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ABSTRACT

Vision Transformers (ViTs) have become a dominant backbone in computer vision,
yet their attention mechanism lacks inherent spatial inductive biases, which are
especially crucial in small models and low-data regimes. Inspired by the masking
in Linear Transformers and the scanning patterns of Vision SSMs, we propose
VIOLIN [T_l a lightweight masked attention mechanism that integrates Space Filling
Curves (SFCs) to enhance spatial awareness with negligible computational over-
head. VIOLIN scans the input image with multiple SFCs to build curve specific
decay masks, which are averaged and multiplied with the attention matrix to encode
spatial relationships. It yields notable gains in data-scarce settings: when fine-
tuning on VTAB-1K, VIOLIN improves accuracy by up to 8.7% on the Structured
group, and it can be combined with parameter-efficient tuning methods such as
LoRA. Beyond fine-tuning, VIOLIN consistently improves various tiny or small
scale ViT architectures (e.g., DeiT, DINO) during pretraining, achieving gains of up
to 0.9% on on ImageNet-1K and 7.2% on pixel level CIFAR-100. Overall, VIOLIN
offers a computationally efficient yet effective way to inject spatial inductive bias
into ViTs, particularly benefiting small models and data-scarce scenarios.

Anonymous VIOLIN Code

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2021 have rapidly become a dominant architecture
in computer vision, achieving strong performance across diverse tasks. Their success comes from
capturing global dependencies through self-attention, but unlike Convolutional Neural Networks
(CNNs) (O’Shea & Nash| 2015), ViTs lack inherent spatial priors such as locality (Fan et al.|
2024)). This makes them highly data-hungry and dependent on larger model sizesE] While sufficient
parameters and massive datasets allow ViTs to learn these biases directly (Lu et al., 2022; Sun et al.,
2017), many downstream tasks require adapting a pretrained backbone with limited data. In such
cases, even large ViTs struggle to specialize, making stronger inductive biases essential across scales.
Prior works have attempted to address this limitation with convolutions (Guo et al., [2022), novel
positional encodings (Wu et al., [2021b)), or masking strategies (Fan et al.| 2024)).

Concurrently, in natural language processing, State Space Models (SSMs) and Linear Transformers
have emerged as efficient alternatives to standard transformers (Gu & Daol 2024} Dao & Gul, [2024;
Sun et al.| 2023)), and their vision adaptations have achieved strong results (Alkin et al., 2024; Liu
et al., [2024b; Zhu et al., 2024). Through recurrence and a decay factor on attention scores, these
models can capture the relative spatial order of image patches. However, this information depends
entirely on the chosen scanning order, and to capture both vertical and horizontal relations, they
typically require multiple directional scans (Li et al., 2024).

Scanning an image converts its 2D patch layout into a 1D sequence, with the order of patches
determined by a traversal path. This process can be viewed as a Space Filling Curve (SFC): a
continuous path that passes through every point in a multidimensional grid while systematically
covering the entire image (Sagan, [1994)). Many vision backbones, including vanilla ViT (Dosovitskiy
et al.,[2021), Vision x-LSTM (Alkin et al.,[2024), VMamba (L1u et al., [2024b)), and Vim (Zhu et al.|

'As a subtle homage to Giuseppe Peano, the creator of space filling curves, we named our model in a way
that also reflects a musical instrument, just like Peanos family name resembles Piano.
>We define models with < 30M parameters as small-scale and those with ~86M+ as large-scale.
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Figure 1: Space Filling Curve paths: Examples of traversal paths used in VIOLIN on a 4 x 4 patched
image. (al) Original image. (a2) Z-curve (b1) Snake curve, (b2) Transposed Snake curve, (cl)
Zig-zag curve, (c2) Transposed Zig-zag curve, (d1) Hilbert curve, (d2) Transposed Hilbert curve,
(el) Peano curve, (e2) Transposed Peano curve.

2024]), use the simple Z-curve, or row-by-row scan, for this linearization (see Figurem (a2)). Given
that other SFCs, such as Snake, Zig-zag, Peano, and Hilbert curves, preserve locality in different
ways (see Figure[T)), we ask the following question:

Can incorporating SFC-inspired structure into attention help to enhance the spatial understanding of
ViTs, thereby improving their performance in small models and limited-data settings?

In this work, we answer this question affirmatively by proposing VIOLIN , a lightweight attention
mechanism that injects spatial priors through SFC-guided decay masks. Specifically, VIOLIN
integrates multiple SFC based scans into a single decay mask, Myor1n , Which captures the relative
spatial locations of image patches without altering the rest of the architecture. As a result, VIOLIN
provides an efficient, plug-and-play way to introduce locality into ViTs, particularly benefiting small
models and data-scarce scenarios. Figure|1'| (b - e) shows the SFCs used in VIOLIN to traverse the
image, with their corresponding linearized sequences presented in Figure [T0]

We evaluate VIOLIN across a broad set of settings:

¢ Fine-tuning DeiT, DeiT-III, and DINO (Touvron et al}, 2021} [2022; [Caron et al.| 2021)) on
VTAB (Zhai et al., 2019), across scales from Tiny (5M) to Huge (632M), where VIOLIN
consistently improves baselines with gains up to 8.7% on individual tasks and 4.7% on

average. VIOLIN can also be seamlessly combined with parameter-efficient fine-tuning
methods, further boosting adaptability.

* Pretraining small-scale models on ImageNet-1K (Russakovsky et al.,[2015)), where VIOLIN
improves performance by up to 0.9%, and on pixel-level CIFAR-100 (Krizhevsky} [2009),
achieving a striking 7.2% improvement.

* Additional analyses, including the complementary contributions of different curves, perfor-
mance on the Structured VTAB category, and extensions to dense prediction tasks such as
object detection on COCO and semantic segmentation on ADE20K
2017), further highlight the versatility of VIOLIN and the importance of explicitly
modeling spatial priors.

2 BACKGROUND

Notations and preliminaries We denote a patched image as Z € R”*Wxd where H and W are
the number of patches along height and width, and d is the embedding dimension. Its flattened form is
X € RV*4 with N = H x W as the sequence length. For single head attention, the query, key, and
value matrices Q, K,V € RV*? are computed using learnable weights Wo, Wi, Wy ¢ Réx4,
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and the standard ViT attention is computed as

.
Q=XWy, K=XWg, V=XWy, Y:SOftmax(Qz )V. (1

where Y € RV *4 is the attention output. We use h and L for the number of attention heads and
transformer layers respectively. Elements of matrices and vectors are accessed by [-], and ® denotes
the Hadamard product. A full list of notations is provided in Appendix

Vision Transformers and spatial priors After dividing an image into patches (tokens), ViTs
process them as a 1D sequence, typically flattened with a Z-curve (Dosovitskiy et al.| 2021} [Touvron
et al., 2021} |Caron et al., [2021)), as shown in Figure [I| (a2), which discards information about
neighboring patches. To reintroduce spatial information, most ViTs add positional embeddings before
transformer blocks, where self-attention captures token interactions. Recent works have further
improved performance through self-supervised learning (e.g., DINO (Caron et al.,2021; Oquab et al.|
2023)) and optimized training strategies (e.g., DeiT and DeiT-I1I (Touvron et al.,[2021;2022)). In
this study, we show how VIOLIN improves upon these models and training recipes.

By processing patches independently, ViTs lack the strong spatial inductive bias of architectures
like CNNs, which inherently encode locality (Yuan et al.l 2021). Although ViTs capture global
interactions, they struggle with fine-grained local structures, making training data-hungry (d’ Ascoli
et al., 2021)). Sufficiently large models and datasets can mitigate this by learning locality from data,
but when model size or data is limited, ViTs struggle to achieve strong performance (Lu et al.| 2022),
see Appendix [B.T]for details.

Linear Transformers Linear attention was introduced as an alternative to softmax attention,
reducing quadratic complexity to linear time via a recurrent formulation eq. () (Katharopou;
los et al.l 2020). Instead of relying on positional embeddings to capture the order within a
sequence, most modern Linear Transformers (Sun et al.l |2023) incorporate a decay factor (v),
Si=+Sia+kvi. yi=alSi & Y=(QK'©Mcuwa)V, Mousalij] = {g ’ ;ij @
where S; € R?*? is the hidden state. This recurrent form can be parallelized using matrix
multiplication with a Toeplitz decay mask M (Qin et al., 2023 |Sun et al., 2023). Though linear
masked attention was initially proposed for causal NLP tasks, it is later adapted to non-causal tasks
using full Toeplitz masks (Afzal et al.| |2025). The decay mask naturally extends context length,
supports variable sequence lengths, and provides locality information that inspired VIOLIN .

Scans in Linear Vision Transformers and SSMs Linear Transformers and SSMs have been
applied to vision tasks (Alkin et al., [2024; Liu et al., [2024b; |[Zhu et al., 2024)). To enhance spatial
representation, these models often traverse image patches using a Z-curve, typically scanning in both
vertical and horizontal directions. Each scan acts as a separate recurrence, capturing distinct spatial
patterns through their own decay factors.

Space Filling Curves

Definition 2.1. A Space Filling Curve (SFC) is a continuous mapping from a closed unit interval
S = [0,1] to a closed unit hypercube @ = [0,1]", passing through every point in ) exactly
once (Peanol [1990). In this work, we focus on the 2D Euclidean case @) = [0, 1]2, corresponding to
the image domain.

Based on definition[2.1] many SFCs can been defined, including the Snake, Peano (also known as the
Morton curve) (Peano, |1990), Hilbert (Hilbert, |1935), Z (or Sweep), and Zig-zag (Wallacel 1992)
curves as illustrated in Figure[I] Additionally, other curves include the Sierpiski (Sierpiski, [1915),
Lebesgue (Lebesguel |1904), and Schoenberg curves (Schoenbergl [1938)).

Flattening or scanning can be viewed as applying an SFC c to a 2D patched image Z with NV total
patches, mapping it into a 1D sequence X, € R via a flattening function F.(Z) : RF>*W — RN

Fo(i,5): (i,§) = n, i€{0,...,H-1}, j€{0,...,W—1}, n€ {0,...,N—1}, (3
X.=F.(T), Xc[n]=2Zl[i,j] where n = F.(i,j). ()
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This flattening can be applied independently across each embedding dimension d for Z € RH*Wxd,

While SFCs have diverse applications in other domains, their role in image classification remains un-
derexplored (Zhao et al.,[2024; [Kutscher et al.l2025)). For further details, please refer to Appendix[B.3]

3 METHODOLOGY

In this section, we first introduce decay-masked attention in Section then extend it to capture
diverse scanning patterns in Sections[3.2]and[3.3] and finally formulate VIOLIN attention in Section[3.4]

3.1 ATTENTION WITH DECAY MASK

As shown in Appendix [C.1] attention (eq. (I)) is permutation equivariant. In other words, changing
the order of tokens in the sequence results in the same reordering in the output. Therefore, standard
attention does not encode relative spatial priors within an image. To introduce locality, we take
inspiration from Linear Transformers and multiply a decay mask with the attention:

QK'
Vd
This decay mask M, also known as the KacMurdockSzeg matrix (Kac et al., [1953), extends the
causal decay mask to full attentio_n (_Sun et al., 2023} |Afzal et al., 2025). It dampens the attention
score between tokens i and j by /=7, enforcing locality in the flattened sequence X. However, both

the token order in X and the notion of distance in IM depend entirely on how the original image 7 is
flattened. This raises a natural question: What are alternative, principled ways to flatten an image?

Y = Softmax( ® M) V, Mli,j]=+""7 0<y<1. (5)

3.2 SFCs AS PRINCIPLED WAY OF IMAGE FLATTENING

Following eq. , scanning an image along a path c yields the sequence X, = F.(Z). Many
ViTs (Dosovitskiy et al.,[2021; Touvron et al., [2021) use the Z-curve as the default scanning method.

Z-Curve The Z-curve, also called sweep, row-major order, or raster scan, traverses the image row
by rowtop to bottom, and left to right within each row. Its flattening function is F (i, j) = i{W + j.
See Appendix [B.3|for details on curves used in this study.

Although flattening with different curves usually requires reprocessing the image, we propose a
simpler and significantly more efficient alternative: applying a permutation to the flattened sequence.

Permutation of a flattened image Given a sequence X, flattened via SFC c;, and noting that
flattening is one-to-one, we define a permutation 7., ., : {0,...,N —1} —{0,..., N — 1} that
maps it to X, from curve cy

XCQ = Ter—ey (Xcl ) (6)
Note that since each index in X, uniquely corresponds to one in X is invertible. Alterna-

. - . . ?\? ’ 7rC1 —C2
tively, we can represent it as a permutation matrix P, ., € {0, 1}V*¥

1 ifm =7 e, (n)
Perserlmm] = {0 otherwise,1 o Xey = Peye, Xy )
Since P, _,., is a permutation matrix, P., ., = Pc_ll_w2 = P; —¢,+ Thus, by flattening the image

once using the Z-curve, it is possible to obtain X, for other curves by applying 7. ().
3.3 SFCS MEET ATTENTION

With the naive approach, using X for each curve individually and following eq. (3)), the output of
masked attention Y. can be calculated such that

QK.
Vd

where Q., K., V. are the corresponding query, key, and value matrices. Note that as the token order
of Y. depends on the curve ¢, when multiple curves are used, the outputs (e.g Y., and Y.,) will
have mismatched positions. To overcome this issue we can define a basis for our curves as below.

