
Deep-Reproducer: From Paper Understanding to
Code Generation

Pengcheng Chen2∗ Ning Yan1 Zihan Zhao3 Yixiao Lin4 Huaibo Chen5

Yue Hu6 Qinbo Bai7 Xiang Li7 Masood S. Mortazavi1†

1Futurewei Inc 2University of Washington 3University of California, San Diego
4Cornell University 5Massachusetts Institute of Technology 6University of Southern California

7Purdue University

Abstract

Recent Large Language Models (LLMs) demonstrate strong code generation ca-
pabilities, however, they often fall short in translating complex, multi-component
research methodologies into a coherent, functional codebase and automatic
repository-level code synthesis from research papers remains a formidable chal-
lenge. Despite promising results from current paper reproduction agents, partic-
ularly their efficiency in generating code repositories from scratch, their reliance
on staged prompt engineering falls short for complex implementation tasks. In
this paper, we propose a multi-agent framework for automated paper reproduction,
leveraging a combination of deep research mechanisms, a long-short term memory
architecture, and modular generation strategies driven by Large Language Models
(LLMs). Our system employs a structured workflow where specialized agents
autonomously decompose complex implementation tasks into manageable sub-
tasks, thereby facilitating efficient and scalable code synthesis. The experimental
evaluation on PaperBench demonstrates the state-of-the-art performance in the
implementation of automated research papers, achieving a Replication Score of
63.2%.

1 Introduction

With rapid LLM advancements, coding capabilities have improved significantly, outperforming
humans on SWE benchmarks [6], LeetCode [7], and IOI tasks [5]. However, in domains requiring
deep domain expertise and systematic engineering—such as paper reproduction—LLMs still lag
due to the non-linear complexity of real-world workflows [3, 4, 15]. Solving highly abstract tasks
usually requires more than simple prompts, as these often lack the necessary context and structure.
Coding agents [19, 8, 13] address this by decomposing projects into manageable subtasks, allowing
LLMs to tackle low-complexity components sequentially, which leads to better performance than
standalone models. PaperBench[14], introduced by OpenAI, provides a benchmark for evaluating
LLMs’ abilities to replicate research papers, where agents must reproduce 20 ICML 2024 papers from
scratch–understanding contributions, developing codebases, and running experiments–using only pa-
per text. PaperBench measures LLMs’ agentic research skills across 8,316 gradable tasks with rubrics
co-developed with authors. It uses an LLM-based SimpleJudge [14] that achieves an F1 score of
0.83 against human grading. Recently, multi-agent approaches have been developed to automate the
generation of executable code from research papers. AutoP2C[8] processes papers through blueprint
extraction, content parsing, task decomposition, and iterative debugging. AutoReproduce[19] extracts

∗Email: pengcc@uw.edu
†Corresponding author: mmortaza@futurewei.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Deep Learning for
Code in the Agentic Era (DL4C) @ NeurIPS 2025.



Figure 1: The Deep-Reproducer pipeline. From paper breakdown to deep research, the system populates
a Memory Bank that guides modular code generation with self-correction, producing a complete executable
codebase.

implicit knowledge from citations using literature review, paper lineage, and code development.
PaperCoder[13] operates through planning, analysis, and generation stages, showing superior per-
formance on PaperBench. However, these approaches have some critical limitations. First, they
fail to conduct comprehensive research beyond paper content and citations, missing opportunities
to leverage suitable existing repositories and implementations from the Web domain. Second, they
lack memory management systems, relying solely on LLM context windows without maintaining
persistent research findings and debugging history. Third, their debugging pipelines follow simple
linear loops without effectively utilizing historical debugging experiences for iterative improvement.

