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ABSTRACT
Temporal Knowledge Graphs (TKGs) incorporate a temporal dimen-
sion, allowing for a precise capture of the evolution of knowledge
and reflecting the dynamic nature of the real world. Typically, TKGs
contain complex geometric structures, with various geometric struc-
tures interwoven. However, existing Temporal Knowledge Graph
Completion (TKGC) methods either model TKGs in a single space
or neglect the heterogeneity of different curvature spaces, thus
constraining their capacity to capture these intricate geometric
structures. In this paper, we propose a novel Integrating Multi-
curvature shared and specific Embedding (IME) model for TKGC
tasks. Concretely, IME models TKGs into multi-curvature spaces,
including hyperspherical, hyperbolic, and Euclidean spaces. Subse-
quently, IME incorporates two key properties, namely space-shared
property and space-specific property. The space-shared property fa-
cilitates the learning of commonalities across different curvature
spaces and alleviates the spatial gap caused by the heterogeneous
nature of multi-curvature spaces, while the space-specific prop-
erty captures characteristic features. Meanwhile, IME proposes an
Adjustable Multi-curvature Pooling (AMP) approach to effectively
retain important information. Furthermore, IME innovatively de-
signs similarity, difference, and structure loss functions to attain
the stated objective. Experimental results clearly demonstrate the
superior performance of IME over existing state-of-the-art TKGC
models.

KEYWORDS
Temporal Knowledge Graph, Knowledge Graph Completion, Multi-
curvature Embeddings, Adjustable Pooling

1 INTRODUCTION
Knowledge Graphs (KGs) are structured collections of entities and
relations, providing a semantic representation of knowledge. They
serve as a powerful tool for organizing and representing real-world
information in a way that machines can comprehend. Typically,
knowledge in KGs is represented as triplets, where each node is
represented as an entity, and the directed edge between nodes is
denoted as a relation. For example, given one triplet (Albert Ein-
stein, born_in, Germany), Albert Einstein and Germany are the head
and tail entities, and born_in means the relation between the head
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Figure 1: A brief description of IME. Learning multi-
curvature representations through space-shared and space-
specific properties. These features are later utilized for subse-
quent predictions by the adjustable multi-curvature pooling.

and tail entities. KGs find applications in a wide array of domains,
including recommendation systems [19], information retrieval [8],
and semantic search [14]. They enable machines to reason about
entities and their relations, uncover patterns, and make informed
decisions based on the structured knowledge they encapsulate.

Acknowledging the ever-changing nature of information, Tem-
poral Knowledge Graphs (TKGs) have arisen as a natural extension
of traditional KGs. In contrast to their static counterparts, TKGs
introduce the temporal dimension, enabling us to track the evolu-
tion of knowledge over time. Specifically, TKGs aim to incorporate
temporal attributes with triplets for quadruplets: (Albert Einstein,
born_in, Germany, 1879-03-14), with 1879-03-14 serving as the times-
tamp. Therefore, the temporal dimension allows for a systematic
depiction of the trends and changes in events, thereby facilitating
more context-aware and precise knowledge representation. TKGs
directly address the dynamic nature of the web, enabling the
understanding of “Semantics and Knowledge" of the Web,
making it highly pertinent to the theme of this conference.

Despite the presence of TKGs like ICEWS [4] and GDELT [22],
which encompass millions or even billions of quadruplets, the on-
going evolution of knowledge driven by natural events leaves these
TKGs far from being comprehensive. The incompleteness of TKGs
poses a substantial hindrance to the efficiency of knowledge-driven
systems, underscoring the critical significance of "Temporal Knowl-
edge Graph Completion (TKGC)" as an essential undertaking. The
goal of the TKGC task is to enhance the completeness and accu-
racy of TKGs by predicting missing relations, entities, or temporal
attributes that change over time within the TKGs.

TKGs often encompass complex geometric structures, and ef-
fectively modeling them is crucial for unlocking the full potential
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of TKGC in real-world applications. As depicted in [5, 37], various
curvature spaces yield diverse impacts when used to model dis-
tinct geometric structures. Specifically, hyperspherical space excels
in capturing ring structures, hyperbolic space is highly effective
in representing hierarchical arrangements, and Euclidean space
proves invaluable for describing chain-like structures. Nonetheless,
the majority of TKGC methods typically model TKGs within a sin-
gular space, posing a challenge in effectively capturing the intricate
geometric structures inherent in TKGs.

The challenge of how to effectively integrate information from
different curvature spaces subsequently needs to be addressed. Cur-
rent TKGC methods [16, 45] typically overlook the spatial gap
among different curvature spaces. Despite significant advance-
ments, the spatial gap remains a substantial constraint on expressive
capacities.

The last challenge is the feature fusion issue. Existing methods
[34, 42] predominantly focus on developing sophisticated fusion
mechanisms, causing a high computational complexity. Despite
the effectiveness of pooling approaches like average pooling and
max pooling in reducing computational complexity, their utiliza-
tion of fixed pooling strategies presents a challenge in preserving
important information.

