SINGER: LEVERAGING SEMANTIC IDENTIFIER HIER-
ARCHIES FOR GENERATIVE RECOMMENDATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have sparked a new line of
generative recommendation, where the recommender autoregressively generates a
sequence of Semantic IDs (SIDs)—item identifiers in the SID space—rather than
ranking a pre-selected candidate set of item titles in the language space. Although
the current Supervised Fine-Tuning followed by Reinforcement Learning (SFT-
then-RL) pipeline improves performance, it still fails to adequately model the SID
space. Specifically, (i) SFT often leads to superficial SID understanding by merely
forcing memorization of a closed SID vocabulary, and (ii) rule-based RL typically
relies on coarse-grained rewards that treat all incorrect SIDs equally, regardless of
their hardness. To address these challenges, we propose SID-Navigated GEnerative
Recommender (SINGER), a framework that integrates fine-grained SID knowledge
throughout training. SINGER comprises two components: (1) Full-Process SID
Alignment, which embeds alignment objectives throughout both SFT and RL
to strengthen the model’s understanding of the SID space; (2) SID-Navigated
Reinforcement Learning, which consists of SID-level rewards that grade each
trajectory by the deepest correctly matched SID layer, together with a SID-prefix
curriculum sampling strategy that supplies partial prefixes as intermediate guidance
for hard cases. Experiments on public benchmarks demonstrate that SINGER
consistently outperforms strong sequential, generative, and recent LLM-based
baselines across standard metrics, validating the benefit of integrating hierarchical
SID signals with the world knowledge of pretrained LLMs.

1 INTRODUCTION

The powerful sequence modeling capabilities of large language models (LLMs) have enabled their
adaptation to recommender systems (Bao et al 2023} |Sheng et al.,|2024; Hu et al., 2025} He et al.;
2025a; |Wu et al., [2024; Fang et al., 2020), with generative recommendation emerging as a promising
direction that leverages autoregressive generation for item prediction (Rajput et al., 2023; |Zheng et al.|
2024} Qu et al.| [2024} Zhai et al., 2024} Deng et al.| [2025; Wang et al.,2025a). This paradigm centers
on generating sequences of Semantic IDs (SIDs)—discrete tokens that encode item semantics through
quantization of continuous embeddings (Zeghidour et al., |2022; [Luo et al.,|2024). By promoting
token sharing across semantically related items, SIDs facilitate efficient handling of large-scale
catalogs while naturally aligning with the step-by-step (chain-of-thought) reasoning paradigm of
LLMs (Rajput et al., 2023} |[Zeghidour et al., 2022} [Luo et al.| 2024} |Deng et al.,|2025; Singh et al.,
2024).

Upon scrutinizing prior studies on generative recommenders, we can summarize a common training
pipeline: (1) Beginning with items’ textual descriptions or embeddings, a quantization method
transforms continuous vectors into SIDs. (2) The model is then trained to generate these SIDs in
an end-to-end manner, typically following two primary approaches: scratch-trained recommenders
that train Transformer (Vaswani et al., [2017) from scratch on user interaction sequences (Rajput
et al.| 2023} Zhai et al.,2024; |[Deng et al., 2025 |Wang et al.,[2025a), and SID-aligned Recommenders
that adapt pretrained LLMs from the language space into SID space through supervised fine-tuning
(SFT) (Zheng et al.l 2024; Qu et al.| 2024). Although these methods achieve promising performance,
the integration of reinforcement learning (RL) for deeper alignment with user interaction sequences
remains relatively underexplored (Chen et al., 2024).

0.22

~® - Scratch-pretrain&vanilla-RL
SINGER-Scratch
0.20 SID-aligned-SFT&vanilla-RL .
20.18 SINGER Hit Reward
®
& bty 65.7%
0.14] All-zero Reward
0.12 e
010~ St SFI-then-RL

(a) Performance under Different Train-
ing Paradigms.

(b) Sample hit reward distribution.

Figure 1: Results on the Industrial dataset. Figure |lalillustrates the performance, with respect to
HitRatio@ 10 under different training paradigms. Figure[Ib]|shows the proportion of RL-sampled
outputs from the SFT-initialized model that receive a non-zero reward.

Inspired by the recent success of the SFT-then-RL paradigm (Shao et al., 2024} |Yoshihara et al.,
2025} |OpenAl et al.| 2024), we aim to establish a generative recommendation framework that adapts
this paradigm to the unique characteristics of recommendation tasks. Specifically, we first explore
applying Group Relative Policy Optimization (GRPO) (DeepSeek-Al et al., [2025) after the initial
SFT phase, considering both scratch-trained and SID-aligned recommenders. Our preliminary
experiments (c¢f. Figure [Ta) demonstrate the effectiveness of the SFT-then-GRPO paradigm in
generative recommendation, consistently outperforming the SFT-only baselines. Building on this,
we further investigate two critical limitations that arise when directly transferring the standard
SFT-then-RL paradigm to recommendation, which constrain its full potential in this domain:

* Limited SID Understanding in Alignment. The SFT alignment process constrains LLMs to
project outputs into a closed SID vocabulary through supervised training on user-item interaction
sequences. Such rigid constraint mainly encourages superficial pattern matching rather than true
semantic understanding of SIDs. As illustrated in Figure[2] even after SFT the model often fails to
exploit SID histories correctly: it either resorts to generic responses citing insufficient user infor-
mation, or produces lengthy, repetitive item descriptions indicative of collapsed generation. While
the world knowledge in pretrained LL.Ms should be beneficial for understanding item semantics
and user preference (cf. Figure[Ta)), the current alignment pipeline exploits it only superficially,
highlighting the need for a more systematic approach that integrates SID understanding throughout
the entire training process.

* Ineffective Reward Assignment in RL. The standard rule-based RL training treats each SID
sequence as an indivisible unit—if any token in a generated sequence fails to match the ground-
truth, the entire sequence is penalized with zero reward. This binary reward mechanism overlooks
the rich relational structure among SIDs, unable to distinguish between near-correct and completely
irrelevant predictions. The resulting sparse rewards (cf. Figure[Ib)) deprives the model of useful
learning signals on hard cases—those rollouts that narrowly miss exact matches and thus receive
zero advantages (Yu et al.,[2025)—which represent the most critical cases for developing genuine
reasoning capabilities over the SID taxonomy. Consequently, RL optimization tends to reinforce
patterns already memorized during pre-training and SFT (Chu et al.l 2025} [Yue et al., [2025} [Liu
et al.l |2025)), rather than learning to navigate semantic relationships that would enable better
performance on challenging cases.

