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Abstract

Adapter modules have recently been used001
for efficient fine-tuning and language special-002
ization of massively multilingual Transform-003
ers (MMTs), improving downstream zero-shot004
cross-lingual transfer. In this work, we pro-005
pose orthogonal language and task adapters006
(dubbed orthoadapters) for cross-lingual trans-007
fer. They are trained to encode language- and008
task-specific information that is complemen-009
tary (i.e., orthogonal) to the knowledge al-010
ready stored in the pretrained MMT parame-011
ters. Our zero-shot transfer experiments, in-012
volving three tasks and 10 diverse languages,013
1) point to the usefulness of orthoadapters in014
cross-lingual transfer, especially for the most015
complex NLI task, but also 2) indicate that the016
optimal (ortho)adapter configuration highly de-017
pends on the task and the target language at018
hand. We hope that our work will motivate a019
wider investigation of usefulness of orthogonal-020
ity constraints in language- and task-specific021
fine-tuning of pretrained transformers.022

1 Introduction023

Massively multilingual transformers (MMTs), pre-024

trained on large multilingual corpora via language025

modeling (LM) objectives (Devlin et al., 2019;026

Conneau et al., 2020) have overthrown (static)027

cross-lingual word embeddings (Ruder et al., 2019;028

Glavaš et al., 2019) as the state-of-the-art paradigm029

for zero-shot (ZS) cross-lingual transfer. However,030

MMTs are constrained by the so-called curse of031

multilinguality: the quality of language-specific032

representations starts decreasing when the number033

of training languages exceeds the MMT’s param-034

eter capacity (Arivazhagan et al., 2019; Conneau035

et al., 2020). Languages with smallest training036

corpora are most affected: the largest transfer per-037

formance drops occur with those target languages038

(Lauscher et al., 2020; Wu and Dredze, 2020).039

Additional LM training of a full pretrained MMT040

on monolingual corpora of an underrepresented041

language is a partial remedy towards satisfactory 042

downstream transfer (Wang et al., 2020; Ponti et al., 043

2020). However, this approach does not increase 044

the MMT capacity and, consequently, might deteri- 045

orate representations for other languages. Adapters 046

(Houlsby et al., 2019; Bapna and Firat, 2019), addi- 047

tional trainable parameters inserted into the MMT’s 048

layers, have recently been used for their language 049

and task specialization (Pfeiffer et al., 2020b), offer- 050

ing improved and more efficient ZS cross-lingual 051

transfer. The current adapter-based approaches, 052

however, do not provide any mechanism that would 053

prevent language and task adapters from capturing 054

redundant information, that is, from storing knowl- 055

edge already encoded in the MMT’s parameters. 056

In this work, we advance the idea of augment- 057

ing MMT’s knowledge through specialized adapter 058

modules. We aim to maximize the injection of 059

novel information into both language- and task- 060

specific adapter parameters, that is, we enforce 061

the adapters to encode the information that comple- 062

ments the knowledge encoded in MMT’s pretrained 063

parameters. To achieve this, we propose to learn 064

orthogonal adapters (or orthoadapters for short). 065

We augment the training objective1 with the orthog- 066

onality loss: it forces the representations produced 067

by the adapters to be orthogonal to representations 068

from the corresponding MMT layers, see Figure 1. 069

Our proof-of-concept ZS transfer experiments on 070

POS-tagging, NER, and natural language inference 071

(XNLI), spanning 10 typologically diverse lan- 072

guages, render language-specific and task-specific 073

orthoadapters viable mechanisms for improving ZS 074

transfer performance. However, we show that the 075

optimal use of orthogonality is also largely task- 076

dependent. We hope that our study will inspire a 077

wider investigation of applicability and usefulness 078

of orthogonality constraints for MMT fine-tuning. 079

1For a language adapter, the training task is masked lan-
guage modeling on the monolingual corpus of that language.
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Figure 1: Orthoadapters for zero-shot cross-lingual
transfer: a) Step 1: training language orthoadapters
(independently for each language); b) Step 2: training
the task orthoadapters on top of the (frozen) source-
language orthoadapters on source-language data; c) Step
3: swapping the source-language orthoadapters with tar-
get language orthoadapters, allowing for task-specific
target language inference. Snowflakes denote frozen pa-
rameters. For clarity, we show only a single transformer
layer; the orthogonal adapter modules are used in all
transformer layers of a pretrained MMT.

