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ABSTRACT

A common strategy to reduce the computational costs of using long contexts in
retrieval-augmented generation (RAG) with large language models (LLMs) is soft
context compression, where the input sequence is transformed into a shorter con-
tinuous representation. We develop a lightweight and simple mean-pooling ap-
proach that consistently outperforms the widely used compression-tokens archi-
tecture, and study training the same compressor to output multiple compression
ratios. We conduct extensive experiments across in-domain and out-of-domain
QA datasets, as well as across model families, scales, and compression ratios.
Overall, our simple mean-pooling approach achieves the strongest performance,
with a relatively small drop when training for multiple compression ratios. More
broadly though, across architectures and training regimes the trade-offs are more
nuanced, illustrating the complex landscape of compression methods.

1 INTRODUCTION

Reasoning over long documents is common in scenarios of retrieval-augmented generation (RAG).
This is a computationally costly process, both as far as time and memory. Time is impacted by
processing the document itself and self-attending over its computed representations in later parts
of the generation process. Memory costs spike due to the key-value (KV) cache of the processed
document. The common way to reduce these costs is soft context compression, where a sequence
of continuous representations is pre-computed. This representation is compressed in the sense that
its length is significantly lower than the document length, thereby reducing both time and memory
costs of reasoning over the document. This compressed representation is computed once, and then
retrieved as needed. This important problem is receiving significant attention (e.g., Ge et al., 2024;
Cheng et al., 2024a; Dai et al., 2025).

We study both compressor model design and the compression training process, with simplicity in
mind. The compression encoder we design is composed of an encoding LLM, and straightforward
mean-pooling operations to collapse together representations to achieve a target compression ratio.
This approach adds no parameters beyond the encoder LLM, and the computation beyond the en-
coding of the document is minimal. It also naturally allows for compression ratio flexibility, raising
the question of the benefits or downsides of training the same compressor to support multiple com-
pression ratios. We design a simple training objective and process to achieve this. This is motivated
foremost by the benefit of training a single model to serve different compute budgets, rather than
maintaining and training a separate model for each compression ratio. It also allows to examine if
and when training to compress at multiple ratios can perform better than training for a single ratio.

We construct a rigorous evaluation suite using multiple question-answering (QA) datasets. We dis-
tinguish between datasets that are part of our training set, and these that are completely held-out,
allowing us to better gauge generalization. We conduct a battery of experiments, across three model
families, model scales, and variations of both compressor architecture and multi-ratio training.

We find that our approach consistently outperforms the conventional compression-tokens approach,
while being more efficient. In addition, we also show that by simply altering the attention pattern
in the conventional compression tokens method, one can mitigate the gap between the approaches
significantly, albeit not entirely. Our multi-ratio training experiments reveal that it is possible to train
and deploy only a single model for a wide range of compression ratios with only minor performance
drops. Interestingly, our proposed enhancement for the compression-tokens approach even benefits
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from multi-ratio training. A comparison of compression performances for scales between 0.6B to
8B shows that compression quality increases with scale, amplifying the benefits of applying such
compression methods to larger models. Code, data, and models will be released upon publication.

2 TASK DEFINITION

Soft context compression is an approach where a document of length L is mapped to a sequence of
vectors of length C, where L ≫ C. While the original document can be described as a sequence
of tokens, the compression is made of dense continuous vectors, hence soft. This process allows
an LLM that uses the compressed version of the document to invest significantly less computation,
both in time and key-value (KV) cache space, both reduced from dependence on L to dependence
on C. This benefit increases with repeated use of the document, as is likely in RAG scenarios.

Formally, we define soft context compression to support multiple compression ratios. Let M be a
language model and R ⊆ N+ the admissible set of compression ratios. Let V denote the vocabulary
and d the embedding dimension of M. The goal of learning is to construct a compression function

fc : VL ×R → RC×d , (1)

which maps a token sequence T = (t1, . . . , tL), ti ∈ V of length L and a ratio r ∈ R to a
compressed representation of C vectors of dimension d. The length C is determined by the specified
ratio C = ⌈L/r⌉.

An ideal compressor fc preserves the conditional distribution of the model using the compressed
version for any prompt P :

pM(· | T, P ) ≈ pM̃(· | fc(T ; r), P ) , (2)

where M̃ is an adapted version of M, for example augmented with lightweight parameters such as
LoRA (Hu et al., 2022) modules that can be fused into the base model without altering its capacity.

3 BACKGROUND AND RELATED WORK

Soft Context Compression A dominant line of research on context compression adopts the use
of artificial compression tokens. As shown in Figure 1b, a sequence of length L with a target com-
pression ratio r is augmented with C = ⌈L/r⌉ additional identical tokens. 1 The embedding of
the compression token is learned. The final hidden state at the time steps of the compression to-
kens is taken as the compressed representation. A decoder, conditioned on this representation and a
downstream prompt (e.g., a question), produces the output. Training typically combines a language
modeling objective on the decoder with a distillation loss that encourages the compressor–decoder to
approximate the behavior of a target LLM with access to the full uncompressed context (Figure 1a).
The decoder parameters are either tuned during learning or are frozen.

This paradigm has been explored extensively in recent work. AutoCompressors (Chevalier et al.,
2023) introduce recursive compression by appending a fixed set of compression tokens and extract-
ing their hidden states. They tie the encoder and decoder weights. The ICAE framework (Ge et al.,
2024) adopts an encoder–decoder setup where the decoder is frozen and only the encoder is trained,
with a two-stage process of autoencoding pretraining and task-specific finetuning. COCOM (Rau
et al., 2025) extends this approach to retrieval-augmented QA, experimenting with lighter encoders
and with training decoders to jointly process multiple compressed contexts. Other work has sought
more aggressive reduction: xRAG (Cheng et al., 2024a) maps document retrieval embeddings di-
rectly into the decoder’s input space, achieving single-token compression but with severe constraints
on sequence length and generality. PISCO (Louis et al., 2025) demonstrates that training compres-
sors on LLM-generated answers improves downstream RAG performance, while PCC (Dai et al.,
2025) decouples the compressor from the target LLM by learning a converter to project compressed
representations into another model’s hidden space. Most recently, GMSA (Tang et al., 2025) pro-
posed grouping hidden representations and learning a layer semantic alignment module that bridges

1Although some works utilize a fixed number of compression tokens and then learn a distinct embedding
for each position.
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Figure 1: Comparison of context processing methods: regular LM, compression tokens, and our
proposed approach — mean pooling. The figure illustrates a compression ratio of 4×.

the gap between the encoder’s final hidden states and the decoder’s first attention layers. Their ap-
proach is related to our study of pooling, but differs in the complexity of multi-stage reconstruction
training and the use of compression-decoder adapters.2

In this work, we revisit some of these design choices and provide a systematic comparison with
token-based architectures under both single- and multi-ratio training regimes.