This paper proposes a novel Integrating Multi-curvature shared
and specific Embedding (IME) model to address the above chal-
lenges. As shown in Figure 1, IME simultaneously models TKGs
in hyperspherical, hyperbolic, and Euclidean spaces, introducing
the quadruplet distributor [34] within each space to facilitate the
aggregation and distribution of information among entities, re-
lations, and timestamps. In addition, IME acquires two distinct
properties for each space, encompassing both space-shared and
space-specific properties. The space-shared property aids in mitigat-
ing the space gap by capturing shared information among entities,
relations, and timestamps across various curvature spaces. Con-
versely, the space-specific property excels at fully capturing the
complementary information exclusive to each curvature space. Fi-
nally, an Adjustable Multi-curvature Pooling (AMP) approach is
proposed, which can learn appropriate pooling weights to get a
superior pooling strategy, ultimately improving the effective re-
tention of important information. We utilize AMP to aggregate
space-shared and -specific representations of entities, relations, and
timestamps to get a joint vector for downstream predictions.

The main contributions of this paper are summarized as follows:

• This paper designs a novel Multi-curvature Space-Shared
and -Specific Embedding (IME)model for TKGC tasks, which
learns two key properties, namely space-shared property
and space-specific property. Specifically, space-shared prop-
erty learns the commonalities across distinct curvature
spaces and mitigates spatial gaps among them, while space-
specific property captures characteristic features;

• This paper proposes an adjustable multi-curvature pool-
ing module, designed to attain a superior pooling strategy
through training for the effective retention of important
information;

• To the best of our knowledge, we are the first to introduce
the concept of structure loss into TKGC tasks, ensuring the

structural similarity of quadruplets across various curvature
spaces;

• Experimental results on several widely used datasets demon-
strate that IME achieves competitive performance com-
pared to state-of-the-art TKGC methods.

2 RELATEDWORK
In this section, we provide an overview of KGC methods from two
perspectives [36]: Euclidean embedding-based methods and Non-
Euclidean embedding-based methods.

2.1 Euclidean Embedding-based Methods
Euclidean embedding-based KGC methods typically model the KGs
in the Euclidean space. Depending on the types of knowledge, we
can categorize them into static knowledge graph completion for
triplets and temporal knowledge graph completion for quadruplets.

Static knowledge graph completion (SKGC) focuses on SKGs
where the information about entities and relations remains un-
changed over time. The task of SKGC methods aims to predict
missing triplets (e.g., relations between entities) based on known
information. Several popular SKGC methods include McRL [33],
TDN [35], and ConvE [10].

Translation-based methods take the relation as a translation from
the head entity to the tail entity, such as TransE [3] and RotatE
[29]. RotatE regards the relation as a rotation from the head entity
to the tail entity in the complex space. Based on TransE, TransR
[23] learns a unified mapping matrix to model the entities and
relations into a common space. SimplE [18] improves upon the
complex Canonical Polyadic (CP) decomposition [17] by enabling
the interdependent learning of the two embeddings for each entity
within the complex space. Furthermore, BoxE [1] introduces the
box embedding method as a means to model the uncertainty and
diversity inherent in knowledge.

Semantic matching-basedmethods employ a similarity-based scor-
ing function to evaluate the probabilities of triplets, such as Dist-
Mult [41] and McRL [33]. DistMult employs matrix multiplication
to model the interaction between the entity and relation. ComplEx
[30] operates within the complex space to calculate the score of
the triplet. CapsE [32] introduces the capsule network to capture
the hierarchical relations and semantic information among entities.
TuckER [2] explores Tucker decomposition into the SKGC task. In
addition, McRL [33] captures the complex conceptual information
hidden in triplets to acquire accurate representations of entities
and relations.

Convolutional neural network-based methods explore the use of
CNN to capture the inherent correlations within triplets. ConvE
[10] first employs the CNN into the SKGC task. R-GCN [26] explores
the graph neural network to update entity embeddings. Moreover,
TDN [35] creatively designs the triplet distributor to facilitate the
information transmission between entities and relations.

Temporal knowledge graph completion (TKGC) refers to
the prediction of unknown quadruplets in TKGs based on known
information, including entities, relations, and timestamps. Some
classic TKGCmethods contain ChronoR [25], TeLM [38] and BoxTE
[24].
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Figure 2: The framework of IME. Specifically, IME models the query (Donald Trump, president of, ?, 2018) in multi-curvature
spaces through information aggregation and information distribution. Subsequently, IME explores space-shared and space-
specific properties to learn the commonalities and characteristics across different curvature spaces, effectively reducing
spatial gaps among them. Finally, these identified features are employed for adjustable multi-curvature pooling in subsequent
predictions.

TTransE [21] models the pair of the relation and timestamp as
the translation between the head entity and the tail entity. TA-
TransE and TA-DistMult [12] integrate timestamps into entities
using recurrent neural networks to capture the dynamic evolution
of entities. Building upon RotatE, ChronoR represents relation-
timestamp pairs as rotations from the head entity to the tail entity.
Similarly, TuckERTNT [28] extends the 3rd-order tensor to the
4th-order to model quadruplets. More recently, BoxTE [24] has
been introduced to enable more versatile and flexible knowledge
representation.

