diffusion Bridge DRE

For the DDBI, r′(x) can be approximated effectively us-
ing a neural network, as formulated in Definition 3.9. See
Appendix A.8 for detailed derivation.
Definition 3.9 (Dequantified Diffusion bridge Density Ratio
Estimation, D3RE). Given the marginal probability density
of DDBI, q′t(x), the log density ratio for a given point x ∈
Rdcan be estimated as

log r⋆(x) ≈
∫ 1

0

∂t log q
′
t(x)dt, (21)

where ∂t· denotes the time derivative operator.

Time Score-matching Loss. We train a time score model
stθ(x, t) to approximate the time score ∂t log q′t(x) by mini-
mizing the time score-matching loss (Choi et al., 2022),

L2 = Eq(t)q′t(x)

[
λ(t)

∣∣∂t log q′t(x)− stθ(x, t)
∣∣2 ]. (22)

However, ∂t log q′t(x) is intractable in practice. To bypass
this, an equivalent integration-by-parts form (Song & Er-
mon, 2020; Choi et al., 2022) is proposed

L3 = Eq′0(x0)q′1(x1)[λ(0)s
t
θ(x0, 0)− λ(1)stθ(x1, 1)]

+ Eq(t)q′t(x)

[
∂t
[
λ(t)stθ(x, t)

]
+

1

2
λ(t)stθ(x, t)

2

]
,

(23)

where ∂t [λ(t)s
t
θ(x, t)] = λ(t)∂ts

t
θ(x, t) + λ′(t)stθ(x, t),

∂ts
t
θ(x, t) and λ′ denote the time derivative of the time

score model and weighting function, respectively. The first
two terms enforce the boundary conditions. L2 and L3

differ only by a constant C independent of θ. In practice,
for stable and effective training, the joint score-matching
loss is implemented, as described in Appendix C.2.

Estimating Target Log Density Ratio. Given the optimal
parameters θ⋆ obtained by minimizing L3, the log density
ratio at any point x can be estimated as

log r⋆(x) ≈
∫ 1

0

∂t log q
′
t(x)dt ≈

∫ 1

0

stθ⋆(x, t)dt, (24)

based on Definition 3.9. See Algorithms 1 and 2 for the full
training and estimation procedures using DDBI and DSBI.

Algorithm 1 Training and estimation of D3RE with DDBI
Input: Probability densities q0 and q1, time score model

stθ, coefficients αt and βt, noise factor γ and ε.
Initialize: trainable parameters θ of stθ, a given point x.
x0 ∼ q0(x),x1 ∼ q1(x), t ∼ U(0, 1)
zε ∼ N (0, εEd), z ∼ N (0,Ed)
x′
0 ← x0 + zε,x

′
1 ← x1 + zε % GD

x′
t ← αtx

′
0 + βtx

′
1 +

√
t(1− t)γ2z % DBI

θ⋆ ← Adam(θ,∇θL3(θ))
log r(x)← odeint adjoint(stθ⋆ , (0, 1),x)

Output: estimated log density ratio log r(x).

Algorithm 2 Training and estimation of D3RE with DSBI
Input: Probability densities q0 and q1, time score model

stθ, coefficients αt and βt, noise factor γ and ε.
Initialize: trainable parameters θ of stθ, a given point x.
x0 ∼ q0(x),x1 ∼ q1(x), t ∼ U(0, 1)
zε ∼ N (0, εEd), z ∼ N (0,Ed)
x′
0 ← x0 + zε,x

′
1 ← x1 + zε % GD

π2γ2 ← Sinkhorn(x′
0,x

′
1, 2γ

2) % OTR
(x′

0,x
′
1) ∼ π2γ2

x′
t ← αtx

′
0 + βtx

′
1 +

√
t(1− t)γ2z % DBI

θ⋆ ← Adam(θ,∇θL3(θ))
log r(x)← odeint adjoint(stθ⋆ , (0, 1),x)

Output: estimated log density ratio log r(x).
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4. Experiments
For experiments involving D3RE, we implement both DDBI
and DSBI. Unless specified otherwise, we use the follow-
ing settings: αt = 1 − t, βt = t, γ2 = 0.5, ε = 1e − 5
and λ(t) = γ2t(1 − t). Under this configuration, the in-
terpolant I(X0,X1, t) = (1− t)X0 + tX1 aligns with the
Benamou-Brenier solution to the optimal transport problem
in Euclidean space (McCann, 1997). The parameterized
score model is trained with time score matching loss L3 and
optimized with Adam optimization method.

4.1. Density Estimation

Let r(x) = q1(x)
q0(x)

be the target density ratio, where q1(x)

is an intractable data distribution, and q0(x) is the simpler,
tractable noise distribution. Once the estimated density ratio
rθ⋆ is obtained, the log-density of q1 can be approximated
as log q1(x) ≈ log rθ⋆(x) + log q0(x).

2-D Synthetic Datasets. We trained DRE-∞ (baseline)
and D3RE (ours) on eight 2-D synthetic datasets, includ-
ing swissroll, circles, rings, moons, 8gaussians, pinwheel,
2spirals, and checkerboard, for 20,000 epochs using the
joint score matching loss (details in Appendix C.2). The
density estimation results are shown in Figure 2.

Data

baseline
(DI)

DI+OTR
(ours)

D3RE
(DDBI, ours)

D3RE
(DSBI, ours)

Figure 2. Density estimation results on eight 2-D synthetic datasets
for different methods. D3RE effectively estimates the density for
both multi-modal and discontinuous distributions.

Our experiments demonstrate that D3RE effectively esti-
mates the density for both multi-modal and discontinu-
ous distributions, outperforming DRE-∞. The baseline
struggles, especially with complex datasets like rings and
checkerboard, where significant distortions occur. While
the OTR trick reduces errors, it remains insufficient for
intricate datasets like 2spirals and pinwheel.

In contrast, the D3RE framework, leveraging both DDBI
and DSBI, achieves significantly improved density estima-
tion. DDBI captures fine-grained details, while DSBI pro-
vides robust performance across all datasets, particularly
excelling in modeling complex distributions and mitigating

estimation artifacts. Further comparisons across training
epochs are available in Appendix C.4.

Energy-based Modeling on MNIST. We applied the
proposed D3RE framework for density estimation on the
MNIST dataset, leveraging pre-trained energy-based models
(EBMs) (Choi et al., 2022). Experimental details are in Ap-
pendix C.4. The results are reported in bits-per-dimension
(BPD). Results in Table 2 show that D3RE achieves the
lowest BPD values across all noise types (Gaussian, Cop-
ula, and RQ-NSF), outperforming baselines and existing
methods. See also Table 3 in the Appendix.

Specifically, D3RE consistently surpasses DRE-∞ and its
variant with OTR. The DSBI method delivers the best over-
all results, achieving BPD values of 1.293 (Gaussian), 1.170
(Copula), and 1.066 (RQ-NSF), demonstrating its robust-
ness and effectiveness in optimizing density estimates. Com-
pared to traditional methods like NCE and TRE, D3RE
shows significant improvements, especially under challeng-
ing noise distributions like Gaussian and Copula, where
baseline methods yield higher BPD. These findings under-
score D3RE’s superior performance in accurately estimating
densities and modeling complex data distributions.

Table 2. Comparison of the estimated densities on MNIST dataset
based on pre-trained energy-based models. The results are reported
in bits-per-dim (BPD). Lower is better. The reported results for
NCE and TRE are from Rhodes et al. (2020).