To address these limitations, we propose Deep-Reproducer, a novel multi-agent framework that
introduces three key innovations: (1) We integrate deep research that searches across the entire
Web to identify the most suitable, extensible, or widely-used repositories as base implementations,
going beyond the original paper citations. (2) We develop multi-agent memory bank management
that records and maintains deep research findings as a temporary external database, enabling more
efficient and accurate data retrieval than direct API calls. (3) We design a self-evolving debugging
pipeline that provides more sophisticated code correction mechanisms. Our approach achieves the
state-of-the-art performance on PaperBench-Dev, reaching 55.7% replication score with o3-mini and
63.2% with GPT-5, substantially outperforming all existing methods.

2 Methods

Deep-Reproducer, as shown in Figure 1, begins with a comprehensive paper analysis phase that
extracts and organizes multimodal content from research papers. We employ MinerU [16] combined
with GPT-4o [10] for PDF content extraction and JSON standardization, generating indexed text
JSON files alongside corresponding images. This structured content is stored in a memory bank,
creating a searchable repository of paper components. Following content extraction, we utilize
GPT-5 [11] to perform multi-aspect summarization of the PDF content and images. The summariza-
tion process focuses on six critical dimensions: (1) Data requirements – identifying datasets, data
formats, and preprocessing needs; (2) Methodological approaches – extracting algorithmic details
and implementation strategies; (3) Task objectives – clarifying the research goals and evaluation
metrics; (4) Research methodology – understanding the experimental design and validation approach;
(5) Related work – identifying similar approaches and comparative studies; and (6) Foundational
methods – determining the base techniques and prior work that the paper builds upon. Through
multiple rounds of summarization, we generate comprehensive search objectives that capture the
paper’s essential requirements for reproduction.

2.1 Deep Research Integration

The output from the summarization stage is consumed by a deep research module, which executes
Web-scale retrieval to identify relevant components for reproduction. This module could employ an
existing LLM-powered deep research engine (e.g., GPT-5 deep research) or specialized agents
(e.g., Miroflow [9]) to conduct targeted searches across the Internet, while explicitly excluding original
paper repositories and unofficial implementations to ensure independent reproduction. Specifically,
our deep research process identifies the following essential components: (1) Datasets and download
links – locating official datasets, preprocessing scripts, and data access procedures. (2) High-relevance

2



Figure 2: Memory Bank architecture and Self-Evolve Debugging mechanism. The Memory Bank organizes
data into four categories accessed by a Search Agent. The debugging pipeline iteratively refines code through
error localization, planning, and testing, with trajectory optimization via revision and recombination operators.

code repositories – finding well-maintained, widely-used implementations of similar methodologies.
(3) Algorithm-specific implementations – discovering existing code libraries for specific algorithmic
steps described in the paper. (4) Contemporary work and codebases – identifying concurrent research
with available implementations. (5) Research paradigm implementations – locating repositories that
follow similar research methodologies and experimental designs. These components provide the
foundational building blocks required for faithful and reproducible implementation

2.2 Memory Bank Organization

The Memory Bank, as shown in Figure 2 (left), is a lightweight, task-specific external store that
aggregates Deep-Research hits and agent-side debugging artifacts. It keeps pointers and minimal
summaries rather than mirroring full code, so that retrieval remains precise and low-overhead.
We organize input data entries into four categories: (1) Datasets: download links, preprocessing
notes/scripts, and configuration snippets (sizes, splits, environment dependencies). (2) Code pointers:
URLs to potentially relevant repositories/pages, suspected file/function paths (if available), and short
method notes for features referenced by the target paper; common open-source libraries are recorded
as package names and pinned versions. (3) Related papers: the target paper and cited works used
as methodological references or for specification checks. (4) Debugging memory: prompts, failure
traces, applied patches, and concise commit-style logs that support the self-evolving debugging
loop. Each entry carries minimal metadata: title, 1–2 line summary, license, version/tag/commit, and
timestamp.