KV Cache Compression In contrast to representing contexts as input embeddings, another line of
work compresses the entire set of key–value (KV) states. Some approaches remove or compress less
informative entries in the KV cache without additional training (Xiao et al., 2024; Oren et al., 2024;
Li et al., 2024), while others train the model to perform the compression explicitly (Qin et al., 2024;
Nawrot et al., 2024). A different variant introduces compression tokens, but instead of retaining only
the final hidden representation, all KV states are propagated to the decoder (e.g., Zhang et al., 2025;
Li et al., 2025). Although these methods provide higher-capacity compressed representations that
are well suited for efficient long-context comprehension, their increased size makes it impractical
to store them for reuse in retrieval-augmented generation frameworks, where caching compressed
representations could otherwise avoid recomputation.

Hard Prompt Compression An alternative approach is to compress contexts directly in the to-
ken space. This has been done by removing unimportant tokens or lexical units (e.g., Li et al.,
2023; Jiang et al., 2023; Pan et al., 2024) or generating concise summaries that preserve salient
details (Chuang et al., 2024). While these methods can be more interpretable and storage-efficient,
they are inherently constrained by their reliance on explicit tokens.

4 METHODOLOGY

We propose a compression model design where representations of adjacent tokens are pooled to-
gether to reduce the document representation length. We train via knowledge distillation to replicate
the functionality of a teacher receiving the original (uncompressed) input.

4.1 COMPRESSION VIA MEAN POOLING

We propose a simple compression architecture that relies only on mean pooling of encoded repre-
sentations. Figure 1c illustrates our approach. Given a document, we compute its representation

2While we consider this approach an important point of comparison, we were unable to include it in our
evaluation because their code and models were not publicly available at the time of writing.
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with an encoder, and apply a non-overlapping mean pooling operator with window size r, the same
size as the compression ratio, and stride r to generate continuous vectors as the output compression.

Formally, let h = (h1, . . . , hL) ∈ RL×d denote the sequence of hidden states produced by the en-
coder. For a compression ratio r ∈ R, we partition the sequence into k consecutive, non-overlapping
blocks:

Sk = {(k − 1)r + 1, . . . ,min(kr, L)} , k = 1, . . . , ⌈L/r⌉ . (3)
The compressed representation of length ⌈L/r⌉ is obtained by averaging within each block:

fc(T, r) = (z1, . . . , z⌈L/r⌉) ∈ R⌈L/r⌉×d s.t. zk =
1

|Sk|
∑
i∈Sk

hi . (4)

The encoder we use is Transformer-based. Critically, we use a full self-attention mask during encod-
ing, allowing each encoded vector to include information from the entire context, and thereby each
compressed segment to aggregate information across the entire context. In practice, we initialize
with an autoregressive LLM, and remove the self-attention mask before learning.

Our pooling design introduces no additional parameters beyond those of the encoder backbone and
the decoder (i.e., target LLM) using the compressed representation, and has low computational
overhead. The compression-tokens method is slightly more expensive. It requires an encoder input
of size L+ L/r, while our approach only processes the original L tokens, with negligible overhead
for the pooling operator.

4.2 TRAINING OBJECTIVE

Our objective is to approximate the behavior of the target LLM before any fine-tuning when provided
with the full uncompressed context (Figure 1a). We consider this LLM as the teacher model within
a knowledge distillation framework. Each training instance consists of a context T , a prompt P ,
and a ground-truth answer A = (a1, . . . , am). For each answer position i = 1, . . . ,m, the teacher
defines the distribution q(· | T, P,A<i), where A<i = (a1, . . . , ai−1) denotes the gold prefix of
the answer. The compressor produces a compressed representation fc(T, r), which is passed to the
fine-tuned decoder together with (P,A<i), yielding the student distribution pθ(· | fc(T, r), P,A<i).
This combined encoder-decoder model is the student.

For a single compression ratio r, the distillation loss is the token-level KL divergence between the
teacher and student distributions:

LKD(T, P,A; r) =

m∑
i=1

KL(q(· | T, P,A<i) ∥ pθ(· | fc(T, r), P,A<i)) . (5)

We propose a unified training strategy in which a single compressor is trained to handle multiple
ratios simultaneously. This is in contrast to most previous work, where a separate model is trained
for each compression ratio. We generate compressed representations for all ratios r ∈ R for each
training instance. Each compressed representation is passed independently to the decoder, and the
corresponding losses are computed. The final objective for one training instance is obtained by
summing across the ratios:

Lmulti(T, P,A) =
∑
r∈R

LKD(T, P,A; r) . (6)

The iteration over ratios is performed within each batch, and a single parameter update is applied
after aggregating the losses. Since the encoder computation is shared across all ratios, this procedure
is substantially more efficient than training separate models. By relying exclusively on knowledge
distillation, rather than combining it with a language modeling objective, we enable a direct and fair
comparison between the original model and the compressor.

5 EXPERIMENTS AND RESULTS

Our central objective is to isolate the contribution of context compression itself, without entangle-
ment with retrieval noise or incomplete supervision. While compression methods are often demon-
strated in retrieval-augmented generation (RAG) settings, these introduce extraneous challenges,
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such as when retrieved passages may not contain sufficient evidence, making performance conflate
retrieval quality with compression quality. To avoid this confounder, we focus exclusively on read-
ing comprehension, where given contexts are guaranteed to contain the necessary evidence to answer
the question. This setup allows for a controlled, head-to-head comparison of different compression
strategies, across a range of datasets that stress both single-hop and multi-hop reasoning.

