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Abstract

Spuriousness arises when there is an association between two or more variables in a dataset
that are not causally related. In this work, we propose an explainability framework to pre-
emptively disentangle the nature of such spurious associations in a dataset before model
training. We leverage a body of work in information theory called Partial Information
Decomposition (PID) to decompose the total information about the target into four non-
negative quantities namely unique information (in core and spurious features respectively),
redundant information, and synergistic information. Our framework helps anticipate when
the core or spurious feature is indispensable, when either suffice, and when both are jointly
needed for an optimal classifier trained on the dataset. Next, we leverage this decomposi-
tion to propose a novel measure of the spuriousness of a dataset. We arrive at this measure
systematically by examining several candidate measures, and demonstrating what they cap-
ture and miss through intuitive canonical examples and counterexamples. Our framework
Spurious Disentangler consists of segmentation, dimensionality reduction, and estimation
modules, with capabilities to specifically handle high dimensional image data efficiently. Fi-
nally, we also perform empirical evaluation to demonstrate the trends of unique, redundant,
and synergistic information, as well as our proposed spuriousness measure across 6 bench-
mark datasets under various experimental settings. We observe an agreement between our
preemptive measure of dataset spuriousness and post-training model generalization metrics
such as worst-group accuracy, further supporting our proposition.

1 Introduction

Figure 1: Spuriousness
in the dataset due to
sampling bias.

The success of machine learning is heavily determined by the quality of datasets
used for training or fine-tuning. Spurious patterns (Haig, 2003) arise when two or
more variables are associated in a dataset even though they do not have a causal
relation. For example, image classifiers trained on the Waterbird dataset (Wah
et al., 2011) learn to use the background rather than the foreground for clas-
sification, because most waterbirds are photographed on a water background
(see Fig. 1). This pattern in the dataset misleads a classifier into learning an
undesirable spurious link between the target label (bird type) and background
(“spurious” feature) as opposed to the foreground (core feature). Spuriousness in
datasets may result in deceptively high performance on in-distribution datasets
but significantly hinders generalization on out-of-distribution datasets, e.g., ac-
curacy on minority groups like waterbirds with land background is low (Lynch
et al., 2023; Sagawa et al., 2019; Puli et al., 2023).

Despite advances in dataset-based and model-training-based approaches to mitigate such spurious pat-
terns (Ye et al., 2024; Srivastava, 2023; Ghouse et al., 2024), the notion of spuriousness in any given dataset
has classically lacked a formal definition. To address this gap, in this work, we ask the following question:
Given a dataset and a split of core and spurious features, can we preemptively quantify the spuriousness of
the dataset before training? In essence, our goal is to arrive at a framework that would help anticipate the
feature preferences of an optimal classifier prior to training.
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To this end, we provide an information-theoretic explainability framework to disentangle the nature of spu-
rious associations in a dataset, i.e., how the information about the target variable is distributed among the
spurious and core features. We leverage a body of work in information theory called Partial Information De-
composition (PID) (Bertschinger et al., 2014; Banerjee et al., 2018), which has its roots in statistical decision
theory. We note that classical information-theoretic measures such as mutual information (Cover & Thomas,
2012) capture the entire statistical dependency between two random variables but fail to capture how this
dependency is distributed among those variables, i.e., the structure of the multivariate information. Partial
Information Decomposition (PID) addresses this nuanced issue by providing a formal way of disentangling
the joint information content between the core and spurious features into non-negative terms, namely, unique,
redundant, or synergistic information. We leverage this decomposition to systematically arrive at a novel
measure of dataset spuriousness with empirical evaluation on high-dimensional image datasets. This work
provides a more nuanced understanding of the interplay between spurious and core features in a dataset that
can better inform dataset quality assessment. Our main contributions can be summarized as follows:

Unraveling nature of spurious associations leveraging PID: Novel to this work, we investigate the
problem of learning spurious patterns from a dataset through the lens of partial information decomposition
(PID). We leverage PID to disentangle the total information about a target (Y ) in the core (F ) and spurious
(B) features into four non-negative terms: unique information (in core and spurious features respectively),
redundant information, and synergistic information (see Proposition 1). We elucidate four types of statistical
dependencies captured by these PID terms (see Fig. 3), providing preemptive insights on when an optimal
classifier might find a spurious feature more informative or useful than the core features. We establish how
unique information quantifies the informativeness of a random variable over another for predicting Y (see
Theorem 1 for interpretability insights, also leveraging Blackwell Sufficiency). Then, redundant information
turns out to be the common information that can be obtained from either the spurious or core features,
allowing a classifier to potentially choose either without any preference. An interesting term is synergy that
captures scenarios when both spurious and core features are jointly informative about the target Y but not
individually. Here, a classifier is likely to use both spurious and core features for decision making.

Novel measure of dataset spuriousness: Though many works attempt to prevent a model from learning
spurious patterns, there is limited theoretical understanding of how to quantify the spuriousness of a dataset
given a choice of core and spurious features. In this work, we leverage PID to propose a novel measure of the
undesirable spuriousness of a dataset (Msp) that steers predictors into choosing the spurious features over the
core (see Proposition 2). We arrive at this measure systematically by examining several candidate measures,
and demonstrating what they capture and miss through intuitive canonical examples and counterexamples.
Our measure provides a fundamental understanding of feature informativeness for a classification task,
enabling dataset quality assessment and interpretability.

Spuriousness Disentangler: We propose an autoencoder-based explainability framework that we call –
Spuriousness Disentangler – to obtain the four PID values as well as our spuriousness measure for high
dimensional image data. The framework consists of three modules: (i) Segmentation: This module can be
utilized if a separation between the core and spurious features is desired. The module performs segmentation
to separate the foreground (core features F ) and background (spurious features B) for every image, either
using pre-trained semantic segmentation models (Lin et al., 2017) or CLIPSeg (Lüddecke & Ecker, 2022)
which is an Open-Vocabulary Semantic Segmentation model; (ii) Dimensionality Reduction: An autoencoder
converts high-dimensional images into lower-dimensional, discrete feature representations. The dimension-
ality reduction and clustering are performed jointly through minimization of a joint loss function, drawing
inspiration from Guo et al. (2017). We also incorporate a bottleneck structure from Sadeghi & Arman-
fard (2023) to have a more informative lower dimensional representation; (iii) Estimation: The final step
includes the estimation of the joint probability distribution of the acquired lower-dimensional representation
followed by computing PID values and our measure Msp. The computation is performed by solving a convex
optimization problem leveraging the implementations from James et al. (2018) or Liang et al. (2023) as
required.

Empirical results: Since our proposed framework is a preemptive dataset explainability framework, the
goal of our experiments is to show broad agreement between our anticipations from the dataset before training
and the post-training behavior of the models for various experimental setups. Specifically, we examine four
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experimental setups: i) Both core and spurious features are available; (ii) Either core or spurious is available;
(iii) Segmentation to obtain core and spurious features; and (iv) Non-spatial spuriousness. Our evaluation
spans six datasets: Waterbird (Wah et al., 2011), Adult (Becker & Kohavi, 1996), CelebA (Lee et al., 2020),
Dominoes (Shah et al., 2020), Spawrious (Lynch et al., 2023), and Colored MNIST (Arjovsky et al., 2019). We
observe a negative correlation between our proposed measure of dataset spuriousness Msp and post-training
model generalization metrics, such as the worst-group accuracy for each experimental setting. We also study
Grad-CAM (Selvaraju et al., 2017) visualizations and intersection-over-union (IoU) metric (Rezatofighi et al.,
2019) to further confirm which features are actually being emphasized by the model.

A framework for dataset explainability provides an alternative to combating spuriousness during training
by providing preemptive insights to inform the training process (analogous to “nutrition labels” Yang et al.
(2018) or “datasheets for datasets” Gebru et al. (2021)). By enabling dataset quality check and cleansing
prior to training, it can bypass expensive adversarial training often used to avoid spurious patterns. Having
clean datasets for fine-tuning is particularly valuable in the era of large foundation models when one has
limited control over the training process.