Method Noise type Noise BPD (↓)
NCE Gaussian 2.01 1.96
TRE Gaussian 2.01 1.39

DRE-∞ Gaussian 2.01 1.33

DRE-∞+OTR Gaussian 2.01 1.313
D3RE (DDBI) Gaussian 2.01 1.297
D3RE (DSBI) Gaussian 2.01 1.293

NCE Copula 1.40 1.33
TRE Copula 1.40 1.24

DRE-∞ Copula 1.40 1.21

DRE-∞+OTR Copula 1.40 1.204
D3RE (DDBI) Copula 1.40 1.193
D3RE (DSBI) Copula 1.40 1.170

NCE RQ-NSF 1.12 1.09
TRE RQ-NSF 1.12 1.09

DRE-∞ RQ-NSF 1.12 1.09

DRE-∞+OTR RQ-NSF 1.12 1.072
D3RE (DDBI) RQ-NSF 1.12 1.072
D3RE (DSBI) RQ-NSF 1.12 1.066
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Figure 3. Evolution of estimated MI across epochs with varying methods and dimensions d = {40, 80, 120}. D3RE outperforms the
baseline in both speed and precision. DRE-∞ (Choi et al., 2022) is regarded as the ‘baseline’ in this experiment.

4.2. Mutual Information Estimation

Mutual information (MI) measures the dependency between
two random variables X ∼ p(x) and Y ∼ q(y), defined as
MI(X,Y) = Ep(x,y)

[
log p(x,y)

p(x)q(y)

]
. Here p(x,y) be their

joint density. q(y) = N (0, σ2Ed) and p(x) = N (0,Ed),
with σ2 = 1e − 6 and d = {40, 80, 120}, are two d-
dimensional correlated Gaussian distributions. The exper-
imental setup in DRE-∞ (Choi et al., 2022) is adapted to
implement D3RE. DRE-∞ serves as the benchmark. More
details can be found in Appendix C.3.

The evolution of estimated MI across epochs for d =
{40, 80, 120}, comparing D3RE with DRE-∞, are analyzed.
Results in Figure 3 show that the red (DSBI) and green
(DDBI) curves outperform the blue and yellow (DRE-∞)
curves in two aspects. First, D3RE converges to the true
MI value more rapidly as it expands trajectory sets (see
Corollary 3.3), improving interpolation accuracy. Second, it
exhibits greater stability with fewer fluctuations around the
true MI, indicating more reliable estimates.

We conclude that D3RE outperforms the baseline in both
speed and precision. For d = 120, the MI estimated by
D3RE is much robust than that of DRE-∞.

4.3. Analysis and Discussion

Ablation Study on γ2. The ablation study on γ2 for den-
sity estimation (Figure 4) reveals systematic trade-offs in
performance across regularization strengths. For small
γ2 = 0.001, the model achieves rapid initial alignment
with the ground truth distribution (first row) but exhibits
overfitting artifacts in later epochs, manifesting as irregular
density peaks and deviations from the smooth ground truth
structure. Intermediate values (γ2 = 0.01–0.1) demon-
strate balanced behavior: γ2 = 0.01 preserves finer de-
tails while maintaining stability, and γ2 = 0.1 produces
smoother approximations with minimal divergence from the
true distribution. Larger γ2 values (≥ 0.5) induce excessive
regularization, leading to oversmoothed estimates that fail

Data

0.001

0.01

0.1

0.5

1.0

Figure 4. Ablation study on the effect of γ2 for density estimation
on 2-D toy data. The first row displays the results for the ground
truth data. Each subsequent row, from top to bottom, corresponds
to γ2 values of 0.001, 0.01, 0.1, 0.5, and 1.0, respectively.

to capture critical modes of the 2-D data, particularly in
high-density regions. Notably, γ2 = 0.1 achieves the clos-
est visual and structural resemblance to the ground truth,
suggesting its suitability for low-dimensional tasks requir-
ing both fidelity and robustness. These results underscore
the necessity of tuning γ2 to mitigate under-regularization
artifacts while preserving distributional complexity.

The ablation study on varying γ2 values (Figure 5) shows
distinct convergence behaviors in MI estimation. For all di-
mensions (d = {40, 80, 120}), smaller γ2 values (≤ 0.01)
lead to faster convergence, especially in lower dimensions
(d = 40), but excessively small values (γ2 = 0.001) cause
instability later. Larger γ2 values (≥ 0.1) converge more
slowly but stabilize over time, particularly in higher dimen-
sions (d = 120). γ2 = 0.1 offers a balance between speed
and stability across all dimensions, suggesting that moderate
regularization provides the best MI estimation performance.
More results are provided in Appendix C.5.

Ablation Study on GD. To evaluate the effectiveness of
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Figure 5. Evolution of estimated MI across epochs with varying γ2 = {0.001, 0.01, 0.1, 1.0} and dimensions d = {40, 80, 120}. For all
dimensions (d = {40, 80, 120}), smaller γ2 values (≤ 0.01) lead to faster convergence.
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Figure 6. Ablation study on GD for eight 2-D synthetic datasets.

the proposed GD module, we conduct an ablation study by
comparing model performance with and without GD, as
shown in Figure 6. Visually, both DDBI and DSBI show
clear improvements in density estimation when GD is ap-
plied. Without GD, the estimated densities appear blurrier
and miss fine structural details, whereas incorporating GD
yields sharper and more realistic patterns.

Ablation Study on OTR. We conduct an ablation study to
evaluate the role of OTR, comparing models without OTR
(baseline, DI), models with OTR (DI+OTR), and models
from the D3RE framework (DDBI and DSBI). In Figures 2
and 7, DI generates distorted and misaligned intermediate
distributions. This shows its limited ability to align with
the target distribution. DI+OTR improves alignment but
remains suboptimal. Models from the D3RE further en-
hance distribution quality, with DSBI achieving the most
precise alignment. This underscores OTR’s crucial role in
improving intermediate distributions.

Figure 3 compares MI estimation for DDBI and DSBI across
dimensions (d = 80, 120). Both outperform baseline meth-
ods, but DSBI converges faster and remains closer to the
ground truth. The advantage of OTR becomes more pro-
nounced in high dimensions (d = 120), where DSBI signifi-
cantly outperforms DDBI in both speed and accuracy.

Overall, OTR improves intermediate distribution alignment.
When combined with diffusion bridges and GD, as in DSBI,

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

baseline
(DI)

DI+OTR
(ours)

D3RE
(DDBI, ours)

D3RE
(DSBI, ours)

Figure 7. Density estimation results on checkerboard for different
methods during training (see more results in Figures 9 to 16).

it enables more accurate density estimation. Further com-
parisons are presented in Appendix C.6.

Number of Function Evaluations. We analyze the impact
of OTR on NFE, noting that DI and DDBI do not utilize
OTR. It shows that applying OTR significantly reduces NFE.
Figure 8 compares NFE across four methods in DRE. The
first approach exhibits the highest NFE, indicating reliance
on iterative procedures requiring repeated function evalua-
tions. The second approach achieves a moderate reduction
in NFE, likely by minimizing redundant evaluations through
minimized transport costs.

DI DI+OTR DDBI DSBI (DDBI+OTR)

400

450

500

550

600

N
FE

Figure 8. Comparison of NFE for four methods in density ratio
estimation task. Applying OTR significantly reduces NFE.
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5. Related Works
Density Ratio Estimation. DRE is an essential tech-
nique in machine learning but faces challenges in high-
dimensional settings and when distributions are significantly
different. Early methods (Sugiyama et al., 2012; Gutmann &
Hyvärinen, 2012) often struggled with instability, known as
the density-chasm problem, in these scenarios. To overcome
these challenges, TRE (Rhodes et al., 2020), an extension
of NCE (Gutmann & Hyvärinen, 2012), introduced a divide-
and-conquer approach, breaking the problem into simpler
subproblems for better performance. DRE-∞ (Choi et al.,
2022) further advanced this by interpolating between dis-
tributions through an infinite series of bridge distributions,
improving stability and accuracy. F-DRE (Choi et al., 2021)
used an invertible generative model to map distributions into
a common feature space before estimation. Recent methods,
such as Kato & Teshima (2021), have addressed overfitting
in flexible models, and Nagumo & Fujisawa (2024); Luo
et al. (2024) focused on improving robustness to outliers.
MDRE (Srivastava et al., 2023) tackled distribution shift
through multi-class classification, offering an alternative to
binary classification in high-discrepancy cases. Addition-
ally, geometric approaches, like Kimura & Bondell (2025),
have enhanced DRE accuracy by incorporating the geome-
try of statistical manifolds. Building on these advancements,
our work proposes a novel method to improve both the
accuracy and robustness of high-dimensional DRE.