Y. = Softmax ( ® MC) V., where M_.[i,j] = ’y‘ci*j‘, 8)
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Basis Curve After computing the attention output Y. for each curve ¢, we permute them into a
common basis order to align all outputs. This preserves each curves spatial locality while ensuring
they share a consistent reference order. Following standard ViT flattening, we use the Z-curve as the
basis and perform all permutations relative to it, simplifying notation as m,_,. = T, ey, = T, 1
and P, ,. =P, P..,, =P_L The output aligned to the basis is

Y. = (Y.)=P]Y.. )

Permutation of Decay Mask The aligned output S?p of the masked attention in eq. (8) is
—~ KT
Y.=P]Y.= PjSoftmax<Qc <o M) V.. (10)
Vd
Equivalently, we can permute the decay mask M. to the basis order as M. = m_ L (M,) = PCTMCPC,
allowing attention to be computed directly in the basis, see Section [C.3| for proof. The attention
output then becomes

T

N QK
Y. = Softmax
( Vd

This approach is more efficient than the naive one, as Q, K,V are computed only once from the
basis curve, and, more importantly, a single QKT € RY*¥ is shared across all curves per head.

® 1\7[2) V, M. =, (M.), M.i,j] =~ (11)

3.4 VIOLIN ATTENTION

For a single head, we define VIOLIN attention as a decay-masked attention guided by multiple SFCs

Y F Myioun
S 1 X ’ 1
K ! N Average
Y = SOftmaX (0% \/E @ MVIOLIN V7 ,‘ /I
1 7
1 | VIOLIN Attention E
—_— I m (=
MVIOLIN = 75 E Mc~ (12) i e in
|C | | (e u =
ceC 1 | L M,
A Myjoin
Here, Mly,o. v is the average of decay masks LayerNom |\ |K v
from all curves ¢ € C, each first aligned to the X Rl [ [l 8 o

basis (Z-curve) order. The matrices Q, K,V
are computed from the input X flattened with
respect to the basis. The learnable scalar o €
R controls how strongly the mask influences
attention.

Figure 2: VIOLIN : (Left) ViT block with VIOLIN
multi-head attention. (Middle) Single-head VIOLIN
attention. (Right) Decay mask My o,y formed by
averaging masks from curves in C.

For VIOLIN , we use Snake, Zig-zag, Peano, and Hilbert curves together with their transposed variants
(Figure 1| (b2-€2)) to capture diverse scanning patterns in both row and column major order. This
gives the curve set

C = {Snake, Zig-Zag, Peano, Hilbert, Snake ', Zig-Zag ', Peano ', Hilbert ' }. (13)

Each curve c has a decay factor -y, € [0, 1] for its mask Mec, parameterized as 7. = sigmoid(8.) with
learnable . € R for stability, following prior work (Orvieto et al.,[2023)). n multi-head attention, each
head k has its own 8* and o, and thus computes Mc*, MVIOLIN ¥, and 7 *(MPF) independently.
Permutations are applied efficiently via indexing, see code in Appendix[G.3] The full VIOLIN block
is shown in Figure 2] with further design choices and ablations in Appendix [D]and Appendix

Parameter and computational overhead A key Table 1: Parameter and computational over-
advantage of VIOLIN is that it does not introduce head of VIOLIN : calculated relative to DeiT-
significant parameter or computational overhead. As B (86M parameters, 55.4G FLOPs).

shown in Table [T} the additional cost amounts to

only 0.0002% more parameters and 0.64 % more Metric Theoretical % Change
FLOPs compared to the baseline DeiT-B model with Computation  (over DeiT-B)
86M parameters and 55.4G FLOPs. These values are ~ # Param.  LA([C| + 1) 0.0002%
effectively negligible in practice. FLOPs O(LhdN?) 0.64%
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Table 2: GPU memory and inference time 'To quantify the practical computational cost of VIO-
comparison: for DeiT-S and VIOLIN-S at LIN, we report both GPU memory consumption and
different input resolutions. Batch size is 256. inference runtime on the same hardware when evalu-

ating a DeiT-S backbone. Measurements are taken for

Model GPU Memory _ Runtime a batch size of 256 at two resolutions: 224 x 224 for

(GB) (msbatch) — classification tasks and 512 x 512 for dense predic-

B%TL? h§2824(22524)224) 8~§? 522{ tion. As shown in Table[2] VIOLIN closely matches
- X 4 . . . . . .

DTS (512 % 512) 1383 7393 the vanilla DeiT model in bot'h runtime and memory

VIOLIN-S (512 x 512) 13.90 1789.7 usage. These results are consistent with our theoreti-

cal analysis and confirm that VIOLIN introduces only
minimal overhead.

4 EXPERIMENTS

We evaluate VIOLIN across diverse settings to assess its effect on the spatial awareness of ViTs.
Our experiments include fine-tuning on small datasets in Section and pretraining small-scale
models on ImageNet-1K and on pixel-level CIFAR-100 in Section EAdditional ablations on curve
configurations, and decay factors are presented in Section[4.3] Beyond classification, we analyze the
strong gains on the Structured group of VTAB and extend evaluation to dense prediction tasks such
as detection and segmentation. Overall, VIOLIN consistently improves performance, with the notable
benefits in small models and data-scarce regimes.

4.1 VTAB-1K FINE-TUNING

The Visual Task Adaptation Benchmark (VTAB) (Zhai et al.| 2019) evaluates the adaptability of
learned representations to diverse unseen tasks with limited data. It consists of three groups, Natural,
Specialized, and Structured, covering 19 datasets from varied domains and semantic categories. In
our experiments we use VTAB-1K, a subset with 1,000 examples per task, specifically designed to
test model adaptation in data-scarce settings.

We evaluate VIOLIN on small datasets and specialized tasks under two configurations: full fine-
tuning and parameter-efficient fine-tuning (PEFT). In both cases, we compare fine-tuning results
of the original pretrained models ( Baseline ), and Baseline ©® My;o.xy Where pretrained models
are combined with freshly initialized mask before fine-tuning and then optimized jointly with the
backbone during fine-tuning. For all models, both baselines and VIOLIN , we use the finetuning
implementation from |Alkin| (2022). For each model, every dataset is first split into a 800,/200
train/validation partition to select the optimal learning rate per dataset. We then train on the full
dataset using 5 random seeds and report the average of the best 3 runs. The complete set of training
hyperparameters is provided in Table 29} and per-dataset results are included in Appendix [F.3]

Full fine-tuning In the first setting, we test the plug-in capability of VIOLIN by fully fine-tuning
pretrained DeiT, DeiT-III, and DINO models across scales ranging from 5M to 630M parameters.

Table 3: Full fine-tuning results on VTAB-1K: Comparison of the top-1 accuracies of
baseline models and their Baseline ©® My vy counterparts across the VTAB-1K benchmark.
The three task groups are abbreviated as NAT. = Natural, SPE. = Specialized, and STR. = Structured.
The values in parentheses (-) indicate the accuracy difference compared to the baseline. The best
performance within each model pair is highlighted in bold. Green highlights the improvement.

Top-1 Accuracy (%)

Model Param. Baseline Baseline © My o11n

NAT. SPE. STR. Avg. NAT. SPE. STR. Avg.
DeiT-T M 69.56 8234 53.57 65.52 71.90 (+2.34) 83.75 (+1.41) 57.50 (+3.93) 68.33 (+2.81)
DeiT-S 22M  73.64 8430 5344 6738 76.06(+2.42) 85.05(+0.75) 58.26 (+4.82) 70.46 (+3.08)
DeiT-B 86M 7693 85.52 57.00 7035 77.96 (+1.03) 86.29 (+0.77) 61.89 (+4.89) 72.95 (+2.60)

DeiT-11I-S 22M 7513 83.63 5292 67.57 77.03(+1.90) 85.46 (+1.83) 61.61 (+8.69) 72.31 (+4.74)
DeiT-II-B 86M  78.19 8526 56.71 70.63 79.24 (+1.05) 86.47 (+1.21) 63.03 (+6.32) 73.94 (+3.31)
DeiT-III-L  304M  88.68 8438 51.40 6741 90.39 (+1.71) 84.68 (+0.30) 54.95 (+3.55) 69.51 (+2.10)
DeiT-III-H  632M  88.15 84.18 50.70 6691 89.10(+0.95) 84.43 (+0.25) 53.65 (+2.95) 68.50 (+1.41)
DINO-S 22M 7535 85.09 60.65 7121 76.26 (+0.91) 85.32 (+0.23) 61.24 (+0.59) 71.84 (+0.63)
DINO-B 86M  77.50 85.77 5847 7123 78.65(+1.15) 86.44 (+0.67) 60.84 (+2.37) 72.79 (+1.56)




Under review as a conference paper at ICLR 2026

During fine-tuning, the VIOLIN decay mask Myo1x 1S applied together with the scaling factor «
as defined in eq. (12)), and the resulting accuracies are reported in Table [3] The freshly initialized
mask enables fast adaptation by allowing models to learn task-specific structural biases, which is
critical in data-scarce fine-tuning. We also fine-tune the VIOLIN pretrained models from Section[4.2]
on the same tasks and noticed that masks learned only during downstream fine-tuning consistently
outperform pretrained ones, full results are provided in Appendix [F2]

This property offers a key advantage: VIOLIN can improve any pretrained model when
applied only at fine-tuning. It removes the need for costly pretraining from scratch and
allows model to specialize on the downstream task better. The improvements are sub-
stantial, up to 4.7% on average and 8.7% on individual group, showing that the spatial
bias introduced by VIOLIN enables more effective learning in data-scarce regimes. More-
over, the computational overhead is negligible, and the method generalizes well across train-
ing setups, datasets, and model scales, including large models with over 600M parameters.

Table 4: PEFT results on VTIAB-1K with DeiT-B: # PEFT with VIOLIN Secondly, we use the

Param. denotes the number of learnable parameters PEFT methods LoRA (Hu et al [2022)) and
per method. The baseline uses PEFT alone, while DoRa (Liu et al.,[20244) to fine-tune the DeiT-B

VIOLIN combines PEFT with mask ﬁne—tuning. mode], with results shown in Table In this
setting, the VIOLIN mask is freshly initialized

Method ~ # Param. Base]il‘;" g nge‘;irﬁzyéi/&} and updated alongside the PEFT weights. The
Full-FT 36 M 7035 72.95 (+2.6\3§UN gdc}1t19nal cost introduced by.\./IOLIN remains
LoRA ~0.3M 71.04 72.55 (+1.41) insignificant, only 0.002% additional parameters
DoRA ~0.6M 70.75 71.90 (+1.15) compared to 0.35% introduced by LoRA. The

results demonstrate that VIOLIN can be seam-
lessly combined with different PEFT methods,
further highlighting its applicability and generalizability.

4.2 PRETRAINING

ImageNet-1K pretraining We pretrain VIOLIN on small-scale models F’j under two paradigms:
supervised and self-supervised training, as shown in Table[5] For supervised training, we use DeiT in
tiny and small scales, a well established baseline specifically designed for data efficient supervised
training. The DeiT paper provides two components: (1) a data-efficient training recipe with tuned
augmentations and hyperparameters, and (2) a distillation mechanism that uses a teacher model. In
all our DeiT-based pretraining experiments, we use only the training recipe and do not employ any
form of distillation. VIOLIN consistently improves performance without any additional tuning, with
DeiT-T gaining 0.8% and DeiT-S achieving a notable 0.9% improvement, demonstrating strong
compatibility. For these models, we adopt Global Average Pooling (GAP) (Lin et al., 2013; [Lu et al.
2022) instead of a class token, as GAP is more compatible with VIOLIN , see Appendix for
details.

For self-supervised training, we adopt DINO, a state-of-the-art teacherstudent framework for label-
free representation learning, known for its stable training dynamics and strong downstream perfor-
mance. In our experiments, both teacher and student networks are equipped with VIOLIN attention.
In this setup, VIOLIN consistently improves performance across model scales and training durations,
yielding gains in both KNN and linear evaluations on ImageNet. For all models, we strictly follow
the original training recipes from the respective papers, without modifying any hyperparameters for
VIOLIN . Baseline accuracies are taken directly from the reported values.

Ablation studies In Appendix [E] we provide comprehensive ablations on key aspects of VIOLIN
attention, all within the same pretraining setup. Appendices and examine the effects of
global average pooling and positional embeddings, while Appendix explores different curve
configurations, covering all combinations in C, Z-curve only, Manhattan distance-based masking (as
used in RMT (Fan et al.l |2024)), random curve orderings, and variants without transposed curves.
Appendix [E.3|compares alternative masking strategies, and Appendix[E.4]analyzes key design choices
such as initialization, the scaling factor «, and fixed vs. learnable decay parameters. Together, these

3We observed that for ImageNet pretraining with larger models, the performance gains are smaller, which is
expected. See Appendix @ for numerical results and a detailed explanation.
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Table 5: Pretraining results on ImageNet-1K: Comparison of the top-1 accuracies of baseline models

with their VIOLIN counterparts. The values in parentheses () indicate the accuracy difference
compared to the baseline. The best performance between each pair of models is highlighted in bold.
For DINO models, both KNN and linear probe evaluations are reported and (100), (300) indicate
the number of training epochs of the models. (Left) Supervised training, (Right) Self-supervised
training. Similar sized CNN baselines are added for comparison.