Unlike the traditional RAG agents [18, 17, 2], which rely on an unfiltered database, our lightweight
Memory Bank stores only pointers and short notes filtered from the results of Deep Research, not
full code or full paper, for higher efficiency and to save the context memory of LLM. The Coding
Agent interacts with the Memory Bank under the assistance of the Searching Agent to guide code
generation and re-implementation. The Search Agent, built on GPT-5, first queries the Memory
Bank (keyword/fuzzy matching over metadata) and, through the Model Context Protocol (MCP) [1],
can escalate to web search for verification and gap-filling, returning compressed hits—URLs, file
paths, commit hashes, and concise usage notes—for context-aware reuse. We discuss more details of
Memory Bank design issues in the Supplementary Materials due to space limitations.

2.3 Self-Evolving Debugging

Top-K related repos are ranked by the deep research model with deterministic tie-breaking based on
compliance and licenses, and the Top-1 related repo were selected as the base code for reproduction.
Inspired by the SE-Agent [12], Deep-Reproducer employs a self-evolving debugging process, as
shown in Figure 2 (right). Rather than simply retry after failures, each generation runs dual-track
trajectories under fixed decoding (temperature 0.1, top-p = 1, fixed seeds) that execute locate→
patch → execute → test. For every step, build/test outcomes, traces, diffs, and one-line LLM

3



Table 1: The evaluation results of Deep-Reproducer (Ours) on PaperBench Code-dev benchmarks. The
AutoP2C, AutoReproduce and PaperCoder are the original implementations from submission.

Baselines Coding LLM Judge Replication Score (%)

AutoP2C o3-mini o3-mini-high 49.2
AutoReproduce o3-mini o3-mini-high 49.6
PaperCoder o3-mini o3-mini-high 45.1

Ours o3-mini o3-mini-high 55.7
Ours (w/o self-evolve debugging) o3-mini o3-mini-high 51.9
Ours GPT-5 o3-mini-high 63.2

rationales are written as compact trajectory cards and log snippets into the Memory Bank (Debugging
Memory) with metadata (timestamp, commit hash, error signature, judge score). This yields a replay
buffer that supports reuse and cross-trajectory recombination. We assign a conservative fitness
prioritizing task success with light regularization: Fit(τ) = 1.00 ∗ PassAll + 0.60 ∗ PassFrac +

0.25 ∗ Build − 0.25 ∗ Êrr − 0.10 ∗ Âct − 0.05 ∗ T̂ok, with costs normalized to [0, 1]. We use
an evolutionary search strategy: the higher-scoring trajectory is always kept, with ties favoring
shorter ones. New candidates are generated by revising failed steps using Memory-Bank feedback,
or recombining high-quality fragments from different trajectories. Offspring are re-executed, and
improvements replace their parents. We stop on success (all checks pass), no improvement for T
generations (δ=0.02), or budget limits (steps/tokens/time).

3 Experiments

Evaluation Protocol & Compliance. We evaluate Deep-Reproducer on PaperBench Code-Dev
under the official protocol. Unless otherwise noted, the agent receives only the paper PDF (plus
clarifications) and must build a runnable repository from scratch. The target paper’s official or
unofficial implementations are never viewed or used. To enforce the “from-scratch” constraint, we
apply the official PaperBench blacklist verbatim (commit <hash> / release <tag>): all tool calls and
resolved URLs are checked via an offline log sweep, and any hit is discarded. As a final safeguard,
we rebuild using only reproduce.sh and verify that no external assets are fetched at grading time.
For transparency, we release the exact blacklist file we used and the minimal checker script.
Judge Alignment & Reproducibility. All results are graded with SimpleJudge [14] using the official
PaperBench scaffold and default prompts/hyperparameters. Because LLM-based judging is stochastic,
we run the grade three independent times per submission with fixed seeds and report the mean across
runs. Unless otherwise specified, all leaderboard claims refer to this SimpleJudge configuration.