To address the above limitations, we introduce SID-Navigated GEnerative Recommenders (SINGER),
a generative recommendation framework that enhances both SID comprehension and reward utiliza-
tion throughout the SFT-then-RL process. SINGER is built on two key components:

* Full-Process SID Alignment. We embed a set of alignment objectives throughout the entire
SFT-then-RL pipeline to achieve deeper SID alignment. Specifically, we integrate discrete SID
tokens into the LLM’s vocabulary and introduce a series of auxiliary alignment tasks (e.g., explicit
item title to SID mapping) that are enforced during both SFT and RL phases. This ensures the
model fully internalizes the structural semantics of SIDs.

Input:
The user has interacted with items <a_13><b_197><c_1>,<a_52><b _17><c 113>, <a_13><b 201><c 34> in
chronological order. Can you describe the next possible item that the user may expect?
J
@ Answerl: 2
The user does not reveal specific
preferences. provide detailed records)
of the user’s past interactions. Answer:
=/ A titanium-coated, high-speed-steel step drill
Vs ~ bit that combines ten hole sizes in one piece,
5 Answer?2: ideal for clean, burr-free drilling through
Only f{:n Align pressure sensor industrial-grade digital SINGER | metal, plastic, and sheet materials. Qy
4-20...... 304 IP67 4-20 mA PLC J
A G @
A\ 7/

Figure 2: Only-SFT-Align case study. The model is fed a SID-formatted interaction history and asked
to describe the next item. The Only-SFT-Align LLM fails to interpret the SID tokens (Answer 1) or
generates verbose, repetitive, and disordered text (Answer 2), underscoring the shallow alignment
achieved by SFT alone. By contrast, SINGER correctly understands the SID sequence and produces
a concise, coherent item description.

» SID-Navigated Reinforcement Learning. We develop a novel RL framework that leverages SID
hierarchy to provide more informative learning signals:

(a) SID-Prefix Curriculum Sampling. Let the ground-truth item be a hierarchical token sequence
ePo® = (sk, sy, st). Inspired by curriculum learning, we define a scheduling function f (¢, eP%®)
that truncates e”°® and progressively shortens the retained prefix as the training step ¢ increases.
The resulting truncated prefix is concatenated with the original input to construct a new prompt.
The policy then produces a continuation and the reward is computed accordingly. In this way,
the model starts by predicting lower-level tokens conditioned on higher-level prefixes and
gradually transitions to prefix-free generation, thereby achieving autonomous exploration and
performance gains on difficult samples.

(b) SID-Level Reward Modeling. We employ GRPO to optimize the LLM with fine-grained, SID-
level rewards. For hard samples whose original rewards are often zero, we treat the step-by-step
generation of the SID path (a) — (b) — (c) as an intermediate reasoning process. Suppose
the ground-truth SID token be eP°° = (s?%, s}, s%) and the model output be e = (sq, Sp, S¢). A
partial reward is granted according to the deepest level that still matches the ground truth, i.e.,
k(e,eP?®) = max{k: eqk = €}, }, preventing zero-reward collapse on hard examples.

We evaluate SINGER on two public benchmark datasets (Hou et al., [2024)) and compare it with a
wide range of leading traditional sequential recommenders, generative recommenders, and several
recent LLM-based baselines. The results show that SINGER consistently outperforms all competitors
on standard recommendation metrics, confirming its effectiveness. A detailed survey of related work
is deferred to Appendix[A]

2 PRELIMINARY

2.1 RQ-KMEANS

For each item ¢, we concatenate its title and textual description and feed the resulting sentence into a
frozen content encoder to produce a d-dimensional semantic vector x € R?. The continuous vector
is then discretized with the RQ-Kmeans algorithm (Luo et al., 2024}, which builds a hierarchy of
codebooks by recursively clustering the residuals.

Let M = [x;;...;xy] € RV*? be the matrix that stacks the embeddings of all N items. We
initialize R(") = M. For each layer [€ {1,..., L}, where L is the number of hierarchical levels
in the semantic codebook, we learn a codebook C(V) = {cg)},ﬁ , by running K-means with K;
centroids on the current residuals R():

C® = K-means RY, K;).

Foritem ¢ (1 < ¢ < N), the index of the nearest centroid is obtained via

sgl) = arg mkin||R§l) — c,(cl)||2,

where ||-|| denotes the Euclidean norm. The residual is updated as

R§z+1) _ Rgz) _ Cil(_%-

After L = 3 layers we obtain a coarse-to-fine set of semantic identifiers, {sgl), 552), 353)}, which
serves as the unique token sequence for item ¢ and will be consumed by the recommender for
progressive generation.

2.2 GROUP-RELATIVE POLICY OPTIMIZATION

We fine-tune our policy with the GRPO algorithm (Shao et al., 2024} DeepSeek-Al et al., [2024),
which leverages the relative quality of multiple responses generated for the same prompt. Concretely,
for each input x ~ D, we roll out the current policy 7y, G times to obtain a set of candidates
V(z) = {yW,...,y(@}. Each candidate y(*) receives a scalar reward R;, and the advantage is
computed by normalizing the rewards within the group

A = R; — mean(Rlzg)’ 0

Std(Rl;G)

where Ri.cc = {Ri,...,Rg}. This groupwise normalization recenters advantages at zero and
rescales them to unit variance, thereby turning each prompt into a self-contained comparison game
and reducing gradient variance. The new policy 7y maximizes the clipped surrogate

G ly @]

é Z 1 Z {min(riyt/li,t, clip(rie, 1 —e,1+ E)Ai,t)
i=1

Jorpo(0) = E.vp, Yy~ ly@|
t=1

(2
-5 KL[WgHﬂref] }1 ,

Tre(yii)v | :cy(<3
TOo1d (yt(l) I $7U(<72)
[balances the task reward against a KL penalty, keeping the updated policy close to the reference
model 7¢, which is the frozen initial SFT policy.

where 7; 4 = is the per-token importance ratio, € is the clipping threshold. The term

2.3 TASK FORMULATION

Generative recommendation reformulates the recommendation problem as a sequence generation
task. Let H,, denote the interaction history of user u, sorted in chronological order. Each item ¢ € H,,
is represented by a 3-level SID tuple {sgl), 522), 353) }. Given H,, the generative recommender 7,
parameterized by 0, is trained to predict an item iP° that best matches the preferences of user u from
the item set. During inference, we employ beam search to generate the top-k candidates and evaluate

the model with standard generative-recommendation metrics.

