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Abstract

Uncertainty Quantification (UQ) plays a vital role in enhancing the reliability of deep learning
model predictions, especially in scenarios with high-dimensional output spaces. This paper
addresses the dual nature of uncertainty — aleatoric and epistemic — focusing on their joint
integration in high-dimensional regression tasks. For example, in applications like medical
image segmentation or restoration, aleatoric uncertainty captures inherent data noise, while
epistemic uncertainty quantifies the model’s confidence in unfamiliar conditions. Modeling
both jointly enables more reliable predictions by reflecting both unavoidable variability and
knowledge gaps, whereas modeling only one limits transparency and robustness. We propose
a novel approach that approximates the resulting joint uncertainty using a low-rank plus
diagonal covariance structure, capturing essential output correlations while avoiding the
computational burdens of full covariance matrices. Unlike prior work, our method explicitly
combines aleatoric and epistemic uncertainties into a unified second-order distribution that
supports robust downstream analyses like sampling and log-likelihood evaluation. We further
introduce stabilization strategies for efficient training and inference, achieving superior UQ
in the tasks of image inpainting, colorization, and optical flow estimation. See Appendix A
for notation used throughout.

1 Introduction

In high-risk settings such as AI-supported decision-making, UQ is an essential requirement to support a
viable level of reliability and trustworthiness. For instance, AI tools in medicine and healthcare may benefit
from a sound UQ (Hüllermeier & Waegeman, 2021; Tran et al., 2022; Band et al., 2022; Gruber et al.,
2023; Lopez et al., 2023). Current Bayesian UQ methods neglect output correlations in high-dimensional
settings, limiting reliability in tasks like image inpainting and optical flow (Kendall & Gal, 2017). A common
strategy in this context is to distinguish between two types of uncertainty: aleatoric and epistemic. Aleatoric
uncertainty is modeled as part of the head of a model, often using distributions like Gaussian for regression.
It is generally considered to be irreducible by collecting more information, like increasing the size of the
dataset, and therefore can be seen as inherent data noise. Contrary to that, epistemic uncertainty is reducible
and a consequence of a lack of knowledge (Murphy, 2022). For instance, utilizing a large amount of data
is expected to reduce epistemic uncertainty.1 Epistemic uncertainty, due to its complexity, is commonly
approximated by sampling from a proxy distribution of models (Hüllermeier & Waegeman, 2021).

Combining both in a single model usually results in a so-called second-order distribution (Bengs et al., 2023).
On the one hand, it consists of a distribution over model weights capturing epistemic uncertainty. On the
other hand, it models a distribution over plausible predictions representing aleatoric uncertainty. Sampling
from the model weights and performing a transformation (forward pass) of the input data results in another
distribution representing the aleatoric uncertainty. The shape of this second-order distribution limits further
analysis, it is difficult to visualize, and it does not admit a closed-form solution of the marginal likelihood of
a sample. Therefore, the second-order distribution is typically marginalized and approximated by a single
distribution, representing the joint uncertainty.

1Here, we refer to the standard interpretation of aleatoric and epistemic uncertainty. However, this distinction is not always
clear and subject to discussion (Hüllermeier & Waegeman, 2021; Gruber et al., 2023).
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Figure 1: Visualization of covariance matrices for the 2D case. Three samples with corresponding means and
covariances are depicted (light blue). The columns show the inferred aleatoric (green), epistemic (blue), and
joint uncertainty (red), respectively. On the left, the covariance matrices are purely diagonal, limiting their
representational power. To the right, the same matrices are depicted with non-diagonal values kept, allowing
them to capture the overall uncertainty in greater detail.

Traditionally, uncertainties across outputs have been jointly represented without considering correlations
between outputs (e.g., pixels), assuming independent factorized univariate Gaussian distributions. However,
neglecting such correlations can limit a comprehensive understanding of uncertainty, especially in scenarios
where dependencies between model outputs exist — such as in pixel-wise semantic segmentation (Monteiro
et al., 2020), optical flow estimation, image inpainting, or graph node regression. Figure 1 illustrates the
increased representational power of full covariance matrices (right) compared to diagonal ones (left). In both
cases, samples from the weight space yield multiple predictions containing a mean and (co-)variance. The
expected covariance represents the aleatoric component Σa, while the covariance of means contributes the
epistemic component Σe. Their sum yields the joint covariance matrix Σ = Σa + Σe.

Incorporating these correlations efficiently, however, remains challenging. The number of pairwise correlations
scales quadratically as O(S2) with the number of outputs S, resulting in extremely large covariance matrices.
This makes many standard operations - such as sampling and computing log-likelihoods - computationally
infeasible for high-dimensional outputs.

Consequently, many prominent Bayesian methods focus on low-dimensional output spaces, where exact
inference is tractable (Williams & Rasmussen, 1996; Rasmussen & Williams, 2006). Extending these methods
to high-dimensional outputs, where considering correlations is essential, remains an open research challenge.

Related Work To estimate epistemic uncertainty, various Bayesian frameworks have been developed,
including methods like stochastic variational inference (Blundell et al., 2015), Monte Carlo dropout (Gal &
Ghahramani, 2016), deep ensembles (Lakshminarayanan et al., 2017), stochastic weight averaging (Maddox
et al., 2019), or Laplace approximation (Daxberger et al., 2021). The modeling of heteroscedastic aleatoric
uncertainty, where the model predicts all parameters of a target distribution and minimizes the corresponding
log-likelihood, has also been well established (Nix & Weigend, 1994; Skafte et al., 2019; Stirn & Knowles,
2020; Seitzer et al., 2022). The latter three works further address the challenge of stabilizing training for such
networks — a challenge that becomes more critical when modeling structured forms of uncertainty. Building
upon these works, others have unified epistemic and aleatoric uncertainty in a single model (Kendall & Gal,
2017; Depeweg et al., 2018; Stirn et al., 2023; Immer et al., 2024; Valdenegro-Toro & Mori, 2022; Mucsányi
et al., 2024; Chan et al., 2024; Wimmer et al., 2023). However, all aforementioned methods either evaluate
their method only for prediction tasks with a single output value or approximate the marginalized likelihood
as a factorized Gaussian, disregarding inter-pixel correlations.

This simplification neglects the inherent dependencies between output dimensions, often resulting in mis-
calibrated uncertainties and incoherent predictions in structured settings. Modeling these correlations is
therefore crucial and has been explored in various applications, including localization (Russell & Reale, 2021),
human pose estimation (Gundavarapu et al., 2019), pixel regression (Dorta et al., 2018a;b; Duff et al., 2023),
multi class predictions (Willette et al., 2021), and segmentation (Monteiro et al., 2020).
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Some approaches that predict full covariance matrices are limited to low dimensional model output spaces
(Russell & Reale, 2021; Gundavarapu et al., 2019). Approaches for handling high-dimensional output spaces
typically sparsify the covariance matrix. Yet, certain of these approaches can only model uncertainty in the
local neighborhood using a band Cholesky parametrization (Dorta et al., 2018a;b; Duff et al., 2023). Several
works (Salinas et al., 2019; Monteiro et al., 2020; Willette et al., 2021; Stoica & Babu, 2023) use a low-rank
plus diagonal (LR+D) parametrization, which is capable of capturing global correlations. Nehme et al. (2024);
Yair et al. (2024) learn the low-rank factors of aleatoric uncertainty directly without adding a diagonal and
create a rank-deficient semi-definite covariance matrix. This may be sufficient for both sampling and analysis,
but it does not provide the positive definiteness required for calculating the log-likelihood. Importantly, all
these sparse solutions merely focus on aleatoric uncertainty.

One could argue that models implicitly capture correlations through inherent patterns, similar to latent
variable models for aleatoric uncertainty (Depeweg et al., 2018) or deep ensembles for epistemic uncertainty
(Lakshminarayanan et al., 2017). However, these methods do not explicitly represent or provide those
correlations. Zepf et al. (2023) are getting close to this goal and combine aleatoric and epistemic uncertainty
with a LR+D representation. However, by partially using the Maximum a posteriori (MAP) solution as a
further approximation, they do not account for the influence of the model uncertainty on the estimation of
the aleatoric uncertainty, leading overall to a worse uncertainty estimate. Furthermore, unlike our approach,
they do not resolve the second-order distribution to provide a joint representation suitable for further analysis,
such as log-likelihood calculation, and its usage is limited to consecutive sampling.

In conclusion, while significant advancements have been made in modeling covariances for uncertainty
estimation, the existing approaches suffer from limitations such as local sparsification, inadequate joint
representations, and neglect of epistemic uncertainty, indicating a need for further research to develop more
comprehensive and globally accurate uncertainty estimation methods.

Contribution In this work, we propose joint modeling of aleatoric and epistemic uncertainty in a single
framework. Unlike existing approaches that approximate the second-order distribution with factorized normals
(neglecting output correlations), our method preserves crucial correlations while avoiding the prohibitive
space and time costs of full covariance matrices in high-dimensional settings. Our low-rank plus diagonal
(LR+D) covariance parameterization reduces memory from O(S2) to O(SR) and reduces log-likelihood
computation from O(S3) to O(SR2 + R3) (R≪ S), enabling joint UQ on 65,000-dimensional outputs like
CelebA. Furthermore, the low-rank eigenvectors extracted from the covariance provide interpretable insights
into dominant modes of correlated uncertainty. We introduce stabilization techniques for robust training and
showcase superior performance on high-dimensional tasks such as MNIST inpainting, CelebA colorization
(Liu et al., 2015), and Flying Chairs optical flow (Dosovitskiy et al., 2015).

2 Method

We consider supervised learning tasks where we use a neural network fw : X → Y with an input space
X ⊆RM and a high dimensional output space Y ⊆ RS , where S denoting the number of output units,
e.g. pixels times the number of output channels. The weights w ∈ W ⊆ RK of the neural network are
interpreted probabilistically, meaning we aim to approximate the posterior distribution of the weights
p(w|D) = p(D|w)p(w)/p(D) allowing to model the epistemic uncertainty after observing a dataset D =
{xi, yi}N

i=1 with N samples. p(D|w) refers to the likelihood, that represents the epistemic part of the
uncertainty, e.g. by modeling the standard deviation besides a mean value. p(w) is the prior distribution
over the weights. Computing p(w|D) is generally not given in closed form and has to be approximated. The
most popular methods include Monte Carlo Dropout (MCD), flavors of Stochastic Variational Inference
(SVI), and more simple methods like Deep Ensembles (DEs). We highlight, that the proposed method is
agnostic to the method, as long as we can sample from an approximated posterior distribution, i.e. a proxy
distribution q∗

θ(w) over the weight space W , parametrized by θ. To represent the joint uncertainty, for the
prediction of unseen output y given new input data x, one approximates the posterior predictive distribution
p(y|x,D) =

∫
W

p(y|x, w)p(w|D)dw using q∗
θ instead of p(w|D) in combination with Monte Carlo sampling.

Specifically, we sample T weights wi using wi ∼ q∗
θ .
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Figure 2: Construction of our LR+D matrix. A network predicts values µw, Pw, and Dw for two exemplarily
sampled weights wi, respectively (green and blue). By averaging the diagonals Dwi

and concatenating low
rank columns representing the epistemic P a and aleatoric P e uncertainty, we build the diagonal D and the
low-rank matrix P as parts of our LR+D representation of Σ. See Section 2 for an in-depth explanation.

2.1 Modeling Sparse Joint Uncertainty

To deal with the high dimensionality of Y , we define the likelihood to be a multivariate Gaussian distribution
p(y|x, w) = N (µW (x), ΣW (x)), where we keep the spatial complexity of the covariance matrix ΣW (x)
low by constructing it in LR+D form. That is, we formulate it as a sum of small matrices, ΣW (x) =
DW (x) + PW (x)PW

⊤(x), with DW denoting a diagonal matrix of shape S × S and PW a tall matrix of
shape S ×RW . We choose a rank RW much lower than the number of outputs RW ≪ S, such that only the
most important directions of the aleatoric covariance are covered. We further enforce DW to contain strictly
positive diagonal entries and since PW P ⊤

W is always symmetric, ΣW is always symmetric positive definite by
construction and thus a valid covariance matrix. The ultimate goal of this work is to calculate an efficient yet
representative representation of the posterior predictive distribution p(y|x,D).

We start modeling the parameters of the posterior predictive distribution consisting of mean and covariance
by using Monte Carlo integration to approximate the expected model output E[y|x,D] ≈ µ(x). The empirical
mean is given as µ(x) = 1

T

∑T
i µwi

(x), where T represents the number of weight samples drawn from wi ∼ q⋆
θ .

The joint covariance matrix can be split into epistemic and aleatoric uncertainty using the law of total
variance as

Cov [y|x,D]︸ ︷︷ ︸
≈

Σ(x)
joint uncertainty

≈ Covq∗
θ

[µW (x)]︸ ︷︷ ︸
≈

Σe(x)
epistemic uncertainty

+ Eq∗
θ

[ΣW (x)]︸ ︷︷ ︸
≈

Σa(x)
aleatoric uncertainty

. (1)

This suggests that the mean of covariance matrices across forward pass samples captures aleatoric uncertainty,
whereas the covariance of the means represents epistemic uncertainty. Unlike previous decompositions
(Depeweg et al., 2018; Kendall & Gal, 2017) that use variances, our formulation employs covariance matrices,
generalizing to multivariate variables. We provide a complete derivation of equation 1 in the Appendix F.4.