Related Works: There are several perspectives on spurious correlation (see Haig (2003); Kirichenko et al.
(2022); Izmailov et al. (2022); Wu et al. (2023); Ye et al. (2023); Liu et al. (2023); Stromberg et al. (2024);
Singla & Feizi (2021); Moayeri et al. (2023); Lynch et al. (2023) and the references therein; also see surveys Ye
et al. (2024); Srivastava (2023); Ghouse et al. (2024)). Spuriousness mitigation techniques are broadly divided
into two groups: (i) Dataset-based techniques (Goel et al., 2020; Kirichenko et al., 2022; Wu et al., 2023;
Moayeri et al., 2023; Liu et al., 2021) and (ii) Learning-based techniques (Liu et al., 2023; Yang et al., 2023;
Ye et al., 2023; Zhang et al., 2022). Among dataset-based techniques, Kirichenko et al. (2022) shows that
last-layer fine-tuning of a pre-trained model with a group-balanced subset of data is sufficient to mitigate
spuriousness. Wu et al. (2023) proposes a concept-aware spurious correlation mitigation technique. There
are also some works that try to separate spurious and core features in the feature space of deep neural
networks using external feedback (Sohoni et al., 2020; Kattakinda et al., 2022). Recent work Wang & Wang
(2024) looks into the problem through the mathematical lens of separability of the spurious and core features
under mixture of Gaussian assumptions (also assuming a split between core and spurious). Ye et al. (2023)
discusses how the noise in the core feature plays a role in a model’s reliance on it. Our novelty lies in
investigating the problem of spurious patterns through the lens of PID, rooted in statistical decision theory,
focusing on quantifying the spuriousness of a dataset for interpretability and quality assessment. Our work
isolates four specific types of statistical dependencies in the dataset, providing a more nuanced understanding
(see Fig. 3) going beyond solely identifying a model’s reliance on a specific feature.

Partial Information Decomposition (PID) (Williams & Beer, 2010; Bertschinger et al., 2014) is an active area
of research, beginning to be used in different domains of neuroscience and machine learning (Tax et al., 2017;
Dutta et al., 2021; Hamman & Dutta, 2024; Ehrlich et al., 2022; Liang et al., 2024; Wollstadt et al., 2023; Mo-
hamadi et al., 2023; Venkatesh et al., 2024). However, interpreting spuriousness in datasets through the lens
of PID is unexplored. Additionally, there is limited work on calculating PID values for high dimensional mul-
tivariate continuous data. Some existing works (Dutta et al., 2021; Venkatesh et al., 2024) handle continuous
data with Gaussian assumptions while (Pakman et al., 2021) considers one-dimensional multivariate case.
Hence, estimating PID for high-dimensional data through proper dimensionality reduction and discretiza-
tion is also fairly open. For dimensionality reduction, different learning based methods exist (Hotelling,
1933; Law & Jain, 2006; Lee & Verleysen, 2005; Wang et al., 2015; 2014; Sadeghi & Armanfard, 2023).
Similarly, for discretization, different clustering algorithms exist, e.g., k-means clustering (MacQueen et al.,
1967; Bradley et al., 2000), deep embedded clustering (Xie et al., 2016). In this work, we train an autoen-
coder to jointly learn a good lower-dimensional representation of the input image data in a self-supervised
manner (with additional bottleneck structure) while also clustering simultaneously to deal with the challenge
of high-dimensional real-valued image data.

2 Preliminaries

Let X = (X1, X2, . . . , Xd) be the random variable denoting the input (e.g., an image) where each Xi ∈ X
which denotes a finite set of values that each feature can take. The core features (e.g., the foreground)
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will be denoted by F ⊆ X, and the spurious features (e.g., the background) will be denoted by B =
X\F . We typically use the notation B and F to denote the range of values for the spurious and core
features. Let Y denote the target random variable, e.g., the true labels which lie in the set Y, and the
model predictions are given by Ŷ = fθ(X) (parameterized by θ). Generally, we use the notation PA to
denote the distribution of random variable A, and PA|B to denote the conditional distribution of random
variable A conditioned on B. Depending on the context, we also use more than one random variable
as sub-script, e.g., PABY denotes the joint distribution of (A, B, Y ). Whenever necessary, we also use
the notation QA to denote an alternate distribution on the random variable A that is different from PA.
We also use the notation PA|B ◦ PB|C to denote a composition of two conditional distributions given by:
PA|B ◦ PB|C(a|c) =

∑
b∈B PA|B(a|b)PB|C(b|c) ∀a ∈ A, c ∈ C, where A, B and C denote the range of values

that can be taken by random variables A, B, and C.

Background on PID: We provide a brief background on PID that would be relevant for the rest of the
paper (also see Fig. 2). The classical information-theoretic quantification of the total information that two
random variables A and B together hold about Y is given by mutual information I(Y ; A, B) (see (Cover
& Thomas, 2012) for a background on mutual information). Mutual information I(Y ; A, B) is defined as
the KL divergence (Cover & Thomas, 2012) between the joint distribution PY AB and the product of the
marginal distributions PY ⊗ PAB and would go to zero if and only if (A, B) is independent of Y . Intuitively,
this mutual information captures the total predictive power about Y that is present jointly in (A, B) together,
i.e., how well one can learn Y from (A, B) together. However, I(Y ; A, B) only captures the total information
content about Y jointly in (A, B) and does not unravel what is unique or shared between A and B.

Figure 2: I(Y ; A, B) is de-
composed into four non-
negative terms.

PID (Bertschinger et al., 2014) provides a mathematical framework that decom-
poses the total information content I(Y ; A, B) into four non-negative terms:

I(Y ; A, B) = Uni(Y :B|A) + Uni(Y :A|B)
+Red(Y :A, B) + Syn(Y :A, B).

Here, Uni(Y :A|B) denotes the unique information about Y that is only in A
but not in B and Uni(Y :B|A) denotes the unique information about Y that
is only in B but not in A. Next, Red(Y :A, B) denotes redundant information
(common knowledge) about Y in both A and B. Lastly, Syn(Y :A, B) is an
interesting term that denotes the synergistic information that is present only
jointly in A, B but not in any one of them individually, e.g., a public and private key can jointly reveal
information not in any of them alone.

Example to Understand PID: Let Z=(Z1, Z2, Z3) with each Zi∼ i.i.d. Bern(1/2). Let A = (Z1, Z2, Z3 ⊕ N),
B = (Z2, N), and N ∼ Bern(1/2) which is independent of Z. Here, I(Z; A, B) = 3 bits. The unique
information about Z that is contained only in A and not in B is effectively in Z1. Thus, Uni(Z:A|B) =
I(Z; Z1) = 1 bit. Redundant information about Z that is contained in both A and B is effectively in Z2 and
is given by Red(Z:A, B) = I(Z; Z2) = 1 bit. Synergistic information about Z that is not contained in either
A or B alone, but is contained in both of them together is effectively in the tuple (Z3 ⊕ N, N), and is given
by Syn(Z:A, B)=I(Z; (Z3 ⊕ N, N)) = 1 bit. This accounts for the 3 bits in I(Z; A, B).

Defining any one of the PID terms suffices for obtaining the others. This is because of another relationship
among the PID terms as follows (Bertschinger et al., 2014): I(Y ; A) = Uni(Y :A|B)+Red(Y :A, B). Essentially
Red(Y :A, B) is viewed as the sub-volume between I(Y ; A) and I(Y ; B) (see Fig. 2). Hence, Red(Y :A, B) =
I(Y ; A) − Uni(Y :A|B). Lastly, Syn(Y :A, B) = I(Y ; A, B) − Uni(Y :A|B) − Uni(Y :B|A) − Red(Y :A, B) (can
be obtained once both unique and redundant information has been obtained). Here, we include a popular
definition of Uni(Y :A|B) from (Bertschinger et al., 2014) which is computable using convex optimization.
Definition 1 (Unique Information (Bertschinger et al., 2014)). Let ∆ be the set of all joint distributions
on (Y, A, B) and ∆P be the set of joint distributions with same marginals on (Y, A) and (Y, B) as the true
distribution PY AB, i.e., ∆P = {QY AB∈∆: QY A = PY A and QY B = PY B}. Then,

Uni(Y :A|B) = min
Q∈∆P

IQ(Y ; A|B). (1)
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Figure 3: Canonical examples distilling four types of statistical dependencies involving core and spurious
features when any one PID term is dominant and its effect on the Bayes optimal classifier. In the first two
cases, unique information in either F or B is dominant, and they are indispensable to the optimal classifier.
When redundant information is dominant, the optimal classifier can pick either F or B without preference.
The fourth scenario is interesting where B is independent of the label Y , and yet it contributes to the optimal
classifier along with F .

Here IQ(Y ; A|B) denotes the conditional mutual information when (Y,A,B) have joint distribution QY AB

rather than PY AB.

3 Main Results

3.1 Unraveling nature of spurious associations with PID

Proposition 1 (Proposed Disentanglement). For a given data distribution, the total predictive power of the
spurious features B and core features F about the target variable Y can be decomposed into four non-negative
components:

I(Y ; F, B) = Uni(Y :B|F ) + Uni(Y :F |B) + Red(Y :F, B) + Syn(Y :F, B).

For each term in Proposition 1, we now explain their nuanced role for any given dataset.