Top-1 Accuracy (%) Top-1 Accuracy (%)

Model # Param. Baseline VIOLIN Model # Param. Baseline VIOLIN

DT SM 722 73.0 (+08) RNN 693 70,0 (+0.7)
DeiT-S 2M 798  80.7(+0.9) PINO-SU00) o 22M 740 74.6 (+0.6)
ResNetI8  12M 9.8 KNN 728 734 (+0.6)
ResNet-50  25M 76.2 DINO-S (300)  y 00,  22M 761 764 (+0.3)

ablations provide a detailed view of each components contribution to the effectiveness of VIOLIN
attention. Additionally, in Section we evaluate the context extrapolation capability of VIOLIN
using multi-resolution classification and video generation with a pretrained VIOLIN DINO model,
leveraging the natural extrapolation property of the KMS decay mask My x -

Pixel-level CIFAR-100 pretraining Recent Table 6: Pixel level CIFAR-100 pretrain-
work has explored pixel-level tokenization for jue: Comparison of the top-1 accuracies of
ViTs (Nguyen et al.l 2025; |Wang et al., 2025), baseline and VIOLIN models.

which provides fine-grained image representations

and avoids hand-crafted choices around patch size. Avs. Accuracy (%)
However, this setting is challenging because patching Model  # Param. g0 b0 ViOLIN

is the main source of locality bias in ViTs, removing DeiT-T 5M 60.8 68.0 (+7.2)

it makes models more data-hungry and harder to
optimize on small or medium sized datasets such as CIFAR-100 (Krizhevskyl, [2009). This setting
aligns perfectly with the goal of VIOLIN , as it introduces locality into the model independently of
the patching process.

On CIFAR-100, when ViT-T is trained using the DeiT ImageNet training recipe, VIOLIN achieves a
striking improvement of over 7% compared to the vanilla pixel-level baseline, as shown in Table [f]
This demonstrates that our locality mechanism provides a powerful inductive bias, enabling effective
learning in small-data, small-model regimes where standard ViTs collapse. These results highlight
both the effectiveness of VIOLIN and the importance of locality awareness for pixel-level ViTs,
particularly in resource-constrained scenarios where large-scale pretraining or very long training
schedules are impractical.

4.3 UNDERSTANDING SPATIAL AWARENESS IN VIOLIN Original Image T VIOLIN

Performance gain on the Structured group The Struc-
tured category of VTAB includes tasks that require under- ﬁ
standing the spatial structure of the images such as object -
counting and 3D depth prediction, many of which are de-
rived from simulated environments. These scenes often :’
consist of rendered geometric objects that are simple to
humans but differ significantly from images in ImageNet.

s a result, success in these tasks often depends on recogniz-
ing positional, orientational, or shape-based information,
making local spatial layout especially important.

As shown in Table[3] the VIOLIN mask provides the largest

improvements in this category, with gains of up to 8.69%,

a 16% relative increase over the baseline. These results Figure 3: Attention heatmaps on Struc-
highlight the strength of VIOLIN in enhancing spatial ca- 47 ed tasks: E).(amples are drawn from
pabilities, supporting our claims, and demonstrate its abil- three datasets in the Structured group:
ity to generalize effectively to tasks that depend heavily CLEVR-Count, dSprites-Location, and
on spatial structure. In Figure 3] we illustrate images SmallNORB—Ammuth. All v1§uallza—
from three datasets in the Structured group with attention ~tions are taken from layer 12, using the
heatmaps of DeiT-B models fine-tuned with and without ~Same attention head for each image.
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Figure 4: Mask patterns for different patches: Visualization of decay mask patterns for three
reference patches, top-left, center, and bottom-right, (1st, 2nd and 3rd rows) across all curves and
their transposed counterparts. Lighter values indicate stronger spatial relevance, showing more
strongly attended regions. al) Reference patch locations, b1) Snake, b2) Snake ", c1) Zig-zag, ¢2)
Zig-zag ", d1) Hilbert, d2) Hilbert ", el) Peano, e2) Peano ' curves.

Myiouin - The comparisons show that models fine-tuned with VIOLIN attend to objects more ac-
curately, suppress noise on irrelevant patches, and produce more uniform responses in background
regions, further demonstrating its benefit for spatial understanding. Additional visualizations are
provided in Appendix [F4]

Curve configurations We examine the individual contribution of each curve by pretraining DeiT-S
with all 2* = 16 combinations of four curves (including their transposed variants), with accuracies
reported in Table[I2] While some combinations yield larger gains, every curve contributes meaning-
fully, motivating the use of all four in VIOLIN to leverage their complementary spatial information.
To illustrate this, Figure ] visualizes the decay masks for three reference patches (top-left, center,
bottom-right) across all curves and their transposes. Lighter regions indicate stronger attention, and
the distinct patterns show how different curves bias the model toward diverse spatial regions.

We further analyze the learned decay parameters . for DeiT-B in Figure [7] observing that most
remain close to one, indicating active use of long-range spatial information. Smaller values act
as implicit curve selection, as these decay masks would contribute to the average minimally, with
certain layers and heads emphasizing particular curves. Finally, additional attention heatmaps and
visualizations of sequences flattened by different curves are provided in Appendix

Comparison against other inductive Table 7: Comparison of locality methods: The pretrained

bias methods In Table [7} we pro- DeiT-B model fine-tuned with different locality methods

vide an extend'ed comparson of various on the VTAB Structured group. Best result is highlighted
locality-enforcing baselines on the Struc- on bold

tured group in the fine-tuning setting.
For each approach, we use the same pre-

. 3 LT Method # Extra Parameters ~ Structured Avg. (%)

trained DeiT-B backbone and initialize - -

. . . Baseline (DeiT-B) - 57.00

the corr'espondlr'lg locality mechanismon  vjo; 13K 61.89

top of it, ensuring that all models start Additive Myiorn ~13K 61.34

from an identical initialization. All meth- ~ SWinRPB ~105K 61.58

i-RPE QKV ~115K 61.45

ods are then fine-tuned under the same LocalViT ~6.2M 61.50

protocol, using the hyperparameter set ~ Manhattan Mask ~0.4K 58.37

. . 5 Single SFC (Mpeano) ~0.4K 61.63

described in Table Random Curve (Mugmgon) ~0.4K 61.43

These results show that while most local-

ity priors offer some improvement, VIO-

LIN achieves the strongest gains with minimal overhead. This indicates that the improvements come
specifically from the usage of multiple SFC curves, rather than from the presence of any local bias.
Moreover, the results highlight VIOLIN’s effectiveness as a plug-and-play spatial prior in small-data
finetuning regimes. Full implementation details, initialization choices, and per-dataset results are
provided in Appendix [F.6]
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Table 8: Results on dense prediction tasks: (Left) mloU scores on semantic segmentation on
ADE20K with DeiT-B model. (Right) box AP and mask AP scores on object detection and instance
segmentation on COCO with Swin-T.

mloU Baseline Baseline © My;opin
Backbone Baseline Baseline © My;opix Backbone box AP mask AP box AP mask AP
DeiT-B 4524 45.80 (+0.56) Swin-T 42.7 39.3 42.8 (+0.1) 39.7 (+0.4)

Dense prediction tasks To assess the capabilities of VIOLIN beyond classification, we evaluate
it on semantic segmentation and object detection. For both tasks, baseline and VIOLIN enhanced
models are trained under identical setups to ensure fair comparison, with results reported in Table [§]
These experiments also highlight the flexibility of Myo1n , Which naturally generalizes to arbitrary
input shapes, enabling resolution expansion and non-square images.

For semantic segmentation, we use ADE20K (Zhou et al.,[2017; 2019)), a challenging scene parsing
dataset, implemented in the mmsegmentation framework (Contributors, |2020). The backbone
is an ImageNet pretrained DeiT-B model combined with UPerNet (Xiao et al., 2018).The My oLy
mask is freshly initialized at fine-tuning, and training is performed for 80k iterations with batch size
16. As reported in Table[8] VIOLIN achieves a +0.56 mIoU improvement, further demonstrating that
spatial priors help ViTs adapt effectively to dense prediction tasks.

For object detection, we experiment on COCO (Lin et al.| 2015)) using the mmdetection frame-
work (Chen et al.,[2019). The backbone is an ImageNet pretrained Swin-T (Liu et al.,|[2021)), paired
with Mask R-CNN (He et al.,|2017) as the detector. As in segmentation, the VIOLIN mask My o1y

is freshly initialized at fine-tuning, and models are trained with a 1x schedule and batch size 16.
As shown in Table[8] VIOLIN improves performance by +0.4 mAP over the baseline, showing that
spatial priors from space-filling curves enhance object localization.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced VIOLIN , a masked attention mechanism inspired by the decay masks of
Linear Transformers and the perspective of flattening via space filling curves. By integrating diverse
spatial patterns into a unified decay mask, VIOLIN enhances the understanding of relative spatial
relationships without altering the training recipe, or introducing a significant computational cost.

Our experiments show that VIOLIN is particularly effective in small models and data-scarce settings,
where spatial inductive bias is most critical. It also serves as a plug-and-play module that can be
applied only during fine-tuning, combining seamlessly with parameter-efficient methods. More
broadly, VIOLIN emphasizes the overlooked role of patch ordering and spatial priors in ViT design,
offering a lightweight and practical approach to strengthen locality in vision transformers.

Future directions Since VIOLIN operates directly on the attention scores, it can be used in any
setting where spatial relationships are important and a global attention mechanism is used. This
opens up many exciting future directions, including applications to depth estimation, super-resolution,
tracking, and even video understanding. VIOLIN also opens several promising directions, such as
dynamic or task-adaptive curve selection, as well as to domains such as video, multimodal learning,
and data-scarce applications like medical imaging or satellite analysis. These settings offer promising
opportunities to further explore the impact of explicit spatial priors in vision backbones.
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A  NOTATIONS

In Table[9] we summarize the notations used in the paper.

Table 9: Notations: Summary of notations used throughout the paper.

Definition Notation

Image T € REXWxd
Curves set C

Curve ID cel

Flattening operator with curve ¢ F.(T): REXW RN
Flattened image with curve ¢ X, € RNVxd
Permutation from curve c; to cg Tey—eq (1)
Permutation matrix from curve ¢y to ¢y P, ., € RVXN
Decay mask for basis curve (Z-curve) M e RVXN
Decay mask for curve ¢ M, € RV*N
Permuted decay mask for curve ¢ I\A/I: € RVXN

Average of all decay masks for all curves
Average mask scaling parameter

Decay parameter for mask M.

Queries, keys, values

1\/-[VIOLIN e RNXN
aceR
Y. € R
Q. K,V e RVxd

B EXTENDED BACKGROUND

B.1 VITS AND SPATIAL PRIORS

ViTs are powerful alternatives to Convolutional Neural Networks (CNNs) (O’Shea & Nash, [2015),
but their design comes with a fundamental limitation: a lack of inherent spatial inductive bias. Unlike
CNNs, where convolutions naturally encode locality and translation equivariance, ViTs treat images as
sequences of independent patches. Spatial relations must therefore be inferred entirely from data, with
positional embeddings and patching serving as the primary source of spatial information (Dosovitskiy
et al., 2021 [Yuan et al.) [2021). This design provides ViTs with flexibility in modeling global
dependencies, however it also removes the strong inductive priors that are especially critical in
data-scarce settings (d’ Ascoli et al.|[2021; [Wu et al}[2021b).

The absence of spatial inductive bias makes ViTs particularly fragile and data hungry when model
capacity or training data is limited. Small ViTs trained on large datasets often underperform com-
pared to CNNs, since they cannot rely on built-in locality to efficiently capture low-level spatial
features (Touvron et al., 2021} Yuan et al., 2021)). In contrast, when both models and datasets are
sufficiently large, and training is long enough, ViTs can learn these biases directly from data. For
instance, large-scale training on ImageNet-21k (Ridnik et al.,|2021)) or JFT (Sun et al.,|2017)) demon-
strates that ViTs can eventually match or surpass CNNs, but this comes at considerable computational
and data cost (Dosovitskiy et al., [2021} [Touvron et al., [2021)). Therefore, spatial inductive bias is
highly beneficial in practice, especially for downstream tasks, resource-constrained scenarios and
small scale models.

Motivated by this tradeoff, various approaches have emerged to reintroduce spatial priors into
transformer architectures. Hierarchical models such as Swin Transformer (Liu et al., 2021} 2022} and
Pyramid Vision Transformer (PVT) (Wang et al.,2021;/2022b)) adopt CNN-like multi-scale processing,
enabling more efficient capture of local and global dependencies. Similarly, T2T-ViT (Yuan et al.|
2021) progressively aggregates tokens to embed local structure. These designs restore the inductive
biases of locality and scale, improving performance in regimes where pure ViTs struggle.

Another line of work incorporates convolutions directly into the transformer pipeline. Convolutional
hybrids such as CvT (Wu et al., [2021b)), ConViT (d’Ascoli et al., [2021), and CMT (Guo et al.,
2022) explicitly embed local connectivity into the attention mechanism or token embedding process,
bridging the gap between CNNs and ViTs. Other methods explore novel locality-aware mechanisms,
including vicinity attention (Zhang et al., |[2023)), shuffle-based spatial mixing (Huang et al., |2021)),
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and localized attention modules (Li et al.l [2021}; |Chu et al., 2021)). Even more recent innovations,
such as RMT (Fan et al., 2024), propose decay masks inspired by RetNet (Sun et al.,[2023) to enforce
local inductive constraints.