HyTE [9] first explores the dynamic evolution of entities and
relations by modeling entities and relations into the timestamp
space. TeRo [40] models the temporal evolution of entities as a rota-
tion in complex vector space, and handles time interval facts using
dual complex embeddings for relations. TComplEx [20] is based
on CompleEx, which expands the 3rd-order tensor into a 4th-order
tensor to perform TKGC. DE-SimplE [13] designs the diachronic
entity embedding function to capture the dynamic evolution of
entities over time, subsequently employing SimplE for predicting
missing items. ATiSE [39] decomposes timestamps into the trend,
seasonal, and irregular components to capture the evolution of
entities and relations over time. TeLM [38] employs multivector
embeddings and a linear temporal regularizer to obtain entity and
timestamp embeddings, respectively. EvoExplore [44] incorporates
two critical factors for comprehending the evolution of TKGs: local
structure describes the formation process of the graph structure in
detail, and global structure reflects the dynamic topology of TKGs.
BDME [42] leverages the interaction among entities, relations, and
timestamps for coarse-grained embeddings and block decomposi-
tion for fine-grained embeddings. Particularly, QDN [34] extends
the triplet distributor [35] into a quadruplet distributor and designs

the 4th-order tensor decomposition to facilitate the information
interaction among entities, relations, and timestamps.

2.2 Non-Euclidean Embedding-based Methods
Non-Euclidean embedding-basedmethods typically embed KGs into
non-Euclidean space, effectively capturing the complex geometric
structure inherent to them. Some classic non-Euclidean embedding
methods include ATTH [6], MuRMP [37], and BiQCap [45].

For SKGC, ATTH models the KG within the hyperbolic space to
capture both hierarchical and logical patterns. BiQUE [15] utilizes
biquaternions to incorporate multiple geometric transformations,
including Euclidean rotation, which is valuable for modeling pat-
terns like symmetry, and hyperbolic rotation, which proves effective
in capturing hierarchical relations. MuRMP and GIE [5] simultane-
ously model the KG within multi-curvature spaces to capture the
complex structure.

For TKGC, DyERNIE [16] embeds TKGs into multi-curvature
spaces to explore the dynamic evolution guided by velocity vectors
defined in the tangent space. BiQCap [45] simultaneously mod-
els each relation in Euclidean and hyperbolic spaces to represent
hierarchical semantics and other relation patterns of TKGs.

3 PROBLEM DEFINITION
Temporal knowledge graph G = {Q | E, R, T } is a collection of
entity set E, relation set R and timestamp set T . Specifically, each
quadruplet in G is denoted as (s, r, o, t) ∈ Q, where s, o ∈ E
represent the head and tail entities, r ∈ R denotes the relation and
t ∈ T is the timestamp. The primary objective of the TKGC task is
to predict the missing tail entity when given a query (s, r, ?, t), or
the missing head entity when provided with a query (?, r, o, t).

3
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4 METHODOLOGY
In this section, we present a detailed description of IME, which can
be segmented into three main stages: Multi-curvature Embeddings,
Space-shared and -specific Representations, and Adjustable Multi-
curvature Pooling. The whole framework is illustrated in Figure
2.

4.1 Multi-curvature Embeddings
TKGs typically encompass intricate geometric structures, including
ring, hierarchical, and chain structures. Specifically, distinct geo-
metric structures are characterized by differing modeling capacities
across various geometric spaces. We simultaneously model TKGs
in multi-curvature spaces to capture the complex structures.

Inspired by QDN [34], for each curvature space, we introduce
the quadruplet distributor to facilitate the information aggregation
and distribution among them. This is due to the fact that entities, re-
lations, and timestamps within each curvature space typically exist
in distinct semantic spaces, hindering the information transmission
among them.

Given the entity, relation, timestamp, and the initial zero-tensor
of the quadruplet distributor, denoted as s, r, t, and q, we operate
the information aggregation and information distribution.

Information Aggregation dynamically aggregates the infor-
mation of entities, relations, and timestamps into the quadruplet
distributor through gating functions,

sq1 = (s − q) ⊙ [𝜎 (s − q)]
rq1 = (r − q) ⊙ [𝜎 (r − q)]
tq1 = (t − q) ⊙ [𝜎 (t − q)],

(1)

where𝜎 represents the sigmoid activation function; ⊙ is the element-
wise multiplication.

Subsequently, we employ the residual network to aggregate
the information of the entity, relation, and timestamp into the
quadruplet distributor,

q̌ = q ⊕ sq1 ⊕ rq1 ⊕ tq1 . (2)

Information Distribution distributes the above aggregated
quadruplet distributor q̌ to the entity s, relation r and timestamp t
through gating functions,

sq2 = (s − q̌) ⊙ [𝜎 (s − q̌)]
rq2 = (r − q̌) ⊙ [𝜎 (r − q̌)]
tq2 = (t − q̌) ⊙ [𝜎 (t − q̌)] .