Interpreting Unique Information Uni(Y :B|F ) and Uni(Y :F |B): Unique information captures informa-
tion that is unique in one feature and cannot be obtained from another. To explain the role of
unique information in interpreting spuriousness, we draw upon a concept in statistical decision theory
called Blackwell Sufficiency (Blackwell, 1953) which investigates when a random variable is “more in-
formative” (or “less noisy”) than another for inference (also relates to stochastic degradation of chan-
nels (Venkatesh et al., 2023; Raginsky, 2011)). Let us first discuss this notion intuitively when trying

Figure 4: Blackwell
Sufficiency

to infer Y using two random variables F and B. Suppose there exists a transfor-
mation on F to give a new random variable B′ which is always equivalent to B for
predicting Y (similar predictive power). We note that B′ and B do not necessarily
have to be the same since we only care about inferring Y . In fact, B and B′ can have
additional irrelevant information that do not pertain to Y , but solely for the purpose
of inferring Y , they need to be equivalent. Then, F will be regarded as “sufficient”
with respect to B for predicting Y since F can itself provide all the information that
B has about Y (see Fig. 4 and first two cases of Fig. 3).
Definition 2 (Blackwell Sufficiency (Blackwell, 1953)). A conditional distribution PF |Y is Blackwell
sufficient with respect to another conditional distribution PB|Y if and only if there exists a stochastic
transformation (equivalently another conditional distribution PB′|F with both B and B′ ∈ B) such that
PB′|F ◦ PF |Y = PB|Y .

In fact, the unique information Uni(Y :B|F ) is 0 if and only if PF |Y is Blackwell sufficient with respect to
PB|Y (see Theorem 1, the proof is given in the Appendix D).
Theorem 1 (Interpretability Insights from Unique Information). The following properties hold:

• Uni(Y :B|F ) ≤ I(Y ; B) and goes to 0 if the spurious feature B is independent of the target Y . However,
Uni(Y :B|F ) may be 0 even if I(Y ; B) > 0.
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• Uni(Y :B|F ) = 0 if and only if PF |Y is Blackwell sufficient with respect to PB|Y .
• Uni(Y :B|F ) ≤ Uni(Y :B′|F ′), i.e., it is non-decreasing if some features from the core set are moved to the

spurious set, i.e., B′ = B ∪ W and F ′ = F\W .

Since unique information Uni(Y :B|F ) = 0 if and only if PF |Y is Blackwell Sufficient with respect to PB|Y , we
note that Uni(Y :B|F ) > 0 captures the “departure” from Blackwell Sufficiency, and thus quantifies relative
informativeness. Intuitively, what this means is that for a data distribution, there is no such transformation
on core feature F that is equivalent to the spurious feature B for the purpose of predicting Y . This essentially
makes spurious feature B indispensable for predicting Y , forcing a model to emphasize it in decision-making.
A similar argument can be made for Uni(Y :F |B). Furthermore, Uni(Y :B|F ) also satisfies an intuitive
property that as more features get categorized as spurious instead of core, the unique information in the
spurious set would keep increasing.

Interpreting Redundant Information Red(Y :F, B): Redundant information about the target variable Y is
the information that can be obtained from either the spurious features B or the core features F without any
preference towards either. We consider the following canonical example to interpret the role of redundant
information Red(Y :F, B) for predicting the target variable Y (third case of Fig. 3).
Lemma 1 (Redundancy). Let B = Y + NB , F = Y + NF where noise NB and NF are Gaussian such that
NB = NF = N ∼ N (0, σ2

N ) and N ⊥⊥ Y . In this case, (i) an optimal predictor Ŷ can either utilize B or
F with neither being indispensable, i.e., Ŷ = f(B) or f(F ) or f(B, F ); and (ii) B and F will only have
redundant information with the other PID terms being 0.

Interpreting Synergistic Information: Synergistic information Syn(Y :F, B) is an interesting term that
emerges when spurious features B and core features F together reveal more about the target variable Y
than what can be revealed by either of them alone. In essence, it is the “extra” or “emergent” information
that arises only when multiple features interact, rather than when they are considered separately.
Lemma 2 (Synergy). Let B=N , F=Y +N where Y ∼Bern(1/2), N∼N (0, σ2

N ), N ⊥⊥ Y and σ2
N ≫1. Then,

(i) an optimal predictor Ŷ = f(F, B) = F − B (uses both F and B); and (ii) I(Y ; B) and I(Y ; F ) ≈ 0 but
I(Y ; B, F ) is still significant due to synergistic information Syn(Y :B, F ).

For this example (fourth case in Fig. 3), both F and B alone will have limited predictive power when N has
high variance. However, using F and B together, one can perfectly predict Y , e.g., an optimal predictor is
Ŷ = f(F, B) = F − B. Here I(Y ; B) = 0, and we also show that I(Y ; F ) ≈ 0 (see Lemma 8 in Appendix D).
However, the synergistic information Syn(Y :F, B) is still significant. Since I(Y ; F ) ≈ 0, we contend that
here B essentially denoises the core feature F , enhancing its predictive power. Thus, synergistic information
captures an interesting nuanced interplay between core and spurious, not captured by the other PID terms.

3.2 A novel measure of dataset spuriousness

Our objective is to quantify a dataset’s spuriousness which steers machine learning models towards the
spurious features over the core features. To this end, we will examine some candidate measures (Msp)
of spuriousness through examples and counterexamples and systematically arrive at a measure that meets
our requirements. Since we are trying to capture spuriousness which arises when the target variable Y
is associated with the spurious features B, we might first consider the mutual information I(Y ; B) as a
candidate measure for spuriousness since it captures the dependence between Y and B.
Candidate Measure 1. Msp = I(Y ; B).

Counterexample 1. We refer to the example in Lemma 1 where Uni(Y :B|F ) = 0. Hence, I(Y ; B) =
Uni(Y :B|F ) + Red(Y :F, B) = Red(Y :F, B). Here, our candidate measure Msp = I(Y ; B) is positive which
would indicate “spuriousness,” i.e., undesirable steering towards B. However, in this case the model can use
either spurious features B or core features F (see Lemma 1) without any preference. Thus, I(Y ; B) is not
well suited to be a measure of undesirable spuriousness.

Since redundant information can lead to the utilization of either spurious or core features, another candidate
measure of spuriousness might be obtained by subtracting the desirable dependence I(Y ; F ) from the unde-
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sirable dependence I(Y ; B), i.e., Msp = I(Y ; B) − I(Y ; F ). For the example in Lemma 1, this new Msp = 0,
indicating no preference towards spurious or core features.
Lemma 3. Let B = Y + NB , F = Y + NF where noise NB and NF are standard Gaussian noises with
NB ∼ N (0, σ2

NB
), NF ∼ N (0, σ2

NF
) and NB ⊥⊥ Y , NF ⊥⊥ Y . Now if σ2

NF
≫ σ2

NB
, (i) the optimal classifier

relies strongly on spurious feature B; and (ii) Uni(Y :B|F ) > 0.

If σ2
NF

≫ σ2
NB

, then I(Y ; B) > I(Y ; F ), i.e., Msp > 0 (see Lemma 8 in Appendix D). Here, the output of a
model is more likely to be Ŷ = f(B) and the model might be more prone to utilizing the spurious features
B (see Fig. 3). On the other hand, if σ2

NF
≪ σ2

NB
, then I(Y ; F ) > I(Y ; B), i.e., Msp < 0 . In this case, the

output of the model is also more likely to be Ŷ = f(F ) and the model might lean towards the core features
F . Hence, Msp = I(Y ; B)−I(Y ; F ) might seem like a suitable measure to quantify spuriousness, i.e., steering
models towards B over F .
Candidate Measure 2. Msp = I(Y ; B) − I(Y ; F ) = Uni(Y :B|F ) − Uni(Y :F |B).

Counterexample 2. Consider Lemma 2 where the optimal predictor Ŷ = F −B utilizing both the spurious
features B and core features F . Here, this Msp ≈ 0 (Lemma 2). However, for this particular example, since
the prediction is jointly influenced by both core features F and spurious features B, we contend that a
measure of spuriousness should not be 0. The measure should therefore include a term that considers the
joint contribution of both of these features, capturing the fact that here B simply helps in denoising and
enhancing the predictive capabilities of the core features F . This aspect is precisely captured by synergistic
information Syn(Y :F, B). Hence, we also include it in Msp, leading to the following proposed measure.
Proposition 2 (Measure of Spuriousness Msp). Our proposed measure of spuriousness is given by:

Msp = Uni(Y :B|F ) − Uni(Y :F |B) − Syn(Y :F, B). (2)

3.3 Spuriousness Disentangler

We propose an autoencoder-based explainability framework – that we call Spuriousness Disentangler – to
disentangle the PID values and compute the measure Msp (see Fig. 5) for a given dataset. The framework
consists of three modules: segmentation, dimensionality reduction, and estimation.