Our objective is to represent the joint uncertainty Σ(x) in LR+D form as the sum of aleatoric and epistemic
uncertainties,

D + PP ⊤ = (De + P eP e⊤) + (Da + P aP a⊤), (2)

where Da, De, and D are diagonal matrices and P a, P e, and P low-rank matrices representing aleatoric,
epistemic, and joint uncertainties, respectively. Then, D = De + Da and P =

[
P a P e

]
, where

[ ]
denotes

columnwise block concatenation. This expression allows us to conveniently represent both aleatoric and
epistemic uncertainties in LR+D form, simplifying further analysis and computation. Figure 2 provides an
intuitive illustration about the construction of our LR+D matrix components. Starting with Σe, we describe
in detail the individual components of our LR+D representations in the following sections.

2.2 Epistemic Uncertainty

The epistemic uncertainty is estimated through the distribution over weights. To derive its covariance, we
employ empirical sampling from the proxy distribution over model weights (e.g., SVI (Blundell et al., 2015)
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or DE (Lakshminarayanan et al., 2017)) as follows:

Σe(x) = 1
T − 1

T∑
i

(µwi
(x)− µ (x)) (µwi

(x)− µ (x))⊤
wi ∼ q∗

θ (3)

Our objective is to avoid the full covariance matrix and instead seek a representation in LR+D form.

To bring the approximated epistemic covariance matrix into LR+D form, we set the diagonal De(x) to zero
and rewrite the covariance matrix as Σe(x) = P e(x)P e(x)⊤, where P e(x) ∈ RS×Re has Re = T columns and
is defined as

P e(x) = 1√
T − 1

[µw1 (x)− µ (x) ... µwT
(x)− µ (x)] . (4)

In high-dimensional scenarios, the number of samples is often significantly lower than the number of output
dimensions (T ≪ S), which renders the empirical covariance matrix Σe low rank and therefore singular.
Acquiring a sufficient number of samples to obtain a full-rank empirical estimate is typically infeasible due to
time and space complexity constraints. In our low-rank-plus-diagonal parameterization, the epistemic part is
captured purely by the low-rank term P e and the diagonal is zero (De(x) = 0S), while the aleatoric diagonal
has strictly positive entries (Da

ii(x) > 0; cf. Eq. 6). Consequently, the total covariance Σ(x) remains positive
definite and thus invertible.

2.3 Aleatoric Uncertainty

Similar to epistemic uncertainty, the covariance matrix capturing aleatoric uncertainty Σa(x) can be approxi-
mated through empirical sampling. We calculate the empirical mean of covariance matrix estimations over
all sampled model weights via

Σa(x) = 1
T

T∑
i

Σwi
(x) wi ∼ q∗

θ . (5)

We here again intend to represent Σa(x) in LR+D form.

To rewrite the covariance matrix containing the aleatoric uncertainty in LR+D representation, we reformulate
Σa(x) = Da(x) + P a(x)P a(x)⊤ using

Da(x) = 1
T

T∑
i

Dwi(x) (6)

P a(x) = 1√
T

[Pw1(x) ... PwT
(x)] . (7)

This yields a P a ∈ RS×(T ·RW ) with Ra = T ·RW columns. Although Ra generally remains far below S, it
can still become fairly large as the number of Monte Carlo samples T increases. Thus, we suggest reducing
the number of columns of P (x).

2.4 Truncated Singular Value Decomposition Approximation

The full matrix P (x), representing the joint aleatoric uncertainty, uses R = T × (RW + 1) = Ra + Re

columns, where each forward pass i = 1, . . . , T contributes one column from µwi and RW columns from Pwi .
In general, increasing the number of forward passes T yields a better uncertainty representation, as more
samples enhance the empirical covariance estimate. However, in this naive representation, larger sample sizes
also result in quadratic scaling of computational complexity. Hence, we suggest further approximations to
cope with moderately high sample sizes.

Assuming that samples are often correlated and exhibit dominant directions of variance, we propose to
reduce the dimensionality of P (x) with truncated Singular Value Decomposition (SVD). Keeping only the
most informative columns of P (x) will improve the efficiency of further computations without losing much
information. However, the calculation of SVD comes with its own computational complexity that has to be
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taken into account. Specifically, we decompose the matrix P as P ⊤ = UΨV ⊤, where U and V are orthogonal
matrices, and Ψ is a diagonal matrix containing the singular values in non-decreasing order Ψ1,1 ≤ ... ≤ ΨS,S .
Subsequently, we define the matrix P̃ = V Ψ and rewrite the matrix product as Σ = PP ⊤ = P̃ P̃ ⊤. To reduce
dimensionality, we discard the smallest singular values and their associated columns in V . However, we keep
the univariate variance parts of these dropped columns by transferring them to a new diagonal matrix D̂.
Hence, the approximated matrix Σ̂ = D̂ + P̂ P̂ ⊤ keeps all independent variance and the most important
covariances of Σ. If we keep the R̂ largest singular values, the components of Σ̂ are

P̂ =
[
VR−R̂ ·ΨR−R̂,R−R̂ ... VR ·ΨR,R

]
(8)

and

D̂ii = Dii +
R−R̂−1∑

j=1
V 2

ij ·Ψ2
j,j . (9)

The number of columns R̂ to retain is determined by reconstruction error and downstream task performance,
as validated in our ablation studies (Sec. 3.5). The aforementioned approach enables us to effectively represent
joint uncertainty in the LR+D form. For analysis purposes, SVD can also be applied to both of the low rank
summands of P namely the aleatoric part P a and the epistemic part P e separately. This allows to visualize
the most important directions of variance of both components. See Appendix E for pseudocode.

2.5 Stability Techniques

As the size of the covariance matrix increases, its condition number κ tends to grow, making it more susceptible
to numerical instability - particularly during matrix inversion required for log-likelihood calculations. Superior
LR+D-parametrized covariance matrices are no exception to this phenomenon. However, for LR+D-
parametrized covariance matrices, not only the condition number of the covariance matrix but also that of its
internally used capacitance matrix is relevant. This matrix is of size R×R and therefore much smaller than
the full covariance matrix, as R≪ S. Instead of inverting the full covariance matrix, the capacitance matrix
is inverted internally. The capacitance matrix is given by C = IR + P ⊤D−1P where IR is an identity matrix.

While the condition number of the capacitance matrix κ(C) can be calculated with reasonable complexity,
the condition number of the covariance matrix κ(Σ) cannot be obtained in reasonable time due to the cubic
scaling of, for example, SVD. However, the following bounds for κ(Σ) can be obtained using Weyl’s inequality:

λS(PP ⊤) + λ1(D)
λR+1(D) ≤ κ(Σ) ≤ λS(PP ⊤) + λS(D)

λ1(D) . (10)

where λS(PP ⊤) is the largest eigenvalue of PP T , given by λS(PP ⊤) = Ψ2
S . The smallest eigenvalue of the

diagonal matrix D is given by its smallest entry λ1(D), while the largest eigenvalue λS(D) corresponds to
the largest entry of D. Further details can be found in the Appendix F.5.

These condition number values and bounds can be used to monitor and mitigate numerical instabilities.

3 Experiments

Proposed Method We empirically evaluate our method of joint aleatoric and epistemic uncertainty
modeling using our LR+D representation in several experiments. In all experiments, we use variants of
the U-Net (Ronneberger et al., 2015) architecture. We equip the U-Net with probabilistic outputs via
three established Bayesian approximation methods: 1) adding dropout, which we use for MCD (Gal &
Ghahramani, 2016), 2) DE (Lakshminarayanan et al., 2017), or 3) by using variational convolutional layers
for SVI (Blundell et al., 2015), to estimate a distribution over model weights which estimates epistemic
uncertainty. However, we note that our approach is compatible with any Bayesian method as long as it
is computationally feasible for considered models. We use a combined model to jointly predict mean and
uncertainty because it provides a cleaner, more unified architecture with shared feature learning and simpler
training, which can — but does not always — lead to better results. Details and comparisons to variants
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with separated mean and uncertainty estimation can be found in Appendix D.3. Further reproducibility
details in Appendix B. An anonymized implementation and scripts to reproduce all experiments are available
at https://anonymous.4open.science/r/corr-joint-ae.

Datasets and Tasks We evaluate our method in different settings on the MNIST, CelebA, and Flying
Chairs datasets for the tasks of inpainting, colorization, and optical flow.

We train a reconstruction model to inpaint distorted handwritten digits from the MNIST dataset. For the
inpainting task, we mask out 5/7 of the image area. We use the official test set and split the training set into
50,000 train and 10,000 validation images.

To evaluate performance on optical flow estimation, we use the Flying Chairs (Dosovitskiy et al., 2015)
dataset. This dataset is resized to 192 x 256 and split into 18,297/2,287/2,288 training/validation/test images.
We provide visualizations of the predictions as part of the Appendix D.1.

To evaluate our method on facial images, we use the CelebA-HQ dataset, keeping the original splits from
celeba (Liu et al., 2015). The original split contains 24,183 images for training, 2,993 for validation, and 2,824
for testing (image size 256 × 256). We study two tasks on this dataset: colorization and inpainting.

Baselines We evaluate non-Bayesian models alongside various Bayesian methods. In addition to the
diagonal (D) covariance matrix approach from (Kendall & Gal, 2017), we introduce a low-rank plus diagonal
(LR+D)-parameterized distribution that captures richer output correlations, representing a substantial
advancement in uncertainty modeling.

As a further baseline, we follow the approach by Zepf et al. (2023) and approximate the aleatoric uncertainty
term of Equation 1 to prevent sampling aleatoric P matrices. This reduces the number of resulting columns
from T × (R + 1) to T + R. It is achieved by approximating the expectation of the aleatoric uncertainty Σa

term with the aleatoric covariance prediction of the model with the expected weights:

Σa = Eq∗
θ

[ΣW (x)] ≈ ΣEq∗ [W ](x)

To compute this term, we require the expected weights of the Bayesian models to be well-defined. For MCD,
this is done by turning dropout off and rescaling the activations accordingly. For SVI, where the weights
follow Gaussian distributions, the expected weights are simply the means of the Gaussian distributions. For
DE, we are unable to define expected weights, hence this approximation is not evaluated in this case. Note
that Zepf et al. refer to this approach as MAP solution, which coincides with the expected weights solution if
the weight uncertainty is modeled with symmetrical unimodal distributions like Gaussians as commonly used
by SVI and Laplace Approximation (LA). Furthermore, Zepf et al. do not provide a joint representation, and
log-likelihood calculation is only possible using a combination of our methods.

Model Specifics Finally, we evaluate our joint LR+D parametrization in combination with all three
Bayesian methods. For this case, we let the model predict a matrix PW ∈ RS×RW of rank RW = 8 and for
epistemic models, we draw T = 64 samples. The predictions are multivariate Normal distributions, represented
by their LR+D parametrization. Those predictions are joined to a single, LR+D parametrized distribution.
For the full joint uncertainty LR+D model, this yields a joint P matrix with R = T × (RW + 1) = 576
columns, which we optionally compress down with TSVD while keeping the diagonal variance of the dropped
columns as described in Section 2. For the expected weights baseline, we perform an additional forward pass
using the expected weights and concatenate the aleatoric and epistemic columns, which leads to R = 72 in
total. All models are trained for the same amount of steps. Prediction errors in Appendix D.2.

Hyperparameters for Stable Training Implementing and optimizing heteroscedastic losses can be
challenging due to training instability, overfitting, and balancing between prediction accuracy and uncertainty
estimation. To address these issues, various stabilization techniques have been proposed, such as architectural
decoupling and gradient reweighting based on predicted mean and variance (Stirn et al., 2023; Immer et al.,
2024; Seitzer et al., 2022). While some of these approaches may generalize to LR+D-parametrized normal
distributions, we opted for a weighted loss and a streamlined architecture with multiple output channels.
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MNIST CelebA Flying Chairs
Parameters Epistemic Method Inpainting Inpainting Colorization Optical Flow

×10 ×100 ×1000 ×100
D ✗ -3550 ± 22033 -471 ± 558 240 ± 519 -231 ± 110
LR+D ✗ -2445 ± 14022 -513 ± 1104 495 ± 267 -184 ± 119
D MCD 72 ± 1004 -341 ± 495 324 ± 249 -224 ± 85

SVI -159 ± 3636 -439 ± 621 340 ± 254 -227 ± 104
DE 81 ± 873 -249 ± 403 374 ± 159 -213 ± 72

LR+D MCD E[w] -8 ± 1825 -120 ± 415 565 ± 203 -170 ± 100
SVI E[w] 41 ± 1383 -243 ± 599 558 ± 222 -164 ± 103

MCD (ours) 98 ± 439 40 ± 177 627 ± 67 -158 ± 70
SVI (ours) 91 ± 573 -29 ± 263 641 ± 66 -149 ± 84
DE (ours) 107 ± 275 54 ± 170 631 ± 60 -157 ± 68

Table 1: Quantitative Results. We evaluate the test log-likelihoods (TLLs) (base 10) of model predictions
across various dataset–task combinations, including their test-set variability (standard deviation). Higher
values correspond to greater likelihood and therefore better predictive performance. Our approach is assessed
on four tasks: inpainting, colorization, and optical flow estimation. Likelihoods scale linearly with output
dimensionality and, in the case of masking, are computed only over masked regions. Results are reported for
both Bayesian (MCD, SVI, DE) and non-Bayesian (✗) networks with diagonal (D) and low-rank plus diagonal
(LR+D) covariance parameterizations. For the combination of LR+D and Bayesian methods, we additionally
report outcomes using the expected weights E[w] approximation. Overall, incorporating epistemic uncertainty
and the LR+D representation increases test log-likelihood (TLL), indicating improved predictive fidelity. The
relatively high variance in test log-likelihood on MNIST can be attributed to the discrete and multimodal
nature of the task: predictions that capture the correct digit mode yield substantially higher likelihood than
predictions corresponding to an incorrect digit, leading to large per-sample differences in log-likelihood.