3 METHODOLOGY

To address the key shortcomings of the existing SFT-then-RL pipeline for generative recommendation,
we propose SINGER. The framework elevates the performance ceiling by aligning the LLM with the
SID space throughout the entire training process and applying SID-navigated optimization in the RL
stage, as illustrated in Figure[3]

3.1 FULL-PROCESS SID ALIGNMENT

As demonstrated in Section [T} aligning world knowledge with item SIDs is beneficial for generative
recommendation (Zheng et al.l 2024)). Hence, instead of the paradigm that trains only on SIDs

o Easier Task Harder Task
c - N
LM S RQ- = o Training time
— -3 m=n, P R Pt
tem inflc Encoder _é’ Kmeans _’%]MDS%] mi i LE i {L: i i
w T N ‘\ -l:—' “\ ‘-’r—
SID-Prefix Target No Prefix
SID history ‘ k. SID-Prefix Curriculum Sampling
User bought... — L ... predict ’///
000C-B0-0-0 I =5
item,
LLM & sy 000
item;
‘ 2 P Reward
- 000 \ K@@
ext ltem itemy SID-level Reward
Full-Process SID Alignment >

Figure 3: SINGER framework. RQ-Kmeans builds the item SID codebook and SFT first aligns
the LLM. In RL, beam search with a SID-prefix curriculum progressively shortens the given prefix,
thereby hardening the task while matching the inference setup. Hit cases receive an accuracy-rank
reward, whereas a SID-level reward grants partial credit to semantically close SIDs when no hit
is found, alleviating sparse feedback. GRPO updates the policy, and SID alignment is enforced
end-to-end.

(Rajput et al.} 2023}, [Deng et al.| 2025} [Wang et al,[2025a)), our LLM-based recommender explicitly
strengthens the link between language understanding and collaborative semantics by injecting a set
of alignment objectives:

» Semantic Tasks. Given a chronologically ordered sequence of historical SIDs and an explicit task
instruction, the LLM is asked to predict the SID of the next item the user is likely to interact with.

* Alignment Tasks. It comprises a series of alignment tasks between the textual space and the SID
space. Through these tasks, we encourage a bidirectional mapping that grounds SIDs in language
and injects linguistic knowledge into SID representations.

Representative tasks from each category are jointly optimized throughout the entire SFT-then-RL
pipeline, enabling the LLM to fully exploit its world knowledge, deepen its understanding of SIDs,
and ultimately boost generative-recommendation performance. During the RL phase, we employ
constrained decoding, limiting the output space to a precompiled dictionary that contains the SID
of each item as well as its canonical title. This restriction ensures that the LLM can emit only legal
identifiers, making it straightforward to compute a rule-based, verifiable reward signal. Detailed
examples of the prompts are provided in the Appendix

3.2 SID-NATIGATED REINFORCEMENT LEARNING

To fully exploit the fine-grained signals carried by SIDs, we introduce SID-Natigated Reinforcement
Learning (SIN-RL). SIN-RL comprises two complementary components—curriculum sampling and
reward modeling. By leveraging the codebook’s inherent coarse-to-fine hierarchy, SIN-RL steers
the agent toward harder examples in a structured manner, thereby improving its capability in the
challenging regions of the data distribution.

3.2.1 SID-PREFIX CURRICULUM SAMPLING

We first optimize the sampling strategy to preserve rollout diversity in RL for generative recommen-
dation. In conventional LLM-RL training, LLM first applies dynamic sampling to obtain several
candidate outputs and then computes a group—level reward. Recent studies, however, report a rapid
entropy drop during RL, which harms diversity (Wang et al.} [2025b}; [Cui et al, 2025}, [He et al.

2025b}; Mukherjee et al.} [2025)). Inspired by these findings, we use a new sampling strategy tailored
to generative recommendation so as to keep rollouts diverse. Specifically, when k trajectories are

required, we do not run k independent dynamic samplings, each predicting a single item. Instead,

we execute one beam—search pass and take the top—k item SIDs as the trajectory set for subsequent
reward estimation. Following prior work (Bao et al., 2024), we remove length normalization in beam
search to avoid bias amplification in the LLM-based recommender.

Furthermore, we label a training instance (z,y*) as difficult when none of the k items generated
in the current rollout matches the ground-truth SIDs y*. Once normal and hard tasks are separated,
every hard sample (z,y*) € Dgi, is handled with a SID-Prefix curriculum schedule. At the beginning
of training, we expose a long SID prefix; as learning progresses, the length of this prefix is gradually
shortened, encouraging the model to explore on its own. Formally, we use p(t) to control the length
of the SID-prefix:

t
pt)=1-7 3)

where T is the total number of RL steps and ¢ is the current step. Therefore, the value p(t) decreases
linearly from 1 to 0, so the depth of the prefix guidance diminishes accordingly throughout training.

For every hard instance (z,y*) € Dgin, we first compute the length of the SID-prefix, Lguide,
according to the schedule p(t):

Lguide = Lp(t) ' LJ @
where |- | is the floor operator. We then truncate y* to its first Lgy;qe tokens, denoted by YL yuae> and
concatenate it with the original input x to form a new prompt:

&)

Finally, the policy produces a continuation y ~ mg(- | Zsin), upon which the RL reward is evaluated.

*
Tsin = T D YL,

guide

3.2.2 SID-LEVEL REWARD MODELING

For a sampled item e; generated by the model, the naive rule-based reward RR,.. follows a binary
scheme. The ground-truth item eP* is assigned 1, whereas every other candidate receives 0, as shown
below:

1, e =eP%,

Racc(ei) = { (6)

0, otherwise.

Such sparsity treats all negative samples equally and thus fails to reflect their different levels of
hardness. We first follow the recent paradigm by constructing an auxiliary ranking score R,k that
exploits the ordering information among candidate items. Specifically, a negative sample that appears
higher in the generation list (i.e. is produced with a larger probability) should be penalized more. Let
p; denote the position of a negative item €] °. Its ranking reward is defined as the negative reciprocal
of the natural logarithm of (p; + 1), while the correct item eP** is given O:

J— 0S
0, e; = eP%,

Rrank(ei) == 1 . (7)
——— otherwise.
log(p;i + 1)

Although the ranking reward supplies denser guidance, it still evaluates the whole sequence (a) (b)(c)
as a single target and overlooks the multi-granular clues embedded in the SID codebook. Conse-
quently, for many difficult instances (z, y*) € Dgin the reward may still collapse to zero, leaving the
sparsity issue unsolved.

