

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SPACE FILLING CURVES AS SPATIAL PRIORS FOR SMALL OR DATA-SCARCE VISION TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision Transformers (ViTs) have become a dominant backbone in computer vision, yet their attention mechanism lacks inherent spatial inductive biases, which are especially crucial in small models and low-data regimes. Inspired by the masking in Linear Transformers and the scanning patterns of Vision SSMs, we propose VIOLIN¹, a lightweight masked attention mechanism that integrates *Space Filling Curves (SFCs)* to enhance spatial awareness with negligible computational overhead. VIOLIN scans the input image with multiple SFCs to build curve specific decay masks, which are averaged and multiplied with the attention matrix to encode spatial relationships. It yields notable gains in data-scarce settings: when fine-tuning on VTAB-1K, VIOLIN improves accuracy by up to 8.7% on the Structured group, and it can be combined with parameter-efficient tuning methods such as LoRA. Beyond fine-tuning, VIOLIN consistently improves various tiny or small scale ViT architectures (e.g., DeiT, DINO) during pretraining, achieving gains of up to 0.9% on ImageNet-1K and 7.2% on pixel level CIFAR-100. Overall, VIOLIN offers a computationally efficient yet effective way to inject spatial inductive bias into ViTs, particularly benefiting small models and data-scarce scenarios.

Anonymous VIOLIN Code

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have rapidly become a dominant architecture in computer vision, achieving strong performance across diverse tasks. Their success comes from capturing global dependencies through self-attention, but unlike Convolutional Neural Networks (CNNs) (O’Shea & Nash, 2015), ViTs lack inherent *spatial priors* such as locality (Fan et al., 2024). This makes them highly *data-hungry* and *dependent on larger model sizes*.² While sufficient parameters and massive datasets allow ViTs to learn these biases directly (Lu et al., 2022; Sun et al., 2017), many downstream tasks require adapting a pretrained backbone with limited data. In such cases, *even large ViTs struggle to specialize*, making stronger inductive biases essential across scales. Prior works have attempted to address this limitation with convolutions (Guo et al., 2022), novel positional encodings (Wu et al., 2021b), or masking strategies (Fan et al., 2024).

Concurrently, in natural language processing, State Space Models (SSMs) and Linear Transformers have emerged as efficient alternatives to standard transformers (Gu & Dao, 2024; Dao & Gu, 2024; Sun et al., 2023), and their vision adaptations have achieved strong results (Alkin et al., 2024; Liu et al., 2024b; Zhu et al., 2024). Through recurrence and a decay factor on attention scores, these models can capture the relative spatial order of image patches. However, this information depends entirely on the chosen scanning order, and to capture both vertical and horizontal relations, they typically require multiple directional scans (Li et al., 2024).

Scanning an image converts its 2D patch layout into a 1D sequence, with the order of patches determined by a traversal path. This process can be viewed as a Space Filling Curve (SFC): a continuous path that passes through every point in a multidimensional grid while systematically covering the entire image (Sagan, 1994). Many vision backbones, including vanilla ViT (Dosovitskiy et al., 2021), Vision x-LSTM (Alkin et al., 2024), VMamba (Liu et al., 2024b), and Vim (Zhu et al.,

¹As a subtle homage to Giuseppe Peano, the creator of space filling curves, we named our model in a way that also reflects a musical instrument, just like Peano’s family name resembles Piano.

²We define models with $\leq 30M$ parameters as small-scale and those with $\sim 86M+$ as large-scale.

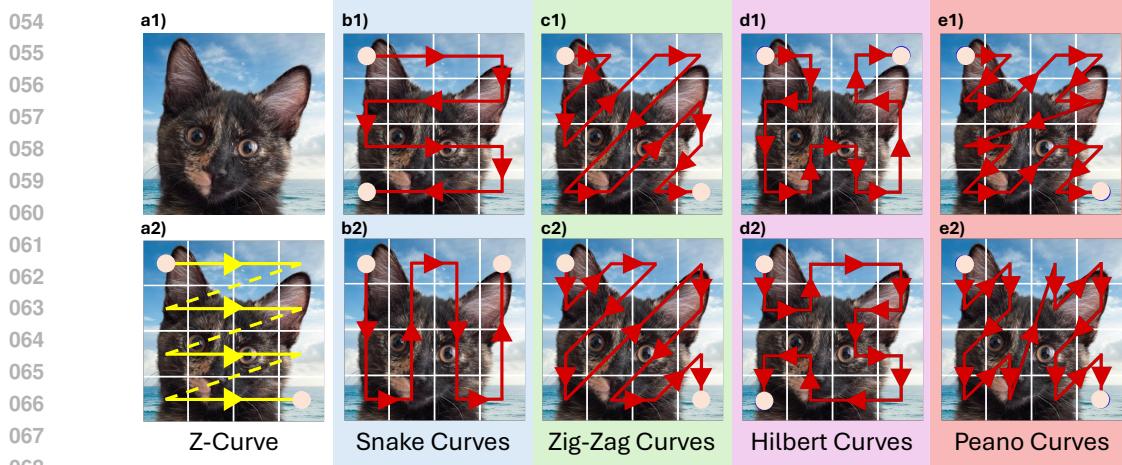


Figure 1: *Space Filling Curve paths*: Examples of traversal paths used in VIOLIN on a 4×4 patched image. (a1) Original image. (a2) Z-curve (b1) Snake curve, (b2) Transposed Snake curve, (c1) Zig-zag curve, (c2) Transposed Zig-zag curve, (d1) Hilbert curve, (d2) Transposed Hilbert curve, (e1) Peano curve, (e2) Transposed Peano curve.