5.1 EXPERIMENTAL SETUP

Data We curated our training set by mixing multiple context-based datasets, in tasks spanning
reading comprehension (RC) and summarization. A detailed list of the datasets we incorporated in
our training mixture can be found in Table 4. We evaluate with six reading comprehension bench-
marks: SQuAD (Rajpurkar et al., 2016), NarrativeQA (Kočiský et al., 2018), HotpotQA (Yang et al.,
2018), AdversarialQA (Bartolo et al., 2020), TriviaQA (Joshi et al., 2017), and ParaphraseRC (Saha
et al., 2018). This selection covers a broad spectrum of reasoning styles, from factual extraction to
adversarial paraphrasing, thereby testing the generality of compression. For TriviaQA, we restrict
the evaluation to the verified subset, ensuring that every question has sufficient supporting evidence.
The training mixture includes the train splits of SQuAD, NarrativeQA, and HotpotQA, which thus
serve as in-domain testbeds. AdversarialQA, TriviaQA, and ParaphraseRC are excluded from the
training mixture and instead used purely for out-of-domain evaluation.

Model Training For each target language model, we first finetune it on the training mixture using
LoRA (Hu et al., 2022). This finetuned model is then fixed and used as the teacher in the distillation
process. This ensures that performance differences stem solely from the compressor rather than
mismatched finetuning (e.g., to the question domain). Both the compressor’s encoder and decoder
are initialized from the same target LLM but are trained with separate LoRA weights. We always use
the instruction-tuned model weights as our backbone. For multi-ratio training, we always train on the
ratios {4×, 8×, 16×, 32×, 64×, 128×}, unless stated otherwise. In addition, we found that applying
a single linear layer slightly improves performance for both our method and the compression-tokens
method, so for all experiments in this paper a learned matrix W ∈ Rd×d is applied to fc(T, r)
before the compressed representation is given as input to the decoder LLM, unless stated otherwise.
Detailed training configuration and hyperparameter choices are provided in Appendix A.

Implementation of the Compression-Tokens Approach The main approach we compare ours
against is using compression tokens. A central design consideration in our experiments is the
attention pattern applied to compression tokens. Under the compression-tokens paradigm, the
causal attention mask typically employed by transformer-based LLMs imposes a strong Matryoshka-
style (Kusupati et al., 2022) constraint: compressed representations at smaller lengths must corre-
spond to strict prefixes of those at larger lengths. We relax this restriction by allowing compression
tokens to attend bidirectionally among themselves, while retaining causal attention over the original
context. This simple, albeit not explored in prior work, modification makes the model aware of how
many compression tokens are available (i.e., its compression budget), and therefore to allocate in-
formation differently for each ratio while still benefiting from shared computation and KV caching.
We experiment with both the conventional causal attention mask and our bidirectional modification.
Empirically, we observe that this modification significantly improves the approach’s performance.
In addition, in our implementation of the compression-tokens models, we utilize only a single com-
pression token that is appended ⌈L/r⌉ times to the context, rather than having several compression
tokens. This enables us to compress any context to any arbitrary ratio we choose, while retaining an
equal number of parameters in the model.

Metrics We evaluate our models using the standard exact match (EM) and F1 metrics.3 Several
recent works reported QA performance using a substring accuracy metric, which assigns a score of
1 if the exact match is a substring of the output and 0 otherwise. We opt against the adoption of this
metric as it is easily exploitable.4 This forces us to exclude some baselines from our primary results.

In addition, for each metric, we also define its teacher-normalized version. Given a metric M , a
target language model M and a compressor fc, we calculate the following: MT , the teacher’s score,

3We show only F1 scores in the main text but full EM results with similar trends are reported in Table 6.
4Consider a question where the answer is a US state, and the model lists all 50 states as an answer.
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by passing the original uncompressed contexts to the decoder model; M∅
T , the no-context score, by

passing only the question without any context; and Mfc , by using the compressed context. Then,

the teacher-normalized score is given by Mfc−M∅
T

MT−M∅
T

. This score does two things. First, it scales the
compressor’s score with respect to the teacher’s, allowing for a direct assessment of the amount
of retained performance under compression. Second, it accounts for how easy it is for the model
to answer the input question without any context. This latter consideration comes to account for
cases where a question does not really require the context, potentially inflating the score of the
compression model, while actually simply ignoring the compressed input.

Systems Our main comparison point is our implementations of the compression tokens method,
with causal or bidirectional attention. We compare against these two systems throughout our ex-
periments. We also include comparisons to other soft context compression methods: ICAE (Ge
et al., 2024) and PCC (Dai et al., 2025). We also evaluate LLMLingua2 (Pan et al., 2024), a hard
prompting compression approach, by passing LLMLingua’s compressed prompts to our finetuned
Qwen3-8B teacher model.

Comparison between compression methods is challenging in general, due to inconsistencies in
the training procedures. Our main goal is to build a systematic understanding of the architecture
landscape, and we compare ourselves to other methods mainly to showcase the validity of our
experiments. Showing the strength of performance compared to the prior state of the art is sec-
ondary, and not even necessarily feasible because many approaches do not release code or models,
or adopt training methods that complicate the evaluation. This challenge is demonstrated well by
the PISCO (Louis et al., 2025) method. Their training method is not well suited for the traditional
EM/F1 metrics and performs poorly on these metrics, and indeed the authors evaluated their method
only using a more forgiving substring accuracy score. We therefore omit this method from our
primary comparisons, but include it and report substring accuracy in Appendix B.1 (Table 7).

All experiments are conducted with context lengths up to 1,024 tokens, a practical limitation im-
posed by our computational budget.

5.2 RESULTS

Table 1 shows our main results. We demonstrate the robustness and generality of our findings by
comparing six different models, spanning three model families and four model scales: Llama3.2-
1B (Grattafiori et al., 2024), Gemma2-2b (Team et al., 2024), and Qwen3-0.6/1.7/4/8B (Yang et al.,
2025). We show the average F1 scores over all six evaluation datasets. Below the results table, we
provide bar charts that summarize the results along specific dimensions that emphasize trends. The
bar charts show the teacher-normalized F1 metric averaged across all models and datasets to get a
single aggregated result per method. We provide the teacher model’s performance with the original
context (”Original”) and without context at all (”No Ctx”). In between we report the results for
different compression ratios and for both the single- and multi-ratio training schemes.