To address this limitation, we further view the generation of the hierarchical SID (a) — (b) — (c)
as a step-by-step inference process and design SID-level reward. Instead of relying on external
Process-Reward Models, the proposed approach harnesses the codebook’s innate coarse-to-fine
hierarchy to provide intermediate reasoning signals at each SID layer. This objective can be formally
expressed as:

Rreason(ei) =1~)\k (8)

where k = f(e;, eP°®) denotes the deepest layer at which the generated sequence e; matches
the ground-truth sequence eP°°, and A € (0,1) is a decay coefficient that modulates the reward
increment across different layers and guarantees that the overall reward always lies in the interval
0 < Ryeason(€;) < 1. The final total reward can be formally expressed as:

Racc(ei) + Rrank(ei)7 (377 y*) §é Dein,

Rreason (el) s otherwise.

For challenging samples (x,y*) € Dgn, SID-Level Reward Modeling fully exploits SID’s hierarchi-
cal rewards to deliver fine-grained guidance.

4 EXPERIMENTS

In this section, we first report the empirical performance of SINGER on two real-world benchmarks
(Hou et al.,[2024)), and compare it against a selected set of baselines covering conventional sequential
recommenders, SID-based generative models, and recent LLM-powered recommenders. In addition,
we recast the SID-based next-item prediction task as recommendation rule discovery and show that
SINGER offers extra gains for cold-start users with scarce interactions and even for completely
unseen domains. We further conduct extensive ablation studies to pinpoint the components that most
contribute to SINGER's effectiveness. Refer to the appendix [B] for detailed implementation details.
In short, this section is organized to answer the following research questions:

* RQ1: How does SINGER perform in comparison to other baseline methods?
* RQ2: How does SINGER perform under completely unseen domains?
* RQ3: How do the designed components contribute to SINGER’s recommendation efficacy?

Datasets and Metrics. We conduct extensive experiments on two real-world subsets of the Amazon
Review corpus—Office and Industrial. Following common practice, we adopt Hit Rate (HR @K)
and Normalized Discounted Cumulative Gain (NDCG@K) to evaluate the top—K recommendation
accuracy. Please refer to Appendix [B]for more details about datasets and evaluation metrics.

Baselines. Our baselines contain three categories: (1) Traditional recommendation models, including
GRU4Rec (Hidasi et al.| [2016), Caser (Tang and Wang} 2018)), SASRec (Kang and McAuleyl, 2018);
(2) Generative recommendation models: HSTU (Zhai et al.| [2024), TIGER (Rajput et al.| [2023)),
LC-Rec (Zheng et al., 2024); (3) LLM-based recommendation models, including BigRec (Bao et al.,
2023)), D3 (Bao et al.|[2024)), S-DPO (Chen et al., 2024)). Please see Appendixfor more information.

4.1 PERFORMANCE COMPARISON (RQ1)

We conduct a comprehensive evaluation of SINGER on three benchmark datasets—Industrial and
Toys; the results are summarized in Table [T} Two major observations emerge:

» Utility of LLM World Knowledge. LLM-based recommenders such as BIGRec and D? markedly
outperform classical paradigms like GRU4Rec and Caser, confirming that injecting the broad world
knowledge encoded in LLMs can substantially boost recommendation quality.

* Effectiveness of SINGER. By incorporating fine-grained SID information into the RL loop and
aligning the entire generation trajectory with the task objective, SINGER establishes new SOTA
across all three datasets, significantly surpassing the strongest prior baselines.

4.2 UNSEEN-DOMAIN PERFORMANCE EVALUATION (RQ2)

To assess SINGER’s generalization to out-of-distribution (OOD) data, we conduct an unseen-domain
study termed SID pattern discovery. Specifically, the model is trained on the source domain Industrial
and evaluated on a completely unseen target domain Office. Given that prior studies have shown
SFT can overfit to the training domain and degrade OOD performance (Jin et al.,|2025; | Yue et al.,
2025}, |Yoshihara et al.| [2025; |Cheng et al.| 2025), we introduce an RL-only variant, SINGER-w/ RL,
specifically to provide a version focused on OOD generalization. We benchmark three systems: (1)
GRU4Rec, trained and tested on Office. (2) Qwen-Text, which encodes the user’s interaction history
as plain text and predicts the next item in textual form; (3) Qwen-SID, which represents the same
history as a sequence of SIDs and predicts the next SID; (4) SINGER-w/ RL, which is trained solely
with RL on Industrial and is tested on Office without SFT.

Table 1: Performance of SINGER Compared to Traditional Methods, Generative Methods, and
LLM-based Methods

Dateset Methods HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10

Traditional

GRU4Rec 0.0638 0.0542 0.0774 0.0598 0.0999 0.0669

Caser 0.0618 0.0514 0.0717 0.0555 0.0942 0.0628

SASRec 0.0790 0.0700 0.0909 0.0748 0.1088 0.0806
Generative

HSTU 0.0927 0.0885 0.1037 0.0918 0.1163 0.0958

Industrial TIGER 0.0852 0.0742 0.1010 0.0807 0.1321 0.0908

LCRec 0.0915 0.0805 0.1057 0.0862 0.1332 0.0952
LLM-based

BIGRec 0.0931 0.0841 0.1092 0.0907 0.1370 0.0997

D3 0.1024 0.0991 0.1213 0.0989 0.1500 0.1082

S-DPO 0.1032 0.0906 0.1238 0.0991 0.1524 0.1082

Ours

SINGER 0.1256 0.1112 0.1453 0.1192 0.1744 0.1276
Traditional

GRU4Rec 0.0629 0.0528 0.0789 0.0595 0.1019 0.0669

Caser 0.0748 0.0615 0.0865 0.0664 0.1093 0.0737

SASRec 0.0861 0.0769 0.0949 0.0805 0.1120 0.0858
Generative

HSTU 0.1134 0.1031 0.1252 0.1079 0.1400 0.1126

Office TIGER 0.0986 0.0852 0.1163 0.0960 0.1408 0.1002

LCRec 0.0921 0.0807 0.1048 0.0859 0.1237 0.0920
LLM-based

BIGRec 0.1069 0.0961 0.1204 0.1017 0.1434 0.1091

D3 0.1204 0.1055 0.1406 0.1139 0.1634 0.1213

S-DPO 0.1169 0.1033 0.1356 0.1110 0.1587 0.1255

Ours

SINGER 0.1331 0.1163 0.1472 0.1221 0.1746 0.1309

Table 2: Performance of SINGER and its variants on completely unseen recommendation domains