Diffusion Bridge. Denoising diffusion implicit models
(DDIMs) (Song et al., 2020) have been proposed as an effi-
cient alternative to denoising diffusion probabilistic models
(DDPMs) (Ho et al., 2020), which require simulating a
Markov chain for many steps to generate samples. Diffusive
interpolants (Albergo et al., 2023) provide a unifying frame-
work of flow-based models and diffusion models, bridging
arbitrary distributions using continuous-time stochastic pro-
cesses. DDBMs (Zhou et al., 2024a) are proposed as a
natural alternative to cumbersome methods like guidance
or projected sampling in generative processes. Our pro-
posed DDBI and DSBI build upon diffusive interpolants
and DDBMs by incorporating Brownian bridge into the
interpolation strategy construction.

6. Conclusions
In this work, we propose D3RE, a unified, robust and ef-
ficient framework for density ratio estimation. It provides
the first framework for directly addressing both the density-
chasm and support-chasm problems, enabling uniformly
approximated density-ratio estimation (Proposition 3.5).
By incorporating diffusion bridges and GD, we construct
DDBI, which expands support coverage (Theorem 3.2,
Corollary 3.3) and stabilizes the time score near boundaries
(Corollary 3.8). Building upon DDBI, OTR is incorporated

to derive the DSBI, which offers more efficient and accu-
rate density ratio estimation (Theorem 3.7) by solving the
Schrödinger bridge problem (Proposition 3.6). Together,
DDBI and DSBI form the core of the D3RE framework,
enabling uniformly approximated and stable density-ratio
estimation (Proposition 3.5). Extensive experiments validate
these findings, demonstrating the superior performance of
D3RE in tasks such as density-ratio estimation on synthetic
data, mutual information estimation, and density estimation.

While D3RE advances density-ratio estimation methods,
several directions remain open. Future work could explore
adaptive or learned solvers to reduce function evaluation
overhead, as well as more expressive interpolants to further
improve robustness in handling complex or multi-modal
distributions.
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A. Proofs
Assumption A.1. Let q0, q1 : Rd → R+ be probability density functions satisfying: (1) q0, q1 ∈ C2(Rd), i.e., q0 and q1 are
twice differentiable and have bounded second derivatives: ∥∇2

xq0∥L∞ , ∥∇2
xq1∥L∞ <∞; (2) q0(x) > 0, and there exists

c > 0 such that infx q0(x) ≥ c. This condition is mild in density ratio estimation.
Assumption A.2. The conditional distributions for given Xt = xt, i.e., q0(x | xt) and q1(x | xt) have L-Lipschitz scores:

∥∇xt
log q0(x | xt)∥ ≤

L

αt
, ∥∇xt

log q1(x | xt)∥ ≤
L

βt
. (25)

A.1. Proof of Theorem 3.2

Proof. We first consider the support for DI. Under αt + βt = 1, the Xt is the convex combination of X0 and X1 for
any t ∈ (0, 1), and its corresponding support, supp(qt), is the convex hull of supp(q0) and supp(qq), i.e., supp(qt) =
conv (supp(q0) ∪ supp(q1)). Under α2

t + β2
t = 1, Xt becomes a linear combination of x0 and x1 for any t ∈ (0, 1). For

both cases, supp(qt) can be formulated as

supp(qt) = αtsupp(q0) + βtsupp(q1)

= {αtx0 + βtx1 | x0 ∈ supp(q0),x1 ∈ supp(q1), αt + βt = 1 or α2
t + β2

t = 1},

where supp(q0) and supp(q1) are the supports of q0 and q1, respectively.

Next, we consider the support for DBI. For given coefficients αt and βt, X′
t can be formulated as:

X′
t = I(X0,X1, t) +

√
t(1− t)γ2Zt = Xt +

√
t(1− t)γ2Zt. (26)

The coefficient
√
t(1− t)γ2 is deterministic for a given t. Thus the support corresponding to X′

t, denoted as supp(q′t), can
be expressed as the Minkowski sum of the supports of qt and N (0,Ed):

supp(q′t) = supp(qt) + supp(N (0,Ed)) = {x+ z | x ∈ supp(qt), z ∈ supp(N (0,Ed))},

where supp(N (0,Ed)) = Rd. The Minkowski sum supp(qt) + supp(N (0,Ed)) is at least as large as supp(qt), i.e.,
supp(q′t) ⊇ supp(qt). This completes the proof.

A.2. Proof of Corollary 3.3

Proof. Let the trajectory sets for DI and DBI be denoted by T = {{xt}t∈[0,1];xt ∈ supp(qt)} and T′ = {{x′
t}t∈[0,1];x

′
t ∈

supp(q′t)}, respectively. Let {xt}t∈[0,1] be an arbitrary element of T. From Theorem 3.2, we have supp(q′t) ⊇ supp(qt) for
any t ∈ (0, 1), meaning that xt ∈ supp(q′t). Hence we have {xt}t∈[0,1] ∈ T′. This directly implies T′ ⊇ T.

A.3. Proof of Theorem 3.4

Proof. For the DI, the time derivative of its log-density is governed by the Fokker-Planck equation:

∂t log qt = −∇ · ut − ut · ∇ log qt, (27)

where ∇· and ∇ are the divergence and gradient operators w.r.t. xt. ut(xt) = Eπ[α̇tX0 + β̇tX1 | Xt = xt] is the drift
term. Taking expectations over qt and applying the triangle inequality and Cauchy-Schwarz inequality to this equation:

Eqt [|∂t log qt|] = Eqt [| − ∇ · ut − ut · ∇ log qt|]
≥ Eqt [||∇ · ut| − |ut · ∇ log qt||] (triangle inequality)
≥ Eqt [|∇ · ut|]− Eqt [|ut · ∇ log qt|]
≥ Eqt [|∇ · ut|]− Eqt [∥ut∥ · ∥∇ log qt∥] (Cauchy-Schwarz inequality)

(28)

(1) Lower bound of Eqt [|∇ · ut|]. The divergence term∇ · ut is computed via the Jacobian of the inverse mapping:

∇ · ut = tr(∇ut) = tr
(
Eπ

[
α̇t∇xt

X0 + β̇t∇xt
X1 | Xt = xt

])
= Eπ

[
α̇ttr (∇xt

X0) + β̇ttr (∇xt
X1) | xt

]
.

(29)
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For a given sample (x0,x1) ∼ π, differentiating the the interpolation constraint xt = αtx0 + βtx1 implicitly gives
Ed = αt∇xtx0 + βt∇xtx1. Rearranging yields∇xtx0 = α−1

t Ed − βtα
−1
t ∇xtx1 and∇xtx1 = β−1

t Ed − αtβ
−1
t ∇xtx0.