Figure 5: Spuriousness Disentangler: An autoencoder-based explainability framework to handle high dimen-
sional continuous image data with 3 modules: (i) Segmentation of images into background (spurious features)
and foreground (core features); (ii) Dimensionality reduction involving an autoencoder with bottleneck and
clustering; and (iii) Estimation of the joint distribution followed by the computation of PID values through
convex optimization and computing Msp.
Segmentation: This step involves separating the core (F ) from the spurious (B) features. Publicly avail-
able segmentation masks are used where available. For datasets without explicit core or spurious feature
information, masks can be generated using pre-trained semantic segmentation models. Another possibility
is to use CLIPSeg (Lüddecke & Ecker, 2022), an Open-Vocabulary Semantic Segmentation model, to auto-
matically isolate various objects in the foreground to approximately obtain the core and spurious features.
Experiments for various scenarios are provided in Section 4.

Dimensionality Reduction: Since we are dealing with high dimensional image data, our next module
compresses them into lower-dimensional discrete vectors. We propose to use an autoencoder, a deep neural
network consisting of an encoder and a decoder, as shown in Fig. 6 to jointly do dimensionality reduction
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and clustering. We incorporate a bottleneck structure from (Sadeghi & Armanfard, 2023) with convolutional
autoencoders of Guo et al. (2017) to obtain more informative lower-dimensional representation of the input
image. Along the lines of Guo et al. (2017), we obtain the clusters of the low-dimensional data q by optimizing
a joint loss function defined as L = Lr + γLc where Lr is the representation loss, Lc is the clustering loss,
and γ is a non-negative constant. See Appendix D.4 for more details.

Figure 6: Dimensionality reduction mod-
ule: Autoencoder with clustering to have
discrete lower-dimensional embedding.

Estimation: The final step includes the estimation of the joint
distribution and the PID values, also leading to the proposed
measure Msp. The joint distribution is obtained by comput-
ing the normalized 3D histogram of the discrete clusters of
the foreground, background, and binary target variable. Then,
the PID values are estimated from the joint distribution using
the DIT package (James et al., 2018) which is a Python pack-
age for discrete information theory. We use IBROJA developed
in (Bertschinger et al., 2014) to compute PID which solves
the convex optimization problem in Definition 1 and results
in four non-negative terms, namely, Uni(Y :B|F ), Uni(Y :F |B),
Red(Y :F, B), and Syn(Y :F, B). We use them to calculate the
measure Msp. In case of a multiclass classification task (more than two classes), we use the PID estimator
proposed by (Liang et al., 2023).

4 Experimental Results

Since our proposition is a preemptive dataset explainability framework, the objective of our experiments
is to see how our anticipations from dataset before training agree with post-training model generalization
metrics like worst-group accuracy, SHAP, IoU, etc. In particular, we consider four setups: (i) Both core
and spurious features are available; (ii) Either core or spurious is available; (iii) Segmentation to obtain
core and spurious features; and (iv) Non-spatial spuriousness. We conduct experiments on five datasets:
Waterbird (Wah et al., 2011), Adult (Becker & Kohavi, 1996), CelebA (Lee et al., 2020), Dominoes (Shah
et al., 2020), Spawrious (Lynch et al., 2023), and Colored MNIST (Arjovsky et al., 2019). We begin with
using our explainability framework, namely Spuriousness Disentangler, on each dataset (often with dataset-
specific sampling biases and variations) to compute the PID values and Msp. We fine-tune the pre-trained
ResNet-50 (He et al., 2016) model and calculate the worst-group accuracy over all groups for the Waterbird,
CelebA, Dominoes, Spawrious, and Colored MNIST datasets. For the tabular dataset Adult, we train
XGBoost (Chen & Guestrin, 2016) model and calculate the worst-group accuracy. More details of the
experiments are provided in the Appendix E along with a comparison of our proposed measure Msp with
other measures in Table 2, Appendix E.2.

1. Both core and spurious features available: For the Waterbird, Dominoes, and Adult datasets, core
and spurious features are well-defined and accessible. In Waterbird, the bird’s pixels serve as core features,
while the background is spurious. In the synthetic Dominoes dataset, car or truck images are core, and
digits zero or one are spurious. For the tabular Adult dataset, gender is considered spurious, while age,
education-num, and hours-per-week are chosen as core.

Figure 7: Bar-plot showing the redundant information (R), unique information in background (Uniq-B) and
foreground (Uniq-F), and Synergistic information (Syn) for different variants (essentially different sampling
biases) of the Waterbird dataset. Observe that the Uniq-B decreases and Uniq-F increases for group-
balanced, addition, and concatenation dataset compared to that of unbalanced dataset. Also observe a
negative trend between the Msp and W.G. Acc. Note that the y-axis of first five subplots is in log scale.
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Figure 8: Bar-plot showing the redundant information (R), unique information in background (Uniq-B)
and foreground (Uniq-F), and Synergistic information (Syn) for Dominoes dataset. The Uniq-B decreases
group-balanced and background mixed datasets and the Uniq-F increases for background mixed datasets
compared to that of unbalanced dataset. Also observe a negative trend between the Msp and W.G. Acc.

Figure 9: Bar-plot showing the PID values for the tabular dataset: Adult. The last plot shows a negative
relationship between the worst-group accuracy and the measure of spuriousness Msp. Note that the y-axis
of first two subplots is in log scale.

Figure 10: Examples of Grad-CAM images of Waterbird: For the unbalanced dataset, the model adds
more emphasis (red regions) to the background while in the class-balanced, group-balanced, addition, and
concatenation versions, the foreground gets more emphasis.

Observations: Fig. 7 (Waterbird), Fig. 8 (Dominoes) and Fig. 9 (Adult) show that the unique information
in the background decreases and the unique information in the foreground increases when the dataset is
modified from unbalanced to other variants. We also observe a negative correlation between the measure
of spuriousness (Msp) and the worst-group accuracy. The negative correlation between our proposed dataset
spuriousness measure Msp and the model generalization metric worst-group accuracy indicates that Msp can
serve as an indicator of dataset quality before training. Fig. 10 and Fig 17 in Appendix E.4.1 show that when
the dataset is balanced or mixed background, the Grad-CAM (Selvaraju et al., 2017) emphasizes more on the
core features (the red regions) while in the unbalanced dataset, the background is more emphasized which
results in poor worst-group accuracy. See Table 1 and Table 3 in Appendix E.2 which show how Intersection-
over-union (IoU) between the ground truth masks and Grad-CAM masks changes over different variants of
the Waterbird dataset and the variation of PID values for different number of clusters, respectively.
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2. Only core features available: For CelebA dataset, the core features are the pixels corresponding to
hair. However, the spurious one is not given directly. We consider everything excluding hair as spurious.

Figure 11: CelebA: Observe that the Uniq-F and Synergy increase for class-balanced and group-balanced
dataset compared to that of unbalanced dataset and a trade-off between Msp and W.G. Acc.

Observations: Fig. 11 shows the PID values for unbalanced, class-balanced, and group-balanced CelebA
dataset. Firstly, the unique information in the foreground is the most prominent one among all other PID
values. Observe that, the Uniq-B is almost negligible. The Uniq-F increases while the dataset is class-
balanced or group-balanced along with the increasing worst-group accuracy. There is a negative trend
between worst-group accuracy and the measure of spuriousness Msp. Secondly, the Grad-CAM images (see
Fig. 20 in Appendix. E.4.2) show that the model focuses on the hair for the balanced dataset, but for the
unbalanced dataset, it emphasizes more on the face.

3. Segmentation to obtain features: When explicit information about the core and spurious features
is unavailable, we need to perform segmentation. We perform experiments with the Waterbird dataset
assuming the unavailability of the segmentation masks. We leverage CLIPSeg (Lüddecke & Ecker, 2022),
an Open-Vocabulary Semantic Segmentation (OVSS) model, to generate the mask for the bird object with
the prompt “bird” (details in Appendix E.1), thus utilizing only partial knowledge about the target object.
The generated masks are applied to the original images to separate the foreground and background (see
Fig. 12). Fig. 13a reveals a negative correlation between the worst-group accuracy and increasing values of
Msp, calculated using the obtained background and foreground.

Figure 12: The segmentation mask is obtained by zero-shot image segmentation using CLIPSeg (Lüddecke
& Ecker, 2022). We get the foreground by multiplying the input image with the mask and background by
multiplying (1 − mask).

(a) Waterbird with CLIPSeg (b) Spawrious

Figure 13: (a,b) The first two plots show the change in redundancy, unique information, and the synergistic
information. The last plot shows a negative relationship between the W.G. Acc. and the measure of
spuriousness Msp. Note that the y-axis of first two subplots is in log scale.

