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ABSTRACT

Large Language Models (LLMs) excel at textual reasoning and are beginning to
develop spatial understanding, prompting the question of whether these abilities
can be combined for complex, domain-specific tasks. This question is essential in
fields like materials science, where deep understanding of 3D atomic structures
is fundamental. While initial studies have successfully applied LLMs to tasks
involving pure crystal generation or coordinate understandings, a standardized
benchmark to systematically evaluate their core reasoning abilities across diverse
atomic structures has been notably absent. To address this gap, we introduce
the AtomWorld benchmark to evaluate LLMs on tasks based in Crystallographic
Information Files (CIFs), a standard structure representation format. These tasks,
including structural editing, CIF perception, and property-guided modeling, reveal
a critical limitation: current models, despite establishing promising baselines,
consistently fail in structural understanding and spatial reasoning. Our experiments
show that these models make frequent errors on structure modification tasks, and
even in the basic CIF format understandings, potentially leading to cumulative
errors in subsequent analysis and materials insights. By defining these standardized
tasks, AtomWorld lays the ground for advancing LLMs toward robust atomic-scale
modeling, crucial for accelerating materials research and automating scientific
workflows.

1 INTRODUCTION

A Crystallographic Information File (CIF) (Hall et al., 1991) is the standard format for storing
crystallographic structural data. At the most basic level, a CIF can model the ideal, periodic
arrangement of atoms in a bulk material. For more realistic scenarios, CIFs can also model defects,
molecules in defect sites, stacked heterostructures, etc. Suppose that there are three stages for an
LLM to reason with CIF files: motor skills, perceptual skills and cognitive skills. Motor skills are
about the mechanics of geometry - being able to add, move, rotate, or insert atoms consistently within
a structure. Perceptual skills are about recognising patterns - seeing motifs, detecting symmetry
or connectivity, and being able to relate this structure to material properties. Cognitive skills are
about reasoning and creativity - engaging in hypothesis-driven modifications and proposing novel
structures.

In this work we introduce the AtomWorld Benchmark to evaluate reasoning LLMs on CIF motor
skills. To the best of our knowledge, we are the first benchmark to examine this fundamental skill of
crystallography in LLMs. Moreover, AtomWorld at its core is a scalable data generator, which can be
used to support LLM training. While these tasks can be manually solved via software or packages
such as Ovito and Atomic Simulation Environment (ASE) (Stukowski, 2010; Hjorth Larsen et al.,
2017), installing this capability in LLMs is necessary for the more valuable downstream cognitive
tasks, e.g. building an agentic workflow for material discovery.

We evaluated our benchmark across several frontier text-based models, which through algorithmic
approaches were generally able to succeed at simpler tasks such as adding or moving atoms, but
struggled with more complex tasks such as rotating around an atom. Notably, some actions intuitive
to humans had high error rates, while others considered more tedious were solved unexpectedly

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

well. The AtomWorld benchmark is also complemented through a series of tests (PointWorld, CIF-
Gen, CIF-Repair, Chemical Competence Score, Struct-Prop) to isolate different aspects of LLM
weaknesses and explore the relation that motor skills tests have with perceptual and cognitive skills.
Traditionally, LLMs have struggled with the spacial reasoning and long syntax following skills
required by our benchmark - but this may soon change with rapid advancements in tool-augmented
design (Hu et al., 2025), diffusion LLMs (Nie et al., 2025; Song et al., 2025), and as language-aligned
video generation (Zheng et al., 2024; DeepMind, 2025) and robotics (Assran et al., 2025) models
become increasingly capable. We hope that our AtomWorld playground can play a foundational role
in both testing and developing the understanding of 3D CIF environments in tomorrow’s LLMs.

2 PLAYGROUND DESIGN: ATOMWORLD

2.1 ATOMWORLD GENERATOR

At its core, AtomWorld is designed as a data generator. This data follows a three-part structure: two
CIF files of “before” and “after” states, and an action prompt describing the change - with the goal of
the LLM to yield the “after” state, given the “before” state and action. A flowchart describing the
workflow from data generator to benchmark is presented in Figure 1.