2 Orthogonal Adapters080

Figure 1 provides an illustrative overview of our081

cross-lingual transfer framework for training and082

using language and task orthoadapters. We now083

provide descriptions of its components and steps.084

Language and Task Adapters. Language085

adapters are injected into each transformer layer.086

In prior work (Pfeiffer et al., 2020b), they were087

trained via masked language modeling (MLM) on088

the monolingual corpus of the respective language.089

Task adapters are used to store task-specific knowl-090

edge during task fine-tuning in the source language.091

Adapter Architecture. We adopt the well-092

performing and lightweight adapter configuration093

of Pfeiffer et al. (2021), where only one adapter094

module is injected per transformer layer, after the095

feed-forward sublayer. The concrete adapter ar-096

chitecture we use is the variant of the so-called097

bottleneck adapter (Pfeiffer et al., 2021):098

xa = Adapt(xh,xr) = g (xhWd)Wu+xr (1)099

where xh and xr are the hidden state and resid-100

ual representation of the transformer layer, respec-101

tively. The parameter matrix Wd ∈ RH×d down-102

projects (i.e., compresses) hidden representations103

to the adapter size d < H , and Wu ∈ Rd×H up-104

projects the activated down-projections back to the105

transformer’s hidden size H; g is the non-linear106

ReLU activation (Nair and Hinton, 2010).107

Orthogonality Loss. There is currently no mech- 108

anism in adapter-based approaches that would ex- 109

plicitly prevent adapter parameters from learning 110

redundant information, already captured by the pre- 111

trained MMT. Inspired by the idea of orthogonal 112

text representations from prior work on multi-task 113

learning (Romera-Paredes et al., 2012; Liu et al., 114

2017), we introduce an auxiliary orthogonality loss 115

to adapter-based language and task fine-tuning. It 116

explicitly forces the adapters to dedicate their ca- 117

pacity to new knowledge, which should be com- 118

plementary (i.e., non-redundant) to the knowledge 119

already encoded in existing MMT parameters. 120

Let x(i,j)
h denote the hidden representation in the 121

i-th layer of the MMT for the j-th token in the 122

sequence, input to the adapter. Let x(i,j)
a be the 123

corresponding output of the same adapter for the 124

same token, as given in Eq. (1). The orthogonality 125

loss of the j-th token in the i-th MMT layer is then 126

simply the square of the cosine similarity between 127

x
(i,j)
h and x

(i,j)
a ; we then derive the overall orthog- 128

onality loss by averaging token-level losses in each 129

layer and then summing layer-level losses: 130

LORT =

N∑
i=1

1

T

T∑
j=1

cos
(
x
(i,j)
h ,x(i,j)

a

)2

(2) 131

where T is the maximal length of the input token 132

sequence and N is the number of MMT’s layers. 133

Two-Step Orthoadapter Training. We first train 134

language orthoadapters (part a of Figure 1), inde- 135

pendently for each language, aiming at extending 136

the language knowledge in the pretrained MMT. 137

We use MLM (cross-entropy loss) as the main train- 138

ing objective LMLM . We then alternately update 139

the parameters of language orthoadapters, first by 140

minimizing LMLM and then LORT .2 141

In the second step (part b in Figure 1), the goal 142

is to maximize the amount of novel information 143

useful for a concrete downstream task: we train the 144

task orthoadapters on the task-specific training data 145

(POS, NER, XNLI) by alternately minimizing 1) 146

the task-specific objective LTASK
3 and 2) the or- 147

thogonality loss LORT . Note, however, that in this 148

case xh is, in each transformer layer, first adapted 149

by the source language adapter and then by the task 150

adapter, and xa is the output of the task adapter. 151

2We use two independent Adam optimizers (Kingma and
Ba, 2015), one for each loss. We also experimented with
minimizing the joint loss LMLM +λ ·LORT but this generally
yielded poorer performance over a range of λvalues.