Alternatively for Spawrious dataset, we use pre-trained segmentation model (Lin et al., 2017) to generate the
mask of the dog and separate the foreground “dog” from the background. Fig. 13b shows that the redundancy
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and unique information in the background decrease while the unique information in the foreground and
synergy increase when the dataset is group-balanced. We also observe a negative trend between the measure
of spuriousness Msp and the worst-group accuracy showing the effectiveness of the measure.

4. Non-spatial spuriousness: We extend our framework to the Colored MNIST Arjovsky et al. (2019)
dataset, which presents non-spatial biases. In this setting, we define the grayscale digit images as the core
features F and the colored digit images as the spurious features B, leveraging partial knowledge that the
target variable should correspond to the actual digits rather than their color. We perform two experiments:
(i) a 10-class digit classification and (ii) a binary classification, where digits < 5 are class 1, and ≥ 5 are
class 0. There is a negative correlation between the measure of spuriousness Msp and worst-group accuracy
(W.G. Acc.), consistent with observations from other datasets, which validates the broad applicability of
our proposed measure (see Fig. 14). Furthermore, by extending our framework to the multiclass setting, we
demonstrate its enhanced versatility.

(a) Binary CMNIST

(b) Multiclass CMNIST

Figure 14: (a,b) The first three plots show the change in redundancy, unique information, and the synergistic
information. The last plot shows a negative relationship between the W.G. Acc. and the measure of
spuriousness Msp. Note that the y-axis of first three subplots is in log scale.

5 Conclusion

This work brings in a novel perspective on spuriousness by identifying four types of statistical dependencies
in a dataset leveraging the PID framework: when F or B is indispensable (unique information dominant),
when either F or B suffice (redundant information dominant), and when both F and B are jointly needed
(synergistic information dominant). This leads us to propose a measure of dataset spuriousness as an
efficient way to assess dataset quality before performing the actual training or fine-tuning which can be
computationally intensive, particularly in the era of foundational models. We also perform experiments
on several datasets to check if our anticipations from data agree with post-training model generalization
metrics such as worst-group accuracy. Notably, worst-group accuracy and our measure of spuriousness are
not mathematically the same thing: our measures anticipate how the Bayes optimal classifier(s) should
behave, and the empirical measures show how specific models actually behave (when trained on that dataset
without doing anything specific for spuriousness). Nonetheless, we observe an interesting correlation on a
broad range of experimental setups, further validating the efficacy of our measure. Our implementation is
able to handle high-dimensional image data and estimate the PID terms (Broader Impacts in Appendix C).
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A Appendix

B Limitations

(i) Identifying spurious features and core features of a given dataset automatically is not always straightfor-
ward. Future work will look into alternate techniques, such as causal discovery (Zanga et al., 2022) (recently
using LLMs (Liu et al., 2024)) as well as validation on NLP datasets. (ii) The estimation is highly data-
dependent. A small change in the dataset can greatly affect the PID values. Future work will look into
sensitivity and estimation error analysis. (iii) The efficiency and robustness of the Spurious Disentangler can
also be improved. (iv) Additionally, there can be groups of spurious features rather than just one which can
have nuanced interplay among them, which is another interesting direction.

C Broader Impact

Quantifying spuriousness has significant broader impacts across multiple domains. Quantification of dataset
spuriousness might improve the trustworthiness of AI in several high-stakes and safety-critical applications
such as healthcare which can directly impact people’s lives. Spurious patterns often lead to biased predictions,
particularly in sensitive domains such as hiring, lending, or criminal sentencing. Going beyond existing works,
our research paves the way for improved understanding of the nature of spurious relationships, enabling
interpretability which could also have significant implications in auditing.

A framework for dataset explainability provides an alternative to combating spuriousness during training
by providing preemptive insights to inform the training process (analogous to “nutrition labels” Yang et al.
(2018) or “datasheets for datasets” Gebru et al. (2021)). By enabling dataset quality check and cleansing
prior to training, it can bypass expensive adversarial training often used to avoid spurious patterns. Having
clean datasets for fine-tuning is particularly valuable in the era of large foundation models when one has
limited control over the training process.

D Appendix to Main Results

D.1 Relevant Mathematical Results

PID (Bertschinger et al., 2014; Banerjee et al., 2018) provides a mathematical framework that decomposes
the total information content I(Y ; A, B) into four non-negative terms:

I(Y ; A, B) = Uni(Y :B|A) + Uni(Y :A|B) + Red(Y :A, B) + Syn(Y :A, B). (3)

In addition to this equation, the PID terms also satisfy the following relationships (Bertschinger et al., 2014;
Banerjee et al., 2018):

I(Y ; A) = Uni(Y :A|B) + Red(Y :A, B). (4)

I(Y ; A|B) = Uni(Y :A|B) + Syn(Y :A, B). (5)

Now, defining any one of the PID terms is sufficient to obtain all four by using these relationships. In this
work, we use a popular definition of unique information from (Bertschinger et al., 2014; Banerjee et al., 2018)
as defined in Definition 1 which can be computed by solving a convex optimization problem (Bertschinger
et al., 2014; Banerjee et al., 2018).

One of the most desirable property of this definition is that all four PID terms are non-negative.
Lemma 4 (Nonnegativity of PID). All four PID terms Uni(Y :B|A), Uni(Y :A|B), Red(Y :A, B), and
Syn(Y :A, B) are nonnegative as per Definition 1.

This result is proved in Bertschinger et al. (2014, Lemma 5).
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Lemma 5 (Monotonicity under local operations on B). Let B = f(B′) where f(·) is a deterministic function.
Then, we have:

Uni(Y :B|A) ≤ Uni(Y :B′|A).

This result is derived in Banerjee et al. (2018, Lemma 31).
Lemma 6 (Monotonicity under adversarial side information). For all (Y, B, A, W ), we have:

Uni(Y :B|A, W ) ≤ Uni(Y :B|A).

This result is derived in Banerjee et al. (2018, Lemma 32).
Lemma 7. Uni(Y :B|F ) = 0 if and only if there exists a row-stochastic matrix T ∈ [0, 1]|F|×|B| such that:
PY B(Y = y, B = b) =

∑
f∈F PY F (Y = y, F = f)T (f, b) for all y ∈ Y and b ∈ B.

Proof. This result is from Bertschinger et al. (2014). Here, we include a proof for completeness.

If Uni(Y :B|F ) = 0, then we have: minQ∈∆P
IQ(Y ; B|F ) = 0 where ∆P = {Q∈∆ : QY F (Y = y, F = f) =

PY F (Y = y, F = f) and QY B(Y = y, B = b) = PY B(Y = y, B = b)}. Thus, there exists a distribution
Q ∈ ∆P such that Y and B are independent given F under the joint distribution Q. Then, we have

PY B(Y = y, B = b) = QY B(Y = y, B = b) (6)

=
∑
f∈F

QY F B(Y = y, F = f, B = b) (7)

=
∑
f∈F

QB|Y F (B = b|Y = y, F = f)QY F (Y = y, F = f) (8)

(a)=
∑
f∈F

QB|Y F (B = b|Y = y, F = f)PY F (Y = y, F = f) (9)

(b)=
∑
f∈F

QB|F (B = b|F = f)PY F (Y = y, F = f) (10)

(c)=
∑
f∈F

T (f, b)PY F (Y = y, F = f). (11)

Here, (a) holds because PY F = QY F for all Q ∈ ∆P , (b) holds because under joint distribution Q, variables
Y and B are independent given F , and (c) simply chooses T (f, b) = QB|F (B = b|F = f) which is a function
of (f, b) and will lead to a row-stochastic matrix T since

∑
b∈B T (f, b) =

∑
b∈B QB|F (B = b|F = f) = 1.

Next, we prove the converse. Suppose, such a row-stochastic matrix T exists such that:

PY B(Y = y, B = b) =
∑
f∈F

T (f, b)PY F (Y = y, F = f).

Now, we can define a joint distribution Q∗ such that:

Q∗(Y = y, F = f, B = b) = PY F (Y = y, F = f)T (f, b). (12)

We can show that Q∗ is a valid probability distribution since T is row stochastic.∑
y∈Y

∑
b∈B

∑
f∈F

Q∗(Y = y, F = f, B = b) =
∑
y∈Y

∑
b∈B

∑
f∈F

PY F (Y = y, F = f)T (f, b)

=
∑
y∈Y

∑
f∈F

PY F (Y = y, F = f)
(∑

b∈B

T (f, b)
)

=
∑
y∈Y

∑
f∈F

PY F (Y = y, F = f) = 1. (13)
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Also, we can show that Q∗ ∈ ∆P since:

Q∗
Y B(Y = y, B = b) =

∑
f∈F

PY F (Y = y, F = f)T (f, b) = PY B(Y = y, B = b), (14)

which holds since such a row-stochastic matrix T exists. Also, we have:

Q∗
Y F (Y = y, F = f) =

∑
b∈B

PY F (Y = y, F = f)T (f, b) = PY F (Y = y, F = f), (15)

which holds since T is row-stochastic.