AtomWorld Generator LLM AgentMetric

Structure Pool

Specific Action

Random Sampler

Random Initializer

Input Structure

Promptor

Structure
Operator Output Structure

Action Prompt

LLMGenerated
Structure

Structure
Matcher

Figure 1: AtomWorld benchmark flowchart. The AtomWorld generator follows a structured data flow:
the random sampler selects a structure from a predefined structure pool (in this work, a subset of CIF
files from the Materials Project database (Jain et al., 2013)); the random initializer parametrizes the
chosen action template by assigning atom indices and/or positions; the structure operator applies the
instantiated action to the original structure to obtain the target structure; and the prompter generates a
natural language description aligned with the action. The resulting (input structure, action prompt)
pairs are then fed into the LLM agent system, whose generated structure is compared against the
target structure using the StructureMatcher from pymatgen (Ong et al., 2013) to compute the
desired evaluation metric.

All actions currently supported by AtomWorld are detailed in Table 1. These actions are designed to
be translatable into the real-world structural modifications which researchers may perform, e.g.:

• Point defect & Doping: change, remove, add, insert_between, swap

• Surface generation: delete_below
• Structure perturbation: move, move_towards, rotate_around

• Supercell creation: super_cell

2.2 ATOMWORLD FOR LLM TRAINING

The AtomWorld playground can be used to generate data suitable for LLM training, for instance
the three-part structure of CIF-before + Action Prompt to CIF-after could feed directly into LLM
pretraining. Alternatively, the same evaluation metric for AtomWorld benchmark could be used as
the learning reward for reinforcement learning (RL). We leave LLM training for future work.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Actions and the corresponding Action Prompt for AtomWorld.
Action name Action prompt

change Change the atom at index {index} into {new_symbol} in the cif file. The
indices of atoms are started from 0.

remove Remove the atom at index {index} from the cif file. The indices of atoms
are started from 0.

add Add one {symbol} atom at the Cartesian coordinate {position} to the cif
file.

move Move the atom at index {index} by {d_pos} angstrom in the cif file.
move_towards Move the atom at index {index1} towards the atom at index {index2} by

{distance} angstrom in the cif file.
insert_between Insert a {symbol} atom in the line between atoms at indices {index1} and

{index2}, and the inserted atom must be {distance:.2f} angstrom from
atom at {index1} in the cif file.

swap Swap atoms at indices {index1} and {index2} in the cif file. The indices
of atoms are started from 0.

delete_below Delete all atoms whose z coordinate is lower than the atom at index {index}
in the cif file. Excluding itself and atoms with the same z coordinate.

rotate_around Rotate all surrounding atoms within {radius} angstrom of the center atom
at index {index} by {angle} degree around the axis {axis} in the cif file.
The rotation should following the right-hand rule.

super_cell Create a supercell with the size {dim_0}x{dim_1}x{dim_2}.

2.3 COMPLEMENTARY BENCHMARKS

Beyond AtomWorld, we design a set of benchmarks to probe different aspects of LLMs’ structural
reasoning with CIF data. Together, these tasks complement AtomWorld to form a comprehensive
suite that spans format literacy, spatial reasoning, and property-oriented understanding.

1. PointWorld: A stripped-down variant of AtomWorld for measuring the inherent difficulty of
each geometric operation. Structures are represented as a set of points in three-dimensional
space, expressed in raw coordinate format like “[[x1, y1, z1], [x2, y2, z2]]”. Models are then
asked to apply geometric operations directly on these points and return the transformed
coordinates. This setting removes the complexities of CIF files and serves as a controlled
test of whether the LLM can handle spatial transformations at all.