Dataset Method HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10
GRU4Rec 0.0629 0.0528 0.0789 0.0595 0.1019 0.0669
Qwen-Text 0.0031 0.0021 0.0044 0.0026 0.0057 0.0030

Office Qwen-SID 0.0300 0.0214 0.0456 0.0282 0.0733 0.0373

SINGER-w/RL 0.0553 0.0433 0.0691 0.0489 0.0892 0.0553

As reported in Table [2] Qwen-Text performs rather poorly, whereas Qwen-SID is markedly better,
demonstrating that the structured SID space is easier for a language model to exploit. Although
SINGER-w/ RL lags behind the full SINGER on in-domain metrics, its RL-only optimization offers
strong transferability, yielding competitive accuracy on the unseen Office catalogue surprisingly.
Despite the substantial domain shift and the possible semantic mismatch among SIDs, SINGER
can still discover transferable interaction patterns and produce high-quality recommendations for a
brand-new catalogue, highlighting the encouraging unseen-domain potential of our framework.

4.3 ABLATION STUDY (RQ3)

To validate the effectiveness of each component in the SINGER framework, we compare it with the
following alternative approaches.

4.3.1 ALIGNING STRATEGY

We benchmark the full model against three carefully designed variants: (1) SINGER-wW/0 ALIGN: A
pure SID—SID paradigm: the input consists of SID-organized user histories, and the target is the SID
of the next item. No cross-modal alignment is applied in either stage. (2) SINGER-w/ SFTALIGN:

SINGER-W/O ALIGN SINGER-COMMON SINGER-W/ ACC
SINGER-W/ SFTALIGN SINGER-DYNAMIC SINGER-W/O SID

0.20} ™ SINGER-W/ RLALIGN SINGER-W/ BEAM 0.19} = SINGER-W/ SIDALL
. == SINGER 0.20] ™ SINGER == SINGER
) Cha °
€0.15 & o
[[&
= = T 0.17

0.15 ’
0.10
0.05 0.10 0.15

Industrial Office Industrial Office

Industrial Office

(a) Aligning Strategy. (b) Sampling Strategy. (c) Reward Design.

Figure 4: Study on the effectiveness of SINGER’s individual components. Figure @ examines model
performance under different alignment strategies; Figure [4b]investigates various sampling strategies;
Figure evaluates the impact of alternative reward designs.

Alignment tasks are used only during the SFT stage, whereas the RL stage is trained on SID-only
data. (3) SINGER-W/ RLALIGN: The SFT stage relies on SID-only supervision, while alignment
tasks are introduced solely in the RL stage.

As illustrated in Figure fa] the full SINGER with full-process SID alignment achieves the best
results across all metrics. The SINGER-W/0 ALIGN variant performs the worst, underscoring the
importance of grounding world knowledge when generating SIDs. Notably, although introducing
the alignment objective directly in the RL stage is highly challenging for an LLM that has not been
pre-conditioned by SFT, SINGER-w/ RLALIGN still yields a non-trivial gain. We attribute this
improvement to our SID-Guided RL scheme, which offers the agent additional opportunities to obtain
valid rewards on hard examples that conventional RL would likely miss.

4.3.2 SAMPLING STRATEGY

We contrast the full model with three variants that differ only in the way trajectories are collected:
(1) SINGER-COMMON that uses a conventional top-k decoding scheme to generate the required
number of trajectories. (2) SINGER-DYNAMIC, which implements our dynamic sampler that first
produces % times the target trajectory budget and then keeps as many distinct items as possible for
RL optimization. (3) SINGER-W/ BEAM that retains only beam search; no SID-prefix guidance is

applied, and all examples maintain their original difficulty level.

As Figure @ illustrates, the full SINGER achieves the best overall performance. Moreover, the
SINGER-wW/ BEAM variant attains higher accuracy than SINGER-DYNAMIC while requiring only
two-thirds of its sampling budget, showing that beam search is a more cost-effective backbone. These
findings motivate our final design that merges beam search with SID-prefix guidance.

4.3.3 REWARD DESIGN

Three variants are compared: (1) SINGER-W/ ACC that uses the accuracy reward only; (2) SINGER-
Ww/0 SID that removes the SID-level reward for hard cases; the LLM is optimized with the accuracy
plus rank rewards. (3) SINGER-w/ SIDALL that applies the SID-level reward to every training
sample rather than restricting it to difficult ones.

As shown in the Figure dc| the full model, which deploys SID-level reward only for hard samples,
achieves the best overall performance. To be noticed, rewarding all samples at the SID-level slightly
degrades performance. We hypothesize that, for easy instances already covered by the accuracy and
ranking rewards, an additional SID-level signal may dilute the optimization focus and introduce
a mismatch with the evaluation metrics (HR@K and NDCG@K). For hard cases, however, the
hierarchical structure encoded in SIDs provides intermediate guidance where conventional rewards
are sparse, steering the model toward correct reasoning paths.

5 CONCLUSION

This paper investigates how the SFT-then-RL paradigm, which has recently proved successful in
language—reasoning tasks, can be adapted to the generative recommendation setting. Through a
careful analysis, we identify two central obstacles — limited SID understanding and ineffective

reward assignment — that prevent a direct transfer of the vanilla pipeline. To overcome these issues,
we propose SINGER, a SID-Navigated GEnerative Recommender that (i) performs Full-Process
SID Alignment to inject SID-aware objectives into every stage of post-training, and (ii) introduces
SID-Navigated RL, which supplies fine-grained SID-level rewards and a hierarchy-based curriculum
sampler. Experiments on two public benchmarks demonstrate consistent improvements over SOTA
sequential, generative, and LLM-based recommenders, showing that deep SID comprehension and

SID-Navigated RL feedback are both indispensable for unleashing the full potential of LLMs in
recommendation.