These channels are interpreted as the predictive mean µ(x), diagonal D(x), and factor P (x). Our loss function
L = LI + αLlrd primarily consists of the log-likelihoods of both the LR+D-parametrized and univariate
normal distributions, with the latter effectively reducing to a Mean-Squared-Error loss scaled by a constant.

Llrd =
∑

i

logN
(
yi | µ(xi), D(xi) + P (xi)P ⊤(xi)

)
(11)

LI =
∑

i

logN (yi | µ(xi), I) (12)

The other problem can arise when the predicted variance of parts of the prediction are very low, which can
lead to numerical instabilities. To ensure strict positivity and avoid very small variances, we regularize Σ and
set D(x) = ϵ + exp(Z(x)). Therefore, we choose ϵ empirically. The minimal entry of D(x) is a minimal bound
for the lowest eigenvalue of Σ(x). λ1(D) ≤ λ1(Σ). And hence has an effect on the condition number κ(Σ).

3.1 Main Results - Comparison of the Fit of Predictive Distributions

Quantitative Results To evaluate the uncertainty estimate, we use the test log-likelihood (TLL), which
measures how well a model predicts the observed data while accounting for uncertainty. Higher values indicate
that the observed outcomes are more consistent with the model’s predictive distribution. Quantitatively,
we find that modeling epistemic uncertainty improves the likelihood of unseen test sample predictions, as
shown in Table 1. This improvement holds for both modeling the diagonal and modeling the LR+D across
all experiments.

Additionally, incorporating covariances via our LR+D approach further improves the likelihood of unseen
test sample predictions across all experiments. The effectiveness of the expected weights E[W ] approximation
for aleatoric uncertainty Σa is inconsistent and, for some tasks — such as MNIST — even performs worse
than simpler approaches that do not model epistemic uncertainty. In contrast, our method — combining
both uncertainties into a joint multivariate representation and leveraging SVD — consistently outperforms
all tested Bayesian methods in every experiment.
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Figure 3: Qualitative Results. Random samples from the test sets depict the input, prediction, ground truth,
and parameters of the predictive distribution. The top rows show colorization on CelebA images, while the
bottom rows display inpainting of MNIST digits. Our model predicts a mean (Pred), the parameter D (Diag),
and a low-rank matrix P . In both cases, the predicted joint low-rank matrix P is reduced to the 64 most
significant directions (columns) based on their respective eigenvalues. The 8 images in columns 3-6 visualize
the 8 most important directions with a random orientation in descending order of the associated eigenvalues.
We observe that these columns focus on uncertainty in specific image areas or colors. Additionally, the
singular values Ψ measure the importance of the associated direction. For more qualitative results of all
datasets and Bayesian methods, please see the Appendix Figures 7-11.

Qualitative Results Figure 3 and Appendix Figures 7-10 (Datasets), and 11 (Bayesian Methods) provide
qualitative results, where we show how the 8 most important columns in our joint low-rank matrix P describe
the areas of correlated uncertainty. For example, in the CelebA inpainting task (top), the visualized P
matrix reveals that the first two eigenvectors represent global color shifts across the entire image: the first
corresponds to a color axis between orange and blue (complementary colors), and the second to a purple–green
axis (also complementary). The third and fourth eigenvectors capture contrast between the foreground and
background. The fifth and sixth focus on variations in hair and eye color. Additionally, the singular values
Ψ offer insight into the relative importance of these correlations. Visualization of the eigenvectors is only
possible with our method, which includes the covariance terms; hence, allowing the identification of image
regions with correlated uncertainty. The Parameter D (Diag) captures additional uncertainty, which could
not be captured by the Low Rank Covariance Matrix created by PP ⊤. In summary, these qualitative results
can help to intuitively describe the underlying relations of uncertainty on an image level.

3.2 Complexity of Covariance Parametrizations

Figure 4 presents the memory (left) and time (right) requirements for computing the log-likelihood of different
covariance parameterizations: sparse options like diagonal (D) and low-rank plus diagonal (LR+D), as well
as full covariance Σ using both naive and lower-triangular parameterizations. The complexity is shown as a
function of the number of variables in the covariance matrix, with specific points marking the number of

9
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Figure 4: Empirical memory (left) and time (right, avg. of 100 calculations) for log-likelihood across covariance
parameterizations. Memory scales linearly for LR+D, quadratically for full Σ (until GPU limit). Random
parameters used independent of datasets. LR+D handles larger matrices.
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Figure 5: Condition number distributions for Σ in MNIST inpainting (left), and effects of model parameters
on condition numbers and training stability in CelebA colorization (center and right). The left panel displays
condition numbers for samples ordered by their upper bound, showing exact values tightly between the
computed upper and lower bounds, which validates the numerical estimates. The center panel plots the
numerical condition number estimate of the capacitance matrix over training steps for varying ranks of the
low-rank matrix PW ; higher ranks increase condition numbers and cause training instability. The right panel
shows the upper bound on the covariance matrix condition number versus the minimum diagonal entry ϵ over
training steps; smaller ϵ worsens conditioning and raises numerical failure risk.

variables for each dataset-task combination. Random numbers were used for all parameters, independent of
datasets, for complexity evaluation.

For LR+D, we evaluate various numbers of columns R in the low-rank matrix P . We limit our analysis
to sizes that fit within a single 48GB GPU. As seen in the figure, the LR+D parameterization (with 64
columns) is significantly more efficient than the naive full covariance, both with respect to memory and time,
for all datasets. In larger datasets like CelebA and Flying Chairs, the full covariance matrix approaches the
GPU memory limit, even without batching or storing the model and its gradients. Theoretical details on the
computational complexity can be found in the Appendix C.

3.3 Numerical Validation of Covariance Condition Number Bounds

Figure 5 (left) illustrates condition numbers of the covariance matrix κ(Σ) for MNIST inpainting. The red
and green curves represent the upper and lower bounds on the condition number, respectively, while the black
curve shows the numerical estimate computed in double precision (float64) for 1000 images, sorted by their
estimated condition number. Despite the inherent rounding issues in finite-precision arithmetic, the exact
condition number remains tightly enclosed between the bounds, as seen particularly in the magnified section.
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Figure 6: Impact of Sample Count and Low-Rank Truncation on the Stability and Accuracy of LR+D-
Parametrized Covariance Approximations. Left: Standard deviation of test log-likelihood decreases with
more samples, indicating improved consistency. Right: Relative TLL improvement (%) over diagonal
covariance versus retained columns in low-rank approximation. More columns generally improve results, but
overparameterization can harm performance in low-dimensional cases like MNIST.

3.4 Effect of Training Hyperparameters on Conditioning and Stability

Training low-rank plus diagonal (LR+D) parameterized distributions can be numerically unstable for certain
hyperparameter settings. Instabilities arise during Cholesky decomposition and inversion of the capacitance
matrix for log-likelihood computation.

Figure 5 (center and right) illustrates how two key parameters affect training stability. The center plot
shows the estimated condition number of the capacitance matrix over time for the CelebA colorization task.
Increasing the number of columns in the low-rank matrix PW raises this condition number. Models with 20
or more columns consistently crash because of exploding gradients early in training across datasets. Notably,
the condition number peaks early in training and decreases after 10,000 steps, suggesting early instability.

The right plot shows the upper bound of the condition number of the full covariance matrix in MNIST
inpainting when varying the minimum diagonal value added to ensure positive definiteness. Smaller values
increase the condition number and often cause training failures—values below 0.001 consistently led to
crashes across five random seeds. Low diagonal values are often predicted in background regions near image
boundaries (see Appendix Figure 13), which are typically black and certain in MNIST. This results in very
low predicted uncertainty, small variances, and thus poorly conditioned covariance matrices.

These observations highlight a key trade-off: while small diagonal offsets enable the model to express high
certainty, they also increase numerical instability. To prevent this, it is crucial to enforce a small positive ϵ
on the diagonal, ensuring the smallest eigenvalue remains bounded away from zero.

3.5 Effect of Evaluation Hyperparameters

For a comprehensive evaluation of our uncertainty framework, we conduct multiple ablations to identify
which factors most influence model performance. Specifically, we study the effects of sample count and
dimensionality reduction in the LR+D-parametrized covariance, which sparsely models joint uncertainty.

In Figure 6, the left plot shows the average standard deviation of the TLL across the dataset as the number
of samples T used to estimate the joint multivariate normal distribution increases. We observe that higher
sample counts consistently reduce TLL variability, resulting in more stable and reliable predictions. However,
this increases computation for both forward passes and LR+D rank.

In the right plot, we fix the sample count at T=64 and analyze the impact of truncating the number of retained
columns in the LR+D covariance structure via TSVD. The y-axis shows the relative improvement in TLL (in
%) compared to a purely diagonal covariance. Retaining more columns generally improves performance by
capturing a richer covariance structure. However, for low-dimensional outputs such as MNIST Inpainting
(560 predicted pixels), this benefit saturates and even reverses as the number of retained columns approaches
the number of output dimensions. This indicates that overly expressive low-rank approximations can lead to
overfitting or instability. Notably, across the board, any compromise involving a limited number of columns
still yields significant improvements over a purely diagonal covariance.
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We further ablate various design choices in Appendix D.3 and compare against Nehme et al. (2024) (Tables 5
and 6). First, as shown in Table 7, incorporating the diagonal update defined in Equation 9 leads to
more robust predictions. Next, we investigate the impact of the number of columns RW in PW , which are
directly predicted by the model weights, while keeping the number of columns R retained after TSVD fixed
(Table 8). We find that the optimal value of RW is task-dependent. Nevertheless, for simplicity, stability, and
computational efficiency, we adopt a fixed value of RW = 8 across all tasks in our remaining experiments.
Furthermore, we provide a comprehensive overview of different design choice combinations in the full ablation
Table 9. Finally, we analyze the distribution of eigenvalues of PP ⊤ and D under different approximations
(Figure 12), and examine how the hyperparameter ϵ affects the MNIST inpainting predictions (Figure 13).

4 Discussion

Conclusion In this work, we have explored the dual nature of uncertainties — aleatoric and epistemic
— and their integration in high-dimensional regression tasks. We proposed a novel method that employs
a low-rank plus diagonal covariance matrix to approximate joint uncertainty, effectively preserving vital
output correlations and significantly reducing the computational demands that are inherent to full covariance
matrix representation. Our approach lowers memory usage and improves the efficiency of both sampling
and log-likelihood calculations. To address stability during training, we incorporate tools to monitor and
regularize the condition number of both the covariance matrix and the internally used capacitance matrix.

Empirically, our approach outperforms the commonly used factorized Gaussian representation. It exhibits a
lower negative log-likelihood and produces more reliable uncertainty estimates, demonstrating clear advantages
in uncertainty modeling. Beyond quantitative gains, the low-rank structure also exposes interpretable patterns
in correlated uncertainties — offering insights into how uncertainty propagates across high-dimensional outputs.
These results highlight the method’s effectiveness and interpretability in capturing and quantifying uncertainty
in large-scale regression tasks.

Limitations Our method conceptually extends to any Bayesian framework; however, for simplicity and
computational reasons, we restrict our evaluation to using Monte Carlo Dropout, Stochastic Variational
Inference and Deep Ensemble. Further investigations into other Bayesian inference techniques should
determine their empirical applicability. We expect that more advanced concepts will lead to better overall
uncertainty estimation.

Beyond vision, this parameterization is directly applicable to other multivariate regression settings with
structured outputs, such as graph-based prediction of node or edge attributes, multivariate time series
forecasting of correlated signals (for example, energy demand across regions or multiple physiological
channels), and multi-output tabular or scientific regression where several related physical or environmental
quantities are predicted jointly. While directly applicable, we lack empirical evaluation on these domains,
which we leave for future work.