Decomposing ∇xt
x0 into its independent case value and a residual:

∇xt
x0 = α−1

t Ed +Rt, (30)

where Rt = −βtα
−1
t ∇xtx1 denote the residual term in the Jacobian decomposition. By Assumption A.2 and the definition

of the score function of the conditional distribution, ∇xt log q0(x0 | xt) = −∇xtx0 · ∇x0 log q0(x0 | xt), the Lipschitz
continuity of the conditional scores implies ∥∇xt

x0∥op ≤ Lα−1
t and ∥∇xt

x1∥op ≤ Lβ−1
t . Here ∥ · ∥op denotes the operator

norm. Hence, the absolute value of the trace of the residual term satisfies:

|tr(Rt)| ≤ d · ∥Rt∥op = dα−1
t βt∥∇xtX1∥op ≤ dα−1

t βt ·
L

βt
= dLα−1

t . (31)

This directly leads to the conditional expectation: |Eqt [tr (Rt) | Xt]| ≤ Eqt [|tr (Rt)| | Xt] ≤ dLα−1
t . Thus, the conditional

expectation of tr(∇xt
X0) satisfies:

|Eqt [tr(∇xt
X0) | Xt]| =

∣∣Eqt

[
tr
(
α−1
t Ed +Rt

)
| Xt

]∣∣ = ∣∣Eqt

[
dα−1

t + tr (Rt) | Xt

]∣∣
=
∣∣dα−1

t + Eqt [tr (Rt) | Xt]
∣∣

≥ dα−1
t − |Eqt [tr (Rt) | Xt]|

≥ dα−1
t − dLα−1

t = dα−1
t (1− L).

(32)

Similarly, we have |Eqt [tr(∇xtX1) | xt]| ≥ dβ−1
t (1− L). Base on these lower bounds and applying the triangle inequality,

we have:

Eqt [|∇ · ut|] = Eqt

[∣∣∣Eqt

[
α̇ttr (∇xtX0) + β̇ttr (∇xtX1) | Xt

]∣∣∣]
≥ Eqt

[
|α̇t| |Eqt [tr (∇xtX0) | Xt]| − |β̇t| |Eqt [tr (∇xtX1) | Xt]|

]
≥ Eqt

[
d|α̇t|α−1

t (1− L)− |β̇t|Eqt [|tr (∇xtX1)| | Xt]
]

≥ Eqt

[
d|α̇t|α−1

t (1− L)− |β̇t| · dLβ−1
t

] (
|tr (∇xtX1)| ≤ d · ∥∇xtX1∥op ≤ dLβ−1

t

)
= d

(
(1− L)|α̇t|α−1

t − L|β̇t|β−1
t

)
.

(33)

(2) Upper bound of Eqt [∥ut∥ · ∥∇ log qt∥]. Applying Cauchy-Schwarz:

Eqt [∥ut∥ · ∥∇ log qt∥] ≤
√

Eqt [∥ut∥2] ·
√
Eqt [∥∇ log qt∥2]

=

√
Eqt

[∥∥∥Eπ

[
α̇tX0 + β̇tX1

∣∣Xt

]∥∥∥2] ·√Eqt [∥∇ log qt∥2]

≤
√

Eqt

[
Eπ

[
∥α̇tX0 + β̇tX1∥2

∣∣Xt

]]
·
√
Eqt [∥∇ log qt∥2]

≤
√

2α̇2
tEq0 [∥X0∥2] + 2β̇2

tEq1 [∥X1∥2] ·
√

Eqt [∥∇ log qt∥2] = O
(√

Eqt [∥∇ log qt∥2]
)
.

(34)

Here the drift norm Eqt [∥ut∥2] is bounded by the second moments of X0 and X1, which are finite under our assumptions.

(3) Lower bound of Eqt [|∂t log qt|]. Finally, bring Equation (33) and Equation (34) back to Equation (28), the lower bound
of Eqt [|∂t log qt|] can be derived:

Eqt [|∂t log qt|] ≥ Eqt [|∇ · ut|]− Eqt [∥ut∥ · ∥∇ log qt∥]

≥ d

(
(1− L)

|α̇t|
αt
− L
|β̇t|
βt

)
︸ ︷︷ ︸

Divergence term

−O
(√

Eqt [∥∇ log qt∥2]
)

︸ ︷︷ ︸
Residual term

. (35)
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The residual term O(
√
Eqt [∥∇ log qt∥2]) is finite under Assumption A.2 (Lipschitz scores imply bounded Fisher informa-

tion). Hence, the divergence term dominates asymptotically.

Near the boundaries t→ 0+ and t→ 1−, the terms |α̇t|
αt

and |β̇t|
βt

dominate due to the monotonicity and boundary conditions:

(1) As t→ 0+ : αt → 1, βt → 0,
|α̇t|
αt
∼ |α̇0|,

|β̇t|
βt
∼ β̇+

0

βt
→ +∞.

(2) As t→ 1− : αt → 0, βt → 1,
|α̇t|
αt
∼ |α̇

−
1 |
αt
→ +∞,

|β̇t|
βt
∼ |β̇1|.

(36)

For any L < 1, the prefactor 1− L > 0 ensures:

lim
t→1−

Eqt [∥∂t log qt∥] ≥ lim
t→1−

d(1− L)
|α̇t|
αt

= +∞. (37)

This concludes the universal boundary divergence.

A.4. Proof of Proposition 3.5

Proof. Assume both q0 and q1 are smooth with sufficient differentiability. The Gaussian-dequantified densities are given by:

q′i(x) = (qi ∗ N (0, εEd))(x) =

∫
qi(x

′)N (x;x′, εEd)dx
′

=

∫
qi(x

′)
[
δ(x− x′) +

ε

2
∇2

x′δ(x− x′) +O(ε2)
]
dx′ (Taylor expansion around x′)

= qi(x) +
ε

2

∫
qi(x

′)∇2
x′δ(x− x′) dx′ +O(ε2)

= qi(x) +
ε

2
∇2

xqi(x) +O(ε2), (Integration by parts),

(38)

where∇2
x′ is the Laplacian operator, δ(x− x′) is the Dirac delta.

Substituting these two expansions into the dequantified density ratio r′(x) =
q′1(x)
q′0(x)

, we have:

r′(x) =
q′1(x)

q′0(x)
=

q1(x) +
ε
2∇

2
xq1(x) +O(ε2)

q0(x) +
ε
2∇2

xq0(x) +O(ε2)

=
q1(x)

q0(x)
+

ε

2

∇2
xq1(x)

q0(x)
− ε

2
r(x)
∇2

xq0(x)

q0(x)
+O(ε2) (First-order expansion of a fraction)

= r(x) +
ε

2

[
∇2

xq1(x)

q0(x)
− r(x)

∇2
xq0(x)

q0(x)

]
︸ ︷︷ ︸

E(x)

+O(ε2).

(39)

To bound r′(x)− r(x) in L∞, the supremum can be computed under Assumption A.1:

∥r′ − r∥L∞ ≤ ε

2
sup
x
|E(x)|+O(ε2)

=
ε

2
sup
x

∣∣∣∣∇2
xq1(x)

q0(x)
− r(x)

∇2
xq0(x)

q0(x)

∣∣∣∣+O(ε2)
≤ ε

2
sup
x

∣∣∣∣∇2
xq1(x)

q0(x)

∣∣∣∣+ ε

2
sup
x

∣∣∣∣r(x)∇2
xq0(x)

q0(x)

∣∣∣∣+O(ε2)
≤ ε

2

(
∥∇2

xq1∥L∞

inf
x

q0(x)
+
∥∇2

xq0∥L∞

inf
x

q0(x)
sup
x

r(x)

)
+O(ε2)

=
ε

2 inf
x

q0(x)

(
∥∇2

xq1∥L∞ + ∥∇2
xq0∥L∞∥r∥L∞

)
+O(ε2).

(40)
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Under Assumption A.1, inf
x

q0(x) has lower bound and these norms have upper bound. Then as ε→ 0,

∥r′ − r∥L∞ ≤ O(ε), (41)

where the constant C is given by: C =
∥∇2

xq1∥L∞+∥∇2
xq0∥L∞∥r∥L∞

2 inf
x

q0(x)
. Hence, as ε → 0, we have r′(x) → r(x), verifying

the stated proposition.