Then, Uni(Y :B|F ) = minQ∈∆P
IQ(Y ; B|F ) ≤ IQ∗(Y ; B|F ) = 0.

D.2 Proof of Theorem 1

For the first claim, notice that Uni(Y :B|F ) = I(Y ; B)−Red(Y :B, F ) (from equation 4) and Red(Y :B, F ) ≥ 0
(nonnegativity of PID, see Lemma 4). Thus,

Uni(Y :B|F ) ≤ I(Y ; B).

For the second claim, we will use Lemma 7. Uni(Y :B|F ) = 0 if and only if there exists a row-stochastic
matrix T ∈ [0, 1]|F|×|B| such that: PY B(Y = y, B = b) =

∑
f∈F PY F (Y = y, F = f)T (f, b) for all y ∈ Y and

b ∈ B. The existence of such a row-stochastic matrix is equivalent to Blackwell Sufficiency as per Definition 2
from (Blackwell, 1953).

For the third claim, first observe that if B′ = B ∪ W , then B can be written as a local operation on B′, i.e.,
B = f(B′). Thus, from Lemma 5, we have:

Uni(Y :B|F ) ≤ Uni(Y :B′|F ). (16)

Next, observe that since F ′ = F\W , then from Lemma 6, we have:

Uni(Y :B′|F ) = Uni(Y :B′|F ′, W ) ≤ Uni(Y :B′|F ′). (17)

Combining equation 16 and equation 17, we have the claim

Uni(Y :B|F ) ≤ Uni(Y :B′|F ′).

D.3 Proof of Additional Results

D.3.1 Proof of Lemma 1

Proof of Lemma 1. Here, B = Y + N and F = Y + N where Y and N are independent. Any optimal
predictor is a function of the inputs F and B, i.e., Ŷ = f(F, B). Since F = B, this function can always be
rewritten as a function of B alone or F alone.

Next, we will show that only the redundant information Red(Y :B, F ) is positive and all other PID terms
Uni(Y :B|F ), Uni(Y :F |B), and Syn(Y :F, B) are zero.

Here I(Y ; B|F ) = I(Y ; F |B) = 0 since B = F .

I(Y ; B|F ) = H(B|F ) − H(B|Y, F ) = 0.

According to the Definition 1 and non-negativity of PID terms, Uni(Y :B|F ) = I(Y ; B|F ) − Syn(Y :F, B) ≤
I(Y ; B|F ) = 0.
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Similarly, we have, Uni(Y :F |B) ≤ I(Y ; F |B) = 0.

Then, Syn(Y :F, B) = I(Y ; F |B) − Uni(Y :F |B) (from equation 5) is also 0.

Now, Red(Y :B, F ) = I(Y ; B) − Uni(Y :B|F ) = I(Y ; B) = H(Y ) − H(Y |B) which is positive as long as there
is a significant dependence between Y and B.

D.3.2 Proof of Lemma 2

We first include another lemma that will be useful in proving our main result.
Lemma 8 (Noisy Feature). Let A = Y + N where Y ∼ Bern(1/2) is a random variable taking values +1
or −1 and the noise N ∼ N (0, σ2

N ) is a Gaussian random variable independent of Y . Then, the mutual
information

I(Y ; A) ≤ 1
2 log2

(
1 + 1

σ2
N

)
.

Proof.

I(Y ; A) = H(A) − H(A|Y ) = H(Y + N) − H(Y + N |Y ) (18)
= H(Y + N) − H(N |Y ) (19)
= H(Y + N) − H(N), since N ⊥⊥ Y (20)
(a)
≤ 1

2 log2 2πe
(
1 + σ2

N

)
− 1

2 log2 2πe
(
σ2

N

)
(21)

= 1
2 log2

(
1 + 1

σ2
N

)
. (22)

Here (a) holds because the entropy of Y + N is bounded by 1
2 log2 2πe

(
1 + σ2

N

)
(proved in Cover & Thomas

(2012, Theorem 8.6.5)). We also refer to Cover & Thomas (2012, Chapter 9) for a discussion on Gaussian
channels.

If we keep the distribution of Y fixed and vary the noise variance σ2
N , then we will observe a decreasing

trend of I(Y ; B) with increasing σ2
N . Fig.15 shows the exact trend where Y is a Bernoulli random variable.

Figure 15: Mutual Information vs. Noise Level (Y is Bernoulli)

Proof of Lemma 2. Here B = N and F = Y + N where Y ∼ Bern(1/2) takes values +1 or −1, and the
noise N ∼ N (0, σ2

N ) with N ⊥⊥ Y and σ2
N ≫ 1.

First observe that the predictor Ŷ = f(B, F ) = F − B = Y . Thus, it is perfectly predictive of Y , and is an
optimal predictor.

Now, we will compute the values of the PID terms and show that Syn(Y :B, F ) > 0 and all the other three
PID terms are negligible.
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Since B ⊥⊥ Y , we have I(Y ; B) = 0.

Since F = Y + N , we use Lemma 8 to first show that: I(Y ; F ) ≤ 1
2 log2

(
1 + 1

σ2
N

)
. Now, as the variance σ2

N

becomes high, we have I(Y ; F ) ≈ 0.

Since N ⊥⊥ Y , we have I(Y ; B) = 0. Now, from equation 4, we have

I(Y ; B) = Uni(Y :B|F ) + Red(Y :B, F ) = 0. (23)

According to Lemma 4, Uni(Y :B|F ) and Red(Y :B, F ) are nonnegative. As their summation is 0, each term
should be 0 as well, i.e., Uni(Y :B|F ) = 0 and Red(Y :B, F ) = 0.

Again, since N has a high variance, we have (from Lemma 8):

I(Y ; F ) ≤ 1
2 log2

(
1 + 1

σ2
N

)
≈ 0. (24)

This leads to Uni(Y :F |B) = I(Y ; F ) − Red(Y :B, F ) ≤ 1
2 log2

(
1 + 1

σ2
N

)
≈ 0.

However, I(Y ; F |B) = H(Y |B) − H(Y |B, F ) = H(Y |N) − H(Y |Y + N, N) = H(Y ) which is positive and
significant. This holds because H(Y |Y + N, N) = 0 since Y is completely determined by Y + N and N
together.

Now,

Syn(Y :B, F ) = I(Y ; F |B) − Uni(Y :F |B) ≥ H(Y ) − 1
2 log2

(
1 + 1

σ2
N

)
≈ H(Y ). (25)

D.3.3 Proof of Lemma 3

Proof of Lemma 3. Here the input feature X = (F, B). Observe that, we have the following conditional

distributions: X|Y =0 ∼ N ([0 0],
[
σ2

NF
0

0 σ2
NB

]
), and X|Y =1 ∼ N ([1 1],

[
σ2

NF
0

0 σ2
NB

]
). For simplicity, assume

P (Y = 0) = P (Y = 1). We let Σ =
[
σ2

NF
0

0 σ2
NB

]
.

For the Bayes optimal classifier at the decision boundary, we have:

P (X|Y = 0) = P (X|Y = 1)
⇒ log(P (X|Y = 0)) = log(P (X|Y = 1))

⇒ −1
2XΣ−1X⊤ = −1

2(X − [1 1])Σ−1(X − [1 1])⊤

⇒ ∥F∥2
2

σ2
NF

+ ∥B∥2
2

σ2
NB

= ∥F − 1∥2
2

σ2
NF

+ ∥B − 1∥2
2

σ2
NB

⇒ F

σ2
NF

+ B

σ2
NB

= 1
2σ2

NF

+ 1
2σ2

NB

This is the decision boundary for the Bayes optimal classifier. Thus, we can show that when σ2
NB

≫ σ2
NF

,
the boundary relies heavily on core feature F . Similarly, when σ2

NF
≫ σ2

NB
, the boundary relies heavily

on spurious feature B. Also refer to Fig. 3 (first two cases) for a pictorial illustration on how the optimal
classifier behaves.
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Next, observe that when σ2
NF

≫ σ2
NB

, we have I(Y ; B) > I(Y ; F ) with strict equality (see Lemma 8).

From the definition of PID, I(Y ; B) = Uni(Y :B|F )+Red(Y :B, F ) and I(Y ; F ) = Uni(Y :F |B)+Red(Y :B, F ).

Since I(Y ; B) > I(Y ; F ), we therefore have:

Uni(Y :B|F ) + Red(Y :B, F ) > Uni(Y :F |B) + Red(Y :B, F ).