2. CIF literacy tests:
(a) CIF-Repair: Evaluates whether the model can recognize and correct corrupted or

incomplete CIF files, ensuring basic robustness to noisy inputs. The CIF-Repair task is
designed as the most fundamental test of CIF reading ability. The test involves CIF files
with common and misleading syntax errors, such as missing tags and wrong tag names,
such as “_cell_length_a” being incorrectly written as “_cell_length_x”.
The model is expected to correct these errors and produce a valid CIF file. A full list of
corruptions is illustrated in Appendix A.4

(b) CIF-Gen: Evaluates whether the model can explicitly produce syntactically valid CIFs
for simple prototype crystals (e.g., sc, fcc, bcc, perovskite), thereby examining its
familiarity with CIF conventions and basic materials knowledge, as opposed to
open-ended CIF generation.

(c) Chemical Competence Score (CCS): This test assesses a model’s latent chemical
knowledge by evaluating its precision in distinguishing chemically accurate from
inaccurate descriptions of crystal structures. While this test is a “perceptual skills” test,
we use this to measure the effect that chemistry pretraining has on LLM performance
in “motor skills” tasks. Following the methodology of Bran et al. (2025), the dataset
was constructed by sampling 600 unique crystal structures from the Materials Project,
with corresponding descriptions generated using Robocrystallographer (Ganose & Jain,
2019). An inaccurate dataset was then created by replacing one sentence in each
original description with a sentence describing a different crystal. Because the CCS
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is computed from the token log-likelihoods at the model’s final layer, access to these
probabilities is required; this score can be calculated only for locally-run models.

3. StructProp: Highlights the deeper challenge of connecting crystal structures with their asso-
ciated properties. Since properties are determined by structure. This task is not pursued here
as a systematic benchmark. Instead, we include StructProp to underscore the importance
of structural understanding as a prerequisite for materials design, pointing toward the
longer-term goal of enabling LLMs to reason about structure-property relationships. For the
Struct-Prop task, a model is required to perform actions on a given structure to achieve a
desired change direction in a specific property.

3 EXPERIMENTAL SETUP

3.1 MODELS AND PARAMETER RANGES

LLMs evaluated: Gemini 2.5 Pro, GPT-o3, GPT-o4-mini, Deepseek Chat, Llama-3 70B, and
Qwen-3 (4B, 8B, 14B, 32B).

Our selection of LLMs covers frontier closed models and strong open-source baselines. We chose the
Qwen-3 series to test for parameter scaling effects. We also considered science-specialised LLMs; e.g.
NatureLM (Xia et al., 2025), and MatterChat (Tang et al., 2025). However, these were excluded due
to either unable to produce outputs in the required CIF format, or not currently accessible via public
APIs or code implementations. For tool-augmented LLMs, we designed a preliminary framework that
enables interaction with tools such as Pymatgen. Although this workflow still requires refinement and
future iterations may yield stronger results, the current findings already illustrate meaningful trends.

3.2 EVALUATION PROTOCOL

Our evaluation is focused on reasoning LLMs. No additional fine-tuning or reinforcement learning
was performed. Inference was run with default API parameters. The prompt templates used for all
tests can be found in Appendix A.2.

3.3 DATASETS

1. AtomWorld. Contains around 1000 samples for each of the 10 action types. Due to testing
cost considerations, we evaluated a subset of samples for each model: 250 samples for
actions add, move, move_towards, insert_between, and rotate_around;
and 50 samples for actions remove, change, swap, delete_below, and
super_cell. For the super_cell action, the output structure was specified to range
from 2 to 8x the original cell size. An example of an insert_between test is illustrated
in Appendix A.3.

2. PointWorld. Implemented four AtomWorld-analygous action types - move, move

towards, insert_between, rotate_around. Only two points are
implemented in one sample, to make the task more fundamental. For each action, 250
samples were tested on Deepseek V3, and 50 samples on Gemini 2.5 Pro. This relatively
limited test sample was enough to indicate the pattern of task difficulty in AtomWorld.

3. CIF-Repair and CIF-Gen. 22 generated samples for CIF-Repair and 20 manually-labelled
samples for CIF-Gen across all LLMs used in AtomWorld. We used only a small scale of
tests to isolate the LLM’s understanding of CIF syntax and material structure representation
from the demands of AtomWorld tasks.