Our mean-pooling method is consistently better than both the standard (causal) compression to-
kens architecture and the bidirectional variation. Simply adding bidirectional attention between the
compression tokens dramatically improves performance. Comparing the single-ratio models to the
multi-ratio models, we see that the bidirectional compression tokens approach significantly benefits
from multi-ratio training, while for the mean-pooling approach a trade-off clearly exists. This is
potentially because the bidirectional approach has a clear signal about the target compression ratio –
the forward attention allows each time step to be aware of the total length of the compressed output.
Without this, the model must produce a one-size-fits-all representation in each time step. Lastly,
while we do see a performance drop in the multi-ratio setting at 128× for all methods, it must be
taken in the context of the already relatively low performance retention at that ratio.

Compression Scaling It is well known that LLM performance increases with scale, if scaled ap-
propriately (Cheng et al., 2024b). But does compression quality scale as well? In Table 1 we can see
that the teacher’s performance improves as the model size grows. Having a compressor increase in
performance at the same rate as the teacher would actually tell us that the compressor does not scale
well, since that would mean that the teacher-normalized scores stay constant throughout the scales.
Figure 2 shows the compression performances of the four Qwen3 model scales we use. We train
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Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 42.52 24.39 22.59
ICAE (Mistral-7B) 42.40
PCC Lite (GPT2-Large & Llama3.1-8B) 62.08 51.30 36.20
PCC Large (Llama3.1-8B) 62.98 49.37 37.24

Our Methods
Qwen3-8B 74.33 23.06

Compression-Tokens (Causal) 67.03 65.90 56.21 58.41 47.47 44.76
Compression-Tokens (Bidirectional) 69.20 69.57 60.27 63.01 46.93 46.97
Mean-Pooling 71.66 70.55 63.85 64.67 47.90 45.92

Qwen3-4B 73.44 19.79
Compression-Tokens (Causal) 64.88 62.53 55.22 54.28 43.08 40.83
Compression-Tokens (Bidirectional) 66.72 68.15 57.68 60.48 41.61 42.66
Mean-Pooling 70.39 69.36 61.79 61.72 43.62 41.05

Qwen3-1.7B 69.93 14.00
Compression-Tokens (Causal) 50.90 57.73 49.83 48.68 36.19 35.34
Compression-Tokens (Bidirectional) 62.04 62.60 51.53 54.11 36.25 35.77
Mean-Pooling 66.43 64.17 55.43 54.47 36.72 33.48

Qwen3-0.6B 65.36 9.34
Compression-Tokens (Causal) 54.40 51.85 41.57 42.59 28.86 28.60
Compression-Tokens (Bidirectional) 55.59 57.03 44.82 47.62 29.69 29.51
Mean-Pooling 61.17 58.36 47.59 47.64 29.94 26.36

Gemma2-2B 71.96 21.64
Compression-Tokens (Causal) 63.35 62.18 55.07 54.70 44.46 42.49
Compression-Tokens (Bidirectional) 64.76 65.24 56.39 58.43 44.73 43.17
Mean-Pooling 69.33 68.09 61.39 61.04 44.98 43.71

Llama3.2-1B 65.82 15.17
Compression-Tokens (Causal) 56.31 53.74 47.51 46.96 35.41 35.62
Compression-Tokens (Bidirectional) 57.91 57.52 49.20 50.06 36.43 36.25
Mean-Pooling 62.81 60.56 47.28 51.56 33.25 33.98

Causal
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Mean-Pooling
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79.3078.18
85.1786.35

93.2989.87

4×

Causal

Bidirectional

Mean-Pooling

63.3163.21
67.70

71.94 72.9074.18

16×

Causal

Bidirectional

Mean-Pooling

41.6439.24 41.8041.06 41.8038.14

128×

Method
Causal Bidirectional Mean-Pooling

Training regime
Single Multi

Table 1: Primary results. Values in the table are F1 scores macro-averaged across all datasets in our
evaluation suite. Original stands for the teacher model’s score when given the full context. No Ctx
stands for the teacher model’s score when not given any context at all. For each ratio, we display
both single- and multi-ratio versions. For the baseline systems (top section), we include results
for the compression ratios supported by these methods, unsupported ratios are left blank. The best
method for each (model, ratio, single/multi-ratio training) setting is bolded. Bottom figures present
aggregated views of the results in the table, but instead of F1 show the teacher-normalized F1 metric
(Relative F1). Scores are obtained by averaging over all models listed in the table.

the models under the multi-ratio setting to efficiently evaluate multiple ratios. We evaluate using
the teacher-normalized F1 score, and present the average scores across all datasets. The results are
exciting—the compressors clearly have desirable scaling properties. Critically, the efficiency gains
of context compression are much larger as the model size increases. Therefore, observing that larger

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 8 16 32 64 128
Compression ratio

40

60

80

100

R
el

at
iv

e 
F1

 (%
)

Qwen3-0.6B
Qwen3-1.7B

Qwen3-4B
Qwen3-8B

Figure 2: Compression Scaling. We show the teacher-normalized F1 scores (Relative F1) across
four Qwen3 model scales. The scores are averages of the scores of all datasets. We can clearly
observe the benefits of scaling for LLM compressors.
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Figure 3: In-domain and out-of-domain comparison. (a) Line plots show performance on in-domain
vs. out-of-domain datasets. (b) Bar plots show the in–out performance gap per method.

models retain higher levels of performance (higher relative F1) justifies this line of research. Similar
trends are observed for the other methods (Table 1), demonstrating the generality of this finding.

In-Domain vs. Out-of-Domain We construct our evaluation suite with both in-domain QA
datasets and out-of-domain QA datasets (Section 5.1). The training splits of the in-domain datasets
are included in the training data mixture, while the out-of-domains datasets are not. It is expected
that downstream performance will drop for out-of-domain datasets. Critical for our study, though,
is the performance drop of the compressor itself. Figure 3a plots the in-domain and out-of-domain
performance using the teacher-normalized F1 score for the Qwen3-8B model, averaged over the
datasets in each category. We first observe that while the mean-pooling approach is superior for
ratios up to 16× in all settings, its performance deteriorates as the compression ratio increases. To
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Ablation (GEMMA2-2B) 4× 8× 16× 32× 64× 128× ∆

Default 68.1 65.4 61.0 54.9 48.8 43.7 (+0.0)
Fixed Decoder 64.9 61.9 57.0 51.5 45.0 39.8 (−3.6)
Fixed Encoder 57.4 49.9 44.1 39.8 36.2 34.8 (−13.3)
No Encoder 58.7 51.9 44.9 40.2 36.2 34.1 (−12.6)
w/o Linear Layer 67.7 64.5 60.0 54.1 48.1 43.2 (−0.7)
Ratio Sampling 67.1 64.0 59.3 53.5 47.5 42.2 (−1.4)

