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Abstract

Adapter modules have recently been used
for efficient fine-tuning and language special-
ization of massively multilingual Transform-
ers (MMTs), improving downstream zero-shot
cross-lingual transfer. In this work, we pro-
pose orthogonal language and task adapters
(dubbed orthoadapters) for cross-lingual trans-
fer. They are trained to encode language- and
task-specific information that is complemen-
tary (i.e., orthogonal) to the knowledge al-
ready stored in the pretrained MMT parame-
ters. Our zero-shot transfer experiments, in-
volving three tasks and 10 diverse languages,
1) point to the usefulness of orthoadapters in
cross-lingual transfer, especially for the most
complex NLI task, but also 2) indicate that the
optimal (ortho)adapter configuration highly de-
pends on the task and the target language at
hand. We hope that our work will motivate a
wider investigation of usefulness of orthogonal-
ity constraints in language- and task-specific
fine-tuning of pretrained transformers.

1 Introduction

Massively multilingual transformers (MMTs), pre-
trained on large multilingual corpora via language
modeling (LM) objectives (Devlin et al., 2019;
Conneau et al., 2020) have overthrown (static)
cross-lingual word embeddings (Ruder et al., 2019;
Glavas et al., 2019) as the state-of-the-art paradigm
for zero-shot (zS) cross-lingual transfer. However,
MMTs are constrained by the so-called curse of
multilinguality: the quality of language-specific
representations starts decreasing when the number
of training languages exceeds the MMT’s param-
eter capacity (Arivazhagan et al., 2019; Conneau
et al., 2020). Languages with smallest training
corpora are most affected: the largest transfer per-
formance drops occur with those target languages
(Lauscher et al., 2020; Wu and Dredze, 2020).
Additional LM training of a full pretrained MMT
on monolingual corpora of an underrepresented

language is a partial remedy towards satisfactory
downstream transfer (Wang et al., 2020; Ponti et al.,
2020). However, this approach does not increase
the MMT capacity and, consequently, might deteri-
orate representations for other languages. Adapters
(Houlsby et al., 2019; Bapna and Firat, 2019), addi-
tional trainable parameters inserted into the MMT’s
layers, have recently been used for their language
and task specialization (Pfeiffer et al., 2020b), offer-
ing improved and more efficient ZS cross-lingual
transfer. The current adapter-based approaches,
however, do not provide any mechanism that would
prevent language and task adapters from capturing
redundant information, that is, from storing knowl-
edge already encoded in the MMT’s parameters.

In this work, we advance the idea of augment-
ing MMT’s knowledge through specialized adapter
modules. We aim to maximize the injection of
novel information into both language- and task-
specific adapter parameters, that is, we enforce
the adapters to encode the information that comple-
ments the knowledge encoded in MMT’s pretrained
parameters. To achieve this, we propose to learn
orthogonal adapters (or orthoadapters for short).
We augment the training objective! with the orthog-
onality loss: it forces the representations produced
by the adapters to be orthogonal to representations
from the corresponding MMT layers, see Figure 1.

Our proof-of-concept ZS transfer experiments on
POS-tagging, NER, and natural language inference
(XNLI), spanning 10 typologically diverse lan-
guages, render language-specific and task-specific
orthoadapters viable mechanisms for improving ZS
transfer performance. However, we show that the
optimal use of orthogonality is also largely task-
dependent. We hope that our study will inspire a
wider investigation of applicability and usefulness
of orthogonality constraints for MMT fine-tuning.

'For a language adapter, the training task is masked lan-
guage modeling on the monolingual corpus of that language.
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Figure 1: Orthoadapters for zero-shot cross-lingual
transfer: a) Step 1: training language orthoadapters
(independently for each language); b) Step 2: training
the task orthoadapters on top of the (frozen) source-
language orthoadapters on source-language data; ¢) Step
3: swapping the source-language orthoadapters with tar-
get language orthoadapters, allowing for task-specific
target language inference. Snowflakes denote frozen pa-
rameters. For clarity, we show only a single transformer
layer; the orthogonal adapter modules are used in all
transformer layers of a pretrained MMT.