(3)

Finally, we distribute the information of quadruplet distributor
into the entities, relations, and timestamps,

š = s ⊕ sq2

ř = r ⊕ rq2

ť = t ⊕ tq2 .

(4)

Through the above information aggregation and information dis-
tribution process, we can obtain updated representations of entities,
relations, and timestamps š, ř and ť.

Similarly, we operate the above information aggregation and
information distribution in multi-curvature spaces, including Eu-
clidean, hyperbolic, and hyperspherical spaces. For each entity s,
relation r, and timestamp t, we can obtain their features in three

curvature spaces, namely šM, řM, and ťM (M ∈ {S,H,E}). Thus, we
obtain nine features.

4.2 Space-Shared and -Specific Representations
In order to facilitate the learning of commonalities across different
curvature spaces, and comprehensively capture the characteristic
features unique to each curvature space, we employ encoding func-
tions to capture both space-shared and space-specific properties.
Given the updated representations ȟM (h ∈ {s, r, t},M ∈ {S, H, E})
of the entity, relation, and timestamp for different curvature spaces,
we explore the gate attention mechanism to achieve the encoding
functions.

Space-shared property focuses on recognizing commonalities
across various curvature spaces to reduce spatial gaps among them.
Specifically, it shares the parameters W𝐼 in encoding function 𝐸𝐼 (·)
to obtain the space-shared representations. The encoding process
can be denoted as,

𝐸𝐼 (ȟS) = ȟS ⊙ 𝜎 (W𝐼 ⊙ [ȟS, ȟH, ȟE])
𝐸𝐼 (ȟH) = ȟH ⊙ 𝜎 (W𝐼 ⊙ [ȟS, ȟH, řE])
𝐸𝐼 (ȟE) = ȟE ⊙ 𝜎 (W𝐼 ⊙ [ȟS, ȟH, ȟE]),

(5)

where W𝐼 is the shared parameter across all three curvature spaces,
[·, ·, ·] represents the feature concatenation operation, ⊙ is the
element-wise multiplication, 𝜎 denotes the Sigmoid function. Thus,
we can generate nine space-shared representations h𝐼

M
(h ∈ {s, r,

t},M ∈ {S, H, E}) through the encoding functions 𝐸𝐼 (ȟM).
Space-specific property comprehensively captures the char-

acteristic features unique to each curvature space. Similarly, it
employs the encoding function 𝐸𝑆 (·) to obtain the space-specific
representations,

𝐸𝑆 (ȟS) = ȟS ⊙ 𝜎 (W1
𝑆 ⊙ [ȟS, ȟH, ȟE])

𝐸𝑆 (ȟH) = ȟH ⊙ 𝜎 (W2
𝑆 ⊙ [ȟS, ȟH, ȟE])

𝐸𝑆 (ȟE) = ȟE ⊙ 𝜎 (W3
𝑆
⊙ [ȟS, ȟH, ȟE]),

(6)

where W1
𝑆
, W2

𝑆
, and W3

𝑆
are the specific parameters unique to

each curvature space. Similar to the space-shared property, we
can generate nine space-specific representations h𝑆

M
(h ∈ {s, r, t},

M ∈ {S, H, E}) through the encoding functions 𝐸𝑆 (ȟM).
Through the above encoding functions 𝐸𝐼 (·) and 𝐸𝑆 (·), we can

generate eighteen space-shared and -specific vectors h𝐼/𝑆
S/H/E (h ∈ {s,

r, t}).

4.3 Adjustable Multi-curvature Pooling
After obtaining the space-shared and -specific representations of en-
tities, relations, and timestamps, the pooling approach is employed
to aggregate them into a joint vector for downstream predictions.
We first introduce two simple pooling approaches: average pool-
ing and max pooling. Then we introduce the proposed Adjustable
Multi-curvature Pooling (AMP) approach.

As shown in Figure 3, for 𝑛 input features X = {x1, x2, · · · , x𝑛},
x𝑖 ∈ R𝑑𝑥 , we sort each dimension of 𝑛 features to obtain the sorted
features M = {max1, max2, · · · , max𝑛},max𝑖 ∈ R𝑑𝑥 . To get pool-
ing feature x𝑝 ∈ R𝑑𝑥 , the poolingweightsΨ = {𝜓1,𝜓2, · · · ,𝜓𝑛},𝜓𝑖 ∈
R1 are used to perform a weighted sum over M,

4
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Figure 3: Comparison of different pooling approaches.

x𝑝 =

𝑛∑︁
𝑖=1

𝜓𝑖 · max𝑖 . (7)

Average Pooling sets all pooling weights𝜓𝑖 to 1
𝑛 to get pooling

feature x𝑎𝑝 ∈ R𝑑𝑥 ,

x𝑎𝑝 =

𝑛∑︁
𝑖=1

1
𝑛
· max𝑖 . (8)

Max Pooling sets the first pooling weight𝜓1 to 1 and the others
𝜓𝑖 , 𝑖 ≠ 1 to 0 to get pooling feature x𝑚𝑝 ∈ R𝑑𝑥 ,

x𝑚𝑝 = max1 . (9)
However, the aforementioned two pooling approaches rely on

fixed pooling strategies, posing a challenge in ensuring the effective
retention of important information.