Table 2: Ablation study for mean pooling using GEMMA2-2B as the teacher LLM. Numbers are
macro-averaged F1 scores. ∆: mean change vs. Default across ratios; bold = best per column.

better understand the performance change due to the domain gap, we plot the differences between
the in-domain and out-of-domain performance in Figure 3b. The performance gap is higher for low
ratios, and lower for higher ratios. One possible explanation is that at low compression ratios the
compressed representations still retain much of the original contextual signal, so the model is more
sensitive to domain-specific distributional shifts; differences between in-domain and out-of-domain
language patterns thus manifest as a larger performance gap. By contrast, at higher compression ra-
tios much of the fine-grained contextual detail is already lost to compression noise, which dominates
over the domain gap. In this regime, both in-domain and out-of-domain datasets suffer similarly
from the limited representational capacity, resulting in a smaller relative difference.

Model Ablations We run all our ablations using the Gemma2-2B model, since it demonstrates
strong performance while being relatively compute-efficient. Table 2 presents the ablation results.
We conduct several ablations: (1) Fixed Decoder: the decoder is kept frozen and only the encoder
is trained; (2) Fixed Encoder: the encoder is kept frozen and only the decoder is trained; (3) No
Encoder: we remove the encoder entirely, and obtain the initial context representation using only
the token embeddings of the decoder model; (4) w/o Linear Layer: we remove the linear layer that
is applied after the pooling operation; (5) Ratio Sampling: instead of training on all ratios for each
sample, a single ratio is randomly chosen for each sample during training.

Freezing the decoder results in considerable performance reduction, although not catastrophic. This
is in line with findings of previous works ((Louis et al., 2025)). Freezing or removing the encoder
is more detrimental, lowering performance by more than 12%. The effect of the linear layer is not
very significant, its removal results in a reduction of only 0.7%. Finally, while randomly sampling
a single ratio per sample would speed up training significantly, it does so at the cost of a small drop
in performance (1.4%), likely because each ratio gets less updates during training.

6 DISCUSSION

We provide a systematic study of soft context compression, showing that a simple mean-pooling
approach consistently outperforms compression-tokens architectures while requiring no additional
parameters. We further demonstrate that multi-ratio training is both feasible and effective, enabling
a single compressor to support a wide range of compression budgets with only minor performance
degradation. Interestingly, we observe that the bidirectional compression-tokens method consis-
tently benefits from multi-ratio training. A plausible explanation is that, unlike mean-pooling or
causal compression-tokens, this method has explicit access to the number of compression tokens
available, allowing it to adapt to the target budget. Exploring how to incorporate similar signals into
other architectures is an important direction for future work.

Finally, our study highlights a broader open problem: the evaluation of compression methods re-
mains hindered by inconsistent setups, metrics, and benchmarks. By isolating compression quality
from retrieval confounders and applying a uniform evaluation across models, scales, and domains,
we aim to provide a rigorous basis for future research on soft context compression. We hope this
work helps establish more standardized practices and clarifies the core principles that should guide
the development of next-generation compressors.
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A ADDITIONAL EXPERIMENTAL SETUP

A.1 TRAINING HYPERPARAMETERS

Hyperparameter Value
LoRA r 16
LoRA α 16
optimizer AdamW

β1 0.9
β2 0.95

clip norm 1
peak learning rate 2e-4
final learning rate 2e-5
lr scheduler type cosine

warmup ratio 0.05
weight decay 0.0

steps 48,000
batch size 32

max context length 1024
max answer tokens 256

Table 3: Hyperparameters for training all the models presented in this paper.

A.2 DATA

Detailed lists of our training data mixture and evaluation suite are given in Table 4 and Table 5,
respectively. For NarrativeQA, we use the summaries as contexts, instead of the full stories. For
HotpotQA, we only use the two gold paragraphs as contexts, and remove the distractors.

When training on a sample consisting of a context C, question Q and answer A, we randomly
sample a prompt template that fits the task to make the training data more diverse. For example, for
the extractive QA task, an example of a prompt template is: “<C>\n Extract the answer from the
text above. \n Question: <Q>\n Answer: <A>”. Similar templates are defined for other tasks as
well. For each task, we created approximately 100 prompt templates. The full list of templates for
each task will be released along with our code.
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Dataset Avg. Context Tokens #Samples #Contexts

Summarization
CNN/DM (See et al., 2017) 649 198,732 196,601
DialogSum (Chen et al., 2021) 208 12,452 12,450
SAMSum (Gliwa et al., 2019) 145 14,730 14,254
XSum (Narayan et al., 2018) 408 185,760 185,566

Reading Comprehension
BoolQ (Clark et al., 2019) 126 9,427 7,927
DROP (Dua et al., 2019) 295 76,751 5,477
HotpotQA (Yang et al., 2018) 247 90,327 84,705
NarrativeQA (Kočiský et al., 2018) 668 28,299 953
PubMedQA (Jin et al., 2019) 318 211,218 211,164
QuAC (Choi et al., 2018) 515 81,391 6,574
QuAIL (Rogers et al., 2020) 416 10,246 560
RACE (Lai et al., 2017) 349 87,749 25,108
SQuAD (Rajpurkar et al., 2016) 162 86,821 18,877
PWC (Ge et al., 2024) 477 241,563 16,382

Total 410 1,335,466 786,598

Table 4: Training datasets with average context length (tokens), number of samples, number of
distinct contexts, and task category. The overall average context length is weighted by number of
samples.

Dataset Avg. Context Tokens #Samples #Contexts

AdversarialQA (Bartolo et al., 2020) 154 1,000 341
HotpotQA (Yang et al., 2018) 254 7,394 7,352
NarrativeQA (Kočiský et al., 2018) 639 3,002 100
ParaphraseRC (Saha et al., 2018) 685 4,835 560
SQuAD (Rajpurkar et al., 2016) 169 5,928 1,204
TriviaQA (Verified) (Joshi et al., 2017) 539 185 185

Total 375 22,344 9,742

Table 5: Evaluation datasets with average context length (tokens), number of samples, and number
of distinct contexts. The overall average context length is weighted by number of samples.