This leads to Uni(Y :B|F ) > Uni(Y :F |B) ≥ 0 since each PID term is nonnegative.

D.4 Additional Details on Dimensionality Reduction

The representation loss is the mean square error between the input of the encoder x and output of the
decoder x′ defined as Lr = ∥x − x′∥2

2. The cluster centers {µj}K
1 (trainable weights of clustering layer) and

embedded point zi (output of the encoder) are used to calculate the soft label qij = (1+∥zi−µj∥2)−1∑
j
(1+∥zi−µj∥2)−1 where

qij is the jth entry of the soft label qi, denoting the probability of zi belonging to cluster µj . The clustering
loss Lc is the KL divergence between the soft assignments (qi) and an auxiliary distribution (pi). First, the
autoencoder is pre-trained using only Lr to initialize the auxiliary distribution and the cluster centers are
initialized by performing k-means on the embeddings of all images. After pretaining, the cluster centers and
autoencoder weights are updated with the joint loss L iteratively while the auxiliary distribution is only
updated after T iterations.

E Appendix to Experiments

This section includes additional results and figures for a more comprehensive understanding.

E.1 Additional Details on Automatic Segmentation of Features

Segmentation, a component of our Spurious Disentangler, plays a pivotal role in identifying core features
from spurious ones. Identifying spurious features (pixels) without any additional information is challenging
in image datasets, particularly if they lack group labels. However, in supervised classification tasks, the
availability of target labels corresponding directly to the goal of the classification task (and hence some partial
knowledge of what the core features should be if not the exact pixels) often offers a practical workaround.
Specifically, one can leverage automatic segmentation to at least perform object detection and choose the
most relevant objects as the “core”. Then, the regions of an image not associated with the “core” objects
can often be considered a subset of spurious features.

Advances in Open-Vocabulary Semantic Segmentation (OVSS) have significantly reduced the dependence
on task-specific training by enabling generalization to unseen categories without requiring labeled data. To
leverage these advancements, we employ CLIPSeg (Lüddecke & Ecker, 2022), a state-of-the-art OVSS model,
to generate masks for various objects in a zero-shot manner using partial knowledge of the classification task
in mind. For instance, in the Waterbird dataset, we specify the prompt "bird" to obtain a mask for the
bird object. This approach utilizes publicly available fine-grained weights, enabling efficient and accurate
segmentation without additional labeled data. The generated mask is applied to the original image to
extract the foreground, while the background is obtained by multiplying the original image by 1 − mask, as
illustrated in Fig. 12.

Thus, our proposed technique of dataset evaluation can be applied in conjunction with such automatic
segmentation methods to any image dataset where the group information is not available, enabling us to
first identify an approximation of the core features using partial knowledge of the target objects for the
classification task, and then explain the nature of spurious patterns.
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E.2 Additional Results

Our explainability framework is pre-emptive or anticipative of spuriousness using just the dataset before
training the model. The goal of our experiments is to show broad agreement between our anticipations
from the dataset before training any model and the post-training behavior of actual models (when trained
regularly to optimize performance without doing anything else specifically targeted towards avoiding spurious
features). Apart from Worst-Group Accuracy, we also observe the Grad-CAM visualizations to check if the
model demonstrates a stronger emphasis on the relevant core features or not (see Fig. 10, 20, 17). To further
justify this, we calculate the intersection-over-union (IoU) metric (Rezatofighi et al., 2019) over the entire
test Waterbird dataset. Table 1 shows that when the dataset is modified from unbalanced to the other
variants, the IoU score increases. The IoU score is calculated using the ground-truth segmentation masks of
birds and the masks obtained from the Grad-CAM explanation.

Table 1: Intersection over Union (IoU) between ground truth and Grad-CAM masks on the Waterbird
dataset

Test Group Unbalanced Class Balanced Group Balanced Addition Concatenation

Minority Group 0.22 0.29 0.24 0.28 0.32
All Groups 0.19 0.23 0.22 0.29 0.30

Table 2 shows a comparison between our proposed measure of spuriousness Msp and other possible measures.

Table 2: Comparison of the proposed spuriousness measure (Msp) with alternative metrics across dataset
variants

Dataset Measure Unbalanced Class Balanced Group Balanced Addition Concatenation

Waterbird
I(Y ; B) 0.1726 0.0315 0.0028 0.0005 0.0002
I(Y ; B) − I(Y ; F ) 0.1669 0.0298 -0.0089 -0.0052 -0.0054
Proposed Msp 0.1486 0.0185 -0.0322 -0.0208 -0.0195

Dominoes 1.0
I(Y ; B) 0.1882 — 0.0005 0.0010 0.0010
I(Y ; B) − I(Y ; F ) 0.1728 — -0.0010 -0.0203 -0.0144
Proposed Msp 0.1660 — -0.0165 -0.0279 -0.0207

Dominoes 2.0
I(Y ; B) 0.5913 — 0.2610 0.0002 0.0001
I(Y ; B) − I(Y ; F ) 0.5619 — 0.2462 -0.0426 -0.0477
Proposed Msp 0.5557 — 0.2237 -0.0501 -0.0574

CelebA
I(Y ; B) 0.0238 0.0005 0.0151 — —
I(Y ; B) − I(Y ; F ) -0.3038 -0.3713 -0.4051 — —
Proposed Msp -0.3091 -0.3775 -0.4797 — —

Spawrious
I(Y ; B) 0.0437 — 0.0096 — —
I(Y ; B) − I(Y ; F ) 0.0012 — -0.0056 — —
Proposed Msp -0.0007 — -0.0176 — —

E.3 Additional Details on Clustering

At the dimensionality reduction step, we need to choose the number of clusters. We calculate the PID values
for cluster number 5, 10, and 20. In Table 3, we observe that the relevant information can be preserved while
reducing the dimensionality. We select 10 clusters to have a balance between retaining sufficient information
and ensuring faster computational time.
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Table 3: PID components for the Waterbird dataset across different numbers of clusters

Setting Red(Y :F, B) Uni(Y :B | F ) Uni(Y :F | B) Syn(Y :F, B)

Unbalanced

# Clusters = 5 0.0065 0.1220 0.0000 0.0085
# Clusters = 10 0.0057 0.1669 0.0000 0.0184
# Clusters = 20 0.0025 0.1736 0.0000 0.0163
Standard Deviation 0.0017 0.0229 0.0000 0.0043

Class Balanced

# Clusters = 5 0.0008 0.0221 0.0000 0.0012
# Clusters = 10 0.0016 0.0300 0.0001 0.0114
# Clusters = 20 0.0008 0.0128 0.0000 0.0097
Standard Deviation 0.0004 0.0070 0.0000 0.0045

Table 4: Summary of the datasets

Dataset Split Group 00 Group 01 Group 10 Group 11

Waterbird
Train 3,498 184 56 1,057
Validation 467 466 133 133
Test 2,255 2,255 642 642

Dominoes 1.0 Train 3,750 1,250 1,250 3,750
Test 473 507 507 473

Dominoes 2.0 Train 3,000 500 1,250 300
Test 245 490 245 490

Adult Train 10,116 15,930 1,214 6,929
Test 4,307 6,802 555 2,989

CelebA Train 11,111 8,305 4,003 188
Test 1,391 997 525 18

Spawrious Train 3,072 2,275 175 1,056
Test 96 893 2,993 2,112

E.4 Additional Details on Datasets

E.4.1 Both core and spurious features available

Waterbird: The Waterbird dataset (Wah et al., 2011) is a popular spurious correlation benchmark. The
task is to classify the type of bird (waterbird = 1, landbird = 0). However, there exists spurious correlation
between the backgrounds (water = 1, land = 0) and the labels (bird type). The two types of backgrounds
and foregrounds result in total of four groups. A summary of the Waterbird dataset is given in Table 4
and see Fig. 16 for examples of the dataset. We use Spurious Disentangler to calculate PID values. The
hyperparameters are as follows: a batch size of 64, a learning rate of 0.001, a CosineAnnealingLR scheduler,
an Adam optimizer with a weight decay of 0.0001, 150 pretraining epochs, followed by 50 epochs of additional
training. When fine-tuning ResNet-50 we use the following hyperparameters: batch size of 64, learning rate
of 0.0001, CosineAnnealingLR scheduler, stochastic gradient descent (SGD) optimizer with a weight decay
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Table 5: PID values across dataset variants

Dataset Variation Red(Y :F, B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F, B) Msp

Waterbird

Unbalanced 0.0057 0.1669 0.0000 0.0184 0.1486
Class Balanced 0.0016 0.0300 0.0001 0.0114 0.0185
Group Balanced 0.0026 0.0001 0.0091 0.0233 -0.0322
Addition 0.0004 0.0001 0.0053 0.0156 -0.0208
Concatenation 0.0002 0.0001 0.0055 0.0140 -0.0195