3Cross-entropy loss for the whole sequence for NLI; sum
of token-level cross-entropy losses for POS and NER.

2



Zero-Shot Cross-Lingual Transfer then proceeds152

in the same vein as in prior work (Pfeiffer et al.,153

2020b). It is conducted by simply replacing the154

source language orthoadapter with the target lan-155

guage orthoadapter while relying on exactly the156

same task adapter fine-tuned with the labeled157

source language data, stacked on top of the lan-158

guage adapters (see part c of Figure 1).4 5159

3 Experimental Setup160

Model Configurations. The decomposition into161

two adapter types in the two-step procedure (Fig-162

ure 1) allows us 1) to use language orthoadapters163

(L-ORT) instead of regular non-orthogonal lan-164

guage adapters (L-NOO); and/or 2) to replace non-165

orthogonal task adapters (T-NOO) with task or-166

thoadapters (T-ORT). These choices give rise to167

four different model variants, where the L-NOO+T-168

NOO variant is the baseline MAD-X variant.169

We also test the usefulness of task orthoadapters170

in a setup without dedicated language adapters: T-171

ORT variants are compared to T-NOO variants, and172

also to standard (computationally more intensive)173

full fine-tuning of the whole MMT (FULL-FT).174

Evaluation Tasks and Data. We evaluate all175

model variants on standard cross-lingual trans-176

fer tasks, relying on established evaluation bench-177

marks: 1) sentence-pair classification on XNLI178

(Conneau et al., 2018); 2) cross-lingual named en-179

tity recognition (NER) on the WikiANN dataset180

(Pan et al., 2017); 3) part-of-speech tagging with181

universal POS tags from the Universal Depeneden-182

cies (Nivre et al., 2018) (UD-POS).183

In all experiments we rely on the pretrained mul-184

tilingual XLM-R (Base) model (Conneau et al.,185

2020).6 English (EN) is our (resource-rich) source186

language. For completeness, we also report the re-187

sults on the EN test data, i.e., without any transfer.188

10 Target Languages, with their language codes189

available in the appendix, span 5 geographical190

macro-areas (Ponti et al., 2020) and 8 distinct lan-191

guage families. In NER evaluations we include192

three truly low-resource languages: Quechua, Ilo-193

4See (Pfeiffer et al., 2020b,a) for further technical details.
5Besides applications in cross-lingual transfer, adapters

have also been recently investigated in the NMT literature
(Vilar, 2018; Bapna and Firat, 2019; Philip et al., 2020); this
application scenario is beyond the scope of this work.

6XLM-R showed state-of-the-art zero-shot performance in
a recent comparative empirical study of Hu et al. (2020), and
even stronger results when combined with the adapter-based
MAD-X framework (Pfeiffer et al., 2020b).