2 Orthogonal Adapters

Figure 1 provides an illustrative overview of our
cross-lingual transfer framework for training and
using language and task orthoadapters. We now
provide descriptions of its components and steps.

Language and Task Adapters. Language
adapters are injected into each transformer layer.
In prior work (Pfeiffer et al., 2020b), they were
trained via masked language modeling (MLM) on
the monolingual corpus of the respective language.
Task adapters are used to store task-specific knowl-
edge during task fine-tuning in the source language.

Adapter Architecture. We adopt the well-
performing and lightweight adapter configuration
of Pfeiffer et al. (2021), where only one adapter
module is injected per transformer layer, after the
feed-forward sublayer. The concrete adapter ar-
chitecture we use is the variant of the so-called
bottleneck adapter (Pfeiffer et al., 2021):

Xq = Adapt(xp, %) = g (xnWa) Wy +x, (1)

where x; and x, are the hidden state and resid-
ual representation of the transformer layer, respec-
tively. The parameter matrix W, € R*¢ down-
projects (i.e., compresses) hidden representations
to the adapter size d < H, and W, € R>*H yp-
projects the activated down-projections back to the
transformer’s hidden size H; g is the non-linear
ReLU activation (Nair and Hinton, 2010).

Orthogonality Loss. There is currently no mech-
anism in adapter-based approaches that would ex-
plicitly prevent adapter parameters from learning
redundant information, already captured by the pre-
trained MMT. Inspired by the idea of orthogonal
text representations from prior work on multi-task
learning (Romera-Paredes et al., 2012; Liu et al.,
2017), we introduce an auxiliary orthogonality loss
to adapter-based language and task fine-tuning. It
explicitly forces the adapters to dedicate their ca-
pacity to new knowledge, which should be com-
plementary (i.e., non-redundant) to the knowledge
already encoded in existing MMT parameters.

Let XSJ ) denote the hidden representation in the
i-th layer of the MMT for the j-th token in the
sequence, input to the adapter. Let Xff’j ) be the
corresponding output of the same adapter for the
same token, as given in Eq. (1). The orthogonality
loss of the j-th token in the ¢-th MMT layer is then
simply the square of the cosine similarity between
XS’J ) and x7); we then derive the overall orthog-
onality loss by averaging token-level losses in each
layer and then summing layer-level losses:

N1 Z SN2
Lorr = Z T Z cos (X%"”,xfj"”) 2)
i=1 " j=1

where T is the maximal length of the input token
sequence and NV is the number of MMT’s layers.

Two-Step Orthoadapter Training. We first train
language orthoadapters (part a of Figure 1), inde-
pendently for each language, aiming at extending
the language knowledge in the pretrained MMT.
We use MM (cross-entropy loss) as the main train-
ing objective L. We then alternately update
the parameters of language orthoadapters, first by
minimizing £ y7,ps and then Lo RT.2

In the second step (part b in Figure 1), the goal
is to maximize the amount of novel information
useful for a concrete downstream task: we train the
task orthoadapters on the task-specific training data
(POS, NER, XNLI) by alternately minimizing 1)
the task-specific objective Lrask?> and 2) the or-
thogonality loss £Lor7. Note, however, that in this
case Xy, is, in each transformer layer, first adapted
by the source language adapter and then by the task
adapter, and x, is the output of the task adapter.

“We use two independent Adam optimizers (Kingma and
Ba, 2015), one for each loss. We also experimented with
minimizing the joint loss £ + A - Lorr but this generally
yielded poorer performance over a range of Avalues.

3Cross-entropy loss for the whole sequence for NLI; sum
of token-level cross-entropy losses for POS and NER.