Adjustable Multi-curvature Pooling automatically adjusts
pooling weights to obtain a superior pooling strategy, effectively
retaining important information. To learn appropriate pooling
weights Ψ for the different positions of M, i.e. max𝑖 , we first utilize
the positional encoding strategy in [7, 31] to get positional encod-
ing P = {p1, p2, · · · , p𝑛}, p𝑖 ∈ R𝑑𝑝 . This positional encoding P
contains prior information between position indices, and can be
formulated as follows,

p𝑖 (2𝑘) = 𝑠𝑖𝑛( 𝑖

100002𝑘/𝑑𝑝
)

p𝑖 (2𝑘 + 1) = 𝑐𝑜𝑠 ( 𝑖

100002𝑘/𝑑𝑝
),

(10)

where 𝑘 indicates the dimension. Then we regard the sequence of
positional encoding P as input and utilize Bi-GRU [27] and Multi-
Layer Perceptron (MLP) to obtain pooling weights Ψ,

Ψ = MLP(Bi-GRU(P)) . (11)
Further, Ψ is normalized as follows,

𝜓𝑖 =
exp(𝜓𝑖 )∑𝑛
𝑗=1 exp(𝜓 𝑗 )

. (12)

Based on the learned pooling weights, we get the pooling feature
x𝑎𝑚𝑝 ∈ R𝑑𝑥 ,

x𝑎𝑚𝑝 =

𝑛∑︁
𝑖=1

𝜓𝑖 · max𝑖 . (13)

According to (10), (11), (12) and (13), the entire calculation process
of AMP can be integrated as follows,

x𝑎𝑚𝑝 = AMP(X, 𝜃 ), (14)

where 𝜃 indicates all the learnable parameters.
Pooling Procedure.We concatenate the space-shared and space-

specific representations of the entity, relation and timestamp into
H = {h𝐼

S
, h𝐼
H
, h𝐼
E
, h𝑆
S
, h𝑆
H
, h𝑆
E
} (h ∈ {s, r, t}). Subsequently, we em-

ploy the AMP approach to effectively retain important information
among entities, relations, and timestamps, and the score function
can be defined as follows,

𝑓 (s, r, o, t) = ⟨AMP(H, 𝜃 ), o⟩, (15)

where ⟨·, ·⟩ represents the inner product operation.

4.4 Loss Function
In this section, we propose the overall loss of the proposed model
IME as follows,

L = L𝑡𝑎𝑠𝑘 + 𝛼L𝑠𝑖𝑚 + 𝛽L𝑑𝑖 𝑓 𝑓 + 𝛾L𝑠𝑡𝑟𝑢 , (16)

where 𝛼, 𝛽,𝛾 are the hyper-parameters. Each component within the
loss is responsible for achieving the desired properties.

Task Loss. Following the strategy in [38], we explore the cross-
entropy and standard data augmentation protocol to achieve the
multi-class task,

L𝑡𝑎𝑠𝑘 = − log( exp(𝑓 (s, r, o, t))∑
s′∈E exp(𝑓 (s′, r, o, t)) )

− log( exp(𝑓 (o, r−1, s, t))∑
o′∈E exp(𝑓 (o′, r−1, s, t))

).
(17)

Similarity Loss. The purpose of the similarity loss is to mini-
mize the disparities among shared features across different curva-
ture spaces, aiming to bridge spatial gaps among them. Specifically,
Central Moment Discrepancy (CMD) [43] is a distance metric em-
ployed to evaluate the similarity between two distributions by quan-
tifying the discrepancy in their central moments. A smaller CMD
value indicates a higher similarity between the two distributions.
Let 𝑋 and 𝑌 be bounded independent and identically distributed
random vectors from two probability distributions, 𝑝 and 𝑞, defined
on the interval [𝑎, 𝑏]. The CMD can be defined as,

CMD(𝑋,𝑌 ) = 1
|𝑏 − 𝑎 | ∥ E(𝑋 ) − E(𝑌 ) ∥2

+
∞∑︁
𝑘=2

1
|𝑏 − 𝑎 |𝑘

∥ 𝑐𝑘 (𝑋 ) − 𝑐𝑘 (𝑌 ) ∥2,
(18)

where E(𝑋 ) is the expectation of 𝑋 , and 𝑐𝑘 (𝑥) = E((𝑋 − E(𝑋 ))𝑘 )
is the central moment vector of order 𝑘 .

In our case, we calculate the similarity loss through CMD,

L𝑠𝑖𝑚 =
1
3

∑︁
(M1,M2 )

CMD(h𝑆M1
, h𝑆M2

) (19)

where (M1,M2) ∈ {(E,H), (E, S), (H, S)}.
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Table 1: Statistic information of whole datasets.

