
Under review as submission to TMLR

State-Separated SARSA: A Practical Sequential Decision-
Making Algorithm with Recovering Rewards

Anonymous authors
Paper under double-blind review

Abstract

While many multi-armed bandit algorithms assume that rewards for all arms are constant
across rounds, this assumption does not hold in many real-world scenarios. This paper
considers the setting of recovering bandits (Pike-Burke & Grunewalder, 2019), where the
reward depends on the number of rounds elapsed since the last time an arm was pulled.
We propose a new reinforcement learning (RL) algorithm tailored to this setting, named
the State-Separate SARSA (SS-SARSA) algorithm, which treats rounds as states. The SS-
SARSA algorithm achieves efficient learning by reducing the number of state combinations
required for Q-learning/SARSA, which often suffers from combinatorial issues for large-scale
RL problems. Additionally, it makes minimal assumptions about the reward structure and
offers lower computational complexity. Furthermore, we prove asymptotic convergence to
an optimal policy under mild assumptions. Simulation studies demonstrate the superior
performance of our algorithm across various settings.

1 Introduction

The multi-armed bandit (MAB) problem (Lattimore & Szepesvári, 2020) is a sequential decision-making
problem between an agent and environment. For each round, the agent pulls an arm from a fixed set and
receives a reward from the environment. The objective is to maximize the cumulative rewards over a certain
number of rounds. This is equivalent to regret minimization, which is commonly used to evaluate algorithms
(Lattimore & Szepesvári, 2020). For superior performance, the key ingredient is an exploration-exploitation
tradeoff. During the initial rounds, the agent explores arms at random to gather information about the
environment. After that, the agent exploits the knowledge obtained during the exploration phase to choose
the best arm.

The MAB framework is widely used and finds applications in various domains (Bouneffouf et al., 2020). For
instance, in the context of item recommendation (Gangan et al., 2021), MAB algorithms can be applied by
interpreting arms as items and rewards as conversion rates. Another example is dynamic pricing (Misra et al.,
2019), where arms and rewards correspond to price and profit, respectively. Moreover, in a language-learning
application described in Yancey & Settles (2020), MAB algorithms are employed for push notifications, with
arms representing notifications and rewards representing app usage.

Many bandit algorithms assume reward stationarity, meaning constant rewards across rounds (Garivier &
Moulines, 2011). In such cases, continuing to draw the arm with the highest expected reward is optimal
for cumulative rewards. However, this assumption does not hold in the examples presented above. Instead,
rewards often depend on the timing of arm selections. In recommendation systems, for example, commodities
should be purchased more frequently than other expensive items. Assuming the reward stationarity, bandit
algorithms would repeatedly recommend the same item. On the contrary, the purchase probability would
increase if the recommendation is made after suggesting a variety of items. In dynamic pricing, it may
be more profitable, in the long run, to discount occasionally than to continue discounting for immediate
profit. Similarly, occasional push notifications may be more effective at capturing attention than frequent
notifications conveying the same message, supported by (Yancey & Settles, 2020) through offline and online
experiments.

1

Under review as submission to TMLR

To address this situation, we consider the case where the reward function depends on the time elapsed since
the last arm was pulled, known as recovering bandits (Pike-Burke & Grunewalder, 2019). Various algorithms
have been proposed in the MAB framework, but most assume specific reward structures (Yancey & Settles
(2020); Simchi-Levi et al. (2021); Kleinberg & Immorlica (2018); Leqi et al. (2021);Moriwaki et al. (2019);
Warlop et al. (2018)) or are computationally expensive (Laforgue et al., 2022). Implementing such algorithms
for unknown reward functions over a long sequence of rounds would be challenging.

An alternative approach to dealing with the change in rewards is to apply a reinforcement learning (RL)
algorithm (Sutton & Barto, 2018), considering states as the elapsed rounds for each arm. However, popular
tabular RL algorithms, such as Q-learning (Watkins & Dayan, 1992) and SARSA (Rummery & Niranjan,
1994)), face a combinatorial problem in terms of the number of arms and states. Specifically, we need to
estimate the Q-function for all possible combinations across the maximum number of states for each arm.
Consequently, tabular RL algorithms are computationally prohibitive, except for a small number of arms.

To mitigate the combinatorial issue, this paper proposes a new tabular SARSA, called State-Separated
SARSA (SS-SARSA). We introduce for each arm State-Separated Q-function (SS-Q-function), which depends
on the states for both the associated and a pulled arm, and similarly update them to the standard tabular
SARSA. The update thus requires only the states of the two arms. As a result, the number of Q functions
to be estimated is significantly reduced, leading to more efficient estimation. Furthermore, this algorithm
guarantees convergence to Bellman optimality equation for Q-functions, meaning it achieves an optimal
policy asymptotically. Additionally, since our algorithm is a slightly modified version of SARSA, it can
be solved in linear time for rounds and is faster than the related work (Laforgue et al., 2022). Also,
we introduce a new policy called Uniform-Explore-First; during the exploration phase, it pulls the least
frequently selected arm for given states to update Q-functions uniformly. Subsequently, the agent pulls arms
to maximize cumulative rewards. Note that even random exploration such as ϵ-greedy (Sutton & Barto,
2018) does not update Q-functions uniformly in our setting. Finally, compared to popular RL algorithms
and recovering MAB algorithms (Pike-Burke & Grunewalder, 2019), simulation results across various reward
settings demonstrate the superiority of our algorithm in terms of cumulative rewards and optimal policy.

The contributions of this work are summarized as follows.

• In the recovering reward setting, the proposed algorithm SS-SARSA can mitigate the combinatorial
computation and can be solved in linear time.

• It is theoretically guaranteed that the proposed algorithm obtains optimal policy asymptotically for
any reward structure.

• The proposed policy, Uniform-Explore-First, updates each Q-function uniformly for efficient explo-
ration.

• In various settings, simulation results show the superiority of our algorithm in terms of cumulative
rewards and optimal policy over related works.

The remainder of this paper is organized as follows. Section 2 reviews related literature and discusses the
differences from our work. We define a formal problem setting in Section 3 and the proposed algorithm in
Section 4. In Section 5, we present a convergence analysis for the proposed algorithm. Section 6 shows the
simulation results and advantages over the related methods. Finally, we state our conclusion in Section 7.

2 Related Work

In sequential decision-making problems, two typical approaches are Multi-Armed Bandits (MAB) and Rein-
forcement Learning (RL). MAB does not use a state in modeling, while RL incorporates a state. Recovering
bandit problems have predominantly been addressed in the MAB context, so we mainly survey that area.

In stationary bandits, where expected rewards are constant over time for each arm, algorithms aim to choose
the arm with the highest expected value to maximize cumulative rewards. Numerous algorithms have been
proposed for both parametric and nonparametric reward settings, such as KL-UCB (Lai et al., 1985; Garivier

2

Under review as submission to TMLR

& Cappé, 2011), Thompson sampling (Thompson, 1933; Chapelle & Li, 2011), ϵ-greedy (Sutton & Barto,
2018), and UCB1 (Auer et al., 2002). However, this setting ignores reward changes, a crucial aspect addressed
in this paper.