Zero-Shot Cross-Lingual Transfer then proceeds
in the same vein as in prior work (Pfeiffer et al.,
2020b). It is conducted by simply replacing the
source language orthoadapter with the target lan-
guage orthoadapter while relying on exactly the
same task adapter fine-tuned with the labeled
source language data, stacked on top of the lan-
guage adapters (see part ¢ of Figure 1).4 3

3 Experimental Setup

Model Configurations. The decomposition into
two adapter types in the two-step procedure (Fig-
ure 1) allows us 1) to use language orthoadapters
(L-ORT) instead of regular non-orthogonal lan-
guage adapters (L-NOO); and/or 2) to replace non-
orthogonal task adapters (T-NOO) with task or-
thoadapters (T-ORT). These choices give rise to
four different model variants, where the L-NOO+T-
NOO variant is the baseline MAD-X variant.

We also test the usefulness of task orthoadapters
in a setup without dedicated language adapters: T-
ORT variants are compared to T-NOO variants, and
also to standard (computationally more intensive)
full fine-tuning of the whole MMT (FULL-FT).

Evaluation Tasks and Data. We evaluate all
model variants on standard cross-lingual trans-
fer tasks, relying on established evaluation bench-
marks: 1) sentence-pair classification on XNLI
(Conneau et al., 2018); 2) cross-lingual named en-
tity recognition (NER) on the WikiANN dataset
(Pan et al., 2017); 3) part-of-speech tagging with
universal POS tags from the Universal Depeneden-
cies (Nivre et al., 2018) (UD-POS).

In all experiments we rely on the pretrained mul-
tilingual XLM-R (Base) model (Conneau et al.,
2020).% English (EN) is our (resource-rich) source
language. For completeness, we also report the re-
sults on the EN test data, i.e., without any transfer.

10 Target Languages, with their language codes
available in the appendix, span 5 geographical
macro-areas (Ponti et al., 2020) and 8 distinct lan-
guage families. In NER evaluations we include
three truly low-resource languages: Quechua, Ilo-

4See (Pfeiffer et al., 2020b,a) for further technical details.

Besides applications in cross-lingual transfer, adapters
have also been recently investigated in the NMT literature
(Vilar, 2018; Bapna and Firat, 2019; Philip et al., 2020); this
application scenario is beyond the scope of this work.

SXLM-R showed state-of-the-art zero-shot performance in
a recent comparative empirical study of Hu et al. (2020), and
even stronger results when combined with the adapter-based
MAD-X framework (Pfeiffer et al., 2020b).

cano, and Meadow Mari.’

Training and Evaluation: Technical Details. We
rely on AdapterHub.ml (Pfeiffer et al., 2020a) built
on top of the Transformers library (Wolf et al.,
2020) in all experiments based on the MAD-X
framework. For adapter training and configura-
tions we follow the suggestions from prior work
(Houlsby et al., 2019; Pfeiffer et al., 2020b). For
language orthoadapters, we conduct MLM-ing on
the Wikipedia data of each language. For task or-
thoadapters, we rely on the standard training por-
tions of our task data in English.® The full details
are available in the Appendix A.

4 Results and Discussion

The results of zS transfer are summarized in Ta-
ble 1 (XNLI), Table 2 (UD-POS), and Table 3
(NER). First, a comparison with the FULL-FT vari-
ant confirms findings from prior work (Pfeiffer
et al., 2021), validating the use of the more efficient
adapter-based approach: the ZS scores with adapter-
based variants are on a par with or even higher than
the scores reported with FULL-FT across the board.