Datasets #Entities #Relations #Timestamps #Time Span #Granularity #Training #Validation #Test
ICEWS14 6,869 230 365 2014 1 day 72,826 8,941 8,963

ICEWS05-15 10,094 251 4,017 2005-2015 1 day 368,962 46,275 46,092
GDELT 500 20 366 2015-2016 1 day 2,735,685 341,961 341,961

Difference Loss. The difference loss is designed to capture char-
acteristic features of different curvature spaces through a similarity
function. Specifically, we not only impose the soft orthogonality
constraint between the shared and specific features but also be-
tween the space-specific features. The difference loss is calculated
as:

L𝑑𝑖 𝑓 𝑓 =
∑︁
M

∥ (h𝑆M)
𝑇 h𝐼M ∥2𝐹 +

∑︁
(M1,M2 )

∥ (h𝑆M1
)𝑇 h𝑆M2

∥2𝐹 , (20)

whereM ∈ {S,H,E}, (M1,M2) ∈ {(E,H), (E, S), (H, S)}, ∥ · ∥2
𝐹
is

the squared Frobenius norm.
Structure Loss. The structure loss [11] aims to ensure the struc-

tural similarity of quadruplets across various curvature spaces.
Specifically, we define the relation on a triplet of samples (x𝑎, x𝑏 , x𝑐 )
as the following cosine value:

cos∠r𝑎r𝑏r𝑐 = ⟨e𝑎𝑏 , e𝑐𝑏⟩ where e𝑖 𝑗 =
r𝑖 − r𝑗

∥ r𝑖 − r𝑗 ∥2
(21)

where r∗ is sample. Thus, the structure loss can be calculated as,

L𝑠𝑡𝑟𝑢 =
1
3

∑︁
(M1,M2 )

∥ cos∠M1𝑎M1𝑏M1𝑐 − cos∠M2𝑎M2𝑏M2𝑐 ∥1,

(22)
where (M1,M2) ∈ {(E,H), (E, S), (H, S)}.

5 EXPERIMENT
In this section, we provide detailed information about the datasets,
describe the experimental setups, present experimental results, and
conduct a comprehensive analysis of experimental results.

5.1 Datasets
We provide a list of three commonly-used TKG datasets and their
key statistics are summarized in TABLE 1. ICEWS14 and ICEWS05-
15 [12] are subsets of Integrated Crisis EarlyWarning System (ICEWS),
which encompass various political events along with their respec-
tive timestamps. GDELT [22] is a subset of the larger Global Data-
base of Events, Language, and Tone (GDELT) that includes data on
human social relationships.

5.2 Baselines
The proposed model is compared with some classic KGC methods,
including SKGC and TKGC methods.

A. SKGC methods:

• TransE [3]: TransE introduces the translation mechanism
into the knowledge graph completion (KGC) task;

• DistMult [41]: DistMult is a classic semantic matching-
based KGC methods;

• SimplE [18]: SimplE develops a CP-based tensor decom-
position method to ensure the independence between two
embedding vectors of an entity;

• RotatE [29]: RotatE regards relation as a rotation between
the head entity and the tail entity.

B. TKGC methods:

• TA-DistMult [12]: TA-DistMult applies RNN to associate
the relation with the timestamp;

• TeRo [40]: TeRo first models the translation mechanism in
the complex space;

• DE-SimplE [13]: DE-SimplE applies the diachronic entity
embedding function to reflect the evolution of entities over
timestamps;

• ATiSE [39]: ATiSE uses additive time series decomposition
to model the temporal knowledge graph;

• ChronoR [25]: ChronoR takes the timestamp-relation pair
as the rotation between the head entity and the tail entity;

• TeLM [38]: TeLM enhances the generalization capacity by
the multi-vector embeddings of the entity in TKGC;

• TuckERTNT [28]: TuckERTNT extends TuckER [2] from
the SKGC to the TKGC;

• BoxTE [24]: BoxTE extends BoxE [1] with the dedicated
time embeddings;

• BDME [42]: BDMEmodels TKGswith themulti-granularity
embeddings;

• EvoExplore [44]: EvoExplore understands the evolution-
ary nature of TKGs by capturing local and global structures;

• DyERNIE [16]: DyERNIE first models TKGs within multi-
curvature spaces;

• BiQCap [45]: BiQCap combines Euclidean and hyperbolic
embeddings for each relation to explore complex patterns;

• QDN [34]: QDN designs a quadruplet distributor to facili-
tate the information interaction among entities, relations,
and timestamps.

5.3 Link Prediction Metrics
We substitute either the head or tail entity in each test quadruplet
(s, r, o, t) with all feasible entities sampled from the TKG. Subse-
quently, we rank the scores calculated by the score function. We
employ Mean Reciprocal Rank (MRR) and Hit@𝑁 as evaluation
metrics, with 𝑁=1, 3 and 10. Higher values indicate better perfor-
mance. Finally, we present the filtered results as final experimental
results, which exclude all corrupted quadruplets from the TKG.

5.4 Parameters Setting
We use a grid search to find the best hyper-parameters based on
the MRR performance on the validation dataset. Specifically, we
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Table 2: Link prediction results on ICEWS14, ICEWS05-15, and GDELT datasets. The best results are in bold and the second
results are underlined. - means the result is unavailable.