The non-stationary bandit problem considers scenarios where rewards can change over time. Restless bandits
allow rewards to vary over rounds independently of the history of pulled arms, incorporating settings like
piecewise stationary rewards (Garivier & Moulines, 2011; Liu et al., 2018) and variation budgets (Besbes
et al., 2014; Russac et al., 2019). However, even in these settings, the variation of rewards due to the history
of pulled arms is not accounted for.

In contrast, Rested Bandits involve rewards that depend on the history of the arms pulled. One of the
typical settings is that each arm’s reward changes monotonically each time the arm is pulled (Heidari et al.,
2016). Examples include Rotting bandits (Levine et al., 2017; Seznec et al., 2019), handling monotonically
decreasing rewards, and Rising bandits (Li et al., 2020; Metelli et al., 2022), dealing with monotonic increase.

Another setting in Rested Bandits is Recovering bandits (Pike-Burke & Grunewalder, 2019) (or Recharging
bandits (Kleinberg & Immorlica, 2018)), where rewards depend on the elapsed rounds since the last pull for
each arm. Numerous algorithms have been proposed in this context, with many assuming a monotonous
increase in rewards as rounds progress (Yancey & Settles (2020); Simchi-Levi et al. (2021); Kleinberg &
Immorlica (2018)). An alternative approach involves functional approximation with past actions as contexts,
exemplified by stochastic bandits with time-invariant linear dynamical systems (Leqi et al., 2021), contextual
bandits (Moriwaki et al., 2019), and linear-approximation RL (Warlop et al., 2018). In contrast to these
approaches, we propose an algorithm that does not rely on a specific structure of the rewards.

Several articles make fewer assumptions about rewards (Laforgue et al., 2022; Pike-Burke & Grunewalder,
2019). Laforgue et al. (2022) propose an algorithm based on Combinatorial Semi-Bandits, applying integer
linear programming for each block of prespecified rounds to determine the sequence of pulling arms. However,
its time complexity is more than quadratic in total rounds, making it impractical for large total rounds. In
contrast, our algorithm, a modified version of SARSA, can be computed in linear time.

Pike-Burke & Grunewalder (2019) uses Gaussian process (GP) regression and proves the Bayesian sublinear
regret bound without reward monotonicity and concavity. However, their algorithms only considered short-
term lookahead and did not guarantee to achieve the optimal policy in the long run, as deemed in RL. In
contrast, our RL approach can realize the optimal policy asymptotically.

3 Problem Setting

In this section, we introduce recovering bandits (Pike-Burke & Grunewalder, 2019) within the framework
of the Markov Decision Process (MDP) to facilitate RL algorithms. The (discounted) MDP is defined as
M = (A,S, f, r, γ), where A = [K] := {1, 2, · · · , K} is the index set of K arms1, Sk := [smax] denotes
the states of the arm k (k = 1, . . . , K), and S =

∏K
k=1 Sk is their direct product. Additionally, we let

fk : Sk × A → Sk denote a deterministic state transition function for arm k, and f = (f1, f2, · · · , fK) a
bundled vector. The stochastic bounded reward function is denoted by r : S ×A → R, and γ ∈ (0, 1] serves
as a discount rate.

Key distinctions from standard MDP lie in the state structure and the state transition. In the K-dimensional
state s := (s1, s2, · · · , sk, · · · , sK), the component sk ∈ [smax] signifies the elapsed number of rounds for the
arm k since its last pull. We limit sk at smax even if it surpasses smax rounds. Consequently, the cardinality
of the states in s is sK

max. With the multi-dimensional states, an agent interacts with an environment over T
(allowing ∞) rounds as follows. At round t ∈ [T], given state st := (st,1, st,2, · · · , st,k, · · · , st,K), the agent
draws an arm at from the K arms. This choice is governed by a policy πt(at|st), which is a map from S
to ∆A, the probability distributions on the K arms. The environment then returns a stochastic reward
r(st,at

, at), which depends on only at and the corresponding state st,at
. Note that r is independent of the

1In the context of RL, arms are often referred to as actions, but we use the term "arm" following the original recovering
bandits (Pike-Burke & Grunewalder, 2019).

3

Under review as submission to TMLR

other arm states. Finally, the next state st+1 is updated as st+1,k = f(st,k, at) := min{st,k + 1, smax} for
k ̸= at and := 1 for k = at, as stated in the previous paragraph.

With the above MDP, our goal is to maximize the expected (discounted) cumulative rewards, which is defined
by

Vπ(s) := Eπ

[
T∑

t=0
γtr(st,at , at) | s0 = s

]
,

where π is a given stationary policy, which does not depend on time t and s is an initial state. The optimal
policy is defined as π that maximizes Vπ(s) for any initial state. In our MDP, when T = ∞ and γ < 1
(i.e. infinite-horizon discounted MDP), it is known (Puterman, 2014) that there exists an optimal policy π∗,
which is stationary and deterministic, meaning that π∗ is invariant over time, and for any s ∈ S, π(a|s) = 1
for some a ∈ A.

4 Algorithm

This section presents a novel algorithm to learn the optimal policy. Section 4.1 introduces Q-functions
called the State-Separated Q-functions (SS-Q-functions), considering the state structure. Using these SS-
Q-functions, Section 4.2 proposes the State-Separated SARSA (SS-SARSA) algorithm for efficient learning.
This section focuses on the discounted MDP with infinite horizons (i.e. T =∞ and γ ∈ (0, 1)).

4.1 State-Separated Q-function: Constructing the MDP with reduced state combinations

We start with the problem of the tabular RL approach: the combinatorial explosion associated with the
Q-function

Q(s, a) := Eπ

[
T∑

t=0
γtr(sat

t , at) | s0 = s, a0 = a

]
. (1)

(1) can also be expressed in Bellman-equation form (Sutton & Barto, 2018):

Q(s, a) = Er[r(sa, a)] + γQ(s′, a′). (2)

Here, s′ and a′ represent the next state and arm after s and a, respectively; s′ = f(s, a) and a′ ∼ π(·|s′). We
also define the Bellman optimality equation for Q-function as

Q∗(s, a) = Er[r(sa, a)] + γ max
a′∈A

Q∗(s′, a′), (3)

where Q∗ is the Q-function concerning the optimal policy.

Unlike the MDP with a probabilistic state transition, there is no need to take the expectation of s′ in the
second term of (3). Then, since the cardinality of s is sK

max, tabular Q-learning (Watkins & Dayan, 1992)/
SARSA (Rummery & Niranjan, 1994) has to estimate the Q-function for sK

max × K combinations of the
argument. These algorithms are updated with the following rules respectively:

Q-learning: Q̂(s, a)← Q̂(s, a) + α
(

r(sa, a) + γ max
a′

Q̂(s′, a′)− Q̂(s, a)
)

(4)

SARSA: Q̂(s, a)← Q̂(s, a) + α
(

r(sa, a) + γQ̂(s′, a′)− Q̂(s, a)
)

(5)

Thus, these algorithms must learn for a combinatorial number of states, which is prohibitive unless smax and
K are small.

To mitigate this computational difficulty, we introduce SS-Q-functions. Combining these new Q-functions
results in a significant reduction in state combinations compared to the original Q-functions.