B ADDITIONAL RESULTS

In this section we provide additional results from the same experiments conducted in the main body
of the paper. In Appendix B.1 we provide the primary results of the paper with the EM and substring
accuracy metrics. In Appendix B.2 we show the F1 performance on each individual dataset from
the evaluation suite.
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B.1 PRIMARY RESULTS —ADDITIONAL METRICS

Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 30.02 16.16 16.06
ICAE (Mistral-7B) 24.94
PCC Lite (GPT2-Large & Llama3.1-8B) 48.81 38.38 25.94
PCC Large (Llama3.1-8B) 49.34 36.64 27.92

Our Methods
Qwen3-8B 59.82 16.19

Compression-Tokens (Causal) 51.59 50.01 41.26 42.99 34.21 32.50
Compression-Tokens (Bidirectional) 53.44 53.99 44.92 47.15 33.60 34.27
Mean-Pooling 56.41 55.04 47.95 49.02 34.72 33.15

Qwen3-4B 58.87 13.74
Compression-Tokens (Causal) 49.66 46.26 40.05 39.59 30.07 28.84
Compression-Tokens (Bidirectional) 51.06 52.37 42.53 45.14 28.84 29.51
Mean-Pooling 55.25 53.77 45.43 45.86 30.91 28.38

Qwen3-1.7B 55.19 9.07
Compression-Tokens (Causal) 36.66 41.64 35.49 34.64 24.27 24.04
Compression-Tokens (Bidirectional) 46.45 46.72 36.62 38.93 24.31 24.33
Mean-Pooling 51.28 48.77 40.45 39.04 25.15 22.01

Qwen3-0.6B 50.85 4.78
Compression-Tokens (Causal) 39.66 36.76 27.99 29.00 18.23 18.20
Compression-Tokens (Bidirectional) 40.98 41.92 30.92 33.64 18.82 18.55
Mean-Pooling 45.82 43.07 32.50 33.09 19.05 16.07

Gemma2-2B 57.63 15.00
Compression-Tokens (Causal) 47.90 45.98 39.57 39.74 32.02 29.66
Compression-Tokens (Bidirectional) 49.43 49.40 40.89 42.70 31.79 30.43
Mean-Pooling 54.20 52.77 45.88 45.68 32.41 30.83

Llama3.2-1B 51.67 9.47
Compression-Tokens (Causal) 41.84 39.03 33.73 33.38 24.11 24.64
Compression-Tokens (Bidirectional) 43.46 42.96 35.04 35.46 24.91 24.56
Mean-Pooling 47.97 45.45 33.15 36.93 22.89 22.70

Table 6: Primary results with exact match (EM) as the metric.
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Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 33.63 18.30 17.36
ICAE (Mistral-7B) 49.18
PISCO (Llama3.1-8B) 53.62
PCC Lite (GPT2-Large & Llama3.1-8B) 54.05 43.67 30.03
PCC Large (Llama3.1-8B) 55.17 41.79 30.10

Our Methods
Qwen3-8B 68.84 17.98

Compression-Tokens (Causal) 59.79 58.58 47.07 49.99 39.09 37.05
Compression-Tokens (Bidirectional) 62.50 63.58 52.22 55.26 38.72 39.36
Mean-Pooling 65.91 65.06 55.68 56.77 39.95 37.80

Qwen3-4B 67.69 15.00
Compression-Tokens (Causal) 57.12 54.17 46.06 45.47 34.83 33.48
Compression-Tokens (Bidirectional) 59.35 60.99 48.92 52.23 33.20 34.33
Mean-Pooling 64.05 62.94 52.77 52.82 35.49 32.37

Qwen3-1.7B 64.21 9.85
Compression-Tokens (Causal) 43.01 49.31 41.31 40.45 28.45 27.90
Compression-Tokens (Bidirectional) 54.31 54.70 42.66 45.13 28.33 28.04
Mean-Pooling 60.03 57.28 46.63 45.07 28.96 25.82

Qwen3-0.6B 59.67 5.62
Compression-Tokens (Causal) 46.36 43.62 33.07 34.30 21.13 21.71
Compression-Tokens (Bidirectional) 48.04 48.84 36.11 39.50 22.13 22.00
Mean-Pooling 54.36 51.16 38.30 38.68 22.44 18.87

Gemma2-2B 66.14 16.80
Compression-Tokens (Causal) 55.50 52.94 46.13 45.59 36.14 33.94
Compression-Tokens (Bidirectional) 56.94 57.54 46.90 49.52 36.14 34.75
Mean-Pooling 62.51 61.28 52.55 51.90 36.61 34.93

Llama3.2-1B 60.30 11.09
Compression-Tokens (Causal) 48.85 45.41 39.16 38.51 27.54 28.01
Compression-Tokens (Bidirectional) 50.89 50.10 40.44 41.91 28.34 28.44
Mean-Pooling 56.62 53.50 38.84 42.76 25.99 26.19

Table 7: Primary results with accuracy as the metric.
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B.2 RESULTS PER DATASET

B.2.1 IN DOMAIN DATASETS RESULTS

Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 48.38 21.34 19.68
ICAE (Mistral-7B) 45.6
PCC Lite (GPT2-Large & Llama3.1-8B) 78.38 67.63 40.22
PCC Large (Llama3.1-8B) 79.56 62.93 41.23

Our Methods
Qwen3-8B 86.48 20.31

Compression-Tokens (Causal) 77.11 74.89 57.05 62.12 44.56 42.35
Compression-Tokens (Bidirectional) 80.00 81.23 64.80 69.27 44.30 43.86
Mean-Pooling 83.76 82.75 71.37 71.19 44.65 43.19

Qwen3-4B 85.75 17.72
Compression-Tokens (Causal) 74.23 71.31 57.49 56.88 38.95 37.10
Compression-Tokens (Bidirectional) 77.24 79.28 60.71 65.49 38.19 38.41
Mean-Pooling 83.19 81.54 68.20 67.47 39.96 37.54

Qwen3-1.7B 83.65 12.66
Compression-Tokens (Causal) 54.25 64.50 49.09 49.98 31.78 30.10
Compression-Tokens (Bidirectional) 72.92 73.39 53.07 57.36 31.58 31.17
Mean-Pooling 79.56 77.17 59.01 58.30 32.36 29.90