10

CLAIM

5.1 ETHICS STATEMENT

Our study relies exclusively on publicly available benchmark datasets that contain no personally-
identifiable information. Data collection, storage, and processing strictly follow the licences and
terms of use provided by the original publishers. All LLMs employed in this work are open-sourced
and used under their respective permissive licences. We make no attempt to infer sensitive attributes
of users, and all generated recommendations are produced within a controlled, offline research
environment. The authors declare that no conflict of interest exists.

5.2 REPRODUCIBILITY STATEMENT

We take reproducibility seriously and adopt the following measures: 1) All source code, configuration
files, and experiment scripts will be released upon publication. 2) We provide detailed instructions
for environment setup, including package versions, CUDA/driver requirements. 3) Random seeds
are fixed for data splitting, parameter initialization, and sampling operations. 4) Pre-processed
datasets, together with the raw-to-processed conversion scripts, are included to guarantee identical
data partitions.

11

REFERENCES

Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang, Zhengyi Yang, Yancheng Luo, Fuli Feng, Xiang-
nan He, and Qi Tian. A bi-step grounding paradigm for large language models in recommendation
systems. CoRR, abs/2308.08434, 2023.

Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang Wang, and Tat-Seng Chua. Language
models encode collaborative signals in recommendation. arXiv preprint arXiv:2407.05441, 2024.

Guoqing Hu, An Zhang, Shuo Liu, Zhibo Cai, Xun Yang, and Xiang Wang. Alphafuse: Learn ID
embeddings for sequential recommendation in null space of language embeddings. In SIGIR, 2025.

Yingzhi He, Xiaohao Liu, An Zhang, Yunshan Ma, and Tat-Seng Chua. Llm2rec: Large language
models are powerful embedding models for sequential recommendation. In KDD, 2025a.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models for
recommendation. World Wide Web (WWW), 2024.

Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequential recommen-
dation: Algorithms, influential factors, and evaluations. ACM Trans. Inf. Syst., 2020.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and Mahesh
Sathiamoorthy. Recommender systems with generative retrieval. In Advances in Neural Information

Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
Adapting large language models by integrating collaborative semantics for recommendation. In
40th IEEE International Conference on Data Engineering, ICDE 2024, Utrecht, The Netherlands,
May 13-16, 2024. IEEE, 2024.

Haohao Qu, Wengqi Fan, Zihuai Zhao, and Qing Li. Tokenrec: Learning to tokenize ID for llm-based
generative recommendation. CoRR, abs/2406.10450, 2024.

Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong, Fangda
Gu, Jiayuan He, Yinghai Lu, and Yu Shi. Actions speak louder than words: Trillion-parameter
sequential transducers for generative recommendations. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=xye71iNsgXn.

Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
alignment. CoRR, abs/2502.18965, 2025.

Yuxiang Wang, Xiao Yan, Chi Ma, Mincong Huang, Xiaoguang Li, Lei Yu, Chuan Liu, Ruidong Han,
He Jiang, Bin Yin, Shangyu Chen, Fei Jiang, Xiang Li, Wei Lin, Haowei Han, Bo Du, and Jiawei
Jiang. Mtgrboost: Boosting large-scale generative recommendation models in meituan. CoRR,
abs/2505.12663, 2025a.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE ACM Trans. Audio Speech Lang. Process., 30,
2022.

Xinchen Luo, Jiangxia Cao, Tianyu Sun, Jinkai Yu, Rui Huang, Wei Yuan, Hezheng Lin, Yichen
Zheng, Shiyao Wang, Qigen Hu, Changqing Qiu, Jiaqi Zhang, Xu Zhang, Zhiheng Yan, Jingming
Zhang, Simin Zhang, Mingxing Wen, Zhaojie Liu, Kun Gai, and Guorui Zhou. QARM: quantitative
alignment multi-modal recommendation at kuaishou. CoRR, abs/2411.11739, 2024.

Anima Singh, Trung Vu, Nikhil Mehta, Raghunandan H. Keshavan, Maheswaran Sathiamoorthy,
Yilin Zheng, Lichan Hong, Lukasz Heldt, Li Wei, Devansh Tandon, Ed H. Chi, and Xinyang
Yi. Better generalization with semantic ids: A case study in ranking for recommendations. In
Proceedings of the 18th ACM Conference on Recommender Systems, RecSys 2024, Bari, Italy,
October 14-18, 2024. ACM, 2024.

12

https://openreview.net/forum?id=xye7iNsgXn

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, and
Tat-Seng Chua. On softmax direct preference optimization for recommendation. In NeurIPS, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, 2024.

Hiroshi Yoshihara, Taiki Yamaguchi, and Yuichi Inoue. A practical two-stage recipe for mathemat-
ical llms: Maximizing accuracy with SFT and efficiency with reinforcement learning. CoRR,
abs/2507.08267, 2025.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin
Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk,
Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe,
Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang,
Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg
Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,
Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir
Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted
Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie
Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,
Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai,
Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai ol system card,
2024. URL https://arxiv.org/abs/2412.16720.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,

13

https://arxiv.org/abs/2412.16720

Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-rl: Incentivizing reasoning
capability in llms via reinforcement learning. CoRR, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-source
LLM reinforcement learning system at scale. CoRR, abs/2503.14476, 2025.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. CoRR, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
CoRR, abs/2504.13837, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. CoRR, abs/2503.20783, 2025.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian J. McAuley. Bridging
language and items for retrieval and recommendation. CoRR, 2024.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-v3 technical report. CoRR,
2024.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for LLM reasoning. CoRR, abs/2506.01939, 2025b.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng, Bowen
Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning language
models. CoRR, abs/2505.22617, 2025.

14

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An, Yang
Liu, and Yahui Zhou. Skywork open reasoner 1 technical report. CoRR, abs/2505.22312, 2025b.

Sagnik Mukherjee, Lifan Yuan, Dilek Hakkani-Tur, and Hao Peng. Reinforcement learning finetunes
small subnetworks in large language models. CoRR, abs/2505.11711, 2025. doi: 10.48550/ARXIV.
2505.11711. URL https://doi.org/10.48550/arXiv.2505.11711.

Keqin Bao, Jizhi Zhang, Yang Zhang, Xinyue Huo, Chong Chen, and Fuli Feng. Decoding matters:
Addressing amplification bias and homogeneity issue in recommendations for large language
models. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024. Association for Computational
Linguistics, 2024.

Baldzs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In /CLR, 2016.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In WSDM, 2018.

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In ICDM,
2018.