The method is flexible with regard to the choice in number of columns utilized in the LR+D-parameterization
of the covariance matrix. Increasing the number of columns generally leads to improved uncertainty estimation
but comes at the cost of additional computational complexity and potential training instability.

Training difficulty also arises from numerical sensitivity associated with the covariance matrix and the
internally used capacitance matrix. Specifically, both matrices can become ill-conditioned, resulting in
numerical errors, particularly during Cholesky factorization. Monitoring and managing the condition number
of these matrices is essential to ensure convergence.

Finally, our method builds upon the assumption that uncertainties in output can be modeled by a single
multivariate Gaussian, even though this approximation is often used in the literature Kendall & Gal
(2017); Monteiro et al. (2020); Duff et al. (2023). However, multivariate Gaussians may not be a suitable
approximation for every task, for example, for uncertainties in translation or rotation in images. Exploring
epistemic uncertainty under different distributions is a highly promising research question.

By more expressive approximation of the posterior predictive distribution than traditional joint distributions,
our method enhances both the reliability and explainability of predictions from deep learning models.
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A Symbols and Acronyms

A.1 List of Symbols

Symbol Remark
X Input space, X ⊆ RM

Y Output space, Y ⊆ RS

D = {(xi, yi)}N
i=1 Training dataset with N input–output pairs

x = {xi}N
i=1 Stacked input sample from train split x ∈ RN×M

y = {yi}N
i=1 Stacked input sample from train split x ∈ RN×S

x Single input (test or train) sample
y Single output (test or train) sample

p(w) Prior distribution over weights
p(D | w) Likelihood of the data given weights
p(w | D) Posterior distribution over weights

q⋆
θ(w) Variational (proxy) distribution approximating p(w | D)

p(y | x, w) Predictive distribution given input x and weights w
p(y | x,D) Bayesian predictive distribution (weights marginalized)

p Generic probability distribution
q Generic proxy / variational distribution
N Number of training samples
S Number of output units (e.g., pixels × channels)
M Number of input units (e.g., pixels × channels)
T Number of samples drawn from distribution over weights
K Size of weight space
R Number of columns of tall matrix P

R̂ Number of columns of P̂ after truncation
fw Neural network mapping fw : X → Y parameterized by w
W Weight space, W ∈ RK

w Neural network weight vector w ∈W
µ Mean prediction output of the network x
Σ Covariance (uncertainty) output of the network
e Prediction error of a sample
D Diagonal matrix used for linear low-rank decomposition (LRD), D ∈ RS×S

ϵ Minimal variance entry of Dii enforced by implementation
P Tall matrix used for LRD, P ∈ RS×R

C Capacitance matrix used for inversion of Σ and log-likelihood calculation, C ∈ RR×R

IR Identity matrix, IR ∈ RR×R

0S Zero matrix, 0S ∈ RS×S

U Left singular vectors of P , U ∈ RR×R

Ψ Diagonal matrix of singular values of P , Ψ ∈ RR×R

P̂ Truncated matrix after applying SVD , P̂ ∈ RS×R̂

D̂ Updated D matrix after applying TSVD to P to keep the variance, P̂ ∈ RS×S

P̃ Rotated matrix after applying SVD, P̃ ∈ RS×R

P ⋆ Orthogonal matrix before normalization (used in ablation), P ⋆ ∈ RS×R

P̄ Orthonormal matrix after normalization (used in ablation), P̄ ∈ RS×R

P W Raw model output matrix (used in ablation), P W ∈ RS×R

L Loss function
N Normal (Gaussian) distribution
E[ · ] Expectation operator

Cov[ · ] Covariance operator
[ . . ] Column-wise block concatenation
(·)⊤ Matrix or vector transpose
(·)a Aleatoric uncertainty only
(·)e Epistemic uncertainty only
(·)W Raw model head output from a single forward pass
(·)w Quantity viewed as a function of the weights w
(·)wi Quantity evaluated at a particular weight sample wi

(·)i_ ith row of a matrix
(·)_i ith column of a matrix
λ(·) Eigenvalue operator applied to matrix ·
κ(·) Condition number operator applied to matrix ·
α, β Hyperparameters scalar controlling trade-off in loss

L,LI ,Llrd,LP̄ ,Lpa Loss functions as defined in the equations
⌊.⌋ Stop-gradient operator

Table 2: List of symbols used in the paper.
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A.2 List of Acronyms

Acronyms

Flying Chairs

CelebA CelebFaces Attributes

D diagonal

DE Deep Ensemble

GT ground truth

LA Laplace Approximation

LL log-likelihood

LR+D low-rank plus diagonal

LU lower-upper

MAP Maximum a posteriori

MC Monte Carlo

MCD Monte Carlo Dropout

MNIST Modified National Institute of Standards and Technology database

NLL negative log-likelihood

NPPC Neural Posterior Principal Components

SVD Singular Value Decomposition

SVI Stochastic Variational Inference

TLL test log-likelihood

TSVD Truncated Singular Value Decomposition

UQ Uncertainty Quantification

B Reproducibility

An anonymized implementation and scripts to reproduce all experiments are available at https://anonymous.
4open.science/r/corr-joint-ae. Checkpoints for all models trained with the proposed method, as well as
all baselines, are available upon request. The datasets used in the experiments are publicly accessible and
links as well as preprocessing scripts are included in the repository. An extensive schematic, with pseudocode
and intuitive description of the method, along with proofs, is also included here. Additionally, qualitative
examples are provided to enhance understanding of the method. All experiments were conducted on a single
NVIDIA Quadro RTX 8000 GPU with 48 GB of RAM. For all experiments, we fix the random seed to 42.
For Deep Ensemble models, we train ensemble members using distinct seeds 42, 43, 44, 45, 46, following
standard practice.

C Computation, Time and Space Complexity

Table 3 gives the theoretical time and memory complexities of various covariance parametrizations and
calculations. The sparse representations are more efficient in terms of memory and computational complexity.
However, they do not provide all degrees of freedom of a covariance matrix and are limited to either local or
the most important global correlations.
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Captured Precompute Per-Eval Memory
correlation p(y | N ) y ∼ N

Type Parametrization xΣ−1x |Σ|
full Russell & Reale (2021) correlation all O(S3) O(S2) O(S) O(S2) O(S2)

full Gundavarapu et al. (2019) lower-triangular Cholesky all – O(S2) O(S) O(S2) O(S2)
sparse Dorta et al. (2018a;b) inverse band Cholesky ⋆ local – O(SR) O(S) O(SR) O(SR)
sparse Monteiro et al. (2020) LRD global O(SR2 + R3) O(SR) O(SR) O(SR) O(SR)

factorized Kendall & Gal (2017) diagonal none – O(S) O(S) O(S) O(S)

Table 3: This table depicts the computational complexity for calculations using different parametrizations for
covariance matrices. Here S is the output dimensionality (number of variables) and R denotes the structural
size: for banded Cholesky R is the bandwidth (number of subdiagonals), and for low-rank plus diagonal
(LR+D) R is the factor rank; throughout R ≪ S is assumed. We use the sparse LR+D parametrization
as the basis for our method. This reduces time and spatial complexity in comparison to the naive or
Cholesky decomposition and allows for global correlation in comparison to the sparse inverse band Cholesky
parametrization. The type and amount of correlations of different parametrization is different (Captured Corr).
Furthermore, the used representation enables for efficient calculation of Σ or Σ−1 (Parametr. Representation)
and needs different amount of memory. The time complexity is given for calculation of the mahalanobis
distance xΣ−1x⊤, determinant |Σ| as well as sampling.
⋆ Inverse band Cholesky assumes a direct parametrization of a banded precision factor L with Σ−1 = LL⊤.
The per-evaluation costs shown (quadratic form and sampling in O(SR), log-determinant in O(S)) use
precision-based sampling via triangular solves, as in Dorta et al. (2018a;b). Achieving these O(SR) costs in
practice requires implementations that exploit band structure; generic dense linear algebra backends typically
treat L as a full S × S matrix.

D Additional Results

D.1 Qualitative Results

We provide additional qualitative results for every performed tasks. Figures 7 presents optical flow on Flying
Chairs, 8 depicts CelebA inpainting, 9 shows CelebA colorization, and 10 illustrates MNIST inpainting.
Figure 11 compares both, eigenvectors in both random orientations as well as the different used Bayesian
methods.

The optical flow visualization of Figure 7 encodes the 2D motion vectors into a color image using a color wheel
scheme. Each pixel’s hue corresponds to the direction of motion, covering all angles in a circular manner
(e.g., red for rightward motion, green for upward, blue for leftward, etc.). The color saturation or intensity
represents the magnitude of the motion, with brighter and more saturated colors indicating higher motion
speeds. This method allows intuitive interpretation of both the direction and speed of movement in the scene
or the direction of the movement uncertainty for the Eigenvectors.

18



Under review as submission to TMLR

Figure 7: Additional Qualitative Results, Visualizing ’ Optical Flow. Random samples from the test sets
showing input, prediction, ground truth and parameters of the predictive distribution. The task here is
optical flow estimation in the dataset. The model predicts a mean (Pred), and the parameter D (Diag),
as well as a low-rank matrix P . In all cases, the predicted joint low-rank matrix P is reduced to the 64
most significant directions (columns) and displayed using the 10 most significant ones in descending order of
associated eigenvalues. We can clearly see that the columns focus on uncertainty in certain images areas.
Furthermore, the singular values Ψ give a measure of importance of the associated direction. Note that the
orientation of the singular vectors is arbitrarily chosen and can be inverted, which results in opposite colors
(left) and brightness (right). In these examples, the first singular vectors are more than 10 times as important
as the 8th and last visualized singular vectors. One can get insights into the uncertainty priority: For instance,
in the first example, the background seems to be the most uncertain in both directions according to the first
two eigenvectors (with roughly the same value). In the second example, the first singular values suggest a
higher uncertainty in the foreground and the rightmost background of the image. These eigenvectors are
only possible to visualize when modeling covariances and show the direction of maximum variability of the
data and helps to understand the underlying factors. Furthermore, we show the upper bound of the angles
between the directions of the eigenvectors of PP ⊤ and the eigenvectors of Σ.
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Figure 8: Additional Qualitative Results, Visualizing Inpainting of Eyes of CelebA Faces. Random samples
from the test sets showing input, prediction, ground truth and parameters of the predictive distribution. The
task here is inpainting of the eyes region of the CelebA faces dataset. The model predicts a mean (Pred), and
the parameter D (Diag), as well as a low-rank matrix P . In all cases, the predicted joint low-rank matrix P
is reduced to the 64 most significant directions (columns) and displayed using the 10 most significant ones in
descending order of associated eigenvalues.
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Figure 9: Additional Qualitative Results, Visualizing the Colorization of CelebA Faces. Random samples
from the test sets showing input, prediction, ground truth and parameters of the predictive distribution. The
task here is colorization of the CelebA faces dataset. The model predicts a mean (Pred), and the parameter
D (Diag), as well as a low-rank matrix P . In all cases, the predicted joint low-rank matrix P is reduced to
the 64 most significant directions (columns) and displayed using the 10 most significant ones in descending
order of associated eigenvalues.
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Figure 10: Additional Qualitative Results, Visualizing Inpainting of MNIST Digits. Random samples from
the test sets showing input, prediction, ground truth and parameters of the predictive distribution. The task
is inpainting MNIST digits. The model predicts a mean (Pred), and the parameter D (Diag), as well as a
low-rank matrix P . In all cases, the predicted joint low-rank matrix P is reduced to the 64 most significant
directions (columns) and displayed using the 10 most significant ones in descending order of associated
eigenvalues.
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Figure 11: Additional Qualitative Results, comparing Bayesian Methods. A Random sample from the test
sets showing input, prediction, ground truth and parameters of the predictive distribution with various
Bayesian Methods. For the first method, we also show the eigenvectors with inverse sign. Both signs are
mathematically equivalent and one of them is randomly chosen for the visualizations. The task here is
colorization of the CelebA faces dataset. The model predicts a mean (Pred), and the parameter D (Diag),
as well as a low-rank matrix P . In all cases, the predicted joint low-rank matrix P is reduced to the 64
most significant directions (columns) and displayed using the 10 most significant ones in descending order of
associated eigenvalues.
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D.2 Quantitative Prediction Errors

Table 4 lists the predicted errors for all Bayesian methods. We aim for similar predictive errors for all models
to get mainly evaluate the quality of the uncertainty using test log-likelihood (TLL).