4. CCS. 600 crystal structure descriptions and their corresponding corrupted versions were
generated using Robocrystallographer. As only open-source models (Llama-3 70B and
Qwen3 series) were tested, the full dataset could be evaluated without the cost constraints of
closed-source APIs. This dataset serves to isolate a picture of each model’s latent
understanding of crystal structures in natural language.

5. StructProp. 209 manually-labelled structures are collected according to Strukturbericht
type (Mehl et al., 2017). Due to the testing cost of DFT calculation pipelines, we choose 10
samples to test - for each LLM used in AtomWorld, for each property (band gap and bulk
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modulus). This was enough to give an indication of how effective LLMs could be for
hypothesis-driven CIF modification.

3.4 METRICS

1. Success rate. Used for all datasets except CCS. Defined as the number of test cases
successfully pass all of the following errors divided by the total number of test cases. These
errors are categorized into three hierarchical levels:
(a) Wrong output format. The LLM’s response must enclose the generated structure

within a predefined tag so that it can be correctly extracted from the textual output.
Failure to do so constitutes an output format error.

(b) Wrong structure format. Even if the structure is successfully extracted, its file format
may still be invalid or incompatible with downstream processing tools. Such cases are
counted as structure format errors.

(c) Mismatch of structures. For structurally valid outputs, we compare them with the tar-
get structures using StructureMatcher with a site tolerance of 0.5. Any generated
structure whose site matching exceeds this tolerance is considered a mismatch.

2. Success rate (StructProp). The success metric for StructProp includes two additional
criterion: whether the generated structure can be used in first principle calculations, and
whether the modified structure fulfills the correct property change. A success rate of over
50% for a model indicates the model does better than random guessing.

3. Mean maximum distance (max_dist). Used for AtomWorld, PointWorld, CIF-Gen
datasets. Computed only for structurally valid outputs that pass the tolerance check. For each
matched pair of structures, we calculate the maximum pairwise atomic displacement after
optimal alignment, and then average this value across all test cases. The max_dist metric
is used because it is generally more significant than the RMSD value in our cases. This is
because only a few or even a single atom is “moved” while others remain unchanged, making
the maximum displacement a more representative indicator of the structural difference.

4. CCS score. This metric was used to evaluate whether LLMs could discern between correct
and incorrect crystal structure descriptions. The underlying assumption is that models with
a stronger understanding of crystal structures will assign higher likelihoods in their final
layer to correct statements than to incorrect ones. Accordingly, the metric measures the
separation between the distributions of mean ranks for correct and incorrect descriptions.
We report this separation using Cohen’s d effect size, where larger values indicate a clearer
distinction between the two distributions and, by extension, a stronger ability of the model
to recognise correct statements based on the provided structure and its surrounding context.

4 RESULTS

4.1 ATOMWORLD

The main results of the AtomWorld benchmark, alongside complementary tests are presented in
Figure 2.a. We see some separation of the AtomWorld actions into easy (change, remove,

add), moderate (move, move towards, insert between) and hard difficulty (swap,
delete below, rotate around) levels based on their success rates. The moderate and
hard difficulty tasks constitute greater requirements of multi-step or spatial reasoning. We also notice
the mean max_dist metric increase for the more difficult tasks (minus tasks not requiring structural
perturbations). One interesting finding is that the swap action was intended to be easy, since it only
requires an exchange of two element types, or their coordinates. But all of the models, especially the
larger ones, failed surprisingly. Also notably, the super_cell task cannot be well categorised into
these difficulty tiers as the success rates range from Llama3-70B’s 4% to 98% from GPT-o3 - it’s
both easy (just large-scale repetition) and difficult (requires long-context output) at the same time.
The parameter scaling results in Figure 2.c and d illustrate that larger models generally achieve higher
success rates and smaller displacements. However, with improvements with scale being marginal
with more difficult tasks, and noting that Qwen3-32B outperformes Llama3-70B across most tasks, it
suggests that architectural design and training strategies play an equally important role as parameter
size.
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Figure 2: a. Success rate metric across AtomWorld, CIF-Repair, CIF-Gen and StructProp datasets. b.
Mean max_dist metric across AtomWorld and CIF-Gen datasets. c, d. Parameter scaling results
on Qwen3 series.