Regular vs Orthogonal Language Adapters.
First, the usefulness of language orthoadapters (L-
ORT variants) does depend on the task at hand and
its complexity. As an encouraging finding, we ob-
serve consistent gains in cross-lingual NLI:® at
least +1 accuracy point on 4/5 target languages
with the L-ORT+T-NOO variant. This variant also
yields highest average ZS performance, and slight
(but statistically insignificant) gains on EN NLIL
The picture is less clear for UD-POS and NER:
L-ORT+T-NOO does have a slight edge over the
baseline L-NOO+T-NOO variant in UD-POS, but
this seems to be due to large gains in Chinese. In a
similar vein, while L-ORT+T-NOO is the best per-
forming variant in NER on average, the gains over
L-NOO+T-NOO are slight, and inconsistent across

"The selection of target languages has been guided by sev-
eral (sometimes clashing) criteria: C1) typological diversity;
C2) availability in the standard evaluation benchmarks; C3)
computational tractability; C4) evaluation also on truly low-
resource languages. Given that the main computational bot-
tleneck is MLM-ing for learning language adapters, we have
started from the subset of languages represented in our eval-
uation datasets (C2) for which pretrained language adapters
(regular, non-orthogonal) are already available online (C3)
(Pfeiffer et al., 2020a), also respecting C1 and C4.

8We select task (ortho)adapters solely based on the perfor-
mance on the source language (i.e, English) dev set.

9XNLI is arguably the most complex (reasoning) task in
our evaluation and, unlike UD-POS and NER, requires suc-
cessful high-level semantic modeling and zS transfer.
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Variant EN AR HI SW TR ZH AVGz
FULL-FT 83.67 72.01 68.64 63.77 71.75 73.11 69.86
T-NOO 84.05 69.51 68.26 64.48 71.73 72.25 69.25
T-ORT 84.25 69.97 68.84 63.35 70.85 71.95 68.99
" L-NOO+T-NOO ~ ~ 8459 — — = = 7 JTI7 T T T T 7061 — © T T T 67.68 T T T 75 T T 7 72297 7 T T 7 70.70
L-NOO+T-ORT 84.79 68.88 69.71 66.34 70.47 71.49 69.38
L-ORT+T-NOO 84.73 7225 69.28 69.10 72.89 73.61 7143
L-ORT+T-ORT 84.35 69.73 68.56 67.92 71.23 71.53 69.79

Table 1: Accuracy scores (x 100%) of zero-shot transfer for the natural language inference task on the XNLI dataset.
See §3 for the descriptions of different model variants. EN is the source language in all experiments. The scores in
the AVGz column denote the average performance of zero-shot transfer (i.e., without English results).

Variant EN AR ET HI TR ZH AVGz
FULL-FT 95.94 66.42 84.68 70.38 74.01 35.59 66.22
T-NOO 95.59 64.35 84.43 71.06 72.68 31.47 64.80
T-ORT 95.65 65.28 85.17 70.42 72.93 40.03 66.77
T I-NOO+TENOG ~ T T 95397 T T T T 6577 — ~ ~ ~ 8581~ T T T (X R ez 1935~ ~ ~ 76297
L-NOO+T-ORT 95.66 67.15 85.67 71.57 74.08 31.68 66.03
L-ORT+T-NOO 95.63 66.62 84.26 68.93 72.02 29.50 64.27
L-ORT+T-ORT 95.63 67.40 84.22 67.26 7121 31.79 64.38
Table 2: Fy scores (x 100%) of zero-shot transfer in the UD-POS task.
Variant EN AR ET HI ILO MHR QU SW TR ZH AVGz
FULL-FT 82.98 30.85 65.63 58.87 62.04 39.83 60.43 61.26 65.98 8.77 50.41
T-NOO 83.41 46.19 70.86 67.14 60.75 39.33 58.01 60.79 72.60 23.07 55.42
T-ORT 82.87 4671 70.27 66.16 59.03 4530 58.72 61.26 72.93 19.69 55.56
T T-NOO+T-NOO ~ 8233 T T4129 T T 7504 T 6484~ T 8311~ 5455~ T 7064 ~ 7190 © ~ 7163~ 1668 ~ 3885
L-NOO+T-ORT 82.86 38.74 74.48 64.21 69.72 53.01 61.02 7278 70.65 14.41 57.67
L-ORT+T-NOO 82.44 40.62 74.27 66.74 7721 50.78 65.31 72.98 70.80 12.16 58.99
L-ORT+T-ORT 82.63 35.82 72.81 61.83 70.64 5231 64.98 73.84 69.41 12.25 57.10

Table 3: F scores (x 100%) of zero-shot transfer in the NER task on the WikiAnn dataset.

languages (e.g., large gains on ILO, some on AR
and SW, but some decrease on QU and MHR). We
again speculate that this is mostly due to the nature
and complexity of the task at hand.'?