Adult Unbalanced 0.0374 0.0000 0.0661 0.0267 -0.0928
Group Balanced 0 0 0.1163 0.0090 -0.1252

Dominoes 1.0

Unbalanced 0.0154 0.1728 0.0000 0.0068 0.1660
Group Balanced 0.0003 0.0002 0.0013 0.0155 -0.0165
Addition 0.0009 0.0000 0.0203 0.0076 -0.0279
Concatenation 0.0009 0.0000 0.0144 0.0063 -0.0207

Dominoes 2.0

Unbalanced 0.0294 0.5619 0.0000 0.0061 0.5557
Group Balanced 0.0148 0.2462 0.0000 0.0225 0.2237
Addition 0.0001 0.0000 0.0426 0.0075 -0.0501
Concatenation 0.0001 0.0000 0.0477 0.0096 -0.0574

CelebA
Unbalanced 0.0238 0.0000 0.3038 0.0053 -0.3091
Class Balanced 0.0000 0.0000 0.3713 0.0063 -0.3775
Group Balanced 0.0151 0.0000 0.4051 0.0746 -0.4797

Spawrious Unbalanced 0.0396 0.0041 0.0029 0.0019 -0.0007
Group Balanced 0.0089 0.0007 0.0063 0.0121 -0.0176

of 0.0001, binary cross-entropy as the loss function, and 100 epochs. See Table 5 for the details of the PID
values, and Table 6 for the worst-group accuracies of different variants of the Waterbird dataset.

Table 6: Worst-group accuracy (%) across dataset variants

Dataset Unbalanced Class Balanced Group Balanced Addition Concatenation

Waterbird 25.71 ± 2.88 74.49 ± 0.58 85.82 ± 0.71 88.18 ± 2.17 92.60 ± 0.39
Dominoes 1.0 86.29 ± 4.44 — 90.19 ± 1.23 94.42 ± 0.24 96.06 ± 0.39
Dominoes 2.0 78.78 ± 1.02 — 88.06 ± 1.12 86.74 ± 1.22 90.72 ± 3.37
CelebA 71.41 ± 0.81 85.29 ± 2.94 98.34 ± 1.66 — —
Spawrious 91.91 ± 1.94 — 95.24 ± 0.28 — —

Dominoes: Dominoes is a synthetic dataset created by combining handwritten digits (zero and one) from
MNIST (Deng, 2012) and images of cars and trucks from CIFAR10 (Krizhevsky et al., 2009) (digit 0 or 1
at the top, car (= 0) or truck (= 1) at the bottom of an image). We make two versions of this synthetic
dataset namely Dominoes 1.0 and Dominoes 2.0 inducing different degrees of sampling biases. The task
is to classify whether the image contains a car or a truck; hence the car or truck corresponds to the core
features (foreground). On the other hand, the digits are considered as the spurious features (background).
The summary of Dominoes 1.0 and Dominoes 2.0 is given in Table 4. Fig. 18 shows the examples of original,
addition, and concatenation variants of the dataset. For PID calculation, the hyperparameters are as follows:
a batch size of 8, a learning rate of 0.001, a CosineAnnealingLR scheduler, an Adam optimizer with a weight
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Figure 16: Samples of Waterbird dataset (original, concatenation, and addition).

decay of 0.0001, 100 pretraining epochs, followed by 50 epochs of additional training. See Table 5 for the
details of PID values and Msp.

Figure 17: Examples of Grad-CAM images Dominoes dataset: Observe that for the unbalanced dataset
(1st from left), the model adds more emphasis (red regions) to the digits (background) while in the group-
balanced, addition and concatenation versions (2nd, 3rd, and 4th from left), the car (foreground) is more
emphasized.

Tabular Dataset: Adult: The applicability of our proposed framework goes beyond images and can also
be applied for explainability on tabular datasets. We perform an experiment on the Adult (Becker & Kohavi,
1996) dataset. The task is to predict whether the annual income of an individual exceeds $50k per year or not
(> 50k = 1,<= 50k = 0). Here we consider “gender” as a spurious feature vector (male = 1, female = 0) and
”age”, ”education-num”, ”hours-per-week” jointly as a core feature matrix. Following by k-means clustering,
we use the estimation module (DIT package) to calculate PID values with core features, spurious features,
and target label. Table 5 shows the values for redundancy, unique information, and synergy. We train the
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Figure 18: Samples of Dominoes dataset (original, concatenation, and addition).

XGBoost (Chen & Guestrin, 2016) model for the prediction task and calculate the worst-group accuracy
which corresponds to the accuracy of the minority group (see Table 4, minority group 10 corresponds to
female individuals with >50k income.).

E.4.2 Only core features available

CelebA: CelebA is another popular dataset for spurious correlation benchmarking, which consists of images
of male-female celebrities. We use a subset of this dataset namely CelebAMask-HQ (Lee et al., 2020) to
utilize the segmentation mask of the hair while calculating the PID values. The objective is to identify
blonde (= 1) and non-blonde (= 0) hair. However, there exists a spurious correlation between gender (men
(= 1), women (= 0)) and the label which makes the model focus on the face rather than the hair to classify
the color of the hair (Moayeri et al., 2023). We consider hair as the foreground and anything but hair as
the background. We do not perform background mixing for this dataset since it is not practical to add or
concatenate two faces randomly. The summary of the CelebA (Lee et al., 2020) dataset is given in Table 4.
The steps and hyperparameters for calculating PIDs are the same as in the Waterbird dataset. See Fig. 19 for
the examples of dataset samples. The details of PID values and worst-group accuracies for several variations
of this dataset are shown in Table 5 and Table 6 respectively.

Figure 19: Samples of CelebA dataset.
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Figure 20: Examples of Grad-CAM images CelebA dataset: Observe that for the unbalanced dataset (1st
from left), the model adds more emphasis (red regions) to the face (background) while in the class-balanced
and group-balanced (2nd and 3rd), the hair (foreground) is more emphasized.

E.4.3 Segmentation to obtain features

Spawrious: Spawrious (Lynch et al., 2023) is a synthetic image dataset created by employing a text-to-
image model. We use a subset of this dataset where we classify dog breeds - dachshund (= 0) and labrador
(= 1). We select the subset so that most of the dachshunds are on beach (= 0) backgrounds and the rest are
on desert (= 1) backgrounds. The summary of the subset of the Spawrious dataset Lynch et al. (2023) that
we use for our experiment is given in Table 4. The samples of this dataset are shown in Fig. 21. We use a
segmentation model namely Feature Pyramid Network (FPN) (Lin et al., 2017) with ResNet-34 (He et al.,
2016) encoder pre-trained with Oxford-IIIT Pet Dataset to create the segmentation mask of the dogs of our
dataset. Using this mask, we separate the foreground “dog” from the background. After having background
and foreground, we use principal component analysis (PCA) (Maćkiewicz & Ratajczak, 1993) followed by
k-means clustering to have discrete lower dimensional representation. We do not use our autoencoder module
since for this dataset a simpler dimensionality reduction also seems to have a low reconstruction loss. Then
we use our estimation module to calculate the PID values and Msp. Tables 5 and Table 6 show all PID
values along with the measure and the worst-group accuracy, respectively.

Figure 21: Samples of the subset of Spawrious dataset we use in this work.

Figure 22: Samples of the CMNIST dataset used in this work.
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Table 7: Comparison of spuriousness measure Msp and worst-group accuracy (%) for multiclass and binary
classification on CMNIST under different flip probabilities

Flip (%) Multiclass Binary
Msp W.G. Acc. (%) Msp W.G. Acc. (%)

0 0.2285 10.26 ± 0.25 – –
10 – – 0.2417 88.72 ± 0.84
25 -0.3935 94.67 ± 0.11 – –
50 -0.4671 95.55 ± 0.73 -0.0688 97.29 ± 0.38
70 – – -0.0521 95.63 ± 1.16

E.4.4 Non-spatial spuriousness

Colored MNIST: Colored MNIST (CMNIST) is a synthetic dataset derived from MNIST. Whereas MNIST
images are grayscale, each image in CMNIST is colored either red or green in a way that correlates spuriously
with the class label. We define two environments (one training, one test) from MNIST transforming each
example as follows: first, assign a preliminary binary label y to the image based on the digit: y = 0 for digits
0 − 4 and y = 1 for 5 − 9. Second, sample the color id z by flipping y with probability pe (flip probability).
In the test one, the flip probability is kept 0.9. Finally, color the image red if z = 1 or green if z = 0 (see
Fig. 22). See Table 7 for details of the spuriousness measure Msp and the worst-group accuracy. Following
by k-means clustering, we use the estimation module to calculate the PID values.

All experiments are executed on NVIDIA RTX A4500.
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