Our evaluation of our tool-augmented LLM framework on AtomWorld tasks found noticeable gains
in model performance. However, the gains are somewhat limited, particularly for more complex
actions. Detailed results and comprehensive analysis can be found in Appendix B.1.

4.2 POINTWORLD AND CIF LITERACY TESTS

PointWorld. These results are listed in Table 2. Both models are able to reliably output a parseable
output with near perfect “success rate” (errors in Deepseek V3 model at insert_between tasks
are due to it sometimes attempting to write Python scripts instead of performing the calculation).
The indicator of task difficulty is in the mean max_dist scores, where models performed well
on move, move_towards, and insert_between, but found rotate_around significantly
more difficult. The former actions could be solved with straightforward numerical calculations (e.g.,
addition or weighted averaging), which LLMs can handle reliably. In contrast, models often attempted
to compute a rotation matrix for the rotate_around action and failed to apply it consistently,
leading to high mean max_dist.

Table 2: Model performances on simplified point-based tasks. Success rate (Succ. rate) indicates the
ratio of unreadable outputs from LLMs. Mean max_dist is calculated by the maximum distance
between generated and target points after Hungarian sort.

Gemini 2.5 Pro (50 frames) Deepseek V3-0324 (250 frames)

Action Succ. rate (%) mean max_dist (Å) Succ. rate mean max_dist

move 100.00 0.0000 100.00 0.0000
move_towards 98.00 0.0045 100.00 0.3172
insert_between 100.00 0.0051 78.8 0.0642
rotate_around 98.00 16.168 100.00 14.058
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Figure 3: The number of correctly generated CIFs for each structure type in the CIF-Gen task. The
squares marked in red indicate cases where the single correct generation is the standard prototype.
The right side shows the specific 3D crystal structures for each type, where the chemical compositions
in red represent the standard prototypes.

CIF-Repair. These evaluations are presented in the main results of Figure 2.a. Most models were
able to demonstrate a strong foundational capability in understanding CIF format and errors, with
success rates of over 90%. While Llama3 and Qwen3 series have success rates falling below 60%, this
does not seem to limit their capability to yield higher success rates even in moderately challenging
AtomWorld tasks.

CIF-Gen. These evaluations are presented in the main results of Figure 2.a and show a similar
trend to CIF-Repair tasks. A closer look at the error cases in Figure 3 find that chemical compositions
that define standard prototypes are generated correctly more often than non-standard compounds that
crystallize in the same prototypes (e.g. NaCl vs. MgSe for rocksalt, CaF2 vs. Na2O for fluorite). The
fact that assymetries in training data affect LLMs in this way demonstrates that they rely more on
memorization of specific examples rather than understanding the underlying structural principles.
Nevertheless, Gemini 2.5 Pro and o3 were able to demonstrate this understanding with success rates
of 95% and 100%, respectively.

CCS. The resulting scores are reported in Table 3. Similar to AtomWorld, scaling within the Qwen3
series yielded incrementally higher scores, indicating that larger models of the same architectural de-
sign acquire a more nuanced grasp of crystal structure properties from their underlying compositions.
Notably, while larger Qwen models generally perform better, the Qwen3-32B model surpasses the
larger Llama3-70B, mirroring the pattern observed in AtomWorld.