4

Under review as submission to TMLR

More specifically, State-Separated Q-function (SS-Q-function) is defined by a form of Bellman-equation

QSS,k(sk, sa, a) := Er[r(sa, a)] + γQSS,k(s′
k, s′

a′ , a′) (6)

for each k ∈ [K] and a ∈ [K]. It is similar to the Bellman equation of the original Q-function but involves
only two-dimensional states; it depends solely on the state sk and the state of the pulled arm sa.

We can recover the original Q-function by aggregating these new Q-functions. For a fixed a ∈ [K], by adding
(6) over all k ∈ [K] and dividing it by K,

1
K

K∑
k=1

QSS,k(sk, sa, a) = Er[r(sa, a)] + γ
1
K

K∑
k=1

QSS,k(s′
k, s′

a′ , a′). (7)

Since r(sa, a) is independent of k ∈ [K], the instantaneous reward remains unchanged even after the aggre-
gation. Let the left-hand side of (7) be denoted by Q(s, a), i.e.

Q(s, a) := 1
K

K∑
k=1

QSS,k(sk, sa, a)

for each s ∈ [smax]K and a ∈ [K]. Then (7) is equivalent to

Q(s, a) = Er[r(sa, a)] + γQ(s′, a′), (8)

which coincides with the definition of the original Q-function. Note that computation with SS-Q-functions
requires only s2

maxK2 variables, while the naive implementation of the original Q-function needs sK
max ×K.

Similarly, we can also construct the Bellman-optimal equation by aggregating SS-Q-functions.

4.2 State-Separated SARSA: A novel efficient RL algorithm in recovering bandits

We introduce State-Separated SARSA (SS-SARSA) building on the SS-Q-functions and explain its advantages
in comparison to conventional tabular RL and MAB approaches. We also propose a policy tailored to our
MDP, which achieves efficient uniform exploration across all the variables of the Q-function.

To begin, we outline SS-SARSA, illustrated in Algorithm 1. Given input parameters T , γ, and initial states
s0, the estimates of SS-Q-functions Q̂SS,k(sk, sa, a) are initialized to zero. The algorithm then proceeds in
the following way. The agent pulls an arm a from K arms according to a proposed policy, Uniform-Explore-
First π, which will be discussed later. Following the state transition rule described in Chapter 3, the next
states s′ transition to one where k = a, and for the states of other arms, they transition to min{s + 1, smax}.
Then, for the pulled arm a and for all k ∈ [K] the SS-Q-functions are updated as follows:

Q̂SS,k(sk, sa, a)← Q̂SS,k(sk, sa, a) + α(r(sa, a) + γQ̂SS,k(s′
k, s′

a′ , a′)− Q̂SS,k(sk, sa, a)), (9)

where α ∈ [0, 1] represents a learning rate that is independent of (sk, sa, a). The above expression is analogous
to the update rule in tabular SARSA given in (5). By defining Q̂(s, a) := 1

K

∑K
k=1 Q̂SS,k(sk, sa, a) and

combining as in (7) and (8) using these estimated SS-Q-functions, we can update

Q̂(s, a)← Q̂(s, a) + α
1
K

K∑
k=1

(r(sa, a) + γQ̂SS,k(s′
k, s′

a′ , a′)− Q̂SS,k(sk, sa, a)). (10)

⇐⇒ Q̂(s, a)← Q̂(s, a) + α
(

r(sa, a) + γQ̂(s′, a′)− Q̂(s, a)
)

(11)

,which has the same form as SARSA (5).

Compared to the related works, SS-SARSA has three advantages: reduced combinations of the estimated
SS-Q-functions, low time complexity, and long-term lookahead. First, the combination of SS-Q functions
to be estimated is at most s2

maxK2, which is significantly smaller than sK
max of Q-functions in tabular RL

5

Under review as submission to TMLR

algorithms. Second, our algorithm updates K SS-Q-functions per round, similar to tabular SARSA, thus
its time complexity is just O(KT). It has better computational efficiency compared to the O(K5/2T 9/4)
time complexity associated with regret guarantees in Laforgue et al. (2022). Finally, our RL approach
aims to identify the optimal policy over the entire duration of total rounds. In contrast, MAB approach
determines the optimal sequence of selected arms only for short rounds (Laforgue et al., 2022; Pike-Burke &
Grunewalder, 2019).
Remark 4.1. (Why does our algorithm adopt SARSA update rule instead of Q-learning update?) Our
algorithm updates the SS-Q-functions using the SARSA update rule (5) and combine these SS-Q-functions
(10). Another possibility would be to use Q-learning (4). However, it would not fit our setting due to the
max operator. In fact, if we apply (4) to each QSS,k and combine them with the learning rate α, the max
operator part becomes

1
K

K∑
k=1

α max
a′

QSS,k(s′
k, s′

a′ , a′), (12)

which should be α maxa′
1
K

∑K
k=1 QSS,k(s′

k, s′
a′ , a′) = α maxa′ Q(s′, a′) to update the form of Q-learning.

Therefore convergence to the optimal policy would be questionable.

Before introducing our new policy, we discuss why random exploration doesn’t work well in our MDP. Under
random exploration, we can compute the probability that arm k is pulled at state sk = i in round t, denoted
by pt,i,k. Since π(a|s) = 1

K under a random policy, we have pt,i,k = 1
K × qt,i,k, where qt,i,k is the probability

that arm k is in state i at round t. When t ≥ smax, the probability pt,i,k does not depend on t 2. The
probability for each state is as follows. Since for any sk ∈ [smax] the state of arm k transitions to one when
pulling arm k, by the total law of probability, qt,1,k = 1

K

∑smax
j=1 qt−1,j,k = 1

K and thus pt,1,k = 1
K2 . For

i = 2, 3, · · · , smax − 1, an arm reaches state i exactly when arm k is not pulled at state (i− 1), which means
qt,i,k = (1− 1

K)qt−1,i−1,k. Thus, qt,i,k = (1− 1
K)i−1 1

K , and pt,i,k = (1− 1
K)i−1 1

K2 . For i = smax, by the law
of total probability, pt,smax,k = 1−

∑smax−1
j=1 pt,j,k = 1− 1

K2 −
∑smax−1

i=2 (1− 1
K)i−1 1

K2 , which is strictly more
than 1

K2 because pt,1,k = 1
K2 and pt,i,k < 1

K2 for i = 2, 3, · · · smax − 1.

This result implies that even when applying policies that randomly select an arm given a state (e.g., random
exploration with a positive probability ϵ in ϵ-greedy (Sutton & Barto, 2018)), SS-Q-functions are frequently
updated at smax compared to other states. This property is notable in the case where smax < K. As a
numerical example, when K = smax = 6, for any t and k, pt,smax,k,≈ 0.067 and pt,smax−1,k ≈ 0.013. In
contrast, when K = 6 and smax = 3, for any t and k, pt,smax,k ≈ 0.116 and pt,smax−1,k ≈ 0.023. Variation in
the frequency of these updates has a negative impact, especially when the state with the highest reward is
not smax.