Despite their effectiveness, most of these approaches achieve improved spatial priors by directly
modifying the ViT architecture such as embedding convolutions into tokenization, or restructuring
the model into hierarchical stages. While such changes enhance locality, they also increase design
complexity, reduce modularity, and often require pretraining from scratch on large datasets to fully
realize their benefits. This makes them less practical in settings where one wishes to reuse widely
available pretrained vanilla ViTs. In contrast, methods that can inject spatial inductive bias without
altering the base architecture, for instance, during fine-tuning, offer a more lightweight and flexible
alternative, enabling broader applicability to downstream tasks and smaller models without sacrificing
compatibility with existing pretrained checkpoints.

What remains missing is a simple mechanism to bridge this gap: an approach that can utilize already
trained ViTs while still strengthening their spatial priors, which can be achieved via VIOLIN with
close to zero additional cost.

B.2 LINEAR TRANSFORMERS
Linear attention is mathematically equivalent to an RNN (Katharopoulos et al., 2020)
Si=Si1+k/vi, yi=q/S; © Y =(QK'" ®OLcwsa)V, (14)

where S; € R?*9 represents the hidden state of the Linear Transformer in its equivalent RNN form
and Leagsa € RV*Y is lower triangular matrix of ones.

Building on that, Linear Transformers with a scalar decay factor commonly take the following
recurrent form:

Si=ASi 1 +klvi, w=q/S; (15)

with hidden state S; and output y;. Here, the behavior of the model is determined by the choice of the
decay parameter A;. It is also standard practice to apply a non-linearity to the queries and keys, such
that Q, K = ¢(WX), $(W g X), and to scale attention in relation to past tokens, as discussed in
Katharopoulos et al.| (2020).

No decay In vanilla Linear Transformers (eq. (2)), there is no decay term, or equivalently A; = I
where I is the identity matrix. As a result, these models do not encode relative positional information.
Performer (Choromanski et al., 2021)) is a representative example, using Random Fourier Features
(RFF) (Peng et al.,[2021) as the non-linear function ¢(-), without any form of decay mechanism.

Non input-dependent decay A key example in this category is RetNet (Sun et al.| 2023), which
employs a fixed scalar decay parameter A; = . This introduces a locality bias in the attention
computation, but the decay remains constant and independent of the input sequence.

Input-dependent decay Several recent linear transformers in the NLP domain fall into this category,
where the decay parameter A; = g(x;) is a function of the input and thus varies across tokens. For
example, DeltaNet (Yang et al.| 2024) defines the decay using the Delta Rule (Schlag et al.,2021)) as
A; =1 —k;k, while Gated RFA (Peng et al.,[2021) uses an input-dependent scalar decay of the
form A; = 0(Wx;), where o(-) is the sigmoid function and W € R, resulting in a scalar decay
value per token.

Selective SMMs This category of models is closely related to linear transformers with input-
dependent decay. A prominent example is Mamba (Gu & Dao| [2024), which can be interpreted as a
linear transformer with an input-dependent diagonal matrix as the decay parameter A; (Yang et al.,
2023). Mamba-2 (Dao & Gu, |2024)), a simplified variant, further refines this by using an exponential
formulation for the decay factor: A; = exp(— exp(WX;)), enabling a more stable and expressive
modeling of token-wise recurrence.
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B.3 SPACE FILLING CURVES

SFCs have diverse applications across various domains, including image compression and gener-
ation (Wang et al.| 2022a; [Dafner et al., |2000), point cloud processing (Chen et al., [2023), data
mining (Bhm| 2020), and data movement (Walker & Skjellum), [2023). In this section, we define
the curves used in this study as flattening operation F, for each curve. The definitions are adapted
from (Sagan| |1994; |Peanol |1990; Hilbert, 1935} [Zhao et al.l 2024)).

Z-curve The Z-curve, also known as sweep, row-major order, or raster scan, is the simplest and
most widely used method for flattening a 2D image into a 1D sequence. It scans the image row by
row, from top to bottom and left to right within each row. More concretely, for an image with width
W, the flattening function can be defined as

This flattening order is the default scanning method in many vision models, including ViTs. As a
result, we use it as our basis in the paper.

Snake Curve The snake curve, also known as boustrophedon order (Fernau et al., 2015), is a
variation of the Z-curve that alternates the scanning direction across rows. Even-indexed rows are
traversed left to right, while odd-indexed rows are traversed right to left, creating a continuous snake
path through the image. The flattening function is given by:

Fae(i, ) = - W43 ifimod2=0
kel )= W+ (W —1—4) ifimod2=1
This curve has a simplicity similar to the Z-curve while reducing long jumps between the end of one

row and the beginning of the next. It is utilized in various applications, including image processing
and path planning, due to its efficiency in covering areas without unnecessary repositioning.

7)

Zig-zag Curve The Zig-zag curve (Wallace, |1992) is a diagonal scanning pattern that visits patches
of an image along consecutive diagonals, alternating direction at each level. More concretely, with
an image of size H x W, for each diagonal g € {0, ..., H + W — 2}, it scans the elements where
i+ j = g, from top-right to bottom-left on odd-numbered diagonals and from bottom-left to top-right
on even-numbered ones. In other words, for each diagonal g, let the set of valid coordinates on that
diagonal be Dy = {(3,7) |i+j =g, 0 <i< H, 0 <j <W}. Then the ordering of Fyigs(i, j)
can be defined by

g—1

ingzag(i7j) = (Z |Dk|> —I-Oﬂ'Sth(i,j), (18)

k=0

where | Dy| is the length of the diagonal and offset, (4, j) is

s -/ : :
offsety (i, ) = {#{(l.,’j.,) €Dy | j., < J} ?fg mod 2=0,
#{(#',7) € Dy |j >j} ifgmod2=1.
The zig-zag curve is most commonly used in applications where frequency components are spatially
grouped such as the JPEG compression standard to serialize the block of discrete cosine transform
(DCT) coefficients, to ensure that low-frequency components that carry the most information appear
early in the sequence.

Hilbert Curve The Hilbert curve (Hilbert, |1935)) recursively divides the space into quadrants and
connects them in a continuous path that fills the entire 2D grid. Similar to Peano curve, the Hilbert
curve is most naturally defined on square images of size 2P x 2P where the recursive quadrant-
based construction aligns with the binary structure of the coordinates. The flattening function
Fhier (7, j) does not have a simple closed-form expression, but can be computed via recursive or
bitwise algorithms, for example, Butz or Moore methods (Butz, |1969; Moorel [1900).

For an image of size H x W with H = W = 2P, we can define the Hilbert curve flattening function
as

Fhinen(i,5) = Y qr - 4" (19)
k=1
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(a) Hilbert on 5 x 5 grid. (b) Hilbert on 10 x 10 grid. (c) Peano on 5 x 5 grid. (d) Peano on 10 x 10 grid.

Figure 5: Extension of Hilbert and Peano curves: Visualization of how Hilbert and Peano curves
extend to non-power-of-2 grids.

where q1qs - - - g5, is the base-4 Hilbert index corresponding to the normalized pixel center:

1 1 J 1 9
(2n+2n+1, 2n+2n+1> €1[0,1) (20)

Each digit g;, € {0, 1,2, 3} represents the quadrant at level & in the recursive Hilbert construction.

Points that are close in 2D space tend to remain close in 1D, which makes it especially valuable in
image processing, spatial indexing, and contexts where locality is significant.

Peano Curve The Peano curve, also called Z-order curve or Morton curve, (Peano, |1990) is a
recursive scanning approach that preserves spatial locality by interleaving the binary representations
of the row and column indices. It is particularly well-suited to square grids of size 2P x 2P as the bit
structure of the coordinates aligns naturally with the recursive subdivisions of the curve.

For H = W = 27, let (i,j) € {0,...,2P — 1}? be the pixel coordinates, and we can write their
binary expansions:

n—1 n—1
i=> 2% j=Y jr-2" withiy, j, € {0,1} 21)
k=0 k=0
p—1
Feano(i, j) = interleave_bits(i, j) = Z (i - 22PT 4y - 22) (22)
k=0

As it can be constructed bitwise, it is computationally efficient and commonly used in applications
like image tiling, spatial databases, and quadtree indexing.

Remark: While the Peano and Hilbert curves are most naturally defined on square grids with
power-of-two dimensions, they can be easily extended to arbitrary image sizes by truncating higher-
order bits, using padding, clipping, or floating-point mapping techniques (Cerveny, 2025} |Sasidharan
et all 2015). In Figure 5] we visually show how to extend these curves to non-power-of-2 cases with
codes provided in Appendix [G.3]

Flattening with transposed curves Standard SFCs are typically defined over fixed scans using row-
major or column-major orderings. To increase the diversity of locality preserving patterns without
incurring additional cost, we introduce transposed variants of standard SFCssuch as column-major
Snake or vertical Zig-Zag. These variants simply swap coordinates during traversal. We define the
flattened image under a transposed curve as:

X 7[n] =ZI[i,j] where n = F.1(i,j) = F.(4,1). (23)

Accordingly, we expand our curve set to include these rotated versions, resulting in the final VIOLIN
curve set:

C = {Snake, Zig-Zag, Peano, Hilbert, Snake ', Zig-Zag ", Peano ', Hilbert " } (24)
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B.4 LOCALITY VIA DECAY MASK

Decay mask structure An example of a 4 x 4 causal decay mask with non-input-dependent decay
factor, as used in RetNet (Sun et al.| 2023)), is

1
v o1 N LA
Mauqa: ) Mausa B - . . 25
Cmal = 152y 1 caali ] {0 i< )
oyt oy 1

As seen in the causal decay mask above, the decay masking the attention Mcaysal[7, 7] depends only

on the difference between ¢ and j, specifically Mcaysal[¢, j] = ’y|i_j|. which reflects the locality
information in the causal decay mask.

As an extension for bidirectional tasks, such as image classification, the causal mask can be extended
to a full Toeplitz decay mask, as shown in (Afzal et al.,|[2025)):

1 v 72 43
v 1 oy 4P . li—j]

M= , Mli, j] = J 26
7oy 1 g (i, 5] =~ (26)
ooy 1

in this case, the attention between each pair of tokens 4 and j is masked based on their distance |i — j]|.
Additionally, the decay factor 0 < -y < 1 is bounded between to ensure that M[4, j] does not overflow
and remains stable (Orvieto et al., [2023).

Extrapolation capabilities of decay mask The decay mask M can easily be extrapolated beyond
the context length (Dao & Gu, [2024; |Sun et al, 2023) because M][i, j] = 'y|i’j| is independent of
the sequence length. This is especially useful since we can change the resolution of images during
inference without needing to interpolate or extrapolate the position embeddings (Dosovitskiy et al.,
2021} |Caron et al., 2021). This capability is particularly valuable when generating videos for object
tracking in VIOLIN DINO.

B.5 EFFICIENCY OF TOEPLITZ DECAY MASK

As mentioned in the background Appendix the decay parameter  can be input dependent as
well, which means that it is extracted for each token as:

%= 9(Wox:), Mi,j] = v9007 = [ 27)
B2

with g(.) being a bounded function such that 0 < g(x) < 1 (i.e. sigmoid). This results in each element
of the decay mask M([i, j] representing the cumulative product of decay contributions from all tokens
between positions ¢ and j leading to input-dependent decay masks. While these type of masks can
offer finer-grained control, they are slower to train, requiring O(log(V)) time points to compute (Gu
& Daol [2024; Dao & Gul|2024)), consume more memory, and must be dynamically constructed during
inference. In contrast, input-independent decay masks such as the one used in VIOLIN are much more
efficient. We adopt the decay mask in VIOLIN as it is faster to train, memory-efficient (requiring only
a single learned scalar ~y per curve), and eliminates the need for recomputation during inference. This
simple scalar-based design still performs effectively and achieves strong results in practice (Afzal
et al., [2025).

B.6 CONNECTIONS OF VIOLIN TO OTHER MODELS
As VIOLIN is inspired by the forget gate (also known as the decay mask) in Linear Transformers,

it shares strong connections with these models and their adaptations for vision tasks. Below, we
highlight some of the most relevant connections:

RMT RMT (Fan et al.,|2024) also introduces a decay mask (via Manhattan distance) to enhance
the spatial awareness of ViTs, addressing a similar challenge. However, it differs from VIOLIN in key
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ways. RMT uses only a single flattening strategy and applies a fixed distance metric (Manhattan),
while VIOLIN generates multiple masks based on different SFCs and defines a KacMurdockSzeg
(KMS) matrix for the decay. Architecturally, VIOLIN is a modular attention mechanism that can be
plugged into various ViT backbones, whereas RMT is a standalone model. We also conducted an
ablation using the Manhattan distance decay as in RMT, and found it underperforms compared to
VIOLIN . Detailed results are provided in Table [I3]

FoX FoX, or Forgetting Transformer (Lin et al., | 2025)), is designed for causal sequence modeling,
specifically to capture long-range dependencies in the NLP domain. It uses an input-dependent causal
decay mask, as shown in eq. (27), which differs significantly from VIOLIN in both application domain
and mask design. Moreover, the perspective central to VIOLIN , based on flattening and scanning via
space-filling curves, does not appear in FoX, as it operates in the NLP setting rather than vision tasks.

Vision Linear Transformer This class includes models such as Vision LSTM (Alkin et al.| 2024),
Vision Mamba (Zhu et al., 2024}, and VMamba (Liu et al.l [2024b)), which are related to VIOLIN
due to their use of different scanning strategies primarily based on the Z-curve in both standard
and transposed (horizontal and vertical) directions. However, these models significantly differ from
VIOLIN in architecture, as they are based on SSMs like Mamba (Gu & Daol [2024) or other linear
attention mechanisms, rather than softmax-based Transformers. In contrast, VIOLIN is a softmax-
based masked attention module that can be easily integrated into various ViT backbones. In this
study, we apply VIOLIN to DeiT, DeiT-III, and DINO as representative examples.