MNIST CelebA Flying Chairs
Inpainting Colorization Inpainting Opt. Flow

Param. RW Epistemic L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓

✗ 0 ✗ 0.102 0.231 0.0326 0.0467 0.354 0.451 2.48 5.50

D 0 ✗ 0.102 0.232 0.0329 0.0473 0.355 0.452 2.67 5.59
MCD 0.111 0.240 0.0339 0.0488 0.354 0.452 2.64 5.60

SVI 0.107 0.234 0.0331 0.0476 0.355 0.452 2.63 5.61
DE 0.107 0.233 0.0309 0.0446 0.354 0.451 2.27 5.18

LR+D 4 MCD 0.109 0.235 0.0315 0.0453 0.354 0.451 2.54 5.54
8 ✗ 0.103 0.232 0.0317 0.0457 0.355 0.452 2.48 5.48

MCD 0.109 0.235 0.0313 0.0451 0.354 0.451 2.58 5.54
SVI 0.109 0.236 0.0312 0.0449 0.355 0.452 2.66 5.66
DE 0.108 0.232 0.0310 0.0447 0.353 0.451 2.28 5.19

12 MCD 0.110 0.235 0.0315 0.0454 0.354 0.451 2.57 5.57
16 MCD 0.110 0.235 0.0315 0.0452 0.354 0.451 2.49 5.47

Table 4: Comparison of reconstruction or prediction errors of all methods. We use the same loss for the
prediction between those methods. The last convolutional layer of models with LR+D parametrization has
more channels in comparison to models with D parametrization. Furthermore, row 0 shows the result for
models trained without extra channels for aleatoric uncertainty prediction. The uncertainty channels of the
other models receive gradients from different negative log-likelihood functions. Bayesian models (Epistemic)
include additional Dropout layers or variational convolutional layers and are evaluated using T = 64 weight
samples. Essentially, the presented study shows our robust, better uncertainty quantification towards the
quality of the prediction. This is important to evaluate because the negative-log-likelihood is affected by
both prediction and uncertainty estimation.

D.3 Additional Ablation Study

Comparison with Nehme et al. (2024) We trained additional models to compare with the approach of
Nehme et al. (2024), as summarized in Tables 5, 6, and 4. To enable the use of Nehme’s Neural Posterior
Principal Components (NPPC) loss for the covariance factor, several modifications were necessary.

First, to improve training stability, the mean and uncertainty predictions were separated into two models, with
the uncertainty model optionally receiving the mean model’s output as an additional input (indicated by the
Combined column: ✓vs. ✗). Second, Gram–Schmidt orthogonalization was applied to enforce orthogonality
of the covariance directions (Gram–Schmidt column: ✓vs. ✗), a prerequisite for the NPPC loss. Finally, the
NPPC loss was applied to the covariance factor P , while the diagonal covariance terms remained optimized
with the LR+D loss using a stop-gradient on P .

Due to instability, NPPC training was only viable with separate models and Gram–Schmidt projection;
combined mean–uncertainty models with NPPC were not stable. Thus, we present results showing a stepwise
transition from the baseline LR+D model to the NPPC configuration.

Before any subsequent loss computation or evaluation, the raw low-rank model output matrix P W consists of
columns pW

r that represent initial (non-orthogonal) low-rank directions. These columns are first orthogonalized
using the Gram–Schmidt process to obtain the orthogonalized directions pa

r . Normalizing these columns
produces the orthonormal directions p̄r.

In matrix form, these are arranged as:

P W =
[
pW

1 pW
2 · · · pW

R

]
, P ⋆ =

[
p⋆

1 p⋆
2 · · · p⋆

R

]
, P̄ =

[
p̄1 p̄2 · · · p̄R

]
.
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Each pW
r , p⋆

r , p̄r is a column vector in these respective matrices representing different stages of processing for
the basis directions in the low-rank decomposition.

Algorithm 1 Gram-Schmidt
Require: Model output vectors pW

1 , pW
2 , . . . , pW

R

Ensure: Orthogonal vectors p⋆
1, p⋆

2, . . . , p⋆
R

Ensure: Orthonormal vectors p̄1, p̄2, . . . , p̄R

1: p⋆
1 = pW

1

2: p̄1 = p⋆
1

∥p⋆
1∥

3: for k = 2 to K do
4: Form the matrix of previous orthonormal columns:

P̄ (r−1) =
[
p̄1 · · · p̄r−1

]
5: Orthogonalize:

p⋆
r = pW

r − P̄ (r−1)
(

(P̄ (r−1))⊤p⋆
r

)
6: Normalize:

p̄r = p⋆
r

∥p⋆
r∥

7: end for

The NPPC objectives are calculated using the detached prediction error e(xi) = ⌊µ(xi)− yi⌋, and decompose
into direction and variance losses:

LP̄ = 1−
∑

i

∥∥P̄ ⊤(xi)e(xi)
∥∥2

LP ⋆ =
∑

i

1
∥ei∥4︸ ︷︷ ︸

normalization

RW∑
r=1

(
∥p⋆

r(xi)∥2 −
(
p̄⊤

r (xi)e(xi)
)2)2

Whereas the normalization 1
∥ei∥4 , is not explicitly mentioned in Nehme et al. (2024) while the accompanying

implementation of the NPPC actually normalizes the variance loss LP ⋆ . Therefore, we stick with their
implementation and adapt the formulas accordingly. The joint loss becomes:

Llrd⋆ =
∑

i

logN
(
yi | ⌊µ(xi)⌋, D(xi) + ⌊P (xi)P ⊤(xi)⌋

)
(13)

L = αLlrd⋆ + β LP̄ + β Lp⋆ (14)

We evaluate models using TLL (Table 5) and relative reconstruction error

e = µ(x)− y,
e− PP ⊤e

e
,

which quantifies the fraction of residual error unexplained by the covariance directions (Table 6). Prediction
errors from the previous section (Table 4) serve as baseline references.

The LR+D-trained models consistently outperform NPPC variants in TLL, indicating better likelihood-based
prediction. Conversely, NPPC reduces the relative reconstruction error, suggesting improved capture of
residual structure by the covariance factor. These results highlight a trade-off: optimizing for TLL favors
LR+D models, while NPPC better models orthogonal residual errors, guiding metric-dependent optimization
choices.

Models without combined prediction use the same mean model as the first row of Table 4, allowing direct
reading of their prediction errors from that reference.
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MNIST CelebA Flying Chairs
Combined Gram Schmid Loss Inpainting Inpainting Colorization Optical Flow

×10 ×100 ×1000 ×1000
✓ ✗ 105 ± 158 -65 ± 239 585 ± 116 -173 ± 73

✓ 97 ± 463 -91 ± 341 582 ± 113 -167 ± 75
✗ ✗ 99 ± 63 -79 ± 162 566 ± 58 -91 ± 132

✓ 99 ± 48 -75 ± 156 565 ± 64 -95 ± 120
NPPC 95 ± 162 -96 ± 284 571 ± 99 -100 ± 206

Table 5: TLL for each model configuration across tasks. The table compares the impact of combined versus
separate mean and uncertainty models (Combined), application of Gram–Schmidt orthogonalization (Gram
Schmid), and different loss functions, including NPPC. Values are reported as mean ± standard deviation,
scaled as indicated.

MNIST CelebA Flying Chairs
Combined Gram Schmid Loss Inpainting Inpainting Colorization Optical Flow
✓ ✗ 0.39 ± 0.06 0.36 ± 0.13 0.63 ± 0.08 0.62 ± 0.13

✓ 0.39 ± 0.06 0.36 ± 0.13 0.62 ± 0.08 0.63 ± 0.13
✗ ✗ 0.41 ± 0.06 0.37 ± 0.13 0.68 ± 0.08 0.62 ± 0.14

✓ 0.38 ± 0.06 0.37 ± 0.13 0.67 ± 0.08 0.61 ± 0.14
NPPC 0.31 ± 0.07 0.36 ± 0.12 0.61 ± 0.07 0.53 ± 0.13

Table 6: Relative reconstruction error
(

e−P P ⊤e
e

)
for each model configuration on the same test sets.

This metric captures the proportion of the prediction residual error not explained by the covariance model
directions, providing insight into the quality of uncertainty estimation. Column organization matches Table 5
for direct comparison.

Joint vs. separate training of mean and uncertainty models While the design choice to jointly train
mean prediction and uncertainty estimation models is conceptually cleaner and yields superior results on
three out of four benchmark tasks, an exception arises in the Flying Chairs dataset. For this dataset, the
separate model setup performs significantly better. In the split configuration, the uncertainty model receives
as input the concatenation of both the original input and the output of the mean prediction model.

This architectural difference may explain the observed discrepancy in performance. Unlike image inpainting and
colorization tasks—where the model has no direct way to verify the correctness of its predictions—the Flying
Chairs task inherently allows the uncertainty model to implicitly "check" prediction accuracy. Specifically,
the uncertainty model can leverage the input images and predicted flow outputs to learn pixel shifts that
align with ground truth, effectively evaluating the prediction quality.

We hypothesize that this direct feedback mechanism enables the separate uncertainty model in Flying Chairs
to better estimate prediction errors, whereas joint training suffices or outperforms for other tasks where such
verification is unavailable or less direct. This is supported by the negative log-likelihood comparisons reported
in Table 5, where the split model outperforms the combined model specifically on the Flying Chairs dataset.

This suggests that task-specific characteristics and the degree of prediction observability should guide the
choice between joint and separated uncertainty modeling architectures.

Retaining variance of TSVD One component of our proposed method is to retain the variance of the
removed columns after dimensionality reduction using SVD, see 9. In Table 7 we ablate this design choice.
The column D̂ indicates whether the diagonal D is updated (✓) after performing SVD according to Equation
9, or if the original D is retained (✗) as per Equation 6. Our ablation shows that updating the diagonal D
appears to slightly improve the average, TLL while also enhancing prediction consistency and reducing test
set variability. This is consistent for three different configurations of dimensionality reductions, see Table 7.
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MNIST CelebA Flying Chairs
R D̂ Inpainting Inpainting Colorization Optical Flow

×10 ×100 ×1000 ×1000

8 ✓ 95 ± 78 -194 ± 281 521 ± 138 -194 ± 84
✗ 48 ± 1341 -294 ± 556 519 ± 241 -186 ± 109

16 ✓ 96 ± 88 -152 ± 263 548 ± 139 -186 ± 82
✗ 53 ± 1255 -211 ± 439 550 ± 203 -178 ± 98

32 ✓ 101 ± 102 -109 ± 249 567 ± 129 -179 ± 76
✗ 60 ± 1098 -143 ± 368 571 ± 171 -172 ± 87

64 ✓ 105 ± 158 -65 ± 239 585 ± 116 -173 ± 73
✗ 72 ± 883 -82 ± 311 589 ± 141 -167 ± 80

128 ✓ 103 ± 308 -22 ± 223 602 ± 87 -167 ± 72
✗ 84 ± 662 -28 ± 253 604 ± 96 -163 ± 75

256 ✓ 97 ± 446 17 ± 201 616 ± 75 -161 ± 71
✗ 95 ± 482 16 ± 207 617 ± 78 -160 ± 72

512 ✓ 98 ± 439 39 ± 179 626 ± 68 -158 ± 70
✗ 98 ± 439 39 ± 179 626 ± 68 -158 ± 70

576 - 98 ± 439 40 ± 177 627 ± 67 -158 ± 70

Table 7: Comparison between adapting the diagonal D after performing the SVD according to Equation 9 or
not. Here R denotes the number of columns in the resulting representation. The columns P a and P e denote
if and to what degree the dimensionality is reduced after sampling using SVD. The numbers in brackets
denote the kept singular vectors, which result in columns R. The column D̂ indicates whether the diagonal D
is updated (✓) after performing SVD according to Equation 9, or if the original D is retained as per Equation
6, despite the dimensionality reduction of P . We show in the first three rows that updating the diagonal D
appears to slightly improve the average TLL while also enhancing prediction consistency and reducing test
set variability.

MNIST CelebA Flying Chairs
R RW Inpainting Inpainting Colorization Optical Flow

×10 ×100 ×1000 ×1000

16 4 91 ± 402 -218 ± 429 537 ± 140 -180 ± 90
8 96 ± 88 -152 ± 263 548 ± 139 -186 ± 82
12 103 ± 80 -135 ± 236 526 ± 76 -190 ± 70
16 106 ± 147 -129 ± 155 535 ± 72 -192 ± 71

32 4 83 ± 760 -168 ± 398 556 ± 118 -174 ± 85
8 101 ± 102 -109 ± 249 567 ± 129 -179 ± 76
12 105 ± 106 -98 ± 229 555 ± 87 -182 ± 68
16 112 ± 163 -102 ± 167 568 ± 76 -182 ± 70

64 4 83 ± 781 -114 ± 348 573 ± 100 -167 ± 82
8 105 ± 158 -65 ± 239 585 ± 116 -173 ± 73
12 108 ± 148 -58 ± 224 582 ± 81 -174 ± 68
16 113 ± 173 -65 ± 177 594 ± 72 -172 ± 71

128 4 82 ± 794 -66 ± 299 589 ± 86 -161 ± 79
8 103 ± 308 -22 ± 223 602 ± 87 -167 ± 72
12 109 ± 245 -14 ± 215 607 ± 67 -166 ± 69
16 115 ± 238 -21 ± 184 617 ± 68 -162 ± 72

Table 8: Comparison between different number of columns used during training the model. While RW

denotes the number of columns produced by the model without sampling., R denotes the number of columns
in the resulting representation. The column P show how SVD is used dimensionality is reduced. The number
in the brackets denote the kept singular vectors, which result as columns R. The results tend to be better
with a higher number of learned columns RW . In general, increasing RW can cause increasing training time.
However, we also experienced instabilities during training for 3 of those tasks when using RW = 32.
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Influence of output layer columns Furthermore, Table 8 evaluates the impact of the number of columns
predicted by the model’s output layer. Increasing the number of columns benefits the TLL for the 3 tasks
with larger images and therefore a higher dimensional output space (CelebA inpainting and colorization as
well as optical flow estimation on flying chairs). However, this increases computational complexity and lead
to numerical instabilities during training, as models with RW ≥ 20 columns fail for all tasks. Balancing these
trade-offs, we chose a rank of 8, which aligns close with the choice of Monteiro et al. (2020).