Orthogonal Task Adapters display a different be-
havior, but we can again largely relate it to the
properties of the evaluation tasks. First, task or-
thoadapters seem detrimental for XNLI (compare
L-NOO+T-ORT vs.L-NOO+T-NOO as well as L-
ORT+T-ORT vS. L-ORT+T-NOO in Table 1), and also
yield no real benefits in the simpler setup (T-ORT
vs. T-NOO). The two main objectives — (i) MLM for
the original MMT pretraining and language adapter
training, and (ii) cross-entropy loss for the whole se-
quence for NLI — might be structurally too different
for the orthogonality loss to capture any additional
task-related information.!! However, task orthoad-
apters seem to be useful UD-POS, with substantial

'%In order to perform cross-lingual transfer for NLI, the
underlying MMT must capture and leverage more language-
specific nuances than for sequence labeling tasks such as POS-
tagging and NER. By enforcing the capture of non-redundant
information in the additional language-specific adapters, we al-
low the model to store additional and, more importantly, novel
target language information. While the same information is
available also for NER and POS tagging, they require ’shal-
lower’ language-specific knowledge (Lauscher et al., 2020);
this is why more complex target language-specific knowl-
edge captured in orthoadapters (compared to regular non-
orthogonal language adapters) does not make a difference.

"In fact, we speculate that the orthogonal loss might have
emphasized this discrepancy between the objectives.

gains reported on 3/5 languages — Arabic, Chinese,
Hindji, all of which have non-Latin scripts. Com-
bining them with language orthoadapters, however,
does deteriorate the performance. The overall trend
is even more complex with NER: while there are
clear hints that using orthoadapters is useful for
some languages and some model variants, there is
still a substantial variance in the results.!?

5 Conclusion

We investigated how orthogonality constraints
impact zero-shot (zZS) cross-lingual transfer via
massively multilingual transformers (MMTs, e.g.,
XLM-R) for three standard tasks: NLI, POS, and
NER. Relying on the standard adapter-based trans-
fer techniques, we introduced the idea of orthogo-
nal language and task adapters (or orthoadapters):
we explicitly enforce the information stored in the
parameters of the orthoadapters to be orthogonal
to the information already stored in the pretrained
MMT. In general, our results suggest that explicitly
controlling for the information that gets captured in
the orthoadapters can have a positive impact on ZS
transfer via MMTs. The use of orthogonality, how-
ever, seems to be language- and task-dependent,
warranting further investigations in future work.
The code will be available at: [URL].

12We partially attribute it to the documented volatility of
WikiAnn for low-resource languages (Pfeiffer et al., 2020b).
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A Training Details

A.1 Task Training Details

We processed the data for all tasks using the pre-
processing pipeline provided with the XTREME
benchmark (Hu et al., 2020).'3

XNLLI In NLI training (i.e., for XNLI transfer)
were trained for 30 epochs with the batch size of 32.
Maximum sequence length was 128 input tokens.
Gradient norms were clipped to 1.0.

UD-POS. We trained for 50 epochs with batch size
of 16. Maximum sequence length was 128 input
tokens. Gradient norms were clipped to 1.0.

NER. We trained for 100 epochs with the batch
size of 16. Maximum sequence length was 128
input tokens. Gradient norms were clipped to 1.0.
As prior work, we use the data splits of Rahimi
et al. (2019).