Datasets ICEWS14 ICEWS05-15 GDELT
Metrics MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE (2013) 0.280 0.094 – 0.637 0.294 0.090 – 0.663 0.113 0.0 0.158 0.312
DistMult (2015) 0.439 0.323 – 0.672 0.456 0.337 – 0.691 0.196 0.117 0.208 0.348
SimplE (2018) 0.458 0.341 0.516 0.687 0.478 0.359 0.539 0.708 0.206 0.124 0.220 0.366
RotatE (2019) 0.418 0.291 0.478 0.690 0.304 0.164 0.355 0.595 – – – –

TA-DistMult (2018) 0.477 0.363 – 0.686 0.474 0.346 – 0.728 0.206 0.124 0.219 0.365
ATiSE (2019) 0.550 0.436 0.629 0.750 0.519 0.378 0.606 0.794 – – – –

DE-SimplE (2020) 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403
TeRo (2020) 0.562 0.468 0.621 0.732 0.586 0.469 0.668 0.795 0.245 0.154 0.264 0.420

ChronoR (2021) 0.625 0.547 0.669 0.773 0.675 0.596 0.723 0.820 – – – –
TeLM (2021) 0.625 0.545 0.673 0.774 0.678 0.599 0.728 0.823 – – – –

TuckERTNT (2022) 0.604 0.521 0.655 0.753 0.638 0.559 0.686 0.783 0.381 0.283 0.418 0.576
BoxTE (2022) 0.613 0.528 0.664 0.763 0.667 0.582 0.719 0.820 0.352 0.269 0.377 0.511

EvoExplore (2022) 0.725 0.653 0.778 0.852 0.790 0.719 0.843 0.915 0.514 0.353 0.602 0.748
BDME (2023) 0.635 0.555 0.683 0.778 – – – – 0.278 0.191 0.299 0.448
QDN (2023) 0.643 0.567 0.688 0.784 0.692 0.611 0.743 0.838 0.545 0.481 0.576 0.668

DyERNIE (2020) 0.669 0.599 0.714 0.797 0.739 0.679 0.773 0.855 0.457 0.390 0.479 0.589
BiQCap (2023) 0.643 0.563 0.687 0.798 0.691 0.621 0.738 0.837 0.273 0.183 0.308 0.469

IME 0.819 0.790 0.835 0.872 0.796 0.750 0.821 0.875 0.624 0.485 0.754 0.791

tune the similarity loss weight 𝛼 , the difference loss weight 𝛽 , and
the structure loss weight 𝛾 , choosing from {0.1, 0.2, · · · , 0.9}. The
optimal 𝛼 , 𝛽 and 𝛾 on different datasets are set as follows: 𝛼 = 0.4,
𝛽 = 0.4 and 𝛾 = 0.1 for ICEWS14; 𝛼 = 0.9, 𝛽 = 0.3 and 𝛾 = 0.1 for
ICEWS05-15; 𝛼 = 1, 𝛽 = 0.3 and 𝛾 = 0.1 for GDELT. We set the
optimal embedding dimension 𝐷 to 500 across all datasets. For the
AMP approach, the dimension of positional encoding is set to 32,
i.e., 𝑑𝑝 is set to 32. The dimension of Bi-GRU is also set to 32 and
MLP is used to project features from 32 dimensions to 1.

Moreover, the learning rate is fine-tuned within the range {0.1,
0.05, 0.01, 0.005, 0.001} on different datasets, ultimately being set
to 0.1 for all datasets. The batch size of 1000 is consistently applied
across all datasets. The entire experiment is implemented using the
PyTorch 1.8.1 platform and conducted on a single NVIDIA RTX
A6000 GPU.

5.5 Experimental Results and Analysis
The link prediction experimental results are displayed in TABLE 2,
and the experimental analyses are listed as follows:

(1) The proposed model outperforms state-of-the-art baselines
on three datasets, showing clear superiority in most metrics. For
example, the proposed model obtains 9.4% and 0.6% improvements
over EvoExplore under MRR on ICEWS14 and ICEWS05-15, respec-
tively. This phenomenon indicates that a single space is insufficient
for modeling complex geometric structures concurrently, and the
spatial gap in multi-curvature spaces severely limits the expressive
capacity of TKGC models.

(2) BiQCap [45] and DyERNIE [16] are two important baselines
because they both model TKGs in multi-curvature spaces. However,

our proposed method still improves most metrics for all datasets.
This phenomenon reflects that our proposed method can effec-
tively reduce spatial gaps caused by the heterogeneity of different
curvature spaces.

(3) QDN [34] is also an essential baseline because it serves as a
key component of the multi-curvature embeddings module. When
compared to QDN, our proposed method exhibits a substantial
improvement in performance across all metrics. This observation
underscores the inadequacy of a single Euclidean space for model-
ing complex geometric structures.

These observations indicate that our proposed method can not
only model complex geometric structures but also effectively reduce
spatial gaps among different curvature spaces.