MAE Masked Auto Encoders (MAE) (He et al.,2022) apply random input masking as a pretraining
objective, dropping patches and training the model to reconstruct them. This masking affects only the
input and does not influence attention computation. In contrast, VIOLIN applies structured masking
within the attention mechanism, using decay masks based on space-filling curves to rescale attention
scores, without dropping tokens or reconstructing inputs. It serves as a spatial inductive bias, guiding
the model to attend more to nearby regions without altering the input or training objective.

C PROOFS

C.1 ATTENTION IS PERMUTATION EQUIVARIANT

Claim C.1. Attention without positional embeddings is permutation-equivariant. That is,
A(r(X)) = m(A(X)) (28)

where A(-) is the output of the attention mechanism, and () denotes a permutation of the sequence.

Proof. Let X € RV >4 be the input sequence with N tokens and model dimension d. The attention
is defined as

KT
Q=XWg,, K=XWg, V=XWy, A(X) = Softmax (Q\/g ) V. (29
Let 7 be a permutation of the input sequence, represented by a permutation matrix P € RV *¥ such
that 7(X) = PX and PP " = L. Then
m(Q) =PXWg =PQ, 7(K)=PK, =(V)=PV. (30)

Now compute the attention on the permuted input
P PK)T PQK'PT
A(m(X)) = Softmax <(Q)()) (PV) = Softmax (Q> PV (31)
Vd Vd

Since softmax is applied row-wise and permutation matrices preserve row-wise operations, we can
factor P out
A(r(X)) = P Softmax (Q—g)PfPV — P Softmax (Q—g) V = PAX) = n(A(X)) (32)

Thus, attention is permutation-equivariant in the absence of positional embeddings. [
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C.2 SFCs IN DECAY MASK ARE A DISTANCE METRIC

Claim C.2. Let X, € RV >4 be the flattened image using a space-filling curve c¢;, with the sequence
indexed by 4, j, k € {0,..., N — 1}. Any permutation 7.,, corresponding to a new flattening order
defined by a different curve ca, when applied to X, , induces a new sequence order. In this new order,
the term |7 (i) — ()| satisfies the non-negativity, identity of indiscernibles, symmetry and triangle
inequality properties of a distance metric between tokens ¢ and j.

Proof. To show that |7 (i) — 7(7)] is a valid distance metric, we verify that it satisfies the standard
properties of a metric:

Non-negativity: For all 7, j, we have
m(@) = m(5)] =0 (33)
since absolute values are always non-negative.
Identity of indiscernibles:
(i) =7 =0 = 7(i) =7(j) <= i= 34)
because 7 is a permutation (i.e., a bijective function), so 7 (i) = 7(j) implies i = j.
Symmetry:
(i) = 7(5)] = [7(5) — 7 (@)] (35)
by the symmetry of absolute value.
Triangle inequality: For any i, 5,k € {0,..., N — 1},
m(@) = m(G)] < |7(@) = w(B)| + [w (k) — 7w (5)] (36)
holds due to the triangle inequality property of absolute values.

Therefore, |7(¢) — m(j)] satisfies all the conditions of a distance metric. This property is particularly
interesting because the term |7 (i) — 7(j)| appears as the exponent in the decay mask, leading to
M., [i, j] = 4" =70l As a result, taking the logarithm of the decay mask yields a distance matrix,
log(M,,[i, j]) = |7 (i) — 7(j)] - log(7) thus, log(M,, ) is a scaled distance matrix, encoding relative
positional distances under the permutation induced by curve cs. O

C.3 VIOLIN SFC FLATTENING ONLY REFLECTS IN DECAY MASK

Claim C.3. Let the input sequence flattened using a base space-filling curve (e.g., Z-curve) be
denoted by X € RV >4 and let the output of VIOLIN attention be Y € RV X4 computed as:

QK'
Nz

where M € RV*¥ is the base decay mask with entries M[i, j] = /"7l

Y = Softmax (a ® M> Vv 37

Now, let X = m.(X) be the input sequence reordered using a space-filling curve ¢, with permutation
.. Then, the output of the VIOLIN attention for the permuted input X, re-ordered back to the
original (basis) input order, is given by:

-
Y = Softmax <aQ\I/<g ® WC(M)> \% (38)

where 7.(M) = M][r.(i), 7.(j)] denotes the decay mask permuted along both rows and columns
according to the curve c.

Proof. It is easy to see that flattening the input Z into a sequence X, using any space-filling curve
c1 defines a one-to-one mapping from the 2D grid to a 1D sequence. Therefore, there exists a
permutation 7., ., and an associated permutation matrix P, _,., such that the sequence obtained
by flattening with another curve c; is given by:

XCQ = P01—>02 XC1 (39)
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Now, considering c; as the z-Curve (our basis flattening), and renaming c, simply as ¢, we simplify
the notation as follows:

Tey—cy — Tey Pcl—>cQ =P, X.= WC(X) =P.X (40)

From eq. (30) we know that permuting the input X will result in permutation of query, key and value
matrices so for the input X, the attention presented at eq. (37)) is re-written as:

-
Y. = Softmax aM OM | 7. (V)
Vd
T
= Softmax aw oM | PV
Vd
P.(QK")P. "
= Softmax aM oM | PV (41)
Vd
by multiplying PP to both sides of M we have:
P.(QK")P.
Y, = Softmax [ o LYK IPe o p pTap PT | Po(V) 42)
Vd
P.(QK")P,'
= Softmax <a°(Q\/g)° ® PC(PZMPC)PI> P.(V) (43)

Since the multiplication with the decay mask and the softmax operation are element-wise (i.e., applied
row-wise for each query), the permutation matrices P, and P, can be factored out of the attention
computation. This results in the following expression:

Y. = P_Softmax (aQ—fg ® PCTMPC) PPV = P.Softmax | a - 0 PTMP, | V (44)
1 S———
mo (M)

Since the order of Y corresponds to the permuted input X, we can recover the output in the original
(basis) order by applying the inverse permutation, i.e., multiplying by P . Therefore, the final output

Y. aligned with the original input X is:

QK'
Nz

This confirms that applying attention to a permuted input using the base decay mask is equivalent to
applying attention to the original input with a permuted (reordered) decay mask 7 (M) = P MP.,.

O

Y. =P Y. = Softmax (a ® PIMPC> \Ys (45)

This proof is also visualized in Figure[6] illustrating that applying attention using a permuted decay
mask based on curve c¢ (e.g., the snake curve in the figure) is equivalent to permuting the input
sequence according to ¢, computing attention with the original decay mask defined in the basis curve
(e.g., Z-curve in our study), and then reordering the output back to the original sequence order.

Disclaimer In practice, it is unnecessary to explicitly define a permutation function 7 or construct
a matrix P. The reordering can be efficiently achieved by simply storing the corresponding indices.
P and 7 are used for mathematical clarity and formalism only.
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Figure 6: Effect of SFCs on flattened Image: Visually showing the equivalence between a) Permuting
the input sequence according to ¢ (e.g., the snake curve) to get X g, multiplying the attention A g with
the original decay mask defined in the basis curve M (e.g., Z-curve in our study), and then reordering
the output back to the original and b) Calculating attention A , with basis curve ordered X ,, using a

permuted decay mask M.

D FUTHER DESIGN DETAILS
In this section, we outline key design choices made in the implementation of VIOLIN models.

D.1 INITIALIZATION

Since . = sigmoid(f..) is exponentiated over the sequence length in the VIOLIN decay mask, it is
important to initialize it close to 1, which is also highlighted in the Linear Transformer literature (Orvi;
eto et al., 2023} [Sun et al., [2023)). For pretraining VIOLIN models, we initialize 3. uniformly in the
range [5, 9], which corresponds to 7. € (0.9820,0.9998). This ensures that the initial mask values
M.[i, ] € (0.03,0.962) for N = 196, maintaining a stable and controlled decay. For numerical
results on the effect of initialization, see Appendix

During full fine-tuning, we initialize the model using the pretrained baseline. In this setting, since
the query/key/value weights Wq, Wk, Wy are already trained during pretraining and VIOLIN
attention is introduced and used only at fine-tuning, we initialize the scaling factor a using a Gaussian
distribution centered at 1 to allow for smooth adaptation. For /3., we use a uniform initialization
in the range [15, 20]. This setup avoids a steep drop in attention scores while allowing the model
to gradually adapt to the newly introduced decay mask My o,y . All other initialization settings in
VIOLIN exactly follow those of the original baselines without any modification.

All other configurations, such as data augmentation, optimizer, initialization, model parameters, and
training setups are kept exactly the same as in the original baselines, with no modifications.

D.2 ADAPTATION OF VIOLIN TO VARIOUS ARCHITECTURES

VIOLIN attention supports both the use of a classification token and Global Average Pooling
(GPA) (Lin et al., [2013; [Lu et al.l 2022)). For pretraining of DeiT models, we remove the clas-
sification token and instead apply Global Average Pooling (GAP). The attention module is replaced
with VIOLIN attention, while the rest of the model, including positional embeddings, layer normaliza-
tion, and other components, remains unchanged, see Appendix [E.3|for details. For fine-tuning the
classification token remains intact.

In the DINO setting, both teacher and student models are initialized with VIOLIN attention, with
all other weights handled as usual. Due to the multi-crop training, the attention module encounters
varying sequence lengths. However, since the construction of My oy naturally adapts to any
sequence length, this poses no issue.

To accommodate the classification token, we modify the corresponding rows and columns of My oy
by setting v.s = 1. We also experimented with a learnable .5 € [0, 1] but observed no significant
performance gains. The rest of the model structure follows the original DINO architecture.
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VIOLIN with hierarchical and convolutional architectures Hierarchical transformer architectures
such as Swin (Liu et al.}2021) and convolutional-transformer hybrids like PVT (Wang et al.l 2021)
differ fundamentally from vanilla ViTs in how attention is computed. Instead of applying full attention
across the entire sequence, they restrict the receptive field by using windowed or spatially localized
attention, often combined with hierarchical feature maps. This design introduces locality explicitly
into the architecture, reducing the need for additional spatial priors such as those provided by SFCs.

In such settings, applying SFC-guided decay masks becomes problematic for two main reasons.
First, SFCs are meaningful when attention spans the entire sequence of image patches, since the
curve defines a global traversal order. In hierarchical models, however, attention is restricted to local
windows or pyramid levels, where the notion of a global SFC ordering no longer applies. Second,
many of these architectures already incorporate inductive biases (through localized windows, shifting
strategies, or convolutional layers), so introducing additional SFC-based priors could interfere with
rather than complement their design.

Thus, VIOLIN is best suited for standard ViTs and related architectures where attention is fully global,
the sequence is flattened in a fixed order (commonly the Z-curve), and inductive biases are otherwise
minimal. In contrast, hierarchical or convolutional variants already bake spatial priors directly into
their architecture, making SFC-based masking redundant or ill defined.

Consistent with our analysis, when we integrated VIOLIN into Swin at tiny and small scales during
pretraining, we achieved minimal accuracy improvements of 0.2% and 0.1%, respectively, as shown
in Table[T0] The VIOLIN mask is applied at every stage and layer, with each mask being independently
learned and unique to its respective layer. The remaining architecture follows the original Swin model
structure.

Table 10: Pretraining of Swin models: The performance of baseline model is compared against
VIOLIN for ImageNet pretraining. Changes with respect to the baseline are shown inside (-) next to
the accuracies.

Top-1 Accuracy (%)
Model Baseline VIOLIN
Swin-T 81.3 81.5 (+0.2)
Swin-S  83.0  83.1(+0.1)

VIOLIN with video transformers Video transformers operate on spatiotemporal tokens, and
VIOLIN can be incorporated into these models in a straightforward way because it only rescales the
attention scores between tokens. This makes VIOLIN orthogonal to additional mechanisms used in
video models, such as the dual masking strategy in VideoMAE V2 (Wang et al., 2023)).

There are two natural ways to extend VIOLIN :

1. Spatial-only SFCs (2D per frame). The same 2D SFCs used for images can be applied
independently to the (H, H) grid of each frame, while keeping the temporal dimension
unchanged. This provides a per-frame spatial prior and mirrors the image setting.

2. Full spatiotemporal SFCs (3D). Following definition [2.1] SFCs naturally generalize to
arbitrary dimensions. Thus, we can define 3D SFCs over the full (7, H, W) grid (e.g.,
3D Hilbert or 3D Morton curves) and compute distances based on each token’s original
spatiotemporal position. The resulting decay masks encourage locality across both space
and time. Masks can be computed once over the full grid and then indexed to the visible
token subset, analogous to how positional embeddings are handled in VideoMAE.

Both approaches are fully compatible with video MAE-style training: they require no changes to
masking or reconstruction objectives, they can be applied to both encoder and decoder, and they
provide a meaningful structural prior, especially under high masking ratios where positional structure
becomes crucial.

Overall, extending VIOLIN to video models is a promising direction for future work, as spatiotemporal
SFCs may offer strong inductive bias with minimal additional cost.
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E ABLATION STUDIES

In this section, we provide comprehensive ablation studies on various elements of VIOLIN . For all
ablations, we utilize different scales of DeiT models and we keep the training recipe the same. We
use a patch size of 16 and a resolution 224 x 224 for each one of the models.