Finally, Table 9 presents an extended ablation of various parameters, non-Bayesian with various Bayesian
Models (epis) and both kinds of distribution parametrizations (Param). Therefore, it compares a purely
diagonal (D) uncertainty with our LR+D parametrization. The representation took T Bayesian samples, and
results in R columns of the low-rank matrix. The aleatoric matrix P a is in some rows approximated using
the expected weights E[W ] approximation. The number of columns of the matrix (P ) is optionally reduced
using TSVD. The matrix is not existant for D Parametriations (-) truncated (✓) or kept (✗). The column D̂
indicates whether the diagonal D is updated (✓) after performing TSVD according to Equation 9, or if the
original D is retained as per Equation 6, despite the dimensionality reduction of P .

Table 9:

MNIST CelebA Flying Chairs
Epis Param RW T P a TSVD D̂ R Inpainting Inpainting Colorization Optical Flow

×10 ×100 ×1000 ×1000

✗ D 0 0 + 1 - - - 0 -3550 ± 22033 -471 ± 558 240 ± 519 -231 ± 110
✗ LR+D 8 0 + 1 - ✗ - 8 -2445 ± 14022 -513 ± 1104 495 ± 267 -184 ± 119

MCD D 0 64 + 0 - - - 0 72 ± 1004 -341 ± 495 324 ± 249 -224 ± 85
MCD D 0 64 + 1 E[W ] - - 0 22 ± 1599 -362 ± 530 317 ± 265 -224 ± 90
MCD LR+D 4 64 + 0 - ✓ ✗ 4 55 ± 1295 -373 ± 652 456 ± 272 -196 ± 125
MCD LR+D 4 64 + 0 - ✓ ✓ 4 90 ± 144 -298 ± 472 478 ± 163 -194 ± 97
MCD LR+D 4 64 + 0 - ✓ ✗ 8 57 ± 1279 -317 ± 609 506 ± 202 -186 ± 113
MCD LR+D 4 64 + 0 - ✓ ✓ 8 91 ± 190 -260 ± 452 514 ± 152 -187 ± 94
MCD LR+D 4 64 + 0 - ✓ ✗ 16 59 ± 1246 -259 ± 558 534 ± 168 -178 ± 104
MCD LR+D 4 64 + 0 - ✓ ✓ 16 91 ± 402 -218 ± 429 537 ± 140 -180 ± 90
MCD LR+D 4 64 + 0 - ✓ ✗ 32 63 ± 1167 -193 ± 481 556 ± 134 -171 ± 95
MCD LR+D 4 64 + 0 - ✓ ✓ 32 83 ± 760 -168 ± 398 556 ± 118 -174 ± 85
MCD LR+D 4 64 + 0 - ✓ ✗ 64 69 ± 1054 -126 ± 390 574 ± 108 -165 ± 87
MCD LR+D 4 64 + 0 - ✓ ✓ 64 83 ± 781 -114 ± 348 573 ± 100 -167 ± 82
MCD LR+D 4 64 + 0 - ✓ ✗ 128 75 ± 930 -69 ± 312 589 ± 89 -160 ± 81
MCD LR+D 4 64 + 0 - ✓ ✓ 128 82 ± 794 -66 ± 299 589 ± 86 -161 ± 79
MCD LR+D 4 64 + 0 - ✓ ✗ 256 81 ± 815 -30 ± 257 601 ± 77 -156 ± 76
MCD LR+D 4 64 + 0 - ✓ ✓ 256 81 ± 811 -30 ± 256 601 ± 77 -156 ± 76
MCD LR+D 4 64 + 1 E[W ] ✗ - 68 -9 ± 1947 -144 ± 438 548 ± 183 -169 ± 105
MCD LR+D 8 8 + 0 - ✗ - 72 58 ± 1060 -139 ± 355 576 ± 150 -173 ± 90
MCD LR+D 8 16 + 0 - ✗ - 144 75 ± 812 -63 ± 268 596 ± 114 -167 ± 80
MCD LR+D 8 24 + 0 - ✗ - 216 82 ± 691 -23 ± 232 607 ± 92 -164 ± 75
MCD LR+D 8 32 + 0 - ✗ - 288 86 ± 623 0 ± 211 614 ± 83 -162 ± 73
MCD LR+D 8 40 + 0 - ✗ - 360 91 ± 551 16 ± 197 618 ± 77 -161 ± 72
MCD LR+D 8 48 + 0 - ✗ - 432 94 ± 507 26 ± 188 622 ± 73 -159 ± 71
MCD LR+D 8 56 + 0 - ✗ - 504 96 ± 470 34 ± 182 625 ± 69 -159 ± 71
MCD LR+D 8 64 + 0 - ✓ ✗ 8 48 ± 1341 -294 ± 556 519 ± 241 -186 ± 109
MCD LR+D 8 64 + 0 - ✓ ✓ 8 95 ± 78 -194 ± 281 521 ± 138 -194 ± 84
MCD LR+D 8 64 + 0 - ✓ ✗ 16 53 ± 1255 -211 ± 439 550 ± 203 -178 ± 98
MCD LR+D 8 64 + 0 - ✓ ✓ 16 96 ± 88 -152 ± 263 548 ± 139 -186 ± 82
MCD LR+D 8 64 + 0 - ✓ ✗ 32 60 ± 1098 -143 ± 368 571 ± 171 -172 ± 87
MCD LR+D 8 64 + 0 - ✓ ✓ 32 101 ± 102 -109 ± 249 567 ± 129 -179 ± 76
MCD LR+D 8 64 + 0 - ✓ ✗ 64 72 ± 883 -82 ± 311 589 ± 141 -167 ± 80
MCD LR+D 8 64 + 0 - ✓ ✓ 64 105 ± 158 -65 ± 239 585 ± 116 -173 ± 73
MCD LR+D 8 64 + 0 - ✓ ✗ 128 84 ± 662 -28 ± 253 604 ± 96 -163 ± 75
MCD LR+D 8 64 + 0 - ✓ ✓ 128 103 ± 308 -22 ± 223 602 ± 87 -167 ± 72
MCD LR+D 8 64 + 0 - ✓ ✗ 256 95 ± 482 16 ± 207 617 ± 78 -160 ± 72
MCD LR+D 8 64 + 0 - ✓ ✓ 256 97 ± 446 17 ± 201 616 ± 75 -161 ± 71
MCD LR+D 8 64 + 0 - ✓ ✗ 512 98 ± 439 39 ± 179 626 ± 68 -158 ± 70
MCD LR+D 8 64 + 0 - ✓ ✓ 512 98 ± 439 39 ± 179 626 ± 68 -158 ± 70
MCD LR+D 8 64 + 0 - ✗ - 576 98 ± 439 40 ± 177 627 ± 67 -158 ± 70
MCD LR+D 8 72 + 0 - ✗ - 648 99 ± 419 45 ± 174 629 ± 66 -158 ± 70
MCD LR+D 8 80 + 0 - ✗ - 720 100 ± 406 48 ± 171 631 ± 64 -157 ± 69
MCD LR+D 8 88 + 0 - ✗ - 792 101 ± 394 51 ± 168 632 ± 63 -157 ± 69
MCD LR+D 8 96 + 0 - ✗ - 864 101 ± 381 54 ± 166 633 ± 62 -156 ± 69
MCD LR+D 8 104 + 0 - ✗ - 936 102 ± 372 56 ± 164 634 ± 61 -156 ± 69
MCD LR+D 8 112 + 0 - ✗ - 1008 102 ± 364 58 ± 163 635 ± 60 -156 ± 68
MCD LR+D 8 120 + 0 - ✗ - 1080 103 ± 357 60 ± 162 636 ± 59 -156 ± 68
MCD LR+D 8 128 + 0 - ✗ - 1152 103 ± 351 61 ± 160 637 ± 59 -155 ± 68
MCD LR+D 8 64 + 1 E[W ] ✗ - 72 -8 ± 1825 -120 ± 415 565 ± 203 -170 ± 100
MCD LR+D 12 64 + 0 - ✓ ✗ 8 58 ± 1327 -308 ± 596 475 ± 296 -184 ± 93
MCD LR+D 12 64 + 0 - ✓ ✓ 8 87 ± 59 -233 ± 93 366 ± 55 -206 ± 68
Table 9 – Continued on next page
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Table 9 – Continued from previous page
MNIST CelebA Flying Chairs

Epis Param RW T P a TSVD D̂ R Inpainting Inpainting Colorization Optical Flow
×10 ×100 ×1000 ×1000