In this paper, we propose an alternative policy, named Uniform-Explore-First, which follows a strategy of
exploring information uniformly initially and subsequently exploiting this explored information. Specifically,
during the specified initial rounds E, the agent explores the arm with the minimum number of visits over the
(s, a) pairs, given the current state s up to round t, denoted as vt(s, a). If vt(s, a) is tied for multiple arms,
the selection of the arm can be arbitrary. After the exploration phase, the agent adopts a greedy approach
by pulling the arm with the maximum Q̂(s, a) to maximize the (discounted) cumulative rewards. In contrast
to random exploration, our exploration strategy uniformly pulls arms at states other than smax.

5 Convergence Analysis

This section presents a convergence analysis and provides remarks on our problem setting. Throughout this
section, our focus is on the infinite-horizon discounted MDP, i.e., T =∞ and γ < 1.
Theorem 5.1. (Convergence of Q-functions) Suppose that the variance of the (stochastic) reward r is
finite and αt = 1

t+t0
where t0 is some constant value. This learning rate satisfies Robbins-Monro scheme

2If t < smax, some states cannot be reached. For example, if s0,k = smax, it takes at least smax rounds to visit the state at
sk = smax − 1.

6

Under review as submission to TMLR

Algorithm 1 State-Separated SARSA (SS-SARSA)
Input: T , γ, α
Initialize: Q̂SS,k(sk, sa, a)← 0 for all k ∈ [K] and a ∈ [K]
for t = 1, 2, · · · , T do

a←

{
argmina∈[K]vt(s, a) when t ≤ E

argmaxa∈[K]Q̂t(s, a) when t > E
▷ Uniform-Explore-First

r ← r(sa, a)

s′
k ←

{
1 for k = a

min{sk + 1, smax} for k ∈ [K]\{a}

Update Q̂SS,k(sk, sa, a) for all k ∈ [K]:
Q̂SS,k(sk, sa, a)← Q̂SS,k(sk, sa, a) + α(r(sa, a) + γQ̂SS,k(s′

k, s′
a′ , a′)− Q̂SS,k(sk, sa, a))

end for

(i.e.
∑∞

t=1 αt = ∞ and
∑∞

t=1 α2
t < ∞). Suppose that πt(s|a) is a GLIE policy, that is, it visits each (s, a)

infinitely often and chooses an arm greedily with probability one in the limit (i.e. πt(s|a) = arg maxa Q̂(s, a)
w.p. 1 as t → ∞). Also, for each (s, a) pair, define the error of the Q-function at round t ∈ [T] as
Qerr,t(s, a) := |Q̂t(s, a) − Q∗(s, a)|. Define a set V := {(s, a)| visit (s, a) for some policy }. Then, for any
(s, a) ∈ V , Qerr,t(s, a)→ 0 with probability 1 as T →∞.

Proof: As indicated in Section 4, since we adopt the learning rate which is independent of (sk, sa, a), SS-
SARSA can be considered SARSA after combining the SS-Q functions. Consequently, we can prove the
convergence theorem analogous to Singh et al. (2000), under the same assumption as SARSA.
Remark 5.2. (No visit at some states) While the convergence theorem in MDP (Watkins & Dayan, 1992;
Singh et al., 2000) assumes infinite visits for each (s, a) pair, in our MDP settings certain states are never
visited for any policy. For instance, (s, a) with sk = 1 for multiple k never appears, since it means multiple
arms were pulled at the last time point. Only the value of Q-function within V is needed to learn a policy.
Remark 5.3. (Convergence theorem for Uniform-Explore-First) The Uniform-Explore-First policy is con-
sidered GLIE because it greedily pulls an arm after the exploration phase. However, due to the separation
of the exploration and the exploitation phase, our policy does not guarantee the infinite updating of all Q-
functions in V . Nevertheless, in practice, by taking sufficient rounds for uniform exploration, the estimated
Q-function approaches the Bellman optimality equation for Q-function of each (s, a) ∈ V .

6 Experiments

In this section, we present simulation results to empirically verify the performance of our algorithm. Section
6.1 gives the simulation settings, and Section 6.2 shows the superiority of our algorithm in some metrics.

6.1 Simulation Settings

In this subsection, we state MDP environments, metrics, SS-SARSA parameters, and competing algorithms
related to our work.

Initial state: Throughout the simulation, initial state is assumed to be smax for every k ∈ [K]. In item
recommendation, if the conversion rate increases with the number of states, representing the freshness
of items, this assumption reflects the agent before the item recommendation is exposed. Note that this
assumption is made purely for simplicity and that our algorithm can be generalized to any other initial
states.

Discount rate: We conduct simulations in both discounted (γ ∈ (0, 1)) and non-discounted (γ = 1) settings.
The discounted setting is commonly employed in infinite horizon MDP. We set γ to (1− 10−T), depending
on T, because it makes the rewards in later rounds not significantly smaller. On the other hand, the non-
discounted setting is the standard setting in MAB. As discussed in the previous section, our algorithm does

7

Under review as submission to TMLR

not satisfy the assumption for the convergence theorem. Nevertheless, we will verify that our algorithm
performs well in practice for both situations.

Reward: To begin, we demonstrate with a small state combination, specifically setting K = smax = 3 and
T = 105. The first arm is nonstationary, with an expected reward of 0.1 for s1 ∈ {1, 2} and an increase to
0.3 at s1 = 3. Conversely, the remaining two arms are stationary, with an expected reward of 0.2 irrespective
of the state of each arm. Note that our claim of superiority is against MAB algorithms rather than the
tabular RL algorithms. Indeed, the cardinality of SS-Q functions in SS-SARSA and the Q-function for
Q-learning/SARSA are the same.

Next, we address larger-scale problems and provide a comprehensive framework for all remaining experiments.
We consider various settings involved in reward heterogeneity and reward increments.

For reward heterogeneity, we consider Kbest best arms and the remaining (K −Kbest) sub-best arms. When
K = Kbest, arms are homogeneous: changes in expected rewards per state increment for all arms are the same,
as illustrated in 6-Homo and 10-Homo in Table 1. In contrast, when K > Kbest, arms are heterogeneous:
changes in expected rewards per state increment differ for best arms and sub-best arms, as illustrated in
6-Hetero and 10-Hetero in Table 1.

For reward increments, we consider two cases of changes in expected rewards with state increments:
monotone-increasing rewards and increasing-then-decreasing rewards. In the monotone-increasing case, the
expected reward for each arm is as follows: for the best arms, the expected rewards start at 0.1 for sa = 1
and increase by Vbest per state increment, reaching 0.6 at smax. For the sub-best arms, the expected rewards
at sa = 1 remain the same, but increase only by Vsub-best(< Vbest) per state increment, reaching 0.5 at smax.

The increasing-then-decreasing case is similar to the monotone case, but the state of peak reward differs.
Specifically, for the best arms, the expected rewards at sa = 1 are the same as in the monotone case and
increase by Vbest per state increment, but reach 0.6 at smax − 1 and decrease by Vbest at smax. Similarly, for
the sub-best arms, the reward at the peak state is 0.5 at smax − 1 and decreases by Vsub-best at smax.

Finally, we state the total rounds and reward distributions. Considering the cardinality of the states,
T = 105 for K = 3, 6 and T = 106 for K = 10. Moreover, we use Bernoulli and normal distributions as
reward distributions for all simulations. In the normal case, the variance is 0.5. The normal case is more
difficult due to its higher variance compared to the Bernoulli case.