A.5. Proof of Proposition 3.6

Proof. Based on Theorem 2.4 of (Léonard, 2014), (De Bortoli et al., 2021) established that the solution to the SB
problem as detailed in Equation (19), π⋆, satisfies the SB conditions: (1) the optimization problem for π⋆ is equiv-
alent to the entropically regularied OT problem, with the optimal coupling π2γ2 defined in Equation (17); (2) for
samples (x′

0,x
′
1) ∼ π⋆, the associated conditional path distributions π⋆(· | x′

0,x
′
1) minimize the KL divergence:

E(x′
0,x

′
1)∼π⋆KL (π⋆(· | x′

0,x
′
1)∥πref(· | x′

0,x
′
1)), where πref is the reference path distribution satisfying log πref(x

′
0,x

′
1) =

∥x′
0−x′

1∥
2

2γ2 + const. These conditional distributions are optimized using Brownian bridges of diffusion scale γ, condi-
tioned on the endpoints x′

0 and x′
1. The marginal distribution at intermediate time t along the Brownian bridge is given by

qt(x | x′
0,x

′
1) = N (x | (1−t)x′

0+tx′
1, t(1−t)γ2Ed) (Tong et al., 2024). Since our proposed OTR method uses Sinkhorn’s

algorithm to solve the entropically regularized OT problem, and the probability paths of our DDBI with αt = 1− t and
βt = t align with those of the Brownian bridge, a trajectory x′

t generated by first sampling (x′
0,x

′
1) ∼ π⋆, then sampling

xt ∼ qt(· | x′
0,x

′
1) satisfies the SB conditions, thus verifying the proposition.

A.6. Proof of Theorem 3.7

Proof. To compare DDBI and DSBI, we first construct a unified error bound by analyzing the discrepancy between
the interpolant-induced log density ratio and the true log density ratio. Let (X′

0,X
′
1) ∼ π ∈ Π(q′0, q

′
1) for DDBI and

(X̂′
0, X̂

′
1) ∼ π2γ2 for DSBI, where π2γ2 denotes the entropically OT coupling.

Let q′t denote the interpolant-induced density at time t. The error functional E :=
∣∣∣∫ 1

0
∂t log q

′
tdt− log

q′1
q′0

∣∣∣ satisfies:

Eπ[E2] = Eπ

[∣∣∣∣∫ 1

0

∂t log q
′
tdt− log

q′1
q′0

∣∣∣∣2
]
≤ 2Eπ

[∣∣∣∣∫ 1

0

∂t log q
′
tdt

∣∣∣∣2
]

︸ ︷︷ ︸
V

+2Eπ

[∣∣∣∣log q′1
q′0

∣∣∣∣2
]

︸ ︷︷ ︸
C0

, (42)

where C0 is independent of the interpolant choice. Thus, error comparison reduces to analyzing the time-integrated variance
V . Expanding V via Fubini’s theorem:

V = Eπ

[∣∣∣∣∫ 1

0

∂t log q
′
tdt

∣∣∣∣2
]
=

∫ 1

0

∫ 1

0

Eπ [∂t log q
′
t∂s log q

′
s] dtds =

∫ 1

0

∫ 1

0

Eq′s

[
Eq′t

[
∂t log q

′
t∂s log q

′
s

∣∣X′
s

]]
dtds

=

∫ 1

0

∫ 1

0

Eq′s

[
∂s log q

′
sEq′t

[
∂t log q

′
t

∣∣X′
s

]]
dtds (Markov property)

=

∫ 1

0

∫ 1

0

Eq′s

[
∂s log q

′
s

[
Eq′t

[∂t log q
′
t] + e−

|t−s|
τ2
[
∂s log q

′
s − Eq′s

[∂s log q
′
s]
]
+O(τ4)

]]
dtds (⋆)

=

∫ 1

0

∫ 1

0

[
Eq′t

[∂t log q
′
t]Eq′s

[∂s log q
′
s] + e−

|t−s|
τ2 Varq′t(∂t log q

′
t)
]
dtds+O(τ4)

=

(∫ 1

0

Eq′t
[∂t log q

′
t]dt

)(∫ 1

0

Eq′s
[∂s log q

′
s]ds

)
+

∫ 1

0

Varq′t(∂t log q
′
t)

(∫ 1

0

e−
|t−s|
τ2 ds

)
dt+O(τ4)

=

(∫ 1

0

Eq′t
[∂t log q

′
t]dt

)2

+

∫ 1

0

Varq′t(∂t log q
′
t)
(
τ2
(
2− e−

t
τ2 − e−

1−t

τ2

))
dt+O(τ4)

≤
(∫ 1

0

Eq′t
[∂t log q

′
t]dt

)2

+ 2τ2
(
1− e−

1
2τ2

)∫ 1

0

Varq′t(∂t log q
′
t)dt+O(τ4) (⋆⋆).

(43)
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(⋆) The conditional expectation Eq′t

[
∂t log q

′
t

∣∣X′
s

]
satisfies the backward equation associated with the Markov semi-

group. For small τ , the process resembles an Ornstein-Uhlenbeck process near equilibrium, where the covariance decays
exponentially with the time separation |t− s| due to the Chapman-Kolmogorov equation.

(⋆⋆) This inequality holds because the term 2− e−
t

τ2 − e−
1−t

τ2 is strictly positive for t ∈ [0, 1] and attains its maxima at

t = 0.5 and minimum at t = 0 and t = 1. The first term is bounded by C0 = Eπ

[∣∣∣log q′1
q′0

∣∣∣2] according to the Fubini’s

theorem and the inequality E[X]2 ≤ E[X2].

Bringing this inequality back to Equation (42):

Eπ[E2] ≤ 4τ2
(
1− e−

1
2τ2

)∫ 1

0

Varq′t(∂t log q
′
t)dt+ 4C0 +O(τ4). (44)

To analyze Varq′t(∂t log q
′
t), applying the law of total variance to Varq′t(∂t log q

′
t):

Varq′t(∂t log q
′
t) = E(X′

0,X
′
1)∼π [Var (∂t log q′t(X

′
t | X′

0,X
′
1))] + Var(X′

0,X
′
1)∼π (E [∂t log q

′
t(X

′
t | X′

0,X
′
1)]) . (45)

For any paired endpoints (X′
0,X

′
1) ∼ π, the interpolant X′

t follows a Gaussian distribution conditioned on the endpoints
X′

t | (X′
0,X

′
1) ∼ q′t(· | X′

0,X
′
1) = N

(
µt, σ

2
t Id
)
, where µt = αtX

′
0 + βtX

′
1, σ

2
t = t(1 − t)γ2 + (α2

t + β2
t )ε. The

conditional score ∂t log q
′
t(X

′
t | X′

0,X
′
1) is derived explicitly as:

∂t log q
′
t(X

′
t | X′

0,X
′
1) =

∂

∂t
logN

(
µt, σ

2
t Id
)
=

∂

∂t
log

[
(2πσ2

t )
−d/2 exp

(
−∥X

′
t − µt∥2

2σ2
t

)]
= −d

2

σ̇2
t

σ2
t

+
α̇tX

′
0 + β̇tX

′
1

σ2
t

· (X′
t − µt) +

∥X′
t − µt∥2

2

σ̇2
t

σ4
t

= −dσ̇2
t

2σ2
t

+
α̇tX

′
0 + β̇tX

′
1

σt
· Zt +

σ̇2
t ∥Zt∥2

2σ2
t

.

(46)

The term Eπ [Var (∂t log q′t(X′
t | X′

0,X
′
1))]. Taking the variance on both sides of Equation (46) and taking expectation

over the coupling distribution π:

Eπ [Var(∂t log q′t(X
′
t | X′

0,X
′
1))] = Eπ

[
Var

(
α̇tX

′
0 + β̇tX

′
1

σt
· Zt

)
+ Var

(
−dσ̇2

t

2σ2
t

)
+ Var

(
− σ̇2

t ∥Zt∥2

2σ2
t

)]

=
1

σ2
t

Eπ

[∥∥∥α̇tX
′
0 + β̇tX

′
1

∥∥∥2 + 0 +
σ̇4
t

4σ4
t

Var(∥Zt∥2)
]

=
1

σ2
t

Eπ

[∥∥∥α̇tX
′
0 + β̇tX

′
1

∥∥∥2]+ σ̇4
t d

2σ4
t

.