cano, and Meadow Mari.7 194

Training and Evaluation: Technical Details. We 195

rely on AdapterHub.ml (Pfeiffer et al., 2020a) built 196

on top of the Transformers library (Wolf et al., 197

2020) in all experiments based on the MAD-X 198

framework. For adapter training and configura- 199

tions we follow the suggestions from prior work 200

(Houlsby et al., 2019; Pfeiffer et al., 2020b). For 201

language orthoadapters, we conduct MLM-ing on 202

the Wikipedia data of each language. For task or- 203

thoadapters, we rely on the standard training por- 204

tions of our task data in English.8 The full details 205

are available in the Appendix A. 206

4 Results and Discussion 207

The results of ZS transfer are summarized in Ta- 208

ble 1 (XNLI), Table 2 (UD-POS), and Table 3 209

(NER). First, a comparison with the FULL-FT vari- 210

ant confirms findings from prior work (Pfeiffer 211

et al., 2021), validating the use of the more efficient 212

adapter-based approach: the ZS scores with adapter- 213

based variants are on a par with or even higher than 214

the scores reported with FULL-FT across the board. 215

Regular vs Orthogonal Language Adapters. 216

First, the usefulness of language orthoadapters (L- 217

ORT variants) does depend on the task at hand and 218

its complexity. As an encouraging finding, we ob- 219

serve consistent gains in cross-lingual NLI:9 at 220

least +1 accuracy point on 4/5 target languages 221

with the L-ORT+T-NOO variant. This variant also 222

yields highest average ZS performance, and slight 223

(but statistically insignificant) gains on EN NLI. 224

The picture is less clear for UD-POS and NER: 225

L-ORT+T-NOO does have a slight edge over the 226

baseline L-NOO+T-NOO variant in UD-POS, but 227

this seems to be due to large gains in Chinese. In a 228

similar vein, while L-ORT+T-NOO is the best per- 229

forming variant in NER on average, the gains over 230

L-NOO+T-NOO are slight, and inconsistent across 231

7The selection of target languages has been guided by sev-
eral (sometimes clashing) criteria: C1) typological diversity;
C2) availability in the standard evaluation benchmarks; C3)
computational tractability; C4) evaluation also on truly low-
resource languages. Given that the main computational bot-
tleneck is MLM-ing for learning language adapters, we have
started from the subset of languages represented in our eval-
uation datasets (C2) for which pretrained language adapters
(regular, non-orthogonal) are already available online (C3)
(Pfeiffer et al., 2020a), also respecting C1 and C4.

8We select task (ortho)adapters solely based on the perfor-
mance on the source language (i.e, English) dev set.

9XNLI is arguably the most complex (reasoning) task in
our evaluation and, unlike UD-POS and NER, requires suc-
cessful high-level semantic modeling and ZS transfer.
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Variant EN AR HI SW TR ZH AVGz

FULL-FT 83.67 72.01 68.64 63.77 71.75 73.11 69.86
T-NOO 84.05 69.51 68.26 64.48 71.73 72.25 69.25
T-ORT 84.25 69.97 68.84 63.35 70.85 71.95 68.99
L-NOO+T-NOO 84.59 71.17 70.61 67.68 71.75 72.29 70.70
L-NOO+T-ORT 84.79 68.88 69.71 66.34 70.47 71.49 69.38
L-ORT+T-NOO 84.73 72.25 69.28 69.10 72.89 73.61 71.43
L-ORT+T-ORT 84.35 69.73 68.56 67.92 71.23 71.53 69.79

Table 1: Accuracy scores (×100%) of zero-shot transfer for the natural language inference task on the XNLI dataset.
See §3 for the descriptions of different model variants. EN is the source language in all experiments. The scores in
the AVGz column denote the average performance of zero-shot transfer (i.e., without English results).

Variant EN AR ET HI TR ZH AVGz

FULL-FT 95.94 66.42 84.68 70.38 74.01 35.59 66.22
T-NOO 95.59 64.35 84.43 71.06 72.68 31.47 64.80
T-ORT 95.65 65.28 85.17 70.42 72.93 40.03 66.77
L-NOO+T-NOO 95.59 65.77 85.81 69.62 74.17 19.25 62.92
L-NOO+T-ORT 95.66 67.15 85.67 71.57 74.08 31.68 66.03
L-ORT+T-NOO 95.63 66.62 84.26 68.93 72.02 29.50 64.27
L-ORT+T-ORT 95.63 67.40 84.22 67.26 71.21 31.79 64.38

Table 2: F1 scores (×100%) of zero-shot transfer in the UD-POS task.

Variant EN AR ET HI ILO MHR QU SW TR ZH AVGz

FULL-FT 82.98 30.85 65.63 58.87 62.04 39.83 60.43 61.26 65.98 8.77 50.41
T-NOO 83.41 46.19 70.86 67.14 60.75 39.33 58.01 60.79 72.60 23.07 55.42
T-ORT 82.87 46.71 70.27 66.16 59.03 45.30 58.72 61.26 72.93 19.69 55.56
L-NOO+T-NOO 82.33 41.29 75.04 64.84 63.11 54.55 70.64 71.90 71.63 16.68 58.85
L-NOO+T-ORT 82.86 38.74 74.48 64.21 69.72 53.01 61.02 72.78 70.65 14.41 57.67
L-ORT+T-NOO 82.44 40.62 74.27 66.74 77.21 50.78 65.31 72.98 70.80 12.16 58.99
L-ORT+T-ORT 82.63 35.82 72.81 61.83 70.64 52.31 64.98 73.84 69.41 12.25 57.10