We summarize Replication Score results in Table 1. Our method attains 55.7% with an o3-mini
coding backbone and a fixed o3-mini-high judge, surpassing the strongest reproduced baseline
AutoReproduce (49.6%) by ∆ = 6.1% points, corresponding to a relative gain of 12.3%. Compared
to PaperCoder (45.1%), the absolute improvement is 10.6% points with a relative gain of 23.5%.
To verify the impact of the self-evolving debugging loop, we removed this component and used the
traditional “Error localization → Planning → Generation → Implementation” loop, which is similar
to AutoP2C. The results show that performance drops from 55.7% to 51.9%, making it only slightly
outperform previous work—a relative decrease of 6.8%. These results demonstrate the effectiveness
of the self-evolving debugging loop. Using a stronger coding backbone (GPT-5) while keeping the
judge fixed to o3-mini-high yields 63.2%, an absolute gain of 7.5 over o3-mini and a relative
improvement of 13.5%. All results are generated using a consistent judging setup (o3-mini-high)
and the official execution/verification protocol, with no custom scoring heuristics.

4 Conclusion

We presented Deep-Reproducer, a multi-agent framework integrating Web-scale deep research, a
task-specific Memory Bank, and a self-evolving debugging pipeline. Our work achieves strong perfor-
mance on PaperBench-Dev while revealing a clear path to further gains via lower-friction knowledge
acquisition (API-ready sources, standardized metadata), cheaper tool-use policies, and stronger
trajectory optimization. These components are broadly applicable beyond AI-paper reproduction,

4



pointing toward reliable, auditable, and cost-conscious paper-to-code systems. The deep-research
stage currently incurs a notable human-in-the-loop burden: many high-value sources (dataset por-
tals, institutional Websites, older GitHub releases) lack stable APIs. One future improvement is to
automate targeted Web search and manual curation before ingesting artifacts into the Memory Bank.

5 Acknowledgments

We thank Linda Zhang and Dr. Peng for their invaluable assistance with server infrastructure,
repository management, and general project support. We also thank Zongfang Lin for his insightful
comments during our group discussions. This work was supported by Futurewei Technologies, with
Dr. Liang Peng serving as the funding manager.

References
[1] Anthropic. Introducing the model context protocol (mcp). https://www.anthropic.com/

news/model-context-protocol, 2024. Accessed: 2025-08-25.

[2] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. Repairagent: An autonomous,
llm-based agent for program repair. arXiv preprint arXiv:2403.17134, 2024. doi: 10.48550/
arXiv.2403.17134. URL https://arxiv.org/abs/2403.17134.

[3] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley Longman Publishing Co., Inc., USA, 1st edition, 1978. ISBN 0201006502.

[4] Leila Hedayatifar, Alfredo J. Morales, Dominic E. Saadi, Rachel A. Rigg, Olha Buchel, Amir
Akhavan, Egemen Sert, Aabir Abubaker Kar, Mehrzad Sasanpour, Irving R. Epstein, and Yaneer
Bar-Yam. Predicting system dynamics of universal growth patterns in complex systems, 2025.
URL https://arxiv.org/abs/2501.07349.

[5] IOI Foundation. International olympiad in informatics (ioi). https://ioinformatics.org/,
2025. Accessed: 2025-08-25.

[6] Carlos E. Jimenez, Tim Rocktäschel, Sean Welleck, et al. SWE-bench: Can language models
resolve real-world github issues? In The Twelfth International Conference on Learning
Representations (ICLR), 2024. URL https://arxiv.org/abs/2310.06770. OpenReview:
VTF8yNQM66.

[7] LeetCode. Leetcode weekly contests. https://leetcode.com/contest/, 2025. Accessed:
2025-08-25.

[8] Zijie Lin, Yiqing Shen, Qilin Cai, He Sun, Jinrui Zhou, and Mingjun Xiao. Autop2c: An LLM-
based agent framework for code repository generation from multimodal content in academic
papers. arXiv preprint arXiv:2504.20115, 2025. doi: 10.48550/arXiv.2504.20115. URL
https://arxiv.org/abs/2504.20115.

[9] MiroMind AI. Miroflow. https://github.com/MiroMindAI/MiroFlow, 2025. GitHub
repository. Accessed: 2025-08-25.