Name K smax |s| T Kbest Vbest Vsub-best
6-Hetero 6 3 36(> 7× 102) 105 3 1

4 (1
2) 1

5 (2
5)

6-Homo 6 6 66(> 4.6× 104) 105 6 1
10 (1

8) –
10-Hetero 10 5 510(> 9× 106) 106 5 1

8 (1
6) 1

10 (2
15)

10-Homo 10 10 1010 106 10 1
18 (1

16) –

Table 1: Monotone-increasing (increasing-then-decreasing) reward settings (The values enclosed in paren-
theses in Vbest and Vsub-best pertain to the increasing-then-decreasing case.)

Metrics: We introduce some metrics for comparing algorithm performance. The first metric is cumulative
regret, which is the difference in (discounted) cumulative expected rewards between the best and learning
policies. This metric measures the closeness of the learning policy to the optimal one, so smaller is better,
and is often used in MAB (Lattimore & Szepesvári, 2020).

If we can define the optimal policy, we also use the rate of optimal policy, which measures how often the
optimal policy is obtained out of a thousand simulations. The optimal policy is defined as having no regret
during the last 3 × smax rounds, making it easy to assess the quality of exploration. Note that this metric
only reflects the performance after exploration, while cumulative regret/rewards cover both the exploration
and exploitation phases. Therefore, even if some algorithms have smaller regret than others, they may not
necessarily achieve optimal policy.

In the (first) small-scale and the monotone-increasing case, the optimal policy can be obtained explicitly. In
the former case, the optimal policy is to select the first arm only when s1 = smax = 3 and to choose the

8

Under review as submission to TMLR

other arms otherwise. In the monotone-increasing case, as long as smax ≤ Kbest, the agent has the chance
to pull the best arm at smax given the initial state s0 = smax. Therefore, the optimal policy cyclically pulls
only Kbest best arms at smax.

However, in the increasing-then-decreasing rewards, given s0 = smax, there is no chance to pull the best arm
at smax − 1 in the first round. Thus, optimal policy is not trivial.3 In such a case, we use (discounted)
cumulative expected rewards without optimal policy as another metric. The larger the metric, the better,
although its maximization is equivalent to the minimization of cumulative regret.

SS-SARSA parameters: We set the learning rate and the exploration horizon in our algorithm. As
pointed out in the previous section, we use αt = 1

t+t0
. The smaller the t0 value, the greater the effect of the

update in the early visit, causing unstable learning due to the stochasticity of rewards. Thus, a large t0 is
better for mitigating this issue, and we set t0 = 5000 through the simulations.

The size of the exploration should be determined by considering the trade-off between exploration and
exploitation. Over-exploration, characterized by uniformly pulling arms in a large fraction of rounds, fails
to sufficiently exploit the best arm, leading to large regret or small cumulative rewards. Conversely, under-
exploration, characterized by uniformly pulling arms in a small fraction of rounds, fails to gather adequate
information about each Q-function, resulting in a low probability of selecting the best arm. Taking this
tradeoff into account, we allocate uniform exploration to 10% of the total rounds. (i.e. E = 0.1T).

Compared algorithms: We introduce other algorithms to compare their performance to our algorithm.
The first algorithms are the original tabular model-free RL algorithms: Q-learning (Watkins & Dayan, 1992)
and SARSA (Rummery & Niranjan, 1994). These algorithms also have convergence results to the Bellman
optimality equation for Q-function. However, in our setting, as described in section 4.1, these algorithms
have to estimate enormous Q-functions unless smax and K are small, leading to few updates after many
rounds. For the comparison of our algorithm, we maintain the learning rate, policy, and exploration size
identical to those of SS-SARSA.

Another algorithm is the dRGP-TS algorithm (Pike-Burke & Grunewalder, 2019). This approach utilizes GP
regression for each arm to estimate the reward distribution. After sampling rewards from the distribution of
each arm for predetermined d rounds, the agent pulls the sequence of arms with the highest total rewards.
Due to the Kd combinations to draw arms for each d round, a large d becomes unrealistic 4. Therefore,
in our experiments, we consider d = 1, 2. This approach helps to avoid the state-combination problem in
Q-learning/SARSA and shows a Bayesian regret upper bound. However, the upper bound is derived by
repeatedly applying the d-step regret. In this simulation, We evaluate full-horizon regret that is defined in
metrics. Additionally, we use an alternative implementation that is equivalent to the original but reduces
computational complexity. The pseudo-code details and parameter settings are provided in Appendix A.

6.2 Simulation results

We show only the results with discounted rewards here, and the undiscounted cases will be deferred to
Appendix B.

6.2.1 Small-scale problem

For each reward distribution, Figure 1 shows the cumulative regret transitions (left), box plots of cumulative
regret in the final round (middle), and the rate of the optimal policy (right).

In the cumulative regret (left), the solid line and the filled area represent the median and the 90% confidence
interval, calculated with a thousand simulations. Exploration of each algorithm increases the cumulative
regret in the early stage, and then the agent exploits the learned policy. In the box plots of cumulative
regret, the black circle, the boxes, the bottom lines in the boxes, the middle lines in the boxes, and the top

3Even if we set the initial state as smax − 1, after the state transition, each arm state is either 1 or smax. Thus, in the second
round, the same problem occurs in the case of s0 = smax.

4Pike-Burke & Grunewalder (2019) introduces a computationally efficient algorithm for searching an optimal sequence of
arms under large values of K and d. However, experimental results showed similar performance for d = 1, 3. Additionally, in
the regret comparison with other algorithms, only the case d = 1 is considered.

9

Under review as submission to TMLR

(a) Bernoulli rewards

(b) Normal rewards

Figure 1: Small-scale problem (K = 3, smax = 3, γ = 0.99999)

lines in the boxes represent the mean, 50% box, the 25th, 50th, and 75th percentiles, respectively. All points
outside the interquartile range of the box, which is 1.5 times the difference between the top and bottom
lines, correspond to outliers. The upper and lower lines represent the maximum and minimum values after
removing outliers. These graphs reflect the stability of the algorithms through the variation in cumulative
regret. The rate of optimal policy over a thousand simulations assesses the quality of exploration.

Figure 1 shows the results of K = 3 and smax = 3. In the case of Bernoulli rewards (1(a)), all the methods
except 2RGP-TS generally achieve the optimal policy due to the simple setting of the problem. 1RGP-TS
shows slightly unstable results. 2RGP-TS does not perform well, suggesting that this method fails to identify
the optimal sequence of selected arms even when considering a limited number of combinations.

6.2.2 Monotone-increasing rewards

In Figures 2 and 3, the type and arrangement of the graphs are the same as before.

Figure 2 shows the results of K = 6. With a larger state space, the standard Q-learning and SARSA do not
achieve the optimal policy. For both 6-Hetero and 6-Homo, SS-SARSA stably achieves the optimal policy
in most trials within the exploration phase, as seen by no increase of regret after that round. In contrast,
in 6-Hetero, 1RGP-TS, the rate of optimal policy is lower. This is caused by the occasional failure to find
the optimal policy, which can be seen by the increase of cumulative regret, especially notable in normal
rewards. Similarly, in 6-Hetero, 2RGP-TS tends to fail in finding the optimal policy for the same reason as
the experiments with K = 3.