MCD LR+D 12 64 + 0 - ✓ ✗ 12 61 ± 1299 -252 ± 530 522 ± 255 -178 ± 89
MCD LR+D 12 64 + 0 - ✓ ✓ 12 100 ± 68 -151 ± 236 504 ± 58 -194 ± 71
MCD LR+D 12 64 + 0 - ✓ ✗ 16 64 ± 1222 -216 ± 498 533 ± 243 -174 ± 86
MCD LR+D 12 64 + 0 - ✓ ✓ 16 103 ± 80 -135 ± 236 526 ± 76 -190 ± 70
MCD LR+D 12 64 + 0 - ✓ ✗ 24 69 ± 1094 -176 ± 463 550 ± 219 -170 ± 83
MCD LR+D 12 64 + 0 - ✓ ✓ 24 104 ± 97 -114 ± 232 543 ± 84 -185 ± 69
MCD LR+D 12 64 + 0 - ✓ ✗ 32 74 ± 975 -148 ± 432 563 ± 204 -168 ± 81
MCD LR+D 12 64 + 0 - ✓ ✓ 32 105 ± 106 -98 ± 229 555 ± 87 -182 ± 68
MCD LR+D 12 64 + 0 - ✓ ✗ 48 79 ± 856 -110 ± 385 579 ± 179 -165 ± 79
MCD LR+D 12 64 + 0 - ✓ ✓ 48 107 ± 123 -75 ± 226 571 ± 89 -178 ± 68
MCD LR+D 12 64 + 0 - ✓ ✗ 64 83 ± 788 -84 ± 354 590 ± 134 -163 ± 77
MCD LR+D 12 64 + 0 - ✓ ✓ 64 108 ± 148 -58 ± 224 582 ± 81 -174 ± 68
MCD LR+D 12 64 + 0 - ✓ ✗ 96 88 ± 696 -48 ± 302 604 ± 99 -160 ± 75
MCD LR+D 12 64 + 0 - ✓ ✓ 96 109 ± 196 -33 ± 219 597 ± 71 -169 ± 68
MCD LR+D 12 64 + 0 - ✓ ✗ 128 91 ± 624 -23 ± 273 613 ± 84 -158 ± 74
MCD LR+D 12 64 + 0 - ✓ ✓ 128 109 ± 245 -14 ± 215 607 ± 67 -166 ± 69
MCD LR+D 12 64 + 0 - ✓ ✗ 192 96 ± 540 7 ± 239 624 ± 69 -156 ± 73
MCD LR+D 12 64 + 0 - ✓ ✓ 192 106 ± 345 11 ± 208 620 ± 62 -161 ± 69
MCD LR+D 12 64 + 0 - ✓ ✗ 256 99 ± 482 27 ± 217 631 ± 63 -155 ± 72
MCD LR+D 12 64 + 0 - ✓ ✓ 256 103 ± 413 28 ± 200 629 ± 59 -158 ± 70
MCD LR+D 12 64 + 0 - ✓ ✗ 384 102 ± 435 49 ± 188 639 ± 56 -153 ± 71
MCD LR+D 12 64 + 0 - ✓ ✓ 384 102 ± 434 49 ± 184 638 ± 55 -154 ± 70
MCD LR+D 12 64 + 0 - ✓ ✗ 512 102 ± 433 60 ± 174 644 ± 53 -152 ± 71
MCD LR+D 12 64 + 0 - ✓ ✓ 512 102 ± 433 60 ± 173 644 ± 52 -153 ± 70
MCD LR+D 12 64 + 0 - ✓ ✗ 768 102 ± 433 65 ± 165 649 ± 49 -152 ± 70
MCD LR+D 12 64 + 0 - ✓ ✓ 768 102 ± 433 65 ± 165 649 ± 49 -152 ± 70
MCD LR+D 12 64 + 1 E[W ] ✗ - 76 9 ± 1703 -103 ± 410 575 ± 199 -162 ± 83
MCD LR+D 16 64 + 0 - ✓ ✗ 16 77 ± 1285 -207 ± 452 529 ± 267 -172 ± 98
MCD LR+D 16 64 + 0 - ✓ ✓ 16 106 ± 147 -129 ± 155 535 ± 72 -192 ± 71
MCD LR+D 16 64 + 0 - ✓ ✗ 32 85 ± 1023 -151 ± 365 575 ± 168 -163 ± 92
MCD LR+D 16 64 + 0 - ✓ ✓ 32 112 ± 163 -102 ± 167 568 ± 76 -182 ± 70
MCD LR+D 16 64 + 0 - ✓ ✗ 64 94 ± 779 -91 ± 303 603 ± 118 -157 ± 87
MCD LR+D 16 64 + 0 - ✓ ✓ 64 113 ± 173 -65 ± 177 594 ± 72 -172 ± 71
MCD LR+D 16 64 + 0 - ✓ ✗ 128 101 ± 607 -31 ± 249 624 ± 88 -152 ± 82
MCD LR+D 16 64 + 0 - ✓ ✓ 128 115 ± 238 -21 ± 184 617 ± 68 -162 ± 72
MCD LR+D 16 64 + 0 - ✓ ✗ 256 108 ± 455 22 ± 201 641 ± 68 -147 ± 78
MCD LR+D 16 64 + 0 - ✓ ✓ 256 111 ± 377 24 ± 183 638 ± 62 -152 ± 73
MCD LR+D 16 64 + 0 - ✓ ✗ 512 111 ± 387 58 ± 166 655 ± 55 -144 ± 76
MCD LR+D 16 64 + 0 - ✓ ✓ 512 111 ± 386 58 ± 164 654 ± 54 -146 ± 74
MCD LR+D 16 64 + 0 - ✓ ✗ 1024 111 ± 386 67 ± 152 663 ± 49 -143 ± 74
MCD LR+D 16 64 + 0 - ✓ ✓ 1024 111 ± 386 67 ± 152 663 ± 49 -143 ± 74
MCD LR+D 16 64 + 1 E[W ] ✗ - 80 44 ± 1419 -83 ± 359 581 ± 195 -157 ± 97
SVI D 0 64 + 0 - - - 0 -159 ± 3636 -439 ± 621 340 ± 254 -227 ± 104
SVI D 0 64 + 1 E[W ] - - 0 -197 ± 3967 -457 ± 619 333 ± 266 -229 ± 105
SVI LR+D 8 8 + 0 - ✗ - 72 68 ± 952 -268 ± 500 565 ± 175 -167 ± 102
SVI LR+D 8 16 + 0 - ✗ - 144 76 ± 820 -167 ± 382 594 ± 128 -160 ± 95
SVI LR+D 8 24 + 0 - ✗ - 216 82 ± 717 -115 ± 331 610 ± 106 -156 ± 91
SVI LR+D 8 32 + 0 - ✗ - 288 85 ± 665 -84 ± 305 620 ± 90 -154 ± 89
SVI LR+D 8 40 + 0 - ✗ - 360 88 ± 632 -63 ± 289 628 ± 82 -152 ± 87
SVI LR+D 8 48 + 0 - ✗ - 432 89 ± 613 -49 ± 277 633 ± 75 -151 ± 86
SVI LR+D 8 56 + 0 - ✗ - 504 90 ± 588 -38 ± 269 637 ± 70 -150 ± 85
SVI LR+D 8 64 + 0 - ✓ ✗ 8 55 ± 1238 -472 ± 842 481 ± 324 -183 ± 116
SVI LR+D 8 64 + 0 - ✓ ✓ 8 109 ± 261 -311 ± 388 483 ± 64 -191 ± 101
SVI LR+D 8 64 + 0 - ✓ ✗ 16 58 ± 1176 -424 ± 782 516 ± 273 -174 ± 109
SVI LR+D 8 64 + 0 - ✓ ✓ 16 107 ± 316 -301 ± 413 536 ± 156 -182 ± 98
SVI LR+D 8 64 + 0 - ✓ ✗ 32 64 ± 1056 -356 ± 707 553 ± 218 -168 ± 103
SVI LR+D 8 64 + 0 - ✓ ✓ 32 107 ± 329 -269 ± 417 560 ± 149 -174 ± 94
SVI LR+D 8 64 + 0 - ✓ ✗ 64 71 ± 922 -266 ± 588 583 ± 157 -162 ± 98
SVI LR+D 8 64 + 0 - ✓ ✓ 64 101 ± 430 -218 ± 413 584 ± 123 -166 ± 91
SVI LR+D 8 64 + 0 - ✗ - 576 91 ± 573 -29 ± 263 641 ± 66 -149 ± 84
SVI LR+D 8 72 + 0 - ✗ - 648 92 ± 561 -22 ± 258 644 ± 63 -148 ± 84
SVI LR+D 8 80 + 0 - ✗ - 720 92 ± 552 -16 ± 253 646 ± 60 -148 ± 83
SVI LR+D 8 88 + 0 - ✗ - 792 93 ± 547 -12 ± 250 648 ± 58 -147 ± 83
SVI LR+D 8 96 + 0 - ✗ - 864 93 ± 542 -8 ± 247 650 ± 57 -147 ± 83
SVI LR+D 8 104 + 0 - ✗ - 936 93 ± 539 -4 ± 245 652 ± 55 -146 ± 82
SVI LR+D 8 112 + 0 - ✗ - 1008 94 ± 535 -2 ± 242 653 ± 54 -146 ± 82
SVI LR+D 8 120 + 0 - ✗ - 1080 94 ± 530 1 ± 241 654 ± 53 -146 ± 82
SVI LR+D 8 64 + 1 E[W ] ✗ - 72 41 ± 1383 -243 ± 599 558 ± 222 -164 ± 103
DE D 0 64 + 0 - - - 0 81 ± 873 -249 ± 403 374 ± 159 -213 ± 72
DE LR+D 8 8 + 0 - ✗ - 72 60 ± 1025 -124 ± 352 578 ± 130 -171 ± 86
DE LR+D 8 16 + 0 - ✗ - 144 73 ± 827 -54 ± 266 597 ± 103 -166 ± 78
DE LR+D 8 24 + 0 - ✗ - 216 82 ± 687 -17 ± 231 608 ± 88 -163 ± 75
DE LR+D 8 32 + 0 - ✗ - 288 97 ± 486 13 ± 205 617 ± 75 -160 ± 72
DE LR+D 8 40 + 0 - ✗ - 360 101 ± 409 29 ± 193 623 ± 68 -159 ± 71
DE LR+D 8 48 + 0 - ✗ - 432 103 ± 369 40 ± 185 627 ± 65 -158 ± 70

Table 9 – Continued on next page
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Table 9 – Continued from previous page
MNIST CelebA Flying Chairs

Epis Param RW T P a TSVD D̂ R Inpainting Inpainting Colorization Optical Flow
×10 ×100 ×1000 ×1000

DE LR+D 8 56 + 0 - ✗ - 504 105 ± 319 49 ± 177 629 ± 61 -157 ± 69
DE LR+D 8 64 + 0 - ✓ ✗ 8 79 ± 1006 -244 ± 519 529 ± 224 -178 ± 83
DE LR+D 8 64 + 0 - ✓ ✓ 8 80 ± 28 -182 ± 115 479 ± 70 -205 ± 62
DE LR+D 8 64 + 0 - ✓ ✗ 16 85 ± 864 -198 ± 461 554 ± 190 -173 ± 80
DE LR+D 8 64 + 0 - ✓ ✓ 16 85 ± 33 -128 ± 191 538 ± 92 -190 ± 66
DE LR+D 8 64 + 0 - ✓ ✗ 32 92 ± 669 -134 ± 384 576 ± 148 -168 ± 76
DE LR+D 8 64 + 0 - ✓ ✓ 32 93 ± 42 -97 ± 230 568 ± 99 -180 ± 67
DE LR+D 8 64 + 0 - ✓ ✗ 64 98 ± 498 -67 ± 308 596 ± 101 -164 ± 73
DE LR+D 8 64 + 0 - ✓ ✓ 64 102 ± 71 -51 ± 221 590 ± 82 -172 ± 67
DE LR+D 8 64 + 0 - ✗ - 576 107 ± 275 54 ± 170 631 ± 60 -157 ± 68
DE LR+D 8 72 + 0 - ✗ - 648 108 ± 258 58 ± 165 633 ± 58 -157 ± 68
DE LR+D 8 80 + 0 - ✗ - 720 109 ± 244 62 ± 162 634 ± 57 -157 ± 67
DE LR+D 8 88 + 0 - ✗ - 792 110 ± 232 66 ± 158 635 ± 55 -157 ± 67
DE LR+D 8 96 + 0 - ✗ - 864 110 ± 225 70 ± 156 636 ± 54 -157 ± 67
DE LR+D 8 104 + 0 - ✗ - 936 111 ± 221 72 ± 155 637 ± 53 -157 ± 67
DE LR+D 8 112 + 0 - ✗ - 1008 112 ± 210 75 ± 148 637 ± 52 -157 ± 66
DE LR+D 8 120 + 0 - ✗ - 1080 112 ± 206 77 ± 145 638 ± 52 -157 ± 66

Table 9: Extended Ablation. We compare non-Bayesian networks with aleatoric uncertainty only and
various Bayesian networks with both kinds of uncertainties and various hyperparameters.

D.4 Eigenvalues Distribution

The figure shows the normalized eigenvalues of the low-rank matrix PP ⊤ and the diagonal matrix D (colored
lines), along with a minimum diagonal threshold (dashed line), for four datasets (columns) and three different
approximation methods (rows). Both axes—eigenvalue magnitude and eigenvalue index—are displayed on a
logarithmic scale, with eigenvalues sorted from largest to smallest.

The top row corresponds to the expected weights E[w] approximation (similar to Zepf et al. (2023)), the
middle row shows truncated SVD, and the bottom row displays the naive approach without truncation. The
diagonal elements for the naive and expected weights rows are identical, whereas in the truncated SVD row,
the diagonal is updated post-truncation.

The number of eigenvalues of the low-rank matrix depends on the rank (number of columns in P ) and thus
varies across approximation methods. The minimum diagonal entry acts as a lower bound for the diagonals
in the non-updated rows (top and bottom), and the smallest eigenvalues approach this minimum. This effect
is particularly pronounced in the MNIST dataset, where some border pixels have high certainty, leading to
very low predicted variances. To maintain training stability, a minimum diagonal threshold is enforced.

D.5 Low Variance Analysis

Figure 12 shows that several entries on the diagonal of the matrix D, predicted during MNIST inpainting,
are limited by the lower bound ϵ. This implies that the model’s predicted uncertainty for many pixels is
artificially constrained to be higher, rather than reflecting actual confidence levels.

Further insight is provided by Figure 13, which visualizes the eigenvalues close to ϵ. These values suggest that,
in such cases, the model’s uncertainty is defined more by the engineered lower bound than by the data itself.
The bottom row highlights in grey the pixels whose corresponding entries in D lie close to this minimum.

A clear spatial trend emerges: the affected pixels are mostly located near the image borders. This indicates
that the model is artificially constrained to be less confident in these regions, likely due to reduced contextual
information or edge effects during training and inference.
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Figure 12: Normalized eigenvalues of low-rank and diagonal matrices across datasets and approximation
methods.

Ground Truth y

Prediction µ

√
(PP ⊤)ii

√
Dii

Dii < 2ϵ

Figure 13: Analysis of very low entries on the diagonal of D, approaching the ϵ hyperparameter, which acts
as a lower bound for λi(D). Rows show: the ground truth, the prediction, the aggregated standard deviation
estimated from the columns of P , the per-pixel standard deviation from D, and a mask marking pixels where
D is close to ϵ. Notably, pixels near the image borders tend to fall into this constrained region, indicating
artificially elevated uncertainty.
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E Algorithm

The algorithm constructs a low-rank plus diagonal covariance matrix using Monte Carlo sampling from a proxy
posterior distribution over network weights. It begins by performing T forward passes, each with weights
sampled from the proxy distribution q∗

θ . For each pass, the predictive mean µwi(x), aleatoric uncertainty
factor P a

wi
(x), and diagonal covariance Dwi(x) are computed. These estimates are then aggregated by

averaging over samples to obtain µ(x) and D(x).

Next, the epistemic uncertainty factor P e(x) is constructed by stacking the centered deviations of the
predictive means from their average, scaled appropriately. The aleatoric factor P a(x) is either averaged or
stacked similarly to capture inherent noise uncertainty. The total low-rank factor matrix P (x) is formed by
concatenating these epistemic and aleatoric components.

Optionally, truncated SVD can be applied to P (x) to reduce its rank and improve computational efficiency.
The final covariance estimate Σ(x) is assembled as the sum of the low-rank product P (x)P (x)⊤ and the
diagonal D(x). This low-rank decomposition enables scalable and expressive uncertainty quantification by
efficiently combining both epistemic and aleatoric sources.