Table 3: F1 scores (×100%) of zero-shot transfer in the NER task on the WikiAnn dataset.

languages (e.g., large gains on ILO, some on AR232

and SW, but some decrease on QU and MHR). We233

again speculate that this is mostly due to the nature234

and complexity of the task at hand.10235

Orthogonal Task Adapters display a different be-236

havior, but we can again largely relate it to the237

properties of the evaluation tasks. First, task or-238

thoadapters seem detrimental for XNLI (compare239

L-NOO+T-ORT vs. L-NOO+T-NOO as well as L-240

ORT+T-ORT vs. L-ORT+T-NOO in Table 1), and also241

yield no real benefits in the simpler setup (T-ORT242

vs. T-NOO). The two main objectives – (i) MLM for243

the original MMT pretraining and language adapter244

training, and (ii) cross-entropy loss for the whole se-245

quence for NLI – might be structurally too different246

for the orthogonality loss to capture any additional247

task-related information.11 However, task orthoad-248

apters seem to be useful UD-POS, with substantial249

10In order to perform cross-lingual transfer for NLI, the
underlying MMT must capture and leverage more language-
specific nuances than for sequence labeling tasks such as POS-
tagging and NER. By enforcing the capture of non-redundant
information in the additional language-specific adapters, we al-
low the model to store additional and, more importantly, novel
target language information. While the same information is
available also for NER and POS tagging, they require ’shal-
lower’ language-specific knowledge (Lauscher et al., 2020);
this is why more complex target language-specific knowl-
edge captured in orthoadapters (compared to regular non-
orthogonal language adapters) does not make a difference.

11In fact, we speculate that the orthogonal loss might have
emphasized this discrepancy between the objectives.

gains reported on 3/5 languages – Arabic, Chinese, 250

Hindi, all of which have non-Latin scripts. Com- 251

bining them with language orthoadapters, however, 252

does deteriorate the performance. The overall trend 253

is even more complex with NER: while there are 254

clear hints that using orthoadapters is useful for 255

some languages and some model variants, there is 256

still a substantial variance in the results.12 257

5 Conclusion 258

We investigated how orthogonality constraints 259

impact zero-shot (ZS) cross-lingual transfer via 260

massively multilingual transformers (MMTs, e.g., 261

XLM-R) for three standard tasks: NLI, POS, and 262

NER. Relying on the standard adapter-based trans- 263

fer techniques, we introduced the idea of orthogo- 264

nal language and task adapters (or orthoadapters): 265

we explicitly enforce the information stored in the 266

parameters of the orthoadapters to be orthogonal 267

to the information already stored in the pretrained 268

MMT. In general, our results suggest that explicitly 269

controlling for the information that gets captured in 270

the orthoadapters can have a positive impact on ZS 271

transfer via MMTs. The use of orthogonality, how- 272

ever, seems to be language- and task-dependent, 273

warranting further investigations in future work. 274

The code will be available at: [URL]. 275

12We partially attribute it to the documented volatility of
WikiAnn for low-resource languages (Pfeiffer et al., 2020b).
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Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun 348
Cho, and Iryna Gurevych. 2020a. AdapterHub: A 349
framework for adapting transformers. In Proceedings 350
of EMNLP 2020: System Demonstrations, pages 46– 351
54. 352
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A Training Details397