A.2 Experimental Setup without Language
Adapters

For the “non-MAD-X" experimental setup (i.e., the
setup without language adapters, see §3), we relied
on our own implementation of the adapter module.
The bottleneck size for the task adapter was set to
d = 64. For (X)NLI, we searched the following
learning rate grid: [2e — 5, 5e — 5, 7e — 5]; for UD-
POS and WikiAnn the corresponding learning rate
grid was [be — 5, le — 4]. For task orthoadapters,
we searched the following additional learning rate
grid for the orthogonal loss optimizer: [le—6, le —
7,1le — §|.

A.3 Full Experimental Setup

For the more complex multi-adapter setup based on
the MAD-X framework (i.e., with both language
and task adapters, see Figure 1), we utilized the
Adapter-Transformers library and the underlying
AdapterHub service (Pfeiffer et al., 2020a).

Task Adapters and Orthoadapters. We followed
the recommendation from the original paper (Pfeif-
fer et al., 2020b). We utilized the Pfeiffer configu-
ration'* found in the Adapter-Transformers library
with the adapter dimensionality of 48. Due to the
computational constraints, the learning rate grid

Bhttps://github.com/google-research/
xtreme

14pfeiffer et al. (2021) found this configuration to perform
on a par with the configuration proposed by Houlsby et al.
(2019), who inject two adapter modules per transformer layer
(the other one after the multi-head attention sublayer), while
being more efficient to train.

search took into account best settings observed in
the baseline experiments. For XNLI our main learn-
ing rate was set at a well-performing 5e — 5. For
UD-POS and WikiAnn, due to more instability, we
tested the learning rate grid of [5e — 5, 1e — 4]. For
the task orthoadapters, we used the same learning
rate for the orthogonality loss as for the non-MAD-
X setup: [le — 6,1e — 7,1e — §|.

Regular Language Adapters. We utilized the pre-
trained language adapters readily available via the
AdapterHub service (Pfeiffer et al., 2020a). These
language adapters have the dimensionality of 384.
They were trained (while the rest of the model was
frozen) by executing the MLM-ing for 250.000 iter-
ations on the Wikipedia data in the target language.

Orthogonal Language Adapters. We started from
the MLM-ing training script for training language
adapters provided by the Adapter-Transformers li-
brary and trained language orthoadapters on the
Wikipedia data, relying on the setup of Adapter-
Hub’s regular language adapters (dimensionality
384,250,000 iterations). Due to computational con-
straints we reduced the maximum sequence length
of the input to 128 tokens, while the batch size was
8. Finally, for the main optimizer and orthogonality
loss optimizer we used the learning rates of le — 4
and le — 7, respectively.

A4 Statistical Significance Testing

Statistical significance (p < 0.05) is reported fol-
lowing the recommended statistical significance
tests for each task, see: https://arxiv.org/pdf/
1809.01448.pdf.
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Language Family Type ISO 639 Tasks

English IE: Germanic fusional EN XNLI, UD-POS, NER
“Arabic Semitic introflexive =~~~ AR XNLI, UD-POS, NER

Estonian Uralic: Finnic agglutinative ET UD-POS, NER

Hindi IE: Indo-Aryan fusional HI XNLI, UD-POS, NER

Ilocano Austronesian agglutinative ILO NER

Meadow Mari Uralic: Mari agglutinative MHR NER

Quechua Quechuan agglutinative QU NER

Kiswabhili Niger-Congo: Bantu agglutinative SW XNLI, NER

Turkish Turkic agglutinative TR XNLI, UD-POS, NER

Mandarin Chinese Sino-Tibetan isolating ZH XNLI, UD-POS, NER

Table 4: Target languages used in the main experiments along with their corresponding language family (IE=Indo-
European), morphological type, and ISO 639-1 code (or ISO 639-2 for Ilocano; or ISO 639-3 for Meadow Mari).
We use English (EN) as the source language in all experiments. EN is a fusional language (IE: Germanic).