Hangzhan Jin, Sicheng Lv, Sifan Wu, and Mohammad Hamdaqa. Rl is neither a panacea nor a
mirage: Understanding supervised vs. reinforcement learning fine-tuning for 1llms, 2025. URL
https://arxiv.org/abs/2508.16546.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
Zhuang, Nilabjo Dey, Yuheng Zha, Yi Gu, Kun Zhou, Yuqi Wang, Yuan Li, Richard Fan, Jian-
shu She, Chenggian Gao, Abulhair Saparov, Haonan Li, Taylor W. Killian, Mikhail Yurochkin,
Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Revisiting reinforcement learning for LLM
reasoning from A cross-domain perspective. CoRR, abs/2506.14965, 2025.

Chao Feng, Wuchao Li, Defu Lian, Zheng Liu, and Enhong Chen. Recommender forest for efficient
retrieval. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

Ye Wang, Jiahao Xun, Minjie Hong, Jieming Zhu, Tao Jin, Wang Lin, Haoyuan Li, Linjun Li, Yan
Xia, Zhou Zhao, and Zhenhua Dong. EAGER: two-stream generative recommender with behavior-
semantic collaboration. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024, pages 3245-3254.
ACM, 2024.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. J. Artif. Intell. Res., 1996.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction, 2nd Edition. MIT
Press, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, 2017.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hiillermeier. A survey of reinforcement
learning from human feedback. CoRR, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In

Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Rosie Zhao, Alexandru Meterez, Sham M. Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: RL post-training amplifies behaviors learned in pretraining. CoRR, abs/2504.07912,
2025.

15

https://doi.org/10.48550/arXiv.2505.11711
https://arxiv.org/abs/2508.16546

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V.
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,
Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. In ICLR, 2022.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yugiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, 2024.

16

A RELATED WORK

A.1 GENERATIVE RECOMMENDATION

In recent years, generative recommendation has attracted considerable attention in both academia
and industry. This emerging paradigm, usually built on the Transformer architecture, reformulates
recommendation as an end-to-end next-item generation task and thereby raises the performance ceiling
of recommender systems. Early work TIGER (Rajput et al., 2023) employs residual quantization
(RQ-VAE) (Zeghidour et al., [2022) to convert text embeddings—extracted from an item’s title and
description—into discrete semantic IDs, which are then used for next-item prediction. HSTU (Zhai
et al 2024) propose a new architecture designed for high cardinality, non-stationary streaming
recommendation data. LC-Rec (Zheng et al., [2024)) aligns an LLM with semantic IDs via multi-task
learning, enabling the model to “understand” the IDs and perform generative recommendation. Other
studies investigate how to build better semantic IDs to enhance generation quality: RecForest (Feng
et al.} 2022)) applies hierarchical k-means clustering and treats the cluster indices as tokens, while
EAGER (Wang et al., [2024) and TokenRec (Qu et al., [2024) integrate semantic and collaborative
signals directly into the tokenizer.

Very recently, generative recommendation has been rolled out at an industrial scale to address the
drawbacks of traditional cascade systems. MTGR (Wang et al.| 2025a) keeps the original deep
learning recommendation model (DLRM) features, introduces user-level compression, and speeds
up both training and inference for large-scale deployment. OneRec (Deng et al., [2025) lowers the
serving cost with a Lazy Decoder-Only Architecture and stabilises training through an improved
reinforcement learning algorithm.

A.2 LLM AND RL

Reinforcement learning (RL) trains an agent through repeated interaction with an environment so
as to maximise cumulative return (Kaelbling et al., |1996; Sutton and Bartol [2018). Within large-
language-model (LLM) fine-tuning, RL with Human Feedback (RLHF) has become the de-facto
recipe: it usually adopts Proximal Policy Optimisation (PPO) (Schulman et al., 2017) to align
model behaviours with human preferences (Kaufmann et al., 2023). Unfortunately, PPO is memory-
hungry at the billion-parameter scale, motivating a series of lighter alternatives. Direct Preference
Optimisation (DPO) (Rafailov et al.l 2023)) removes the value network and directly maximises the
log-likelihood gap between preferred and dispreferred outputs; s-DPO (Chen et al.| 2024) adapts this
idea to recommendation by casting softmax negative mining as a pairwise-preference signal. Yet,
preference-based methods remain off-policy and often plateau below on-line RL. Group-Relative
Policy Optimisation (GRPO) (Shao et al.,2024) mitigates memory cost by normalising rewards inside
a small group of roll-outs and replaces a learned reward model with rule-based heuristics, achieving
strong gains on reasoning-heavy tasks such as mathematics and programming (DeepSeek-Al et al.,
2025; OpenAl et al.| 2024).

Recent studies have begun to explore how SFT and RL jointly shape LLMs for generative recom-
mendation. (Yoshihara et al., [2025) argues that the two stages are complementary: a prolonged
SFT phase first pushes accuracy to its limit, after which on-line RL with GRPO further compresses
the token budget at inference time. (Jin et al.| |2025) shows that RL can largely recover the out-of-
distribution accuracy lost during SFT by cancelling the directional drift of singular vectors rather than
by discovering entirely new solutions. In contrast, (Yue et al.,2025) points out that the reasoning
ability obtained through RL with verifiable rewards (RLVR) is bounded by the base model, whereas
SFT can introduce genuinely new reasoning patterns, suggesting the need for more powerful RL
paradigms such as continual scaling. (Cheng et al.,|2025)) adds a domain perspective: areas frequently
encountered during pre-training (e.g., mathematics and code) profit from cross-domain RL, while
low-exposure domains (e.g., logic and simulation) require in-domain RL for meaningful gains. (Zhao
et al.| [2025) observes that popular RL algorithms tend to converge to a single dominant output distri-
bution, amplifying patterns already present in the pre-training data, yet they still display cross-task
generalization.

17

Input:
The user has interacted with items <a_13><b_197><c_1>, <a_52><b_17><c_113>,<a_13><b_201><c_34>in
chronological order. Can you predict the next possible item that the user may expect?

Response:
<a_13><b_72><c_149>

Figure 5: Semantic task prompt.

Input:
‘What is the title of <a 24><b_141><c_73>?