A.1 Task Training Details398

We processed the data for all tasks using the pre-399

processing pipeline provided with the XTREME400

benchmark (Hu et al., 2020).13401

XNLI. In NLI training (i.e., for XNLI transfer)402

were trained for 30 epochs with the batch size of 32.403

Maximum sequence length was 128 input tokens.404

Gradient norms were clipped to 1.0.405

UD-POS. We trained for 50 epochs with batch size406

of 16. Maximum sequence length was 128 input407

tokens. Gradient norms were clipped to 1.0.408

NER. We trained for 100 epochs with the batch409

size of 16. Maximum sequence length was 128410

input tokens. Gradient norms were clipped to 1.0.411

As prior work, we use the data splits of Rahimi412

et al. (2019).413

A.2 Experimental Setup without Language414

Adapters415

For the “non-MAD-X” experimental setup (i.e., the416

setup without language adapters, see §3), we relied417

on our own implementation of the adapter module.418

The bottleneck size for the task adapter was set to419

d = 64. For (X)NLI, we searched the following420

learning rate grid: [2e− 5, 5e− 5, 7e− 5]; for UD-421

POS and WikiAnn the corresponding learning rate422

grid was [5e− 5, 1e− 4]. For task orthoadapters,423

we searched the following additional learning rate424

grid for the orthogonal loss optimizer: [1e−6, 1e−425

7, 1e− 8].426

A.3 Full Experimental Setup427

For the more complex multi-adapter setup based on428

the MAD-X framework (i.e., with both language429

and task adapters, see Figure 1), we utilized the430

Adapter-Transformers library and the underlying431

AdapterHub service (Pfeiffer et al., 2020a).432

Task Adapters and Orthoadapters. We followed433

the recommendation from the original paper (Pfeif-434

fer et al., 2020b). We utilized the Pfeiffer configu-435

ration14 found in the Adapter-Transformers library436

with the adapter dimensionality of 48. Due to the437

computational constraints, the learning rate grid438

13https://github.com/google-research/
xtreme

14Pfeiffer et al. (2021) found this configuration to perform
on a par with the configuration proposed by Houlsby et al.
(2019), who inject two adapter modules per transformer layer
(the other one after the multi-head attention sublayer), while
being more efficient to train.

search took into account best settings observed in 439

the baseline experiments. For XNLI our main learn- 440

ing rate was set at a well-performing 5e − 5. For 441

UD-POS and WikiAnn, due to more instability, we 442

tested the learning rate grid of [5e− 5, 1e− 4]. For 443

the task orthoadapters, we used the same learning 444

rate for the orthogonality loss as for the non-MAD- 445

X setup: [1e− 6, 1e− 7, 1e− 8]. 446

Regular Language Adapters. We utilized the pre- 447

trained language adapters readily available via the 448

AdapterHub service (Pfeiffer et al., 2020a). These 449

language adapters have the dimensionality of 384. 450

They were trained (while the rest of the model was 451

frozen) by executing the MLM-ing for 250.000 iter- 452

ations on the Wikipedia data in the target language. 453

Orthogonal Language Adapters. We started from 454

the MLM-ing training script for training language 455

adapters provided by the Adapter-Transformers li- 456

brary and trained language orthoadapters on the 457

Wikipedia data, relying on the setup of Adapter- 458

Hub’s regular language adapters (dimensionality 459

384, 250,000 iterations). Due to computational con- 460

straints we reduced the maximum sequence length 461

of the input to 128 tokens, while the batch size was 462

8. Finally, for the main optimizer and orthogonality 463

loss optimizer we used the learning rates of 1e− 4 464

and 1e− 7, respectively. 465

A.4 Statistical Significance Testing 466

Statistical significance (p < 0.05) is reported fol- 467

lowing the recommended statistical significance 468

tests for each task, see: https://arxiv.org/pdf/ 469

1809.01448.pdf. 470
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Language Family Type ISO 639 Tasks

English IE: Germanic fusional EN XNLI, UD-POS, NER
Arabic Semitic introflexive AR XNLI, UD-POS, NER
Estonian Uralic: Finnic agglutinative ET UD-POS, NER
Hindi IE: Indo-Aryan fusional HI XNLI, UD-POS, NER
Ilocano Austronesian agglutinative ILO NER
Meadow Mari Uralic: Mari agglutinative MHR NER
Quechua Quechuan agglutinative QU NER
Kiswahili Niger-Congo: Bantu agglutinative SW XNLI, NER
Turkish Turkic agglutinative TR XNLI, UD-POS, NER
Mandarin Chinese Sino-Tibetan isolating ZH XNLI, UD-POS, NER

Table 4: Target languages used in the main experiments along with their corresponding language family (IE=Indo-
European), morphological type, and ISO 639-1 code (or ISO 639-2 for Ilocano; or ISO 639-3 for Meadow Mari).
We use English (EN) as the source language in all experiments. EN is a fusional language (IE: Germanic).
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