By comparing the results with K = 3 and K = 6, we can see that SS-SARSA as well as 1RGP-TS can handle
the large state space much more efficiently than Q-learning and SARSA, which suffer from complexity even
with K = 6.

Figure 3 depicts the results for 10 arms. The results of SARSA and Q-learning are not included due to their
requirement of a large memory for Q-functions and poor performance in the case of 6 arms. In 10-Hetero, for
both Bernoulli (a) and normal (b) rewards, SS-SARSA has low regret and is competitive with 1RGP-TS in

10

Under review as submission to TMLR

(a) 6-Hetero (Bernoulli rewards)

(b) 6-Hetero (Normal rewards)

(c) 6-Homo (Bernoulli rewards)

(d) 6-Homo (Normal rewards)

Figure 2: Increasing rewards (K = 6, γ = 0.99999)

obtaining the optimal policy for all simulations. However, While SS-SARSA has a higher rate of the optimal
policy and more stable cumulative regret than 1RGP-TS. 2RGP-TS performs the worst in a manner similar
to the previous cases. In 10-homo, our algorithm has larger regret than 1RGP-TS due to the exploration
phase, but the rate of optimal policy remains competitive.

11

Under review as submission to TMLR

(a) 10-Hetero (Bernoulli rewards)

(b) 10-Hetero (Normal rewards)

(c) 10-Homo (Bernoulli rewards)

(d) 10-Homo (Normal rewards)

Figure 3: Increasing rewards (K = 10, γ = 0.999999)

The obtained results indicate that SS-SARSA is the most stability for any case. Notably, in heterogeneous
rewards, our algorithm demonstrates the most stable performance with low cumulative regret and the highest
rate of optimal policy. 1RGP-TS performs slightly better than our algorithm in the case of homogeneous
rewards, but it becomes unstable when dealing with heterogeneous and high-variance rewards.

12

Under review as submission to TMLR

(a) 6-Hetero (Bernoulli rewards)

(b) 6-Hetero (Normal rewards)

(c) 6-Homo (Bernoulli rewards)

(d) 6-Homo (Normal rewards)

Figure 4: Increasing-then-decresing rewards (K = 6, γ = 0.99999)

6.2.3 Increasing-then-decreasing rewards

First, note that in the case of increasing-then-decreasing rewards, we employ the cumulative rewards instead
of regret in the left and center graphs of Figures 4 and 5, so the larger values are better.

Those results show that the proposed SS-SARSA performs better or competitively compared to the other
methods. In contrast to the monotone rewards, SS-SARSA does not have higher cumulative regret than
1RGP-TS even in the case of homogeneous rewards. The reason for this is the proposed policy; Uniform-
Explore-First enforces each SS-Q-function to update uniformly across all states, while the exploration in
1RGP-TS does not take into account the structure inherent in our MDP.

13

Under review as submission to TMLR

(a) 10-Hetero (Bernoulli rewards)

(b) 10-Hetero (Normal rewards)

(c) 10-Homo (Bernoulli rewards)

(d) 10-Homo (Normal rewards)

Figure 5: Increasing-then-decresing rewards (K = 10, γ = 0.999999)

Overall, SS-SARSA outperforms other algorithms in terms of stability of regret and rate of optimal policy,
regardless of reward distribution, heterogeneity, and state cardinality. The only algorithm that comes close
to SS-SARSA is 1RGP-TS, which is competitive or slightly superior in cases of homogeneous and monotone-
increasing rewards. However, its performance significantly decreases with heterogeneous or non-monotone
rewards.

7 Conclusion

We propose an RL algorithm, called SS-SARSA, to solve the recovering bandit problem. This algorithm
estimates Q-functions by combining SS-Q-functions and updates like SARSA, leading to efficient learning

14

Under review as submission to TMLR

and low time complexity. We prove the convergence theorem for the optimal policy. Furthermore, our
algorithm performs well in both monotone and non-monotone reward scenarios, as demonstrated through
simulations.

The algorithm has several advantages, but it also has some limitations. Firstly, when there are many arms
and a large smax, even our algorithm struggles with too many combinations. In such cases, a functional
approximation of Q-function is considered for efficient learning. Secondly, we only presented results from
simulations, not from real-world data. Our settings require a substantial amount of data points for a person,
but to our knowledge such data do not exist. The final is a finite sample analysis. Regret bounds and sample
complexity are needed without relying on strong reward structures. These points are left in future works.

References
Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed Bandit Problem.

Machine Learning, 47(2):235–256, May 2002. ISSN 1573-0565. doi: 10.1023/A:1013689704352. URL
https://doi.org/10.1023/A:1013689704352.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-stationary
rewards. Advances in neural information processing systems, 27, 2014.

Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on applications of multi-armed and contextual
bandits. In 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, 2020.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural infor-
mation processing systems, 24, 2011.

Elena Gangan, Milos Kudus, and Eugene Ilyushin. Survey of multiarmed bandit algorithms applied to
recommendation systems. 9(4):16, 2021.

Aurélien Garivier and Olivier Cappé. The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond.
In Proceedings of the 24th Annual Conference on Learning Theory, pp. 359–376. JMLR Workshop and
Conference Proceedings, December 2011. URL https://proceedings.mlr.press/v19/garivier11a.
html. ISSN: 1938-7228.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit problems.
In Algorithmic Learning Theory, pp. 174–188, 2011.

Hoda Heidari, Michael Kearns, and Aaron Roth. Tight policy regret bounds for improving and decaying
bandits. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp.
1562–1570, 2016.

Robert Kleinberg and Nicole Immorlica. Recharging bandits. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 309–319. IEEE, 2018.

Pierre Laforgue, Giulia Clerici, Nicolò Cesa-Bianchi, and Ran Gilad-Bachrach. A Last Switch Dependent
Analysis of Satiation and Seasonality in Bandits. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, pp. 971–990. PMLR, May 2022. URL https://proceedings.mlr.
press/v151/laforgue22a.html. ISSN: 2640-3498.

Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 1 edition, July 2020.
ISBN 978-1-108-57140-1 978-1-108-48682-8. doi: 10.1017/9781108571401. URL https://www.cambridge.
org/core/product/identifier/9781108571401/type/book.

Liu Leqi, Fatma Kilinc-Karzan, Zachary C. Lipton, and Alan L. Montgomery. Rebounding Bandits for
Modeling Satiation Effects, October 2021. URL http://arxiv.org/abs/2011.06741. arXiv:2011.06741
[cs, stat].

15

https://doi.org/10.1023/A:1013689704352
https://proceedings.mlr.press/v19/garivier11a.html
https://proceedings.mlr.press/v19/garivier11a.html
https://proceedings.mlr.press/v151/laforgue22a.html
https://proceedings.mlr.press/v151/laforgue22a.html
https://www.cambridge.org/core/product/identifier/9781108571401/type/book
https://www.cambridge.org/core/product/identifier/9781108571401/type/book
http://arxiv.org/abs/2011.06741

Under review as submission to TMLR

Nir Levine, Koby Crammer, and Shie Mannor. Rotting bandits. Advances in neural information processing
systems, 30, 2017.

Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. Efficient automatic cash via
rising bandits. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 4763–4771,
2020.

Fang Liu, Joohyun Lee, and Ness Shroff. A change-detection based framework for piecewise-stationary
multi-armed bandit problem. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Alberto Maria Metelli, Francesco Trovo, Matteo Pirola, and Marcello Restelli. Stochastic rising bandits. In
International Conference on Machine Learning, pp. 15421–15457. PMLR, 2022.

Kanishka Misra, Eric M. Schwartz, and Jacob Abernethy. Dynamic Online Pricing with Incomplete Infor-
mation Using Multiarmed Bandit Experiments. Marketing Science, 38(2):226–252, March 2019. ISSN
0732-2399. doi: 10.1287/mksc.2018.1129. URL https://pubsonline.informs.org/doi/abs/10.1287/
mksc.2018.1129.

Daisuke Moriwaki, Komei Fujita, Shota Yasui, and Takahiro Hoshino. Fatigue-aware ad creative selection.
arXiv preprint arXiv:1908.08936, 2019.

Ciara Pike-Burke and Steffen Grunewalder. Recovering Bandits. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc., 2019. URL https://papers.nips.cc/paper/2019/
hash/9a093d729036a5bd4736e03c5d634501-Abstract.html.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, volume 37.
University of Cambridge, Department of Engineering Cambridge, UK, 1994.

Yoan Russac, Claire Vernade, and Olivier Cappé. Weighted linear bandits for non-stationary environments.
Advances in Neural Information Processing Systems, 32, 2019.

Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, and Michal Valko. Rotting
bandits are no harder than stochastic ones. In Proceedings of the Twenty-Second International Conference
on Artificial Intelligence and Statistics, pp. 2564–2572. PMLR, April 2019. URL https://proceedings.
mlr.press/v89/seznec19a.html. ISSN: 2640-3498.

David Simchi-Levi, Zeyu Zheng, and Feng Zhu. Dynamic Planning and Learning under Recovering Rewards.
In Proceedings of the 38th International Conference on Machine Learning, pp. 9702–9711. PMLR, July
2021. URL https://proceedings.mlr.press/v139/simchi-levi21a.html. ISSN: 2640-3498.

Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Convergence results for single-
step on-policy reinforcement-learning algorithms. Machine learning, 38:287–308, 2000.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

William R. Thompson. On the Likelihood that One Unknown Probability Exceeds Another in View of the
Evidence of Two Samples. Biometrika, 25(3/4):285–294, 1933. ISSN 0006-3444. doi: 10.2307/2332286.
URL https://www.jstor.org/stable/2332286. Publisher: [Oxford University Press, Biometrika Trust].

Romain Warlop, Alessandro Lazaric, and Jérémie Mary. Fighting Boredom in Recommender Systems
with Linear Reinforcement Learning. In Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
210f760a89db30aa72ca258a3483cc7f-Abstract.html.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

16

https://pubsonline.informs.org/doi/abs/10.1287/mksc.2018.1129
https://pubsonline.informs.org/doi/abs/10.1287/mksc.2018.1129
https://papers.nips.cc/paper/2019/hash/9a093d729036a5bd4736e03c5d634501-Abstract.html
https://papers.nips.cc/paper/2019/hash/9a093d729036a5bd4736e03c5d634501-Abstract.html
https://proceedings.mlr.press/v89/seznec19a.html
https://proceedings.mlr.press/v89/seznec19a.html
https://proceedings.mlr.press/v139/simchi-levi21a.html
https://www.jstor.org/stable/2332286
https://proceedings.neurips.cc/paper/2018/hash/210f760a89db30aa72ca258a3483cc7f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/210f760a89db30aa72ca258a3483cc7f-Abstract.html

Under review as submission to TMLR

Kevin P. Yancey and Burr Settles. A Sleeping, Recovering Bandit Algorithm for Optimizing Recurring
Notifications. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 3008–3016, Virtual Event CA USA, August 2020. ACM. ISBN 978-1-4503-7998-4.
doi: 10.1145/3394486.3403351. URL https://dl.acm.org/doi/10.1145/3394486.3403351.

A Alternative Implementation of dRGP-TS

This section details the alternative implementation of dRGP-TS and parameter settings.

Before introducing the alternative, we briefly review the GP update in dRGP-TS algorithm (Pike-Burke &
Grunewalder, 2019) 5. The original paper formulates the reward mechanism as r(sa, a) = fa(sa)+ϵ where fa

is an unknown function depending on the state for arm a and ϵ ∼ N (0, σ2) is a Gaussian noise (σ is known).
When we set a GP prior on fa and receive N observed rewards Ra,N = (r1, r2, · · · , rN)T and states Sa,N =
(s1, s2, · · · , sN) for arm a, its posterior is also GP. That is, for ka,N (s) = (k(s1, s), k(s2, s), · · · , k(sN , s))T

and positive semi-definite kernel matrix Ka,N = [k(si, sj)]Ni,j=1, the mean and covariance of the posterior
after N observations are,

µa(s; N) = ka,N (s)T (Ka,N + σ2I)−1Ra,N ka(s, s′; N) = k(s, s′)− ka,N (s)T (Ka,N + σ2I)−1ka,N (s′).
(13)

Moreover, when s = s′, ka(s, s′; N) is equivalent to the variance σ2
a(s; N). A bottleneck in the above is the

time complexity for computing the inverse matrix. In dGRP-TS, for every d rounds, the time complexity for
the inverse matrix is O(ct(a)3), where ct(a) represents the number of times an arm a is pulled up to round
t. Therefore, the original dRGP-TS is impractical for large T .

Instead, we introduce an alternative implementation of dRGP-TS, which is an equivalent update to (13)
but reduces its time complexity. Since the states of each arm only take discrete values from one to smax,
we can reformulate the argument of each arm’s GP function using a smax dimensional normal distribution.
To see this, we define fa the reward distribution of reward for arm a ∈ [K] with smax-dimensional normal
distribution as follows.

fa =

fa(1)
fa(2)

...
fa(smax)

 ∼ N

µa,1
µa,2

...
µa,smax

︸ ︷︷ ︸
:=µa,smax

,

k2

a,1 ka,12 . . . ka,1smax

ka,21 k2
a,2 . . . ka,2smax

...
...

. . .
...

ka,smax1 ka,smax2 . . . k2
a,smax

︸ ︷︷ ︸

:=Ka,smax

(14)

, where fa(s) is reward function for arm a and state s ∈ [smax], µa,s is the mean for arm a and state s and
ka,ss′ is the covariance of the state s and s′ for arm a (it is also variance when s = s′). Additionally, we
define s-th order column of Ka,smax as ka,smax(s).

Next, we will explain how to update the posterior to reduce the time complexity. When using discrete input,
we compute only the smax-dimensional inverse matrix to update the posterior as in (13). To do so, we
introduce the count matrix for arm a, Ca, which is N × smax matrix, and its (i, j) element is one when the
agent pulls the arm a at state j ∈ [smax] for the i-th time, otherwise zero. Then, we can easily verify that
ka,N (s)T = ka,smax(s)T CT

a and Ka,N = CaKa,smaxCT
a . Thus, if the reward were deterministic, µa(s; N) in

5Some notations differ from the original (Pike-Burke & Grunewalder, 2019) to match the notations of our paper.