Algorithm 2 LR+D Covariance Construction with MC Sampling
Require: Proxy posterior q∗

θ

Require: Input x
Ensure: Mean µ(x), diagonal D(x), low rank factor P (x), covariance Σ(x)

// Step 1: Monte Carlo Sampling
1: for i = 1 to T do
2: Sample weights wi ∼ q∗

θ

3: Compute µwi
(x), Pwi

(x), Dwi
(x)

4: end for
// Step 2: Aggregate Means

5: µ(x) = 1
T

∑T
i=1 µwi

(x)
6: D(x) = 1

T

∑T
i=1 Dwi(x)

// Step 3: Epistemic Factor
7: P e(x) = 1√

T −1 [µw1(x)− µ(x) µw2(x)− µ(x) ... µwT
(x)− µ(x)]

// Step 4: Aleatoric Factor
8: P a(x) = 1

T [Pw1(x) Pw2(x) ... PwT
(x)]

// Step 5: Combine Factors
9: P (x)← [P a(x) P e(x)]

// Step 6: Optional SVD
10: if use SVD then
11: [U, S, _] = svd(P (x))
12: P̂ (x)← U:,1:rS1:r,1:r
13: D̂ii(x)← Dii(x) +

∑R
j=r+1 U2

ij S2
jj

14: end if
// Final Covariance

15: Σ(x) = P (x)P (x)⊤ + D(x)

F Derivations in Detail

F.1 Exploiting LR+D for efficient computation of matrix determinant and inverse

Both the likelihood function p(y|x, w) = N (µa
W (x) , Σa

W (x)) as well as the approximate posterior predictive
distribution p(y|x,D) ≈ N (µ (x) , Σ (x)) are multivariate normal distributions parametrized by covariance
matrices Σa

W and Σ, respectively, where in the following, we only consider Σ for clarity. Denoting by S the
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output dimension, the normal distribution is then defined as

N (µ (x) , Σ (x)) = 1√
|Σ(x)|(2π)S

exp
(
−1

2(µ(x)− y)⊤Σ−1(x)(µ(x)− y)
)

(15)

which requires computation of the covariance matrix’ determinant |Σ| and inverse Σ−1 for sampling and
evaluation of the log-likelihood. For full covariance matrices Σ ∈ RS×S with large S, these are very expensive,
if not impossible, to compute directly. Instead, we exploit our LR+D representation for efficient computation
of the matrix determinant and inverse.

We compute the determinant as

|Σ| = |D + PP ⊤| (16)
= |IR + P ⊤D−1P ||D| (17)
= |C||D| (18)

where we first substituted Σ with its LR+D representation and subsequently applied the matrix determinant
lemma. With D ∈ RS×S , P ∈ RS×R and IR ∈ RR, the so-called capacitance C = IR + P ⊤D−1P is an R×R
matrix. Since R≪ S, the determinant of the capacitance matrix is very cheap to compute.

To compute the inverse, we use the Woodbury matrix identity, again by exploiting the LR+D representation.

Σ−1 = (D + PP ⊤)−1 (19)
= D−1 −D−1P (IR + P ⊤D−1P )−1P ⊤D−1 (20)
= D−1 −D−1PC−1P ⊤D−1 (21)

As before, the capacitance matrix C ∈ RR×R is very small and thus its inverse easy to compute.

F.2 Full derivation of SVD

We apply dimensionality reduction using SVD on our tall P matrices. This involves decomposing into three
separate matrices: U , Ψ, and V ⊤. The U matrix represents an arbitrary not further used rotation, Ψ is a
diagonal matrix containing the singular values, and V ⊤ contains the columns of the transformed matrix.

By selecting the top R singular values and corresponding vectors, we can approximate the original matrix.
This approximation is achieved by truncating the matrices U and V ⊤ to retain only the top R singular values
and vectors. This reduces the dimensionality of the data while preserving its essential structure.

The reduced dimensionality representation, denoted as P̂ , is computed by taking the product of the truncated
matrices V and Ψ. Additionally, a diagonal matrix D̂ captures the by the dimensionality reduction removed
variance of PP ⊤, with each element representing the contribution of the omitted singular values to the overall
uncertainty. We use D̂ to update our diagonal for the final LR+D representation.

P ⊤ = UΨV ⊤ (22)
PP ⊤ = (UΨV ⊤)⊤(UΨV ⊤) (23)

= V ΨU⊤UΨV ⊤ (24)
= V ΨΨV ⊤ (25)

Σ̂ = D̂ + P̂ P̂ ⊤ (26)

P̂ =
[
VR−R̂ ·ΨR−R̂,R−R̂ ... VR ·ΨR,R

]
(27)

D̂ii =
R−R̂−1∑

j=1
V 2

ij ·Ψ2
j,j (28)
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F.3 Loss Definition

For regression problems we intend to maximize the data likelihood p(y|x, w) =
∏

i p(yi|xi, w), where
we assumed all dataset samples to be i.i.d. Equivalently, we can minimize the negative log-likelihood
p(y|x, w) =

∑
i− log p(yi|xi, w). We further assume the network predictions to be distributed around the

true value y following a Gaussian distribution with mean µw(x) and covariance Σw(x).

The subscript ()w implies given weights, as in a classical frequentist interpretation of neural networks. To
account for the epistemic part of uncertainty, this weight is not fixed, and a probabilistic interpretation is
used, implying a p(w). Later, we approximate the posterior of p(w|D) by using Monte Carlo integration.
If we drop σw as nuisance parameter, we would recover a standard squared error loss as it is often used in
regression.

The loss function for a single training sample can then be defined as

Llrd = − 1
S

log p(y|x, w)

= − 1
S

log
(

1√
|Σw|(2π)S

exp
(
−1

2(µw − y)⊤Σ−1
w (µw − y)

))

= 1
S

(
log
√
|Σw|(2π)S + 1

2(µw − y)⊤Σ−1
w (µw − y)

)
= 1

S

(
1
2 log |Σw|+

S

2 log(2π) + 1
2(µw − y)⊤Σ−1

w (µw − y)
)

where we normalized by the output dimensionality S.

Dropping constant terms, we are left with:

Llrd = 1
2S

log |Σw|+
1

2S
(µw − y)⊤Σ−1

w (µw − y)

We can see that evaluating L involves computing the determinant and inverse of the covariance matrix. To
achieve this, we exploit our LR+D representation as described in the previous section F.1

F.4 Full derivation of mean vector and covariance matrix

The expectation of the posterior predictive distribution is given by:

E[y|x,D] = Ep(w|D) [E [y|x, w]] (29)
≈ Eq∗

θ
[E [y|x, w]] (30)

= Eq∗
θ

[µa
W (x)] (31)

≈ 1
T

T∑
i

µa
wi

(x) wi ∼ q∗
θ (32)

= µ(x) (33)

The covariance of the posterior predictive distribution is given by:

Cov [y|x,D] = Covp(w|D)
[
Ep(w|D) [y|x, w]

]
+ Ep(w|D) [Cov [y|x, w]] (34)

≈ Covq∗
θ

[
Eq∗

θ
[y|x, w]

]
+ Eq∗

θ
[Cov [y|x, w]] (35)

= Covq∗
θ

[µa
W (x)]︸ ︷︷ ︸

epistemic

+ Eq∗
θ

[Σa
W (x)]︸ ︷︷ ︸

aleatoric

(36)

≈ Σe(x) + Σa(x) (37)
= Σ(x) (38)
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Σe(x) = 1
T − 1

T∑
i

(µwi (x)− µ (x)) (µwi (x)− µ (x))⊤
wi ∼ q∗

θ (39)

Σa(x) = 1
T

T∑
i

Σwi(x) wi ∼ q∗
θ . (40)

In above transformations of expectation and variance, we applied the law of total expectation or variance,
respectively, and subsequently approximated them using the proxy distribution q⋆

θ(w). The expectation
over y, denoted by E [y|x, w], is given by the mean of the predicted normal distribution µa

W (x), whereas
the covariance over y, denoted as Cov [y|x, w], is given by the covariance matrix of the predicted normal
distribution. Finally, the expectation – and in some suggested solutions also the covariance – over the proxy
distribution q⋆

θ(w) is approximated using Monte Carlo integration, i.e. sampling T weights from the proxy
w ∼ q⋆

θ .

F.5 Bounds for the Condition Number

The exact condition number of Σ can be calculated using the following equation:

κ(Σ) = λS(Σ)
λ1(Σ)

Therefore, we need to estimate both the smallest and largest eigenvalues of Σ.

We begin by analyzing the eigenvalues of the individual components of the LR+D decomposition. The
eigenvalues of the diagonal matrix D are simply its diagonal entries,

λi(D) = {Dii|Di−1,i−1 ≥ Dii ≥ Di+1,i+1 > 0}, (41)

where the diagonal entries are assumed to be sorted in non-increasing order without loss of generality.

The symmetric matrix PP ⊤ is rank-deficient, with at most R non-zero singular values. Using the Singular
Value Decomposition (SVD), its eigenvalues are given by

λi(PP ⊤) =
{

0, if i ≤ S −R,

Ψ2
jj , otherwise, where j = i + S −R

(42)

where the non-zero eigenvalues are sorted in non-increasing order.

Direct computation of the eigenvalues of the full covariance matrix Σ = PP ⊤ + D is computationally
prohibitive. Instead, we approximate or bound them using Weyl’s inequality, which provides an efficient way
to estimate the eigenvalues of matrix sums. For 1 ≤ i ≤ S, the eigenvalues of Σ satisfy the following sandwich
inequality:

λi−j+1(PP ⊤) + λj(D) ≤ λi(Σ) ≤ λi+k(PP ⊤) + λS−k(D), (43)
where j and k can be chosen freely within the ranges 1 ≤ j ≤ i and 0 ≤ k ≤ S − i.

To simplify the calculation, we assume that the R largest eigenvalues of PP ⊤ dominate the diagonal entries
of D. Furthermore, the remaining eigenvalues of PP ⊤ are zero and thus smaller than any positive eigenvalue
of D. Based on this assumption, we propose fixed choices of j and k to yield the following bounds:

λ1(D)
λi−R(D)

λi(PP ⊤) + λ1(D)

}
≤ λi(Σ) ≤

{ λi+R(D) if i ≤ R
λi+R(D) if i ≤ S −R

λi(PP ⊤) + λS(D) if S −R < i
(44)

Finally, the condition number κ(Σ) can be bounded by substituting the eigenvalue bounds:

λS(PP ⊤) + λ1(D)
λR+1(D) ≤ κ(Σ) ≤ λS(PP ⊤) + λS(D)

λ1(D) . (45)
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These bounds provide a computationally efficient means of estimating the condition number without requiring
exact eigenvalue decomposition, making them well-suited for large-scale covariance matrices in deep learning
applications.

F.6 Alternative Approximation of the Condition Number

In the paper, we suggest using bounds to estimate both the eigenvalues and the condition number. However, an
approximate solution using power iteration is also available. To estimate the largest and smallest eigenvalues,
we first need to approximate their corresponding eigenvectors vS and v1. This approximation requires the
covariance matrix and its inverse, respectively. One of the main advantages of the LR+D parametrization is
its efficient inverse. The following equations approximate the desired eigenvectors using i as iteration step.

vi+1
S = Σvi

S

||Σvi
S ||2

(46)

vi+1
1 = Σ−1vi

S

||Σ−1vi
S ||2

(47)

After converged, the eigenvalues can be calculated λS = ||ΣvS || and λ1 = ||Σv1||. The cost of the matrix
multiplication vΣ and v−1

Σ can be reduced by the creation of intermediate arrays. In the naive form. Due to
further optimization, we can reduce the memory O(S2) and time O(max(R2, S)SI) complexity to O(SR)
and O(SR max(I, R)), where I is the number of iteration steps. After the optimization, The equation for the
eigenvector corresponding to the largest eigenvalue looks like:

Σvi = (D + PP ⊤)vi (48)
= Dvi + P (P ⊤vi), (49)

where the equation for the smallest eigenvalue looks like:

Σ−1vi = (D + PP ⊤)−1vi (50)
= (D−1 − (D−1P (IR + P ⊤D−1P )−1)(P ⊤D−1))vi (51)
= D−1︸︷︷︸

RSxS

diagonal

vi − (D−1P (IR + P ⊤D−1P )−1)︸ ︷︷ ︸
RSxR

((P ⊤D−1)︸ ︷︷ ︸
RRxS

)vi) . (52)

The underbraced parts can be precomputed and reused for every iteration.

Stop the power iteration when the residual norm falls below a tolerance:

∥Σvi
S − λi

Svi
S∥2 < ϵκ (53)

or equivalently via the Rayleigh quotient change:∣∣∣∣∣vi⊤
S Σvi

S

vi⊤
S vi

S

−
vi−1⊤

S Σvi−1
S

vi−1⊤
S vi−1

S

∣∣∣∣∣ < ϵκ . (54)

The same criteria apply analogously to vi
1, replacing Σ with Σ−1 and λS with λ1.

The convergence is geometric and the ratio for the largest eigenvalue is given by c = λS

λS−1
, whereas for the

smallest eigenvalue it is given by c = λ2
λ1

. The problem of this approximation is, that the convergence of the
smallest eigenvalue is pretty slow as the small eigenvalues are pretty similar λ2 ∼ λ1.
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