5.6 Impact of Loss Weights 𝛼 , 𝛽 , and 𝛾
In this experiment, we explore the influence of changing the loss
weights 𝛼 , 𝛽 , and 𝛾 on MRR. As depicted in Figure 4, it becomes
evident that with increasing weight, various loss functions display
noteworthy differences in performance. To be specific, the similarity
loss 𝛼 and the difference loss 𝛽 display a parabolic shape, with their
peaks occurring at 0.4. In contrast, the structure loss 𝛾 reveals
an overall declining trend, gradually diminishing as the weight
increases.

These phenomena clearly illustrate that appropriate weights for
similarity and difference losses effectively facilitate the learning
of common and characteristic features of entities, relations, and
timestamps across multiple curvature spaces. Conversely, a higher
weight for the structure loss restricts their flexibility in embeddings
across these multiple curvature spaces.
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Figure 4: H@1 with varying loss weights 𝛼 , 𝛽 and 𝛾 on
ICEWS14.

Table 3: The ablation experiment results on ICEWS14. “w/o"
represents removal for the mentioned factors, “(-)" denotes
replacing Adjustable Multi-curvature Pooling (AMP) with
the mentioned factors. We mark the better results in bolded
font.

Datasets ICEWS14
Metrics MRR Hit@1 Hit@3 Hit@10

DistMult (2015) 0.439 0.323 – 0.672
TA-DistMult (2018) 0.477 0.363 – 0.686

IME (-) MP 0.523 0.430 0.574 0.696
IME w/o L𝑠𝑖𝑚 0.740 0.693 0.765 0.824
IME w/o L𝑑𝑖 𝑓 𝑓 0.716 0.653 0.752 0.835
IME w/o L𝑠𝑡𝑟𝑢 0.810 0.760 0.810 0.859

IME 0.819 0.790 0.835 0.872
1 MP represents Max Pooling.

5.7 Ablation Experiments
In order to investigate the impact of key modules and loss functions
on performance, we conducted a series of ablation experiments, and
the corresponding link prediction results are presented in TABLE
3.
i. “IME w/o L𝑠𝑖𝑚", “IME w/o L𝑑𝑖 𝑓 𝑓 ", and “IME w/o L𝑠𝑡𝑟𝑢 " mean

removing the similarity loss L𝑠𝑖𝑚 , difference loss L𝑑𝑖 𝑓 𝑓 , and
structure loss L𝑠𝑡𝑟𝑢 ;

ii. “IME (-) MP” represents replacing Adjustable Multi-curvature
Pooling (AMP) with the Max Pooling (MP).

(1) In the first category of ablation experiments, the proposed
model achieves a significant improvement on ICEWS14. For ex-
ample, compared to “IME w/o L𝑠𝑖𝑚", “IME w/o L𝑑𝑖 𝑓 𝑓 ", and “IME
w/o L𝑠𝑡𝑟𝑢 ", the proposed model achieves 7.9%, 10.3%, and 0.9% im-
provements on Hit@1, respectively. Thus, we can summarize the
following conclusions:
a) Similarity loss can effectively learn the commonalities across

distinct curvature spaces and mitigate spatial gaps among them;
b) Difference loss can capture characteristic features specific to

each space;

Figure 5: Comparison of MRR performance with different
embedding dimensions on ICEWS14.

c) Structure loss serves to constrain the embeddings of entities, re-
lations, and timestamps by ensuring that information in distinct
spaces exhibits comparable geometric structures.
(2) In the second category of ablation experiments, the proposed

model exhibits a certain improvement on ICEWS14. This phenom-
enon demonstrates that the adjustable multi-curvature pooling
approach can effectively strengthen the important information for
modeling the current TKG while weakening the undesirable ones.

5.8 Impact of Embedding Dimensions 𝐷
To empirically investigate the impact of embedding dimensions
on ICEWS14, we fine-tune the dimension 𝐷 within the range of
{200, 500, 800, 1000, 1500, 2000} and analyze the experimental re-
sults. As shown in Figure 5, the MRR performance on ICEWS14
exhibits an initial increase followed by a decrease as the dimension
increases, eventually peaking at 𝐷 = 500.

This phenomenon implies that the proposed model faces chal-
lenges in capturing intricate data relationships at lower dimen-
sions, resulting in poorer performance. As the dimension increases,
the model becomes more capable of effectively representing data,
leading to enhanced performance. Nevertheless, beyond a certain
threshold, this may introduce some issues such as overfitting or
heightened complexity, consequently causing a decline in perfor-
mance.

6 CONCLUSION
In this paper, we proposed a novel TKGC method called Integrating
Multi-curvature shared and specific Embedding (IME). Specifically,
IME models TKGs in multi-curvature spaces to capture complex
geometric structures. Meanwhile, IME learns the space-specific
property to comprehensively capture characteristic information,
and the space-shared property to reduce spatial gaps caused by the
heterogeneity of different curvature spaces. Furthermore, IME in-
novatively proposes an Adjustable Multi-curvature Pooling (AMP)
approach to effectively strengthen the retention of important infor-
mation. Experimental results on several well-established datasets
incontrovertibly show that IME achieves competitive performance
when compared to state-of-the-art TKGC methods.
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