E.1 POSITIONAL EMBEDDINGS

To evaluate the impact of positional embeddings, we pretrain the VIOLIN DeiT-B model both with and
without them, see Table[I1] The results indicate that positional embeddings provide a performance
boost, leading us to retain the original positional embedding configurations of the base models.

Table 11: Ablation on positional embeddings (PE): The performance of the baseline model with PE
is compared against VIOLIN with (w) and without (wo) PE. Changes with respect to the baseline are
shown inside (-) next to the accuracies.

Top-1 Accuracy (%)
Model Baseline VIOLIN w PE  VIOLIN wo PE
DeiT-B 81.8 81.9 (+0.1) 81.5 (-0.3)

E.2 ALTERNATIVE CURVE CONFIGURATIONS

We examine the individual contribution of each curve to the overall performance. To do so, we
pretrain DeiT-S using all possible combinations of the four curves, resulting in 2* = 16 variations.
The accuracies of each configuration are presented in Table [[2] Note that whenever a curve has
is used, the transposed version is also included. In other words, if the snake curve is included, its
transposed variant Snake " is also utilized.

The results reveal that while certain curve combinations yield more substantial improvements than
others, each curve contributes meaningfully to the overall performance. Thus, we retain all four
curves in the VIOLIN configuration, leveraging their complementary spatial information.

We further analyze the learned decay parameters 7. for DeiT-B in Figure|/] observing that most
remain close to one, indicating active use of long-range spatial information. Smaller values act as
implicit curve selection, as these decay masks would contribute to the average minimally, with certain
layers and heads emphasizing particular curves.
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Figure 7: 7y, values: ~y. values of VIOLIN DeiT-B model are presented across layers, heads and curves.
Most remain close to one, indicating active use of long-range spatial information.

Additionally, we explore several alternative configurations, as detailed in Table For instance,
we evaluate the use of only the four original curves referred as Chormal (Snake, zig-zag, Hilbert, and
Peano) and only their rotated counterparts Ciansposed (snake ', zig-zag ", Hilbert ", and Peano " ). We
also test using only the default Z-curve ordering, which results in a 0.7% accuracy gain.

Moreover, we define relative distances using a Manhattan mask, inspired by RMT (Fan et al.| 2024).
Lastly, we experiment with a set of randomized SFCs, where the flattened image is shuffled with a
random fixed order across all layers and heads. This model fails to converge to a meaningful accuracy.
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Table 12: Ablation on the effect of each curve: The performance of the baseline model is compared
against VIOLIN with different curve combinations. ¢ indicates the curse is in the set, whereas
X means it is not. Changes with respect to the baseline are shown inside (-) next to the accuracies.

Model Snake Curve Zig-Zag Curve Hilbert Curve Peano Curve Top-1 Acc (%)

DeiT-S (Baseline) 79.9

80.0 (+0.1)
80.2 (+0.3)
79.9 —
80.4 (+0.5)
80.3 (+0.4)
80.4 (+0.5)
80.3 (+0.4)
80.3 (+0.4)
80.5 (+0.6)
80.2 (+0.3)
80.4 (+0.5)
80.4 (+0.5)
80.5 (+0.6)
80.5 (+0.6)
80.7 (+0.8)

UX N UX XX AR XXX X%
RUXCUXURNUX XXX %X
RV UXCUX XXX XXX
SUR U U RUx Ux X QXXX X

VIOLIN DeiT-S (Ours)

This further emphasizes the importance of a structured SFC as the unstructured curves do not allow
model to capture meaningful information from the data.

E.3 ALTERNATIVE MASKING STRATEGIES

Another critical design choice is the masking strategy. We compare VIOLIN , which follows the

!
structure S(A’ ® M), where S denotes the row-wise softmax operation, A’ = a%, and M =

My ouiv for a cleaner notation. Our findings indicate that the S(A’ ® M) configuration outperforms
all other masking alternatives.

E.4 OTHER DESIGN ELEMENTS

Furthermore, in Table [I5] we illustrate the impact of additional design choices described in Ap-
pendix [D} such as initialization and the scaling parameter «. Additionally, we assess the effect
of fixing 7. at a constant value of 0.9996 instead of learning it. The results indicate that proper
initialization and a learnable ~, are essential for achieving accuracy gains, while the scaling parameter
« primarily contributes to training stability, particularly in larger models.

E.5 GLOBAL AVERAGE POOLING (GAP)

Considering the output of the attention mechanism for each token in the last layer, we can write

N T
exp(qi kj)
yi=3Y v;. (46)
j=1 Z;‘\le exp(qiTkj/) ’

When the classification (CLS) token is used, the sequrnce length becomes /N 4 1 where the first token
is the CLS. When comparing the use of a global average pooling (GAP) (Lin et al.,|2013}|Lu et al.|

Table 13: Ablation on different curve configurations: The performance of the baseline model is
compared against VIOLIN with different curve configurations: only original curves (Cpormar), only
transposed curves (Ciansposed)s only Z-curve, Manhattan distance-based mask and random curves.
Changes with respect to the baseline are shown inside (-) next to the accuracies.

Model Top-1 Accuracy (%)
Baseline VIOLIN Crormal Ciransposed Z-curve Manhattan Random
DeiT-S 79.8 80.7 (+0.9) 80.3 (+0.5) 80.4(+0.6) 80.5(+0.7) 80.4 (+0.6) X
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Table 14: Ablation on masking strategies: The performance of the baseline model is compared against
VIOLIN with different masking methods: S(M+A’), S(A’)+M, S(A")©M, and S(A'©(I+M)).
Changes with respect to the baseline are shown inside (-) next to the accuracies.

Model Top-1 Accuracy (%)
Baseline  VIOLIN SM+A’) SAN+M SAHYoM SA' 6 (I+M))
DeiT-S 79.8 80.7 (+0.9) 80.1 (+0.3)  80.5(+0.7)  80.5 (+0.7) 79.1 (-0.7)

Table 15: Ablation on other elements of VIOLIN : The performance of the baseline model is compared
against VIOLIN with and without certain design elements: initialization, scaling factor o and learned
~.. ¢ indicates it is included in the model, whereas X means it is not. Changes with respect to the
baseline are shown inside (-) next to the accuracies.

Model Initialization ~ Scaling Learned 7. Top-1 Acc (%)
DeiT-S (Baseline) X X X 79.9

X 4 v 80.0 (+0.1)

v X v 80.7 (+0.8)

v 4 X 80.3 (+0.4)
VIOLIN DeiT-S (Ours) v v v 80.7 (+0.8)

2022) head versus a CLS head with a decay mask, the attention outputs are extracted as follows

v L.k M[CLS, j
Yois = Z eXP((QCLs J) [ J])

j=1 Z]\f“rll exp((quSkj/)M[CLS,j’])

) exp((a] k;)Mli, j))
yeap = N;;Z/ 1eXp(( Tk )M, j'])

vj, @7)

V. (48)

As shown, in the case of the CLS token, the model only requires the attention distribution and relative
distances with respect to the CLS token. In our setup, this reduces to M[C'LS, j] = 1, (or a a learned
parameter Scrs. By contrast, the GAP formulation is more expressive, as it aggregates attention
information across all tokens. Importantly, the inclusion of the relative distance decay mask M|, j]
for all tokens makes GAP more effective in constructing the final representation. Therefore, similar to
Vision SSMs such as Vision LSTM and Hydra (Alkin et al.,2024; |Hwang et al.| [2024), pooling-based
outputs align naturally with spatially informed attention. Note that this calculations holds for last
layer only, the remaining layers utilizes the mask fully.

VIOLIN attention supports both the use of a classification token and GPA. To assess the role of the
classification token versus GAP with the VIOLIN mask, we pretrain all three scales of DeiT and
report results in Table[I6] While GAP often yields slightly better compatibility with VIOLIN , the
improvements cannot be attributed to pooling alone, the gains are additive.

Most importantly, VIOLIN is not dependent on GAP. In DINO pretraining and VTAB-1K fine-tuning,
where the cls_token is retained, VIOLIN still improves performance. This confirms that the benefits
arise from the spatial priors introduced by VIOLIN , not from the choice of pooling strategy.

Table 16: Ablation on GAP: The performance of baseline model and VIOLIN is compared when they
both have CLS or uses GAP. Baseline! indicates results taken from |Chu et al.| (2023). Changes with
respect to the baseline, original model with CLS, are shown inside (-) next to the accuracies.

Top-1 Accuracy (%)
Model CLS GAP
Baseline ~ VIOLIN  Baselinef VIOLIN
DalT 722  723(+02) 726  73.0 (+0.8)
DeiT-S 79.8 80.1 (+0.3) 80.2 80.7 (+0.9)
Dei-B 818  79.0 (-1.8) ; 81.9 (+0.1)
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F ADDITIONAL RESULTS

F.1 PRETRAINING OF LARGER MODELS

As discussed in Appendix [B.I] when both model capacity and training data are sufficiently large, ViTs
can implicitly learn spatial biases directly from data. In such scenarios, the relative contribution of
VIOLIN is naturally smaller, as seen in the DeiT and DINO base scale pretraining results in Table[I7]
which show only marginal gains. This is expected and lies beyond the primary scope of our work,
which focuses on small models and data-scarce settings where inductive biases are most impactful.

It is important to note that smaller gains at scale do not diminish the relevance of VIOLIN for larger
models. In fact, our fine-tuning experiments (Section[4.1] Table[I8)) demonstrate that when data is
limited, spatial priors provided by VIOLIN substantially improve performance, even for models with
hundreds of millions of parameters. This highlights that VIOLIN remains valuable in practice, not by
competing with scale, but by enhancing efficiency and adaptability in data-constrained regimes.

Table 17: Pretraining results of larger models on ImageNet-1K: Comparison of the top-1 accuracies
of baseline models with their VIOLIN counterparts. The values in parentheses (-) indicate the
accuracy difference compared to the baseline. The best performance between each pair of models
is highlighted in bold. For DINO models, both KNN and linear probe evaluations are reported and
(300) indicate the number of training epochs. (Left) Supervised, (Right) Self-supervised training.

Top-1 Accuracy (%)

_ [%
Model  # Param. Top'l Accuracy (%) Model # Param. Baseline ~ VIOLIN
Baseline VIOLIN KNN 761 76.0 (—)
DeiT-B 86M 81.8 81.9 (+0.1) DINO-B (300) Linear 86M 782 78.4 (+0.2)

F.2 FINE-TUNING OF VIOLIN PRETRAINED MODELS

We fine-tune the VIOLIN DeiT, and DINO pretrained models from Section{.2]and Appendix [F.1]on
the VTAB-1K dataset. The accuracies for each category and the overall average are presented in
Table[I8] alongside the baseline accuracies of the baseline fine-tuned models. We observe that VIOLIN
increases the performance across all models and scales compared to original baselines. DeiT,and
DINO models achieve impressive improvements of up to 1.92% with up to 2.87% improvement in
individual categories. We note that similar to Table [3|in this setting, Structured group shows the
highest accuracy gain. This further shows the broad applicability of VIOLIN , enhancing diverse
architectures with close to zero computational overhead.

Notably, we compare Table [3]and Table [I8] fine-tuning with an mask learned only during fine-tuning
for all models yields better performance in different tasks compared to pretraining with it. We
hypothesize that this is because the model starts with generic pretrained representations and gains
additional flexibility by learning spatial structure tailored specifically to the downstream task. This is
particularly advantageous when the target task differs substantially from the pretraining domain.

Table 18: Fine-tuning results on VIAB-1K (Setting 2): Comparison of the top-1 accuracies of
baseline models and their pretrained VIOLIN counterparts across the VTAB-1K benchmark. The
three task groups are abreviated as NAT. = Natural, SPE. = Specialized, and STR. = Structured.
The values in parentheses (-) indicate the accuracy difference compared to the baseline. The best
performance within each model pair is highlighted in bold.

Top-1 Accuracy (%)
Model Param. Baseline VIOLIN
NAT. SPE. STR. Avg. NAT. SPE. STR. Avg.

DeiT-T M 69.56 8234 5357 65.52 70.71 (+1.15) 82.64 (+0.30) 54.52 (+0.95) 66.41 (+0.89)
DeiT-S 22M  73.64 8430 5344 6738 75.24 (+1.60) 84.87 (+0.57) 56.31 (+2.87) 69.30 (+1.92)
DeiT-B 86M 7693 85.52 57.00 70.35 76.54(-0.39) 85.44(-0.08) 58.90 (+1.90) 70.99 (+0.64)
DINO-S 22M 7535 85.09 60.65 7121 76.29 (+0.94) 85.75 (+0.66) 60.61 (-0.04) 71.68 (+0.47)
DINO-B 86M  77.50 85.77 5847 7123 77.82(+0.32) 85.83 (+0.06) 58.77 (+0.30) 71.49 (+0.26)
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F.3 MULTI-RESOLUTION CLASSIFICATION

Following (2024), we test the resolution scalability of VIOLIN models. We present the
top-1 accuracies for DeiT-S, and DeiT-B models across input resolutions ranging from 144 to 512 in
Figure[8] We use bicubic interpolation for all positional embeddings 2024). In the top
plot, we observe that although VIOLIN without positional embeddings performs slightly worse than
the baseline at the training resolution (224), it begins to outperform the baseline at higher resolutions.
In the second and third plots, where VIOLIN is combined with positional embeddings, for most
resolutions, VIOLIN preserves or expands the performance gap compared to baselines. These results
suggest that the decay mask used in VIOLIN generalizes effectively to higher resolutions, making it a
resolution-robust enhancement for ViTs.