(47)

Specifically, when αt = 1− t and βt = t, this reduces to Eπ [Var(∂t log q′t(X
′
t | X′

0,X
′
1))] =

1
σ2
t
Eπ

[
∥X′

0 −X′
1∥

2
]
+

σ̇4
t d

2σ4
t

.

The term Var (E [∂t log q
′
t(X

′
t | X′

0,X
′
1)]). Taking the variance on both sides of Equation (46) and taking expectation over

the coupling distribution π:

Varπ (E [∂t log q
′
t(X

′
t | X′

0,X
′
1)]) = Varπ

(
E

[
−dσ̇2

t

2σ2
t

+
α̇tX

′
0 + β̇tX

′
1

σt
· Zt +

σ̇2
t ∥Zt∥2

2σ2
t

])

= Varπ

(
−dσ̇2

t

2σ2
t

+
α̇tX

′
0 + β̇tX

′
1

σt
· E[Zt] +

σ̇2
t

2σ2
t

E
[
∥Zt∥2

])

= Varπ

(
α̇tX

′
0 + β̇tX

′
1

σt
· 0+

σ̇2
t

2σ2
t

d

)
= 0.

(
Zt ∼ N (0,Ed), ∥Zt∥2 ∼ χ(d)

)
.

(48)
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Bringing Equations (45), (47) and (48) into Equation (44), the expectational error bound with coupling π becomes:

Eπ[E2] ≤ 2V + 2C0 = 4τ2
(
1− e−

1
2τ2

)∫ 1

0

Varq′t(∂t log q
′
t)dt+ 4C0 +O(τ4)

= 4τ2
(
1− e−

1
2τ2

)∫ 1

0

[
1

σ2
t

Eπ

[
∥X′

0 −X′
1∥

2
]
+

σ̇4
t d

2σ4
t

]
dt+ 4C0 +O(τ4)

= 4τ2
(
1− e−

1
2τ2

)[
Eπ

[
∥X′

0 −X′
1∥

2
] ∫ 1

0

1

σ2
t

dt+

∫ 1

0

σ̇4
t d

2σ4
t

dt

]
+ 4C0 +O(τ4),

(49)

when αt = 1− t and βt = t. Thus, the difference between the upper bound of Eπ[E2] for DSBI and DDBI becomes:

VDDBI − VDSBI = 4τ2
(
1− e−

1
2τ2

)
︸ ︷︷ ︸

>0

[
Eπ

[
∥X′

0 −X′
1∥

2
]
− Eπ2γ2

[∥∥∥X̂′
0 − X̂′

1

∥∥∥2]]︸ ︷︷ ︸
≥0(⋆⋆⋆)

∫ 1

0

1

σ2
t

dt+O(τ4).
(50)

(⋆ ⋆ ⋆) This inequality holds because π2γ2 is the solution to the entropically regularized OT problem:

Eπ

[
∥X′

0 −X′
1∥

2
]
− Eπ2γ2

[∥∥∥X̂′
0 − X̂′

1

∥∥∥2]
=
[
Eπ

[
∥X′

0 −X′
1∥

2
]
− 2γ2H(π2γ2)

]
−
[
Eπ2γ2

[∥∥∥X̂′
0 − X̂′

1

∥∥∥2]− 2γ2H(π2γ2)

]
≥ 0.

(51)

Finally, according to VDDBI − VDSBI ≥ 0, the upper bound of Eπ2γ2 [E2DSBI] is less than or equal to that of Eπ[E2DDBI].

A.7. Proof of Corollary 3.8

Proof. Directly applying the Jensen’s inequality to Eq′t
[|∂t log q′t|] yields:

Eq′t
[|∂t log q′t|] ≤

√
Eq′t

[(∂t log q′t)
2] =

√
Varq′t(∂t log q

′
t) +

(
Eq′t

[∂t log q′t]
)2
. (Property of variance). (52)

The first term on the r.h.s. is bounded according to Theorem 3.7, satisfying Varq′t(∂t log q
′
t) =

1
σ2
t
Eπ

[
∥X′

0 −X′
1∥

2
]
+

σ̇4
t d

2σ4
t

with σ2
t = t(1 − t)γ2 + (α2

t + β2
t )ε. The second term on the r.h.s. vanishes identically Eq′t

[∂t log q
′
t] =

∫ ∂tq
′
t

q′t
q′t dx =∫

∂tq
′
t dx = ∂t

(∫
q′t dx

)
= ∂t(1) = 0. Thus, the term Eq′t

[|∂t log q′t|] is bounded by:

Eq′t
[|∂t log q′t|] ≤

√
1

σ2
t

Eπ

[
∥X′

0 −X′
1∥

2
]
+

σ̇4
t d

2σ4
t

<∞. (53)

A.8. Derivation of Definition 3.9

Proof. Let {X′
t}t∈[0,1] be a DDBI. It has a transition kernel q′t(x | x0,x1) and marginal probability density q′t(x). By

dividing the interval [0, 1] into M discrete intervals, the log dequantified density ratio for a given point x can be derived:

log r′(x) = log
q′1(x)

q′0(x)
= log

q′1/M (x)

q′0(x)

q′2/M (x)

q′1/M (x)
· · · q′1(x)

q′(M−1)/M (x)
=

M−1∑
m=0

log
q′(m+1)/M (x)

q′m/M (x)
. (54)

According to the Taylor’s formula, we have log(1 + x) ≈ x while x approaches 0. In this case, while M is large enough so
that the difference between pm/M (x | x0,x1) and p(m−1)/M (x | x0,x1) approaches 0, we have

log
q′(m+1)/M (x)

q′m/M (x)
= log

(
1 +

q′(m+1)/M (x)− q′m/M (x)

q′m/M (x)

)
≈

q′(m+1)/M (x)− q′m/M (x)

q′M (x)
. (55)
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In the limit as M → ∞, the difference term
q′(m+1)/M (x)−q′m/M (x)

q′M (x) can be seen as the approximation of ∂
∂τ log q′τ (x)

evaluated at τ = m/M . Taking the limit as M →∞ for both sides of Eq. (54), we can derive

log r′(x) = lim
M→∞

M−1∑
m=0

log
q′(m+1)/M (x)

q′m/M (x)

≈ lim
M→∞

M−1∑
m=0

q′(m+1)/M (x)− q′m/M (x)

q′M (x)

≈ lim
M→∞

M−1∑
m=0

∂

∂τ
log q′τ (x)

∣∣∣∣
τ=m/M

=

∫ 1

0

∂t log q
′
τ (x)dt.

(56)

According to Proposition 3.5, the density ratio r′(x) uniformly approximates the target density ratio r⋆(x), i.e.

log r(x) ≈ log r′(x) ≈
∫ 1

0

∂t log q
′
τ (x)dt. (57)

This completes the proof of this proposition.
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B. Preliminaries
B.1. Special Cases of DI

In the case of TRE, the interpolation strategy, as detailed in Eq. (2), represents a specific case of I, characterized by
αt =

√
1− η2t , βt = ηt, with t taking discrete values 0, 1/M, 2/M, . . . , 1. For DRE-∞, the coefficients are defined as

αt = exp{−0.25(βmax − βmin)t
2 − 0.5βmint} and βt =

√
1− α2

t for the MNIST dataset and αt = 1− t and βt = t for
other datasets. The corresponding stochastic process for the former one aligns with the solution to variance preserving (VP)
SDEs (Song et al., 2021; Li et al., 2024b; Xin et al., 2024; Zhou et al., 2025b).