Qwen3-0.6B 81.55 7.91
Compression-Tokens (Causal) 61.67 57.52 40.29 41.60 22.06 22.45
Compression-Tokens (Bidirectional) 64.21 67.05 42.81 46.68 22.09 22.36
Mean-Pooling 74.00 70.60 48.62 48.14 22.40 20.45

Gemma2-2B 84.58 16.41
Compression-Tokens (Causal) 70.61 69.06 55.75 56.37 37.89 35.66
Compression-Tokens (Bidirectional) 74.16 75.41 57.77 61.75 37.72 37.00
Mean-Pooling 81.67 80.01 66.38 65.64 38.96 36.71

Llama3.2-1B 81.16 11.27
Compression-Tokens (Causal) 62.65 59.34 46.41 45.49 28.58 28.44
Compression-Tokens (Bidirectional) 64.48 65.61 48.99 51.39 29.09 28.82
Mean-Pooling 74.91 71.40 47.36 53.66 28.02 27.91

Table 8: SQuAD F1
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Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 53.54 29.32 26.27
ICAE (Mistral-7B) 50.01
PCC Lite (GPT2-Large & Llama3.1-8B) 68.55 59.38 43.93
PCC Large (Llama3.1-8B) 70.08 59.05 46.46

Our Methods
Qwen3-8B 84.67 26.65

Compression-Tokens (Causal) 78.85 78.32 68.00 72.65 64.14 59.74
Compression-Tokens (Bidirectional) 80.24 81.45 73.30 76.77 63.26 62.44
Mean-Pooling 83.30 82.08 77.66 78.41 63.88 63.77

Qwen3-4B 84.12 23.16
Compression-Tokens (Causal) 76.48 75.56 68.85 69.80 59.08 55.78
Compression-Tokens (Bidirectional) 78.13 79.41 71.11 74.60 58.38 56.87
Mean-Pooling 82.20 80.77 75.45 76.02 59.29 58.74

Qwen3-1.7B 80.95 18.75
Compression-Tokens (Causal) 66.69 70.98 63.82 63.84 51.48 48.78
Compression-Tokens (Bidirectional) 73.73 74.93 66.06 68.50 52.08 50.77
Mean-Pooling 78.64 76.11 68.76 68.78 50.86 49.44

Qwen3-0.6B 77.35 14.74
Compression-Tokens (Causal) 66.62 65.76 55.88 57.79 43.16 39.58
Compression-Tokens (Bidirectional) 67.24 69.28 58.44 61.79 43.80 41.66
Mean-Pooling 73.00 69.58 61.13 61.08 42.76 40.45

Gemma2-2B 82.55 25.18
Compression-Tokens (Causal) 75.62 75.54 69.18 70.42 61.91 59.03
Compression-Tokens (Bidirectional) 76.55 77.60 69.64 73.51 61.67 60.46
Mean-Pooling 80.93 79.85 75.10 74.90 62.36 61.64

Llama3.2-1B 77.96 19.34
Compression-Tokens (Causal) 69.68 68.22 63.36 62.96 52.27 49.81
Compression-Tokens (Bidirectional) 70.74 71.01 64.47 66.19 53.51 51.79
Mean-Pooling 74.38 72.69 62.75 66.59 51.05 50.86

Table 9: HotpotQA F1
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Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 27.33 14.35 10.69
ICAE (Mistral-7B) 32.65
PCC Lite (GPT2-Large & Llama3.1-8B) 50.29 34.16 16.05
PCC Large (Llama3.1-8B) 50.72 32.56 16.18

Our Methods
Qwen3-8B 68.00 10.93

Compression-Tokens (Causal) 59.62 58.28 46.58 49.32 33.41 29.37
Compression-Tokens (Bidirectional) 61.44 62.13 51.48 55.68 34.17 33.61
Mean-Pooling 65.89 64.74 58.17 58.38 34.81 32.21

Qwen3-4B 67.12 10.40
Compression-Tokens (Causal) 57.18 55.08 46.69 43.77 30.39 27.84
Compression-Tokens (Bidirectional) 58.37 60.74 48.84 52.41 29.77 30.22
Mean-Pooling 65.22 63.38 56.14 55.42 32.66 28.99

Qwen3-1.7B 64.42 7.57
Compression-Tokens (Causal) 41.97 49.85 40.15 39.49 25.42 23.64
Compression-Tokens (Bidirectional) 55.68 56.49 44.87 47.28 25.16 26.15
Mean-Pooling 60.34 58.56 48.95 48.78 26.91 23.60

Qwen3-0.6B 61.13 7.76
Compression-Tokens (Causal) 48.09 46.30 34.68 36.05 20.10 20.69
Compression-Tokens (Bidirectional) 48.04 50.67 38.85 40.35 21.29 21.07
Mean-Pooling 56.48 53.12 42.47 42.21 21.29 19.06

Gemma2-2B 66.47 10.34
Compression-Tokens (Causal) 56.17 55.78 47.16 46.68 31.17 29.72
Compression-Tokens (Bidirectional) 59.20 59.51 48.59 51.43 31.50 31.91
Mean-Pooling 64.29 63.44 56.94 55.71 33.42 31.79

Llama3.2-1B 61.67 9.03
Compression-Tokens (Causal) 48.57 45.60 38.44 37.12 23.03 23.14
Compression-Tokens (Bidirectional) 52.24 49.98 40.65 42.08 23.59 23.72
Mean-Pooling 57.97 55.15 38.58 46.23 19.53 23.17

Table 10: NarrativeQA F1
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B.2.2 OUT OF DOMAIN DATASETS RESULTS

Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 65.65 46.46 52.55
ICAE (Mistral-7B) 70.63
PCC Lite (GPT2-Large & Llama3.1-8B) 86.43 78.03 72.50
PCC Large (Llama3.1-8B) 86.64 77.13 74.08

Our Methods
Qwen3-8B 89.65 53.79

Compression-Tokens (Causal) 89.67 89.15 88.92 85.50 79.36 77.55
Compression-Tokens (Bidirectional) 90.44 89.41 87.07 87.95 75.90 78.17
Mean-Pooling 87.94 86.52 84.38 86.32 79.74 75.89