Another interesting application of context extrapolation is video understanding. Following
let al.| (2021), we generate a segmentation video using VIOLIN DINO-B model. While the training
resolution is 224, for video, VIOLIN extends to 768 x 432 resolution. Some frames are provided in
Figure[9)and the full video can be found in our GitHub repository.
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Figure 8: Resolution expansion: Top-1 accuracies of DeiT-B (top), DeiT-S (middle) and DeiT-1II-S
(bottom) models and their VIOLIN counterparts at different resolutions on ImageNet. Training
resolution of 224 is highlighted in red.
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Figure 9: Video undertanding: Frame by frame video understanding of VIOLIN -DINO in base scale.
The full video and generation codes are also included in the github repository of VIOLIN .
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F.4 ADDITIONAL VISUALIZATIONS

In Figure we present the 1D flattened sequences of the patched image (a), corresponding to
the curves illustrated in Figure [T} Figure [I2] compares attention heatmaps of DeiT and VIOLIN
models, fine-tuned on Structured group datasets. Figure T3] visualizes the attention heatmaps of the
VIOLIN DeiT-B model using various images. We adopt the average diagonal visualization strategy as
proposed in [2024b). Additionally, in Figure [TT| we visualize the mask pattern for a middle
pixel under the snake curve for different values of . As expected, when « ~ 1, the head attends
broadly across the entire image, whereas smaller ~y values produce a much more localized receptive
field, emphasizing spatial neighbors.
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Figure 10: Flattened Space Filling Curve paths: Examples of flattened images with different traversal
paths followed in VIOLIN . (al) Original patchedimage. (a2) Z-curve (b1) Snake curve, (b2)
Transposed Snake curve, (¢1) Zig-zag curve, (¢2) Transposed Zig-zag curve, (d1) Hilbert curve, (d2)
Transposed Hilbert curve, (el) Peano curve, (e2) Transposed Peano curve.
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Figure 11: Effect of v on the decay mask: Visualization of the decay mask for a central pixel under
the Snake curve for different values of . Larger « values yield more global attention, while smaller
~ restrict the effective receptive field to local regions.
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Figure 12: Attention heatmaps on Structured tasks: Examples are taken from three datasets in
the Structured group: CLEVR-Count, dSprites-Location, and SmalINORB-Azimuth. We compare

attention scores of DeiT-B (left) and VIOLIN (right), fine-tuned on the corresponding dataset.
Visualizations are from layer 12, with rows showing heads 112. Since both models share the same
pretrained initialization, attention heads are initially identical before fine-tuning. After fine-tuning,
VIOLIN produces more accurate and focused heads, with better object coverage and more uniform

color outside the objects, indicating reduced attention to irrelevant regions.
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Figure 13: Attention heatmap visualization of VIOLIN DeiT-B:

attention is visualized followed by (Liu et al.} 2024b).
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F.5 DETAILS AND INDIVIDUAL RESULTS ON VTAB-1K DATASET

VTAB (Zhai et al.,|2019) contains 19 tasks which cover a broad spectrum of domains and semantics
that are grouped into three sets: NATURAL, SPECIALIZED, and STRUCTURED.

The NATURAL group represents natural images and classical vision problems. The group includes
Caltech101, CIFAR-100, DTD, Flowers102, Pets, Sun397, and SVHN datasets.

The SPECIALIZED group also contains images of the world, but they are captured through specialist
equipment. These images have different invariances to those in the NATURAL tasks. It includes
Resisc45 and EuroSAT, Patch Camelyon, and Diabetic Retinopathy datasets.

The STRUCTURED group assesses comprehension of the structure of a scene, for example, object
counting, or 3D depth prediction. Most of the tasks are generated from simulated environments,
whose structure is easy for a human, but their domain differs greatly to datasets like ImageNet. It
includes Clevr count and distance, dSprites location and orientation, SmallINORB, DMLab, and
KITTI. In Tables|19|to[21] we present the accuracy scores of each model on all VTAB-1K datasets.

Table 19: VTAB Results-Natural Subset: Individual scores for each dataset.

Model CIFAR Caltechl01 DTD Flowersl02 Pets SVHN Sun397
DeiT-T 48.36 86.9 63.97 86.43 87.14  78.28 35.87
VIOLIN DeiT-T 51.21 86.48 64.75 87.24 86.77 83.16 35.38
DeiT-T ©Myouin 51.17 87.8 65.43 89.17 86.75 85.78 37.17
DeiT-S 57.38 89.06 68.83 91.09 91.13 75.82 42.19
VIOLIN DeiT-S 60.71 88.06 68.33 91.12 91.19 85.38 41.93
DeiT-S ©MyoLin 59.6 89.78 69.08 92.5 91.89 86.15 4345
DeiT-B 61.38 90.33 69.06 93.73 92.43  85.95 45.59
VIOLIN DeiT-B 63.32 89.55 68.37 92.1 92.04 86.22 44.15
DeiT-B @My oLin 61.99 91.07 70.14 93.97 92.75 90.22 45.56
7‘3 DeiT-B LoRA 62.37 90.07 69.27 93.26 92.3 90.58 44.35
2 DeiT-B ©Myo.iy LORA  65.36 90.92 70.62 93.57 92.37 91.86 45.19
:2 DeiT-B DoRA 63.81 90.78 69.29 91.79 89.95 88.75 44.12
DeiT-B ®©Myouiv DORA  66.38 90.97 69.82 92.77 91.71 90.26 44.64
DeiT-III-S 59.08 88.53 67.09 91.13 91.85 84.65 43.57
DeiT-1II-S @My o1in 62.18 88.78 69.4 93.92 91.35 89.98 43.6
DeiT-1II-B 64.39 89.56 70.8 94.63 93.38 87.28 47.28
DeiT-1II-B ®MyoLix 66.77 89.97 71.38 95.53 93.61 91.24 46.19
DeiT-1II-L 65.16 87.89 71.58 94.39 93.23  T71.17 48.65
DeiT-1II-L ©MyoLin 66.74 87.67 72.34 95.01 93.28 78.7 48.58
DeiT-1II-H 64.34 88.2 71.22 94.95 92.96 68.76 48.46
DeiT-1II-H ©®My;o11x 65.16 88.18 71.35 95.18 93.33 7272 48.7
DINO-S 54.32 93.95 68.12 91.28 88.62 90.24 40.93
VIOLIN DINO-S 56.05 91.95 69.33 95.26 89.62 91.65 40.2
DINO-S ®MyioLin 57.38 90.92 68.88 95.18 89.44  90.61 41.45
DINO-B 58.57 93.7 70.64 95.84 90.21 89.69 43.86
VIOLIN DINO-B 59.96 92.13 71.84 95.69 90.49  90.78 43.83
DINO-B ®©Myo1in 62.21 93.32 71.58 96.1 90.74 91.74 44.87
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Table 20: VTAB Results-Structured Subset: Individual scores for each dataset. SN refers to Small-
Norm, and dS represents dSprites.

Model CLEVR Count CLEVR Dist DMLab KITTI dSLoc dSOn SN Azi SN Ere
DeiT-T 71.37 60.37 4426 7881 69.04 4186 3028  32.57
VIOLIN DeiT-T 72.73 61.7 4798 797 687 4611 2531 3396
DeiT-T ©My o 74.41 59.84 4637 80.78 7832 5091 3133  38.05
DeiT-S 75.08 58.15 4574 7843 633  48.13 2624 3248
VIOLIN DeiT-S 78.26 59.25 4991 8129 6463 53.16 2737  36.59
DeiT-S ®Myioun 78.87 59.2 5059 804 7352 5344 3248  37.62
DeilB 79.01 60.1 4703 8261 667 5338 3087 3632
VIOLIN DeiT-B 82.6 61.72 52.84 8097 6844 5547 3172 3745

= DeiT-B OMyoux 81.33 61.31 53.93 8322 81.72 5728 3537 4098

£ Deil-B LoRA 79.1 60.15 51.93 8125 7853 5371 2828  32.12

£ DeiT-B ®Myioun LoRA 82.36 63.46 5286 82.18 7852 5525 3221  39.79
£  DeiT-B DoRA 76.97 60.62 5037 8134 7334 5411 2869  39.43

% DeiT-B ®Myiouy DoRA 81.64 63.29 51.06 8242 7865 5614 27.62  38.89
DefT-III-S 76.53 57.29 4623 8181 58.12 5048 2633 2657
DeiT-IT-S ® My oun 77.78 61.9 5484 8317 8591 5978 3345  36.07
DeiT-11I-B 30.54 61.82 5095 827 60.75 5535 3036 3L.I8
DeiT-III-B @My io11n 84.51 61.92 55.64 8279 8406 6034 3659 384
DeiT-III-L 72.99 5323 4759 8078 50.19 50.72 2521  30.51
DeiT-III-L OMyiouin 76.66 55.64 50.03 81.86 5542 5735 28.69  33.91
DeiToII-H 75.17 3504 4866 SIII 4157 4699 25.15 3174
Dei T-I-H ©My o 77.89 55.96 5096 819 4785 5507  26.57 33
DINO-S 33.29 65.03 5344 8003 78.72 4861 3423 4187
VIOLIN DINO-S 84.19 63.35 55.72 8143 7582 4937 3292  42.06
DINO-S ®Myioun 83.69 64.23 5535  79.98 7942  49.18 3643 4161
DINO-B 30.93 62.76 5217 7923 6922 4839 3373 4134
VIOLIN DINO-B 81.96 63.04 53.45 79 7212 4959 3029  40.76
DINO-B ©My o 83.87 63.65 55.66 812 74.14 5418 3479 3927

Table 21: VTAB Results-Specialized Subset: Individual scores for each dataset. SN refers to Small-
Norm, and dS represents dSprites.

Model Patch Camelyon EuroSAT Resisc45 Diabetic Retinopathy
DeiT-T 82.79 93.53 80.98 72.05
VIOLIN DeiT-T 82.47 93.35 81.3 73.43
DeiT-T ©Myonx 84.04 93.88 83.23 73.87
DeiT-S 84.08 94.4 84.01 74.72
VIOLIN DeiT-S 85.36 95.41 83.86 74.85
DeiT-S ©@MyoLin 85.19 95.02 85.68 74.32
DeiT-B 85.74 95.38 86.37 74.6
VIOLIN DeiT-B 85.62 95.44 85.68 75.02
= DeiT-B ©OMyoLin 86.74 95.91 87.31 75.2
E DeiT-B LoRA 86.2 95.46 85.72 75.09
®  DeiT-B ©My,on LORA 85.9 95.66 86.71 73.73
E DeiT-B DoRA 85.53 95.39 85.21 74.8
v DeiT-B ®©My oy DORA 85.92 95.56 84.98 73.35
DeiT-III-S 84.57 93.33 82.68 73.94
DeiT-1II-S ©®Myoin 85.76 94.98 86.43 74.67
DeiT-111-B 86.4 94.47 85.83 74.33
DeiT-1II-B ©Myo11n 87.77 95.8 87.57 74.73
DeiT-III-L 84.5 93.28 84.47 75.28
DeiT-III-L ©Myomin 84.54 94.11 85.24 74.83
DeiT-1II-H 84.64 92.64 84.99 74.46
DeiT-III-H ©@MyoLin 84.81 93.3 84.66 74.93
DINO-S 86.82 94.29 86.13 73.14
VIOLIN DINO-S 87.7 94.76 86.59 73.96
DINO-S ©®Myo1in 85.94 94.9 86.17 74.26
DINO-B 87.02 94.45 87.05 74.55
VIOLIN DINO-B 87.57 94.46 87.25 74.03
DINO-B ©®Myo11n 87.81 95.44 87.96 74.54
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F.6 COMPARISON AGAINST OTHER LOCALITY METHODS.

There are many methods for enhancing locality in plain ViTs. To compare these approaches with
VIOLIN , we start from the same pretrained DeiT-B model, add each locality mechanism on top of it,
and fine-tune all models under the exact same protocol. This ensures that every method begins from
an identical initialization. The results show that while all methods offer some improvement, VIOLIN
achieves the strongest gains. Below, we detail how each method is incorporated and initialized to
preserve the pretrained model at the start of fine-tuning, and we report results in Tables 22]to[24]

Swin RPB  Swin transformers introduces locality two ways, by partitioning the
feature map into shifted windows, and with relative position biases (RPB) that encode spatial offsets
inside each window. These biases give the attention mechanism information about relative spatial
relationships within a window, improving performance on vision tasks where nearby pixels are
correlated. To incorporate RPB into a pretrained global-attention ViT, we add a learnable bias term
B € RV*N asin eq. (49) where BJ[i, j] depends on the relative position of the tokens i and j.

KT

Y — Softmax [ ¥+ B V. (49)
Vd

By initializing B with zeros, the modified attention reduces exactly to the original attention. This

guarantees that adding the Swin-RPB does not alter the models capabilities and new positional biases

can be learned during fine-tuning.

2D Relative Position Encoding iRPE) iRPE add locality into attention, by
adding learnable bias terms based on the 2-D relative position of tokens. For any pair of tokens
(2,7), the offset Ap,; is mapped through a bucketing function to an index b, ;, which selects a bias
embedding from a table R € R®*# Depending on the chosen attachment mode, this embedding
is added to queries, keys or values (e.g., l%j = k; + Ry ;) and the attention scores are calculated
using this new parameters. To integrate iRPE into a pretrained ViT without disturbing its learned
representations, we initialize all bucket embeddings to zero,

Ry=0 V0

so that the queries/keys/values are not changed at the start of finetuning. This ensures that the model
initially behaves exactly like the pretrained backbone, while the RPE parameters gradually learn
non-zero spatial biases during training.