B.2. From Optimal Transport to Entropic Regularization

The static OT problem seeks to find a coupling π between two probability distributions q0 and q1 that minimizes a given cost
function. For the 2-Wasserstein distance with a Euclidean ground cost c(x0,x1) = ∥x0 − x1∥2, the optimization problem is
given by:

W2
2 (q0, q1) = inf

π∈Π(q0,q1)

∫
Rd×Rd

∥x0 − x1∥2dπ(x0,x1), (58)

where Π(q0, q1) denotes the set of joint probability measures with marginals q0 and q1. The optimal solution for compactly
supported distributions (Villani et al., 2009) is characterized by straight-line interpolations between samples:

Xt = (1− t)X0 + tX1, t ∈ [0, 1], (59)

where X0 ∼ q0 and X1 ∼ q1. This interpolation aligns with the Benamou-Brenier formulation (McCann, 1997; Zhou et al.,
2024b), where the transport paths minimize the kinetic energy in the space of probability measures.

The natural connections between optimal transport theory and straight-line interpolations motivate the concept of Batch
Optimal Transport (BatchOT) (Pooladian et al., 2023; Zhao et al., 2025). BatchOT provides a pseudo-deterministic coupling
mechanism by extending the OT principles to minibatch sampling. This ensures practical scalability and aligns theoretical
transport paths with computational requirements.

Despite its theoretical elegance, solving the OT problem at scale is computationally challenging due to its cubic complexity
in the number of samples. Entropic regularization alleviates this issue by introducing an entropy penalty:

W2
2,ξ(q0, q1) = inf

π∈Π(q0,q1)

∫
Rd×Rd

∥x0 − x1∥2dπ(x0,x1)− ξH(π), (60)

where ξ > 0 is the regularization parameter andH(π) denotes the entropy of π. This formulation ensures convexity and
allows scalable computation via Sinkhorn’s algorithm (Cuturi, 2013).

Entropic regularization connects OT with the Schrödinger bridge (SB) problem, which models stochastic interpolation
between distributions. Given a reference Wiener process scaled by γ, the SB problem finds the most probable stochastic
process π that satisfies the marginal constraints q0 and q1:

π⋆ = argmin
π∈Π(q0,q1)

KL(π ∥ πref), (61)

where πref is a reference process. The SB solution corresponds to an entropy-regularized OT plan with ξ = 2γ2:

Xt = (1− t)X0 + tX1 +
√
t(1− t)γ2Zt, (62)

where Zt ∼ N (0,Ed). This formulation introduces stochasticity into the transport paths, effectively modeling uncertainty
and noise.

C. Experimental Details and More Results
C.1. Comparison of the Trajectory Sets for Interpolation Strategies

In this section, we provide a detailed comparison of interpolation strategies, specifically deterministic interpolant (DI),
diffusion bridge interpolant (DBI), dequantified diffusion bridge interpolant (DDBI), and dequantified Schrödinger bridge
interpolant (DSBI). Their intermediate samples and corresponding distributions are visualized in Figure 1.
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(a) DI: DI constrains intermediate samples to fixed linear paths between q0(x) and q1(x), resulting in narrow bands across
the trajectory space (Figure 1(a)). While dense along the paths, DI severely limits support and fails to explore alternative
trajectories, making it inflexible and unsuitable for diverse distributions.

(b) DBI: DBI introduces stochasticity through Brownian Bridge noise, expanding support and enabling broader trajectory
exploration (Figure 1(b)). Compared to DI, DBI provides greater coverage and variability while retaining tractability,
reducing the rigidity of interpolation paths (Zhao et al., 2023).

(c) DDBI: Extending DBI, DDBI modulates the noise with deterministic interpolation weights and diffusion components.
This results in more dispersed trajectories (Figure 1(c)) and a larger coverage of the intermediate distributions, balancing
controlled stochasticity with enhanced flexibility (Zhou et al., 2025a).

(d) DSBI: DSBI offers full stochastic control over noise and leverages entropy-regularized optimal transport, resulting in
widely dispersed trajectories and efficient utilization of the trajectory space (Figure 1(d)). By minimizing transition loss,
DSBI achieves the largest support set and highest diversity among the methods, producing rich intermediate distributions.

Overall, our proposed methods (DBI, DDBI and DSBI) demonstrate clear advantages over deterministic baselines by
achieving more comprehensive trajectory space exploration and flexible intermediate distribution generation. These results
are consistent with our theoretical findings on support set and path set expansion, as formalized in Theorem 3.2 and
Corollary 3.3.

C.2. Joint Score Matching

In this section, we integrate the time score stθ ∈ R and data score sxθ ∈ Rd to formulate the joint score st,xθ : [stθ, s
x
θ ] ∈ Rd+1.

This joint score is incorporated into the training objective defined in Equation (23), resulting in a joint score matching
objective (Choi et al., 2022):

L4(θ) = 2Ex∼q′0(x)
[λ(0)st,xθ (x, 0)[t]]− 2Ex∼q′1(x)

[λ(1)st,xθ (x, 1)[t]]

+ Et∼q(t)Ex∼q′t(x)
Ev∼q(v)

[
2λ(t)∂ts

t,x
θ (x, t)[t] + 2λ′(t)st,xθ (x, t)[t]

+λ(t)∥st,xθ (x, t)[x]∥22 + 2λ(t)vT∇xs
t,x
θ (x, t)[x]v

]
,

(63)

where v ∼ q(v) = N (0,Ed) follows a standard Gaussian distribution, the terms st,xθ (x, t)[x] and st,xθ (x, t)[t] represent the
data and time score components of st,xθ (x, t), respectively.

C.3. Mutual Information Estimation

Mutual information (MI) measures the dependency between two random variables X ∼ p(x) and Y ∼ q(y), quantifying
how much information one variable contains about the other. In this experiment, we employ D3RE to estimate the
MI between two d-dimensional correlated Gaussian distributions. Specifically, we consider q(y) = N (0, σ2Ed) and
p(x) = N (0,Ed), where σ2 = 1e − 6 and d = {40, 80, 120}. Let p(x,y) be the joint density of X and Y. The MI
between X and Y is defined as MI(X,Y) = Ex,y∼p(x,y)

[
log p(x,y)

p(x)q(y)

]
, and can be approximated via DRE. We adapt the

experimental setup of (Choi et al., 2022) to implement D3RE.

To construct the joint distribution, we use q0(x) = N (0,Ed) and q1(x) = N (0,Σ), where Σ is block diagonal with
Λ = [[1, ρ] , [ρ, 1]] as 2 × 2 sub-matrices. For q1, it is designed as a multivariate normal distribution with a block
diagonal covariance matrix along the block diagonal. Each Λ represents the covariance between variable pairs, while
off-diagonal blocks remain zero, ensuring no correlation across pairs. The DDBI and DSBI are implemented, given by
X′

t = αtX0 + βtX1 +
√
t(1− t)γ2 + (α2

t + β2
t )εZt, where X0 ∼ q0(x),X1 ∼ q1(x), and Zt ∼ N (0,Ed). We estimate

the density ratio r(x) = q1(x)
q0(x)

, yielding MI(X,Y) ≈ Ex∼q1(x)[log r(x)].