17

https://dl.acm.org/doi/10.1145/3394486.3403351

Under review as submission to TMLR

(13) could be rewritten as follows.

µa(s; N) = ka,N (s)T (Ka,N + σ2I)−1Ra,N

= kT
a,smax

CT
a (CaKa,smaxCT

a + σ2I)−1Ra,N

= kT
a,smax

CT
a (CaKa,smaxCT

a + σ2I)−1︸ ︷︷ ︸
1⃝

CaRa,smax , (15)

where Ra,smax is the mean reward vector from one to smax for arm a and we use Ra,N = CaRa,smax . In
practice, since the reward is stochastic, the equality in (15) is replaced by approximation, yet such an
approximation saves memory for RN . After applying Sherman–Morrison–Woodbury formula in 1⃝,

1⃝ = 1
σ2 I − 1

σ2 Ca(K−1
a,smax

+ 1
σ2 CT

a Ca)−1 1
σ2 CT

a . (16)

Thus, by (16), we can rewrite (15) as follows.

µa(s; N) = kT
a,smax

CT
a

{
1
σ2 I − 1

σ2 Ca(K−1
a,smax

+ 1
σ2 CT

a Ca)−1 1
σ2 CT

a

}
CaRa,smax

= kT
a,smax

{
1
σ2 CT

a Ca −
1
σ2 CT

a Ca(K−1
smax

+ 1
σ2 CT

a Ca)−1 1
σ2 CT

a Ca

}
Ra,smax

= kT
a,smax

{
Ca,σ −Ca,σ(K−1

a,smax
+ Ca,σ)−1Ca,σ

}
Ra,smax , (17)

where Ca,σ := 1
σ2 CT

a Ca. Therefore, we need to compute only smax-dimensional inverse matrix for updating
the posterior mean. In the same way, the posterior covariance matrix can be updated as follows.

ka(s, s′; N) = k(s, s′)− ka,smax(s)T
{

Ca,σ −Ca,σ(K−1
a,smax

+ Ca,σ)−1Ca,σ

}
ka,smax(s′). (18)

The pseudo-code for the algorithm is provided in Algorithm 2. The inputs are total rounds T , a standard
error of the noise in GP regression σ > 0, a length scale of RBF kernel c > 0, and a size of lookahead d. With
initial prior with a mean set to zero and covariance matrix with RBF kernel, and initial states, the algorithm
proceeds as follows. For every d round, the agent selects combinations of arms Id,t to maximize the total
reward,

∑d−1
i=0 r(s(i)

a(i) , a(i)), where s
(i)
a(i) and a(i) represent the state for arm a(i) and arm after i steps of s

and a, respectively (for i = 0, s
(0)
a(0) = sa and a(0) = a). These values are sampled from normal distributions

with estimated means and variances. For the arm a = I
(l)
d,t selected in lth step, the agent receives its reward,

updates the posterior mean (17) and covariance (18), and trans to the next state. Since we repeat the above
procedure for round t = 1, 2, · · · , ⌊T/d⌋, its time complexity is O(KdT).

When we run simulations, we set the input parameters as follows. As discussed in Section 6.1, we specify
d = 1, 2. The remaining parameters, σ = 1.0 and c = 2.5, are consistent with those utilized in the simulation
presented in Pike-Burke & Grunewalder (2019).

B Simulation Results with Undiscounted rewards

In this section, we show the performance of our algorithm over the competitors in undiscounted cases
(i.e. γ = 1), which is the default setting in MAB. In each case, the rate of the optimal policy is similar to the
discounted case, but since the rewards in the later rounds are undiscounted, the cumulative regret/rewards
is different. The most notable case is that of increasing-then-decreasing rewards (Figure 9 and 10); from the
left and right graphs, the difference in cumulative rewards between SS-SARSA and 1RGP-TS is greater.

18

Under review as submission to TMLR

Algorithm 2 dRGP-TS (Alternative Implementation)
Input: T , σ: standard error of noise, c: length scale of RBF kernel, d: size of lookahead
Initialize: µsa,a = 0 ∀a ∈ [K], and ∀sa ∈ [smax]; ka(i, j) = e−(i−j)2/2l2 ∀a ∈ [K] and ∀i, j ∈ [smax];
s← smax
for t = 1, 2, · · · , ⌊T/d⌋ do

Pull a d-sequence of arms Id,t = argmax(a,a′,...,a′(d−1))
∑d−1

i=0 r(s(i)
a(i) , a(i)), where r(s(i)

a(i) , a(i)) ∼
N(µ

s
(i)
a(i) ,a(i) , ka(i)(s(i)

a(i) , s
(i)
a(i))) ∀s

(i)
a(i) ∈ [smax] , ∀a(i) ∈ [K], and ∀i ∈ {0, . . . , d− 1}

for l = 1, 2, · · · , d do
a← I

(l)
d,t

r ← r(sa, a)

Update µsa,a using (17)
for m = 1, 2, · · · , smax do

Update ka(sa, m) using (18)
end for

s
′

k ←

{
1 for k = a

min{sk + 1, smax} for k ∈ [K]\{a}

end for
end for

(a) Bernoulli rewards

(b) Normal rewards

Figure 6: Small-scale problem (K = 3, smax = 3, γ = 1)

19

Under review as submission to TMLR

(a) 6-Hetero (Bernoulli rewards)

(b) 6-Hetero (Normal rewards)

(c) 6-Homo (Bernoulli rewards)

(d) 6-Homo (Normal rewards)

Figure 7: Increasing rewards (K = 6, γ = 1)

20

Under review as submission to TMLR

(a) 10-Hetero (Bernoulli rewards)

(b) 10-Hetero (Normal rewards)

(c) 10-Homo (Bernoulli rewards)

(d) 10-Homo (Normal rewards)

Figure 8: Increasing rewards (K = 10, γ = 1)

21

Under review as submission to TMLR

(a) 6-Hetero (Bernoulli rewards)

(b) 6-Hetero (Normal rewards)

(c) 6-Homo (Bernoulli rewards)

(d) 6-Homo (Normal rewards)

Figure 9: Increasing-then-decresing rewards (K = 6, γ = 1)

22

Under review as submission to TMLR

(a) 10-Hetero (Bernoulli rewards)

(b) 10-Hetero (Normal rewards)

(c) 10-Homo (Bernoulli rewards)

(d) 10-Homo (Normal rewards)

Figure 10: Increasing-then-decresing rewards (K = 10, γ = 1)

23

	Introduction
	Related Work
	Problem Setting
	Algorithm
	State-Separated Q-function: Constructing the MDP with reduced state combinations
	State-Separated SARSA: A novel efficient RL algorithm in recovering bandits

	Convergence Analysis
	Experiments
	Simulation Settings
	Simulation results
	Small-scale problem
	Monotone-increasing rewards
	Increasing-then-decreasing rewards

	Conclusion
	Alternative Implementation of dRGP-TS
	Simulation Results with Undiscounted rewards