Table 3: CCS score of open-source models
Model CCS

Qwen3 4B 0.768
Qwen3 8B 0.829
Qwen3 14B 1.061
Qwen3 32B 1.141
Llama3 70b 0.987

4.3 STRUCTPROP

These evaluations are presented in the main results of Figure 2.a. Most LLMs were generally
unable to get over 50% success rate in these tasks. With the strongest performing model Gemini
2.5 Pro achieving an average success rate of 70%, we list three examples of its reasoning trace in
Table 4. These examples highlight LLM knowledge of the definitions of target properties and an
ability suggest plausible modification strategies, but also underlines a limited understanding of the
underlying electronic structure. In the PtS case, the model correctly identified the key driver of
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the band gap change as the higher energy of Se 4p compared to S 3p orbitals, but stopped short of
a deeper discussion of orbital overlap and covalency - Pt-S bonding is likely to be more covalent
than Pt-Se, potentially leading to additional band gap narrowing. In the Ga2S3 case, the model
captured the correct trend in terms of electronegativity differences and bond ionicity. The CdAs2
case highlights an incorrect reasoning flow that still lead to successful completion of the task. The
model mischaracterised the relative electronegativities of Cd (1.69) and Zn (1.65), attributing the
improvement to enhanced ionicity - the true effect is likely linked to stronger covalent bonding due to
Zn 3d-As 3p interactions.

Table 4: Excerpts from Gemini 2.5 Pro reasoning trace during successful completions of StructProp
tasks. Correct and incorrect identifications are highlighted.

Structure & Goal Core thinking process

PtS (mp-288) ... a potent strategy is to raise the energy of the valence band maximum.
This can be achieved by substituting the sulfur atoms with a heavier, less
electronegative element from the same group, such as Selenium (Se).
The Se 4p orbitals are higher in energy than the S 3p orbitals.

Band gap →

Ga2S3 (mp-539) ... its band gap is largely determined by the electronegativity difference
and bond strength between the Gallium (Ga) cation and the Sulfur (S)
anion. To increase the band gap, a modification that strengthens the
chemical bonds and increases the material’s ionicity is required.

Band gap ↑

CdAs2 (mp-471) ... Cd is a relatively large and electropositive element, leading to bonds
with significant ionic character that are less stiff than purely covalent
bonds.
... Zn is directly above Cadmium in Group 12 of the periodic table. It
has a smaller atomic radius and is more electronegative, which leads to
the formation of shorter, stronger, and more covalent bonds with As.Bulk modulus ↑

5 DISCUSSION

Isolated tests of PointWorld suggest that LLMs could perform near-perfectly for the simplified move,
move_towards, and insert_between tasks - which suggests that the moderate (50-80%)
success rate for the AtomWorld analogous tasks is due to difficulty with CIF syntax following as
opposed to spatial reasoning. Yet isolated tests for CIF literacy generally found success rates of
over 80%, suggesting the opposite - spatial reasoning is more difficult than CIF syntax following.
The reality is likely that the task difficulty was compounded when both spatial reasoning and syntax
following requirements were combined. Moreover, real-world materials modelling workflows rarely
involve single-step actions as in AtomWorld. Instead, they require executing chains of operations.
For example, creating supercells is often a prerequisite for other tasks: studying defect properties at
a given concentration demands first generating a supercell of appropriate size before atoms can be
removed or substituted. A complex instruction such as “generate defect at x% concentration” would
thus entail an extended reasoning chain, amplifying the difficulty. Stronger RL specific to AtomWorld
tasks could be a solution to helping LLMs understand reasoning chains relevant to CIF modification.

The AtomWorld benchmark is an essential first step: if LLMs cannot reliably perform these basic
operations, it will be difficult to envision progress toward more complex materials research workflows.
At the same time, solving AtomWorld does not necessarily mean relying on LLMs alone. In practice,
difficult actions such as rotate_around are better handled by crystallography tools, and future
agentic workflows will likely combine LLMs with tool support or multi-modal inputs. Our StructProp
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results further suggest that current LLMs already show some ability to connect structures with
their properties, hinting at the feasibility of gradually scaffolding more complex reasoning within
tool-augmented frameworks. From this perspective, AtomWorld can be viewed not as an end in itself
but as a foundational stepping stone toward practical, full-cycle agentic materials discovery.