We train the score model using the joint score matching loss (details in Appendix C.2). The batch size is set to 512 for
d = {40, 80, 160} and 256 for d = 320, with iteration steps of {40k, 100k, 400k, 500k}, respectively. DRE-∞ serves as the
baseline method. Results, shown in Figure 3, demonstrate that D3RE, especially DSBI, produces MI estimates significantly
closer and faster to the ground truth compared to the baseline, highlighting its superiority in accurately capturing mutual
dependencies between variables.
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C.4. Density Estimation

Energy-based Modeling on MNIST. We applied the proposed D3RE framework to density estimation on the MNIST
dataset, leveraging pre-trained energy-based models (EBMs) (Choi et al., 2022). Let q1(x) denote the MNIST data
distribution and q0(x) a simple noise distribution with three different settings, as reported in (Rhodes et al., 2020): Gaussian
noise, Gaussian copula, and Rational Quadratic Neural Spline Flow (RQ-NSF) (Durkan et al., 2019). We applied an modified
version of DDBI of the form X′

t = αtX0+βtEBM(X1)+
√

t(1− t)γ2 + (α2
t + β2

t )εZt, where X0 ∼ q0(x),X1 ∼ q1(x),
Zt ∼ N (0,Ed), αt = exp{−0.25(βmax − βmin)t

2 − 0.5βmint} and βt =
√

1− α2
t . βmin and βmax are set to 0.1 and 20,

respectively. The results are reported in bits-per-dimension (BPD), evaluated as BPD = − 1
d ln 2Ex∼q1(x) [log q1(x)], where

the expectation reflects the log-density of the MNIST dataset. Exact BPD computation is infeasible for EBMs; therefore, we
estimate it using two annealed MCMC methods: Annealed Importance Sampling (AIS) (Neal, 2001) and Reverse Annealed
Importance Sampling Estimator (RAISE) (Burda et al., 2015).

Table 3. Comparison of the estimated log-density on MNIST dataset based on pre-trained energy-based models. The results are reported
in BPD. Lower is better. The reported results for NCE and TRE are sourced from (Rhodes et al., 2020).

Method Noise type Noise Direct (↓) RAISE (↓) AIS (↓)
NCE Gaussian 2.01 1.96 1.99 2.01
TRE Gaussian 2.01 1.39 1.35 1.35

DRE-∞ Gaussian 2.01 1.33 1.33 1.33

DRE-∞+OTR, ours Gaussian 2.01 1.313 1.31 1.31
D3RE (DDBI), ours Gaussian 2.01 1.297 1.30 1.29
D3RE (DSBI), ours Gaussian 2.01 1.293 1.29 1.29

NCE Copula 1.40 1.33 1.48 1.45
TRE Copula 1.40 1.24 1.23 1.22

DRE-∞ Copula 1.40 1.21 1.21 1.21

DRE-∞+OTR, ours Copula 1.40 1.204 1.19 1.18
D3RE (DDBI), ours Copula 1.40 1.193 1.19 1.19
D3RE (DSBI), ours Copula 1.40 1.170 1.19 1.18

NCE RQ-NSF 1.12 1.09 1.10 1.10
TRE RQ-NSF 1.12 1.09 1.09 1.09

DRE-∞ RQ-NSF 1.12 1.09 1.08 1.08

DRE-∞+OTR, ours RQ-NSF 1.12 1.072 1.07 1.06
D3RE (DDBI), ours RQ-NSF 1.12 1.072 1.06 1.06
D3RE (DSBI), ours RQ-NSF 1.12 1.066 1.06 1.06

2-D Synthetic Datasets. In this section, we present density estimation results on eight synthetic datasets for different
methods. From left to right, the epochs are 0, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000 and 20000.
Corresponding results are shown in Figures 9 to 16. D3RE (including DDBI and DSBI) achieved the best performance on
all datasets and was able to learn the best results with fewer epochs.

C.5. Ablation Study on γ2

Mutual Information Estimation. The ablation study on varying γ2 values (Figure 5) reveals distinct convergence behaviors
in MI estimation across epochs. For all dimensions (d = {40, 80, 120}), smaller γ2 values (≤ 0.01) lead to faster initial
convergence toward the DRE-∞ baseline, particularly in lower dimensions (d = 40). However, excessively small γ2 = 0.001
introduces instability in later epochs, causing slight deviations from the baseline. In contrast, larger γ2 values (≥ 0.1) show
slower initial convergence but stabilize over longer training periods, especially in higher dimensions (d = 120). Notably,
γ2 = 0.1 strikes a balance between convergence speed and stability, consistently aligning with the baseline across all
dimensions. These findings suggest that the optimal γ2 selection is influenced by both the dimensionality and training
duration, with moderate regularization (γ2 = 0.01–0.1) providing robust MI estimation performance.
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Density Estimation. The ablation study on γ2 for density estimation (Figure 4) reveals systematic trade-offs in performance
across regularization strengths. For small γ2 = 0.001, the model achieves rapid initial alignment with the ground truth
distribution (first row) but exhibits overfitting artifacts in later epochs, manifesting as irregular density peaks and deviations
from the smooth ground truth structure. Intermediate values (γ2 = 0.01–0.1) demonstrate balanced behavior: γ2 = 0.01
preserves finer details while maintaining stability, and γ2 = 0.1 produces smoother approximations with minimal divergence
from the true distribution. Larger γ2 values (≥ 0.5) induce excessive regularization, leading to oversmoothed estimates that
fail to capture critical modes of the 2-D data, particularly in high-density regions. Notably, γ2 = 0.1 achieves the closest
visual and structural resemblance to the ground truth, suggesting its suitability for low-dimensional tasks requiring both
fidelity and robustness. These results underscore the necessity of tuning γ2 to mitigate under-regularization artifacts while
preserving distributional complexity.

We also present density estimation results on eight synthetic datasets for varing values of γ2. From left to right, the epochs
are 0, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000 and 20000. Corresponding results are shown in
Figures 17 to 24.

C.6. Ablation Study on OTR

Figure 3 compares the MI estimation performance of DDBI and DSBI across different dimensions (d = 80, 120). DDBI
uses diffusion bridges and Gaussian dequantization, while DSBI adds OTR to achieve better alignment. In panel (a), both
DDBI and DSBI outperform the baseline methods. DDBI shows stable performance and converges close to the ground truth.
However, DSBI, with OTR, achieves faster convergence and higher accuracy, staying closer to the ground truth throughout
training. In panel (b), the impact of OTR becomes more evident. Although DDBI still outperforms the baseline methods,
its convergence is slower, and its accuracy is lower compared to DSBI. By leveraging OTR, DSBI demonstrates superior
MI estimation performance across all training epochs and remains closer to the ground truth in high-dimensional settings
(d = 120). OTR significantly improves the alignment of intermediate distributions and enhances model performance. When
combined with diffusion bridges and Gaussian dequantization, as in DSBI, OTR achieves its full potential. It allows the
model to estimate complex distributions more accurately.

Number of Function Evaluations. We analyze the impact of OTR on NFE, noting that DI and DDBI do not utilize OTR.
Our observations show that applying OTR significantly reduces NFE. Figure 8 compares NFE across four methods in DRE,
highlighting substantial variations in computational efficiency. The first approach exhibits the highest NFE, indicating
reliance on iterative procedures requiring repeated function evaluations. The second approach achieves a moderate reduction
in NFE, likely by minimizing redundant evaluations through minimized transport costs.
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Figure 9. Density estimation results on swissroll for different methods during training.
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Figure 10. Density estimation results on circles for different methods during training.
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Figure 11. Density estimation results on rings for different methods during training.
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Figure 12. Density estimation results on moons for different methods during training.
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Figure 13. Density estimation results on 8gaussians for different methods during training.
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Figure 14. Density estimation results on pinwheel for different methods during training.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

baseline
(DI)

DI+OTR
(ours)

D3RE
(DDBI, ours)

D3RE
(DSBI, ours)

Figure 15. Density estimation results on 2spirals for different methods during training.
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Figure 16. Density estimation results on checkerboard for different methods during training.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0.001

0.01

0.1

0.5

1.0

Figure 17. Density estimation results on swissroll for varing values of γ2 during training.
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Figure 18. Density estimation results on circles for varing values of γ2 during training.
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Figure 19. Density estimation results on rings for varing values of γ2 during training.
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Figure 20. Density estimation results on moons for varing values of γ2 during training.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0.001

0.01

0.1

0.5

1.0

Figure 21. Density estimation results on 8gaussians for varing values of γ2 during training.
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Figure 22. Density estimation results on pinwheel for varing values of γ2 during training.
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Figure 23. Density estimation results on 2spirals for varing values of γ2 during training.
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Figure 24. Density estimation results on checkerboard for varing values of γ2 during training.
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