Qwen3-4B 90.46 43.49
Compression-Tokens (Causal) 88.49 83.28 82.95 80.42 72.27 70.84
Compression-Tokens (Bidirectional) 91.59 90.83 86.10 87.53 67.43 74.52
Mean-Pooling 85.50 88.72 83.68 85.32 71.04 67.50

Qwen3-1.7B 89.20 25.08
Compression-Tokens (Causal) 74.89 83.83 80.55 73.91 61.72 64.02
Compression-Tokens (Bidirectional) 85.62 86.41 76.15 80.34 61.46 61.67
Mean-Pooling 85.83 82.75 80.61 75.94 63.03 53.77

Qwen3-0.6B 81.55 9.87
Compression-Tokens (Causal) 78.27 73.57 62.14 64.79 48.97 49.69
Compression-Tokens (Bidirectional) 81.58 78.38 69.22 74.16 50.24 54.05
Mean-Pooling 81.45 77.88 69.08 70.41 52.45 43.08

Gemma2-2B 90.69 54.06
Compression-Tokens (Causal) 89.75 85.06 82.73 79.19 77.64 73.71
Compression-Tokens (Bidirectional) 88.52 87.14 85.32 84.63 78.15 73.59
Mean-Pooling 89.09 86.99 84.95 85.27 75.30 74.29

Llama3.2-1B 82.13 31.14
Compression-Tokens (Causal) 84.40 79.82 75.47 74.28 65.03 67.58
Compression-Tokens (Bidirectional) 83.72 84.18 78.94 73.03 64.83 68.57
Mean-Pooling 84.87 83.62 73.95 76.02 62.02 60.28

Table 11: TriviaQA Verified F1.
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Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 32.79 19.56 18.76
ICAE (Mistral-7B) 27.34
PCC Lite (GPT2-Large & Llama3.1-8B) 42.51 35.36 26.44
PCC Large (Llama3.1-8B) 44.09 33.39 27.52

Our Methods
Qwen3-8B 60.44 19.15

Compression-Tokens (Causal) 47.26 45.97 36.35 39.16 32.42 31.15
Compression-Tokens (Bidirectional) 51.46 51.51 40.05 42.51 32.54 32.69
Mean-Pooling 53.71 53.32 42.55 45.07 32.52 31.36

Qwen3-4B 57.04 17.38
Compression-Tokens (Causal) 45.07 43.44 34.61 34.34 28.95 26.25
Compression-Tokens (Bidirectional) 45.35 47.93 36.32 38.23 28.17 27.88
Mean-Pooling 51.47 48.49 40.36 39.09 28.84 27.31

Qwen3-1.7B 46.62 14.86
Compression-Tokens (Causal) 30.09 34.01 29.29 29.47 22.27 22.82
Compression-Tokens (Bidirectional) 37.92 37.00 29.72 31.44 22.43 21.05
Mean-Pooling 42.14 39.78 32.33 32.46 22.01 22.18

Qwen3-0.6B 39.04 10.97
Compression-Tokens (Causal) 29.69 28.58 23.55 23.95 18.80 19.46
Compression-Tokens (Bidirectional) 29.16 33.06 25.47 26.99 19.60 18.80
Mean-Pooling 33.84 32.70 26.11 26.21 19.52 18.08

Gemma2-2B 51.45 16.76
Compression-Tokens (Causal) 39.83 40.80 33.93 35.23 28.83 29.06
Compression-Tokens (Bidirectional) 40.76 41.96 34.73 35.52 29.47 27.27
Mean-Pooling 45.61 44.88 37.14 36.88 28.70 28.94

Llama3.2-1B 39.75 14.30
Compression-Tokens (Causal) 30.58 29.42 26.27 26.66 21.04 21.63
Compression-Tokens (Bidirectional) 31.71 30.30 25.77 28.88 23.74 20.71
Mean-Pooling 34.84 33.60 27.18 27.29 21.21 20.46

Table 12: AdversarialQA F1
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Original 4x 16x 128x No Ctx

Single Multi Single Multi Single Multi

Baseline Systems
LLMLingua2 (Qwen3-8B) 27.42 15.32 7.56
ICAE (Mistral-7B) 28.42
PCC Lite (GPT2-Large & Llama3.1-8B) 46.31 33.25 18.14
PCC Large (Llama3.1-8B) 46.77 31.17 17.95

Our Methods
Qwen3-8B 56.77 7.49

Compression-Tokens (Causal) 49.69 48.77 40.37 41.71 30.94 28.40
Compression-Tokens (Bidirectional) 51.65 51.68 44.91 45.85 31.40 31.07
Mean-Pooling 55.36 53.87 48.95 48.63 31.79 29.12

Qwen3-4B 56.14 6.59
Compression-Tokens (Causal) 47.85 46.50 40.73 40.49 28.86 27.16
Compression-Tokens (Bidirectional) 49.63 50.74 42.98 44.60 27.72 28.07
Mean-Pooling 54.74 53.24 46.93 47.01 29.95 26.25

Qwen3-1.7B 54.75 5.09
Compression-Tokens (Causal) 37.53 43.23 36.08 35.38 24.47 22.71
Compression-Tokens (Bidirectional) 46.33 47.36 39.28 39.72 24.81 23.81
Mean-Pooling 52.04 50.67 42.90 42.55 25.16 22.02

Qwen3-0.6B 51.54 4.82
Compression-Tokens (Causal) 42.04 39.38 32.91 31.36 20.07 19.73
Compression-Tokens (Bidirectional) 43.34 43.74 34.15 35.77 21.12 19.16
Mean-Pooling 48.26 46.29 38.13 37.81 21.24 17.03

Gemma2-2B 56.00 7.10
Compression-Tokens (Causal) 48.10 46.86 41.66 40.33 29.30 27.74
Compression-Tokens (Bidirectional) 49.36 49.83 42.30 43.72 29.85 28.81
Mean-Pooling 54.39 53.39 47.82 47.83 31.16 28.91

Llama3.2-1B 52.26 5.94
Compression-Tokens (Causal) 41.97 40.07 35.08 35.24 22.50 23.14
Compression-Tokens (Bidirectional) 44.58 44.02 36.36 38.77 23.84 23.88
Mean-Pooling 49.90 46.92 33.84 39.59 17.67 21.17

Table 13: ParaphraseRC F1
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C LLM USAGE

LLMs (specifically, ChatGPT) were used in the process of writing this paper for creating tables and
figures, as well as proof-reading.
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