[10] OpenAI. Hello GPT–4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
2025-08-25.

[11] OpenAI. Introducing GPT–5. https://openai.com/index/introducing-gpt-5/, 2025.
Accessed: 2025-08-25.

[12] Boyuan Peng, Zhenyu Tang, Jixuan Zhang, Zhu Li, Jun Xie, Tiezheng Chi, Yilun Du, Shuyan
Zhou, Yanan Zheng, Yinpeng Chen, Junxian He, Asli Celikyilmaz, Kyunghyun Cho, and Yue
Zhang. Se-agent: Self-evolution trajectory optimization in multi-step reasoning with LLM-
based agents. arXiv preprint arXiv:2503.21466, 2025. URL https://arxiv.org/abs/2503.
21466.

5

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://arxiv.org/abs/2403.17134
https://arxiv.org/abs/2501.07349
https://ioinformatics.org/
https://arxiv.org/abs/2310.06770
https://leetcode.com/contest/
https://arxiv.org/abs/2504.20115
https://github.com/MiroMindAI/MiroFlow
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2503.21466
https://arxiv.org/abs/2503.21466


[13] Minju Seo, Seungone Lee, Hyunwoo Jo, Jinwoo Kim, Min Jun Seo, Doheon Lee, Hanseok
Park, Hyunggi Park, Sungrae Park, Sihyung Kim, Dong-Wan Yoo, Minsu Cho, and Gunhee
Kim. Paper2code: Paper-centric code generation for research reproduction. arXiv preprint
arXiv:2504.17192, 2025. URL https://arxiv.org/abs/2504.17192.

[14] Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Mia Glaese, Tejal
Patwardhan, and OpenAI. Paperbench: Evaluating AI’s ability to replicate AI research. arXiv
preprint arXiv:2504.01848, 2025. URL https://arxiv.org/abs/2504.01848.

[15] Stefan Thurner, Peter Klimek, and Rudolf Hanel. Introduction to the Theory of Complex Systems.
Oxford University Press, 09 2018. ISBN 9780198821939. doi: 10.1093/oso/9780198821939.
001.0001. URL https://doi.org/10.1093/oso/9780198821939.001.0001.

[16] Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen
Liu, Yuan Qu, Fukai Shang, Bo Zhang, Liqun Wei, Zhihao Sui, Wei Li, Botian Shi, Yu Qiao,
Dahua Lin, and Conghui He. Mineru: An open-source solution for precise document content
extraction. arXiv preprint arXiv:2409.18839, 2024. doi: 10.48550/arXiv.2409.18839. URL
https://arxiv.org/abs/2409.18839.

[17] Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 13643–13658, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.737. URL https://aclanthology.org/2024.
acl-long.737/.

[18] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Au-
tonomous program improvement. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’24), pages 1592–1604, Vienna, Austria,
2024. ACM. doi: 10.1145/3650212.3680384.

[19] Xuanle Zhao, Zilin Sang, Yuxuan Li, Qi Shi, Weilun Zhao, Shuo Wang, Duzhen Zhang, Xu Han,
Zhiyuan Liu, and Maosong Sun. Autoreproduce: Automatic AI experiment reproduction with
paper lineage. arXiv preprint arXiv:2505.20662, 2025. doi: 10.48550/arXiv.2505.20662. URL
https://arxiv.org/abs/2505.20662.

6

https://arxiv.org/abs/2504.17192
https://arxiv.org/abs/2504.01848
https://doi.org/10.1093/oso/9780198821939.001.0001
https://arxiv.org/abs/2409.18839
https://aclanthology.org/2024.acl-long.737/
https://aclanthology.org/2024.acl-long.737/
https://arxiv.org/abs/2505.20662

	Introduction
	Methods
	Deep Research Integration
	Memory Bank Organization
	Self-Evolving Debugging

	Experiments
	Conclusion
	Acknowledgments