6 RELATED WORK

LLMs for crystallography. LLMs have been primarily explored for their capabilities in CIF
generation and QA. LLMs have been demonstrated to hold an innate ability to generate crystal
structures when pretrained on millions of CIF files (Antunes et al., 2024). This process may be further
reinforced through evolutionary search frameworks (Gan et al., 2025). However, as LLMs are pattern
predictors, the search space is fundamentally limited by the scope of the pretraining data. LLMs can
also be instruction fine-tuned to predict crystal properties or provide general QA responses from CIF,
e.g. AlchemBERT, NatureLM, Darwin 1.5, etc (Liu et al., 2025; Xia et al., 2025; Xie et al., 2025;
Van Herck et al., 2025; Nate Gruver & Ulissi, 2024). Crystallography QA is well benchmarked,
with the most comprehensive being LLM4Mat-Bench (Niyongabo Rubungo et al., 2025), consisting
of approximately 2 million composition-structure-description pairs. Tool-augmented LLMs such
as OSDA Agent (Hu et al., 2025) improve structure generation through coupling computational
chemistry tools to LLMs. These tool-augmented design frameworks are able to address the lack of
in-depth chemistry knowledge of LLMs without expensive (and not always effective) fine-tuning.
LLMs may be able to reliably handle geometric CIF modification through tool-augmentation.

Multimodal reasoning. Approaches such as multimodal chain-of-thought (Multimodal-CoT) and
visualization-of-thought (VoT) (Zhang et al., 2024; Wu et al., 2024) add image modalities to the
reasoning trace rather than pure textual chain-of-thought. In particular, Multimodal-CoT with
under 1 billion parameters achieved state of the art in state-of-the-art performance on the ScienceQA
benchmark, outperforming larger models like GPT-3.5. As CIF describes a 3D challenge, these results
suggest that multimodal reasoning approaches can be highly applicable to improving LLM ability
on CIF geometry tasks, as well as reasoning-intensive QA and structure generation/modification
tasks. Approaches to multimodal representation may also be influenced from developments in video
generation and robotics, where models such as Genie 3 and V-JEPA 2 (DeepMind, 2025; Assran
et al., 2025) are increasingly capable of understanding real-world physics and integrating this with
natural language input/output. Finally, with the training objective of diffusion LLMs (Nie et al.,
2025; Song et al., 2025) to be noise reversal, they have an advantage in understanding structural
text compared to autoregressive LLMs - with LLaDA (Nie et al., 2025) surpassing GPT-4o in a
reversal poem completion task. This also suggests diffusion LLMs may be inherently capable of
differentiating between valid and invalid modifications to CIF - important for geometric modification
tasks. Developments in multimodal reasoning and diffusion suggest that LLMs may be on the cusp
of being able to grasp the 3D CIF environment, making it important to benchmark this progress.

7 CONCLUSION

In this paper, we presented AtomWorld as the first benchmark that evaluates LLM motor skills in
crystallography. In general, we found that chat models took an algorithmic approach to solving the
geometric tasks of our benchmark. With this approach, simpler operations such as add could be
performed more consistently, whereas more spatially demanding manipulations, particularly rotations,
remain highly challenging. These tasks can be solved manually via crystallography software, but
for LLMs are an important first stage to enabling higher value tasks such as developing an agentic
material discovery workflow. At the same time, preliminary tests suggest that simply equipping LLMs
with code tools and RAG is not sufficient to solve problems perfectly. More thoughtful toolflow
design and post-training are still necessary for practical application.

LLMs have traditionally struggled with spatial reasoning tasks. However, this may be soon to change
with recent developments in tool-augmented design, diffusion, video generation, and language-aligned
robotics models (Hu et al., 2025; Song et al., 2025; DeepMind, 2025; Assran et al., 2025). We hope
that our AtomWorld playground can play a foundational role in helping researchers of tomorrow test
LLMs’ understanding of 3D CIF environments.
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