LocalVit LocalVit enhances locality inside the feed-forward network (FFN) rather
than attention. It replaces the MLP with a depthwise-convolutional residual branch. This allows
each token to mix information with its spatial neighbors, giving the transformer an inductive bias
similar to CNNs while preserving the global interactions of self-attention. For Local ViT, we gate the
convolutional branch with a learnable scalar initialized to zero, and initialize the depthwise conv as
an identity kernel (center=1, others=0). This allows the modified architecture to behave exactly the
same as the pretrained model at the first step, enabling smooth fine-tuning and gradual learning of
locality information.

VIOLIN variations Additionally, we evaluate several ablations discussed in previous sections,
including an additive version of MVIOLIN , Manhattan-distance masking, a single-curve variant
(MPeano), and random-curve masking (MRgandom), Under the same finetuning protocol for complete-
ness. These results further highlight the contributions of using multiple SFCs rather than relying on
any single locality pattern.
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Table 22: VTAB Results-Natural Subset: Individual scores for each dataset for different locality-
enforcing methods.

Model CIFAR Caltech101 DTD Flowers102 Pets SVHN Sun397
Additive My o11n 63.64 91.11 69.27 93.6 92.6 90.46 44.28
Swin RPB 63.72 90.75 70.16 94.15 92.66 90.21 45.82
i-RPE-QKV 65.03 90.94 70.12 93.97 92.63 90.32 45.66
LocalVit 65.17 91.13 69.57 93.85 92.56 90.26 45.63
Manhattan 59.62 90.78 68.03 92.07 91.47 89.81 42.13
Mpeano 65.04 90.78 69.18 94.11 92.61 90.14 45.89
MRandom 65.02 90.78 69.02 94.09 92.6 89.74 4591

Table 23: VTAB Results-Structured Subset: Individual scores for each dataset for different locality-
enforcing methods. SN refers to SmallNorm, and dS represents dSprites.

Model CLEVR Count CLEVR Dist DMLab KITTI dSLoc dSOri SN Azi SN Ere
Additive My op1x 81.08 62.12 51.95 83.26  80.95 57.25 34.76 39.38
Swin RPB 81.42 61.67 53.83 83.17 81.39  56.81 35.42 38.9

i-RPE-QKV 81.25 61.58 53.42 83.12 8149 57.28 35.13 38.34
LocalVit 81.28 61.53 53.43 82.56  81.38 57.6 35.5 38.71

Manhattan 76.74 60.73 50.16 82.51 74.69  55.03 32.49 34.57
Mbpeano 81.45 61.4 53.59 83.17 81.09  56.98 34.53 40.84
M-Random 81.45 61.33 53.36 82.84  80.21 56.98 34.5 40.76

Table 24: VTAB Results-Specialized Subset: Individual scores for each dataset for different locality-
enforcing methods.

Model Patch Camelyon EuroSAT Resisc45 Diabetic Retinopathy
Additive My opix 86.84 96.07 87.62 74.93
Swin RPB 86.17 95.66 87.47 75.37
i-RPE-QKV 86.76 95.72 87.51 7491
Local Vit 86.55 95.85 87.58 75.4
Manhattan 86.44 94.93 86.29 74.21
Mpeano 87.13 95.93 87.71 75.56
M-Random 86.8 95.57 87.63 75.26

F.7 LEARNED CURVE ORDER

Motivated by recent work on learned patch orderings (Kutscher et al.l [2025)), we implemented a
learned ordering variant within our framework and trained a DeiT-Tiny model using this learned
sequence. The results are shown in Table Table 23] Although the learned variant underperforms the
original VIOLIN mask in this initial experiment, it highlights several promising research directions,
such as jointly learning multiple traversal curves, exploring task-adaptive orderings, and studying how
different datasets induce specialized spatial structuresall of which may further improve performance
and interpretability.

Table 25: Comparison of DeiT-Tiny, VIOLIN, and a learned patch-ordering variant: learned patch
orderings (Kutscher et al.,[2025) is adapted to VIOLIN framework.

Model Accuracy (%)
DeiT-Tiny 72.2
VIOLIN 73.0
VIOLIN w learned order 70.1
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F.8 COMPARISON WITH RELATIVE POSITIONAL ENCODINGS

VIOLIN and relative positional encodings (RPEs) introduce spatial inductive bias through different
mechanisms. As described in Appendix[B.4} VIOLIN applies a lightweight multiplicative decay mask,
whereas modern RPEs add learned pairwise positional terms to the attention logits and often require
additional parameters or architecture-specific modifications. To assess their relationship, in addition
to the fine-tuning experiments in Appendix [F.6] we include comparisons with several RPE-based
locality baselines in both the pretraining settings.

On ImageNet-1K supervised pretraining, VIOLIN achieves competitive performance to several
RPE variants while adding significantly fewer FLOPs. For example, on DeiT-S, VIOLIN introduces
5x fewer FLOPs than Transformer-XL and 1.3x fewer FLOPs than iRPE-QK, while obtaining
comparable accuracy.

Table 26: Comparison of VIOLIN and RPE variants: on DeiT-S pretraining in ImageNet-1K. Results

are taken from respective papers of i-RPE 202Ta) and Transformer-XL Dai et al| (2019).

Model Additional FLOPs (%) Top-1 Acc. (%)
Baseline - 79.9
VIOLIN 0.7 80.7
Transformer-XL 4.3 80.8
iRPE-K 0.9 80.9
iRPE-QK 22 81.1
iRPE-QKV 5.9 81.4

VIOLIN can also be combined with RPEs. On DeiT-T, adding VIOLIN to iRPE-K yields an additional
accuracy gain, indicating that the methods introduce complementary inductive information.

Table 27: Combination of VIOLIN with RPEs: pretraining results on DeiT-T model as baseline, with
PRE and with RPE+VIOLIN .

Model Additional FLOPs (%) Top-1 Acc. (%)
Baseline - 72.2
iRPE-K 1.7 73.7
iRPE-K + VIOLIN 2.3 73.9
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G CODES AND IMPLEMENTATION DETAILS

G.1 COMPUTE RESOURCES

Table 28: Compute resources for pertaining: The number of GPUS and approximate training time
for each model and scale are provided.

Model # GPUs  Training time

DeiT-T 4 ~ 17 Hour
DeiT-S 4 =~ 23 Hour
DeiT-B 16 ~ 1.7 Day
DINO-S 16 ~ 3.2 Days
DINO-B 16 ~ 7 Days

In Table 28] we report the compute resources required for each of the evaluated models. These
numbers also apply to the models used for ablation experiments.

For fine-tuning, we performed 30 runs per dataset for each model (25 for validation and 5 for final
evaluation). Each run took between 2 to 10 minutes, and the complete fine-tuning evaluation was
completed in approximately 10 days.

All experiments were conducted using a mix of NVIDIA A100 SXM4 80GB, NVIDIA GH200 96GB,
and NVIDIA H100 SXMS5 80GB GPUs, used interchangeably depending on availability.

G.2 VTAB-1K HYPERPARAMETERS

To determine optimal learning rates, we use the VTAB-1K-pytorch repository (Alkin, [2022) and
conduct a grid search. Following the original implementation, we run 5 seeds for learning rate
selection on validation set and another 5 seeds for standard training. For each model, we average the
top 3 runs to report the final accuracy. The complete list of hyperparameters is provided in Table 29
For parameter-efficient fine-tuning, we again use the same set of hyperparameters and grid search
over ranks [2,4,8,16].

Table 29: Hyperparameters for fine-tuning on VTAB-1K: The same hyperparameters are used for all
models, following (Alkin, 2022).

Parameter Value
Epochs 50
Batch size 64
Seeds 5
Optimizer AdamW
Learning rate [1e-3, 7.5e-4, 5.0e-4, 2.5e-4, 1.0e-4]
Layer-wise Ir deca 0.65*
Weight decay 0.05
Momentum B1=0.9, 82 = 0.999
Learning rate schedule linear warmup — cosine decay
Warmup epochs 5
Precision mixed bfloatl6
Backend torch.autocast
Data Augmentation
Resize
interpolation bicubic
size 224x224
Normalize ImageNet-1K statistics
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G.3 CODES FOR CURVES

In this section, we provide the codes used to create the permutation orders of each SFC in basis of
Z-curve. In other words, we define efficiency the indexing needed for the permutation 7.(.) for each
curve c used in our study.

Snake curve

def snake_curve (grid) :
"""Returns the elements of the grid in snake order."""

1
3 n_rows, n_cols = grid.shape

4 order = []

5 for y in range (n_rows) :

6 if y $ 2 == 0:

7 # Left-to-right for even rows

8 order.extend((x, y) for x in range(n_cols))
9 else:

10 # Right-to-left for odd rows
11 order.extend((x, y) for x in reversed(range (n_cols)))

12 return order

Zig-zag curve

def zigzag_curve (grid) :
"""Returns the elements of the grid in diagonal zig-zag order."""

W =

n_rows, n_cols = grid.shape
order = []
5 for d in range(n_rows + n_cols - 1):
6 if d % 2 == 0:
7 r = min(d, n_rows - 1)
8 c=d-r

9 while r >= 0 and ¢ < n_cols:
10 order.append((r, c))

11 r =1

12 c += 1

13 else:

14 c = min(d, n_cols - 1)

15 r =d - c

16 while ¢ >= 0 and r < n_rows:
17 order.append((r, c))

18 c =1

19 r += 1

20 return order
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Hilbert curve Adapted from 2025).

I def hilbert_curve (grid) :

def

def

rows = len(grid)
cols = len(grid[0]) if rows > 0 else 0
return [(x, y) for x,y in gilbert2d(rows, cols)]

gilbert2d(width, height):
mrman
Generalized Hilbert (’gilbert’) space-filling curve for arbitrary
-sized
2D rectangular grids. Generates discrete 2D coordinates to fill a
rectangle
of size (width x height).
mman
if width >= height:
yield from generate2d (0, 0, width, 0, 0, height)
else:
yield from generate2d (0, 0, 0, height, width, O0)

sgn (x) :
return -1 if x < 0 else (1 if x > 0 else 0)

generate2d(x, y, ax, ay, bx, by):
w = abs(ax + ay)
h = abs(bx + by)

(dax, day) = (sgn(ax), sgn(ay)) # unit major direction
(dbx, dby) = (sgn(bx), sgn(by)) # unit orthogonal direction
if h ==

# trivial row fill
for i in range (0, w):
yield(x, y)
(x, y) = (x + dax, y + day)
return
if w ==
# trivial column fill
for i in range (0, h):

yield(x, y)
(x, y) = (x + dbx, y + dby)
return
(ax2, ay2) = (ax//2, ay//2)
(bx2, by2) = (bx//2, by//2)

w2 = abs(ax2 + ay2)
h2 = abs (bx2 + by2)
if 2+w > 3xh:
if (w2 % 2) and (w > 2):
# prefer even steps
(ax2, ay2) = (ax2 + dax, ay2 + day)
# long case: split in two parts only
yield from generate2d(x, y, ax2, ay2, bx, by)
yield from generate2d(x+ax2, y+tay2, ax-ax2, ay-ay2, bx, by)
else:
if (h2 % 2) and (h > 2):
# prefer even steps
(bx2, by2) = (bx2 + dbx, by2 + dby)
# standard case: one step up, one long horizontal, one step
down
yield from generate2d(x, y, bx2, by2, ax2, ay2)
yield from generate2d (x+bx2, y+tby2, ax, ay, bx-bx2, by-by2)
yield from generate2d (x+ (ax—-dax)+ (bx2-dbx), y+(ay-day)+ (by2-
dby) ,
~-bx2, -by2, -(ax—ax2), -(ay—-ay2))
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Peano curve Adapted from (Schubotz, 2021}, [Prater).

I def interleave_bits (x, y):

5

3

def

mmn

Interleave the bits of two integers (x, y) to compute Morton

order.

mmn
def split_bits(value):

result = 0

for 1 in range(32): # Support up to 32-bit integers

result |= ((value >> i) & 1) << (2 * 1i)

return result

return split_bits(x) | (split_bits(y) << 1)

peano_curve (grid) :

"""Returns the elements of the grid in diagonal morton/peano
order. mmn

n_rows, n_cols = grid.shape

order = []

for y in range (n_rows) :
for x in range (n_cols):
morton_key = interleave_bits(x, V)
order.append ( (morton_key, x, vy))

# Sort by Morton key to achieve the Morton curve order
order.sort (key=lambda pair: pair[0])
return [(x, y) for _, x, y in order]

G.4 CODE OF EFFICIENT DECAY MASK

| def Casual_Decay_Mask(b_i , N):

idx = torch.arange (N,device=b_i.device)

I, J = torch.meshgrid(idx, idx, indexing=’'17j")
E = (torch.abs((I-J)).float () .view(1l,1,N,N))
M = torch.sigmoid(b_1i) .view(l,-1,1,1) «*E
return M

G.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

While preparing this manuscript, we limitedly used Large Language Models (LLMs). Their role was
restricted to assisting with editing and polishing the writing, such as improving clarity, grammar, and
flow. All conceptual ideas, methods, experiments, and analyses presented in this paper are entirely the
work of the authors. No ideas, algorithms, or research contributions were generated by an LLM. The
models served only as a tool to refine the presentation of the text without influencing the substance of

the research.
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