Response:
Oral-B Deep Sweep Toothbrush

Figure 6: Alignment task prompt1.
B EXPERIMENTAL SETTINGS

All conventional recommender baselines are optimized with binary cross-entropy (BCE) loss and the
Adam optimizer. The learning rate is selected from {1x 1072, 1x1073,1x 10~*}, while the weight-
decay coefficient is tuned within {1x1072,1x1073,1x1074,1x1075,1x1075}. A mini-batch
size of 1024 is used throughout. For TIGER, we adopt TS (Sanh et al., 2022) as the encoder—decoder
backbone and use Qwen3-Embedding-4B to generate item embedding. Every LLM-based method,
including ours, is built upon Qwen2.5-Instruct-0.5B (Yang et al., [2024) to keep the computational
footprint modest, and is trained with the AdamW optimizer.

The SFT and preference-alignment data are processed in batches of 128, whereas RL batches contain
512 samples. We set the learning rate to 3 x 10~# for SFT and to 1 x 10~° for both S-DPO and
SINGER, together with a cosine decay scheduler. SFT runs for ten epochs with early stopping
(patience = 1). S-DPO is trained for a single epoch, and we fix 5 = 0.1 and sample three negative
items. For D?, the interpolation coefficient « is chosen from {0.8, 0.9, 1.0}.

For the SID generation stage of SINGER, we utilize Qwen3-Embedding-4B as the text encoder to
transform item titles and descriptions into their corresponding embeddings. The tokenizer is trained
on 8 GPUs with a per-device batch size of 2048. RQ-VAE is trained layer-wise for 1 000 steps per
layer, with a learning rate of 1 x 1072, We employ a Constrained Balanced RQ-KMeans algorithm
to generate SIDs. Specifically, we perform residual quantization layer-wise with a codebook size
of K = 256. To prevent cluster collapse and maximize codebook utilization, we enforce strict size
constraints on each cluster, ensuring a balanced tree structure. The clustering is optimized for a
maximum of 100 iterations per layer with a convergence tolerance of 1 x 10~7. Crucially, to ensure
a strictly one-to-one mapping between items and SIDs, we apply a deterministic deduplication step:
for any items sharing the same semantic path, a unique suffix token is appended to resolve conflicts.
Following SID generation, the SFT stage is conducted with a batch size of 128 for up to ten epochs
(early stopping, patience = 1), followed by the full-process alignment-guided RL for two epoch under
the same (3 and candidate settings as described above.

C DATASETS

We evaluate our approach on two subsets of the Amazon Review corpus: Industrial_and_Scientific and
Office_Products. To keep the computational cost manageable, we adopt a data-reduction procedure

Input:
‘Which item has the title Nashua Stretch & Seal Self-Fusing Silicone Tape?

Response:
<a_202><b_202><c_29>

Figure 7: Alignment task prompt2.

18

Input:

The user has interacted with items 'Kreg SML-C150-100 Pocket Screws 1-1/2-Inch, 8 Coarse, Washer-Head, 100-Count', '3M Flap Disc
566A, T29, 4-1/2"" Diameter, 40 Grit, 5/8""-11 Thread (Pack of 1)' in chronological order. Can you predict the next possible item that the
user may expect?

Response:
<a_104><b_60><c_152>

Figure 8: Alignment task prompt3.

Input:
The user has interacted with items '<a_71><b_44><c_249>', '<a_71><b_114><c_136>', '<a_67><b_244><c_35>' in chronological order.
Can you predict the title of the next item that the user may expect?

Response:
Install Bay Copper Ring Terminal Connector 8 Gauge 5/16 Inch 25 Pack - CUR8516']",J-B Weld 82658 Original Cold-Weld Steel
Reinforced Epoxy - 2 oz.

Figure 9: Alignment task prompt4.

inspired by the strategy in (Bao et al.,[2024)). The preprocessing steps are as follows: (1) users and
items with fewer than five interactions are removed; (2) for the Toys_and_Games subset, only records
from October 2016 to November 2018 are retained; (3) for the smaller Industrial_and_Scientific
subset, we keep all interactions between October 1996 and November 2018; (4) each user’s interaction
sequence is truncated to a maximum length of ten; (5) finally, each dataset is split chronologically
into training, validation, and test partitions with an 8:1:1 ratio. The main statistics of the resulting
training splits are listed in Table 3]

Table 3: Statistics of datasets.

Datasets Inductrial Office

Items 3,685 3,459
Train 3,6259 3,8924
Valid 4,532 4,866
Test 4,533 4,866

D ALIGNMENT PROMPTS

For the semantic task, a sample prompt is shown in the Figure 5]

Representative examples for the alignment tasks are presented in Figures [7] [6][8 [0] and

E LIMITATION

Although SINGER delivers promising results, our study is subject to several limitations. First, limited
computational resources prevent us from fully probing the gains that might be unlocked when scaling
the framework to larger language models and larger datasets; consequently, the upper bound of

Input:

An item can be described as follows: Tach-It B-1 single-edge industrial razor blades (pack of 100) are high-carbon steel replacement blades
designed for heavy-duty cutting and scraping tasks; they fit most standard single-edge blade holders and come packaged in a convenient
bulk dispenser. Which item is it describing?

Response:
<a_17><b_91><c_139>

Figure 10: Alignment task prompt5.

19

SINGER'’s performance remains unclear. Second, despite its potential, we did not investigate how
to systematically improve the cross-domain performance of the SINGER-w/o-SFT variant. These
limitations indicate that future work should explore the scalability and robustness of SINGER in
more resource-intensive and iterative settings, thereby offering a more comprehensive assessment of
its practical usefulness.

F LLM USAGE

LLMs were employed exclusively for linguistic polishing and stylistic refinement of the manuscript.
No LLM was used to generate experimental designs, implement algorithms, produce empirical results,
or analyze data. All technical contributions, including model architecture, training protocol, and
evaluation pipeline, were conceived, implemented, and verified by the authors themselves.

20

	Introduction
	Preliminary
	RQ-kmeans
	Group-Relative Policy Optimization
	Task formulation

	Methodology
	Full-Process SID Alignment
	SID-Natigated Reinforcement Learning
	SID-Prefix Curriculum Sampling
	SID-level Reward Modeling

	experiments
	Performance Comparison (RQ1)
	Unseen-Domain Performance Evaluation (RQ2)
	Ablation Study (RQ3)
	Aligning Strategy
	Sampling Strategy
	Reward Design

	conclusion
	Ethics Statement
	Reproducibility Statement

	Related Work
	Generative Recommendation
	LLM and RL

	Experimental Settings
	Datasets
	Alignment Prompts
	Limitation
	LLM Usage