2024), use the simple Z-curve, or row-by-row scan, for this linearization (see Figure 1 (a2)). Given that other SFCs, such as Snake, Zig-zag, Peano, and Hilbert curves, preserve locality in different ways (see Figure 1), we ask the following question:

Can incorporating SFC-inspired structure into attention help to enhance the spatial understanding of ViTs, thereby improving their performance in small models and limited-data settings?

In this work, we answer this question affirmatively by proposing VIOLIN, a lightweight attention mechanism that injects spatial priors through SFC-guided decay masks. Specifically, VIOLIN integrates multiple SFC based scans into a single decay mask, $\mathbf{M}_{\text{VIOLIN}}$, which captures the relative spatial locations of image patches *without altering the rest of the architecture*. As a result, VIOLIN provides an efficient, plug-and-play way to introduce locality into ViTs, *particularly benefiting small models and data-scarce scenarios*. Figure 1 (b - e) shows the SFCs used in VIOLIN to traverse the image, with their corresponding linearized sequences presented in Figure 10.

We evaluate VIOLIN across a broad set of settings:

- Fine-tuning DeiT, DeiT-III, and DINO (Touvron et al., 2021; 2022; Caron et al., 2021) on VTAB (Zhai et al., 2019), across scales *from Tiny (5M) to Huge (632M)*, where VIOLIN consistently improves baselines with gains up to **8.7%** on individual tasks and **4.7%** on average. VIOLIN can also be seamlessly combined with parameter-efficient fine-tuning methods, further boosting adaptability.
- Pretraining small-scale models on ImageNet-1K (Russakovsky et al., 2015), where VIOLIN improves performance by up to **0.9%**, and on pixel-level CIFAR-100 (Krizhevsky, 2009), achieving a striking **7.2%** improvement.
- Additional analyses, including the complementary contributions of different curves, performance on the Structured VTAB category, and extensions to dense prediction tasks such as object detection on COCO (Lin et al., 2015) and semantic segmentation on ADE20K (Zhou et al., 2017), further highlight the versatility of VIOLIN and the importance of explicitly modeling spatial priors.

2 BACKGROUND

Notations and preliminaries We denote a patched image as $\mathcal{I} \in \mathbb{R}^{H \times W \times d}$, where H and W are the number of patches along height and width, and d is the embedding dimension. Its flattened form is $\mathbf{X} \in \mathbb{R}^{N \times d}$ with $N = H \times W$ as the sequence length. For single head attention, the query, key, and value matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ are computed using learnable weights $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d}$,

108 and the standard ViT attention is computed as
 109

$$110 \quad \mathbf{Q} = \mathbf{XW}_Q, \mathbf{K} = \mathbf{XW}_K, \mathbf{V} = \mathbf{XW}_V, \quad \mathbf{Y} = \text{Softmax}\left(\frac{\mathbf{QK}^\top}{\sqrt{d}}\right)\mathbf{V}. \quad (1)$$

112 where $\mathbf{Y} \in \mathbb{R}^{N \times d}$ is the attention output. We use h and L for the number of attention heads and
 113 transformer layers respectively. Elements of matrices and vectors are accessed by $[\cdot]$, and \odot denotes
 114 the Hadamard product. A full list of notations is provided in Appendix A.
 115

116 **Vision Transformers and spatial priors** After dividing an image into patches (tokens), ViTs
 117 process them as a 1D sequence, typically flattened with a Z-curve (Dosovitskiy et al., 2021; Touvron
 118 et al., 2021; Caron et al., 2021), as shown in Figure 1 (a2), which discards information about
 119 neighboring patches. To reintroduce spatial information, most ViTs add positional embeddings before
 120 transformer blocks, where self-attention captures token interactions. Recent works have further
 121 improved performance through self-supervised learning (e.g., DINO (Caron et al., 2021; Oquab et al.,
 122 2023)) and optimized training strategies (e.g., DeiT and DeiT-III (Touvron et al., 2021; 2022)). In
 123 this study, we show how VIOLIN improves upon these models and training recipes.

124 By processing patches independently, ViTs lack the strong spatial inductive bias of architectures
 125 like CNNs, which inherently encode locality (Yuan et al., 2021). Although ViTs capture global
 126 interactions, they struggle with fine-grained local structures, making training data-hungry (d’Ascoli
 127 et al., 2021). Sufficiently large models and datasets can mitigate this by learning locality from data,
 128 but when model size or data is limited, ViTs struggle to achieve strong performance (Lu et al., 2022),
 129 see Appendix B.1 for details.

130 **Linear Transformers** Linear attention was introduced as an alternative to softmax attention,
 131 reducing quadratic complexity to linear time via a recurrent formulation eq. (2) (Katharopoulos
 132 et al., 2020). Instead of relying on positional embeddings to capture the order within a
 133 sequence, most modern Linear Transformers (Sun et al., 2023) incorporate a decay factor (γ),
 134

$$135 \quad \mathbf{S}_i = \gamma \mathbf{S}_{i-1} + \mathbf{k}_i^\top \mathbf{v}_i, \quad \mathbf{y}_i = \mathbf{q}_i^\top \mathbf{S}_i \quad \Leftrightarrow \quad \mathbf{Y} = (\mathbf{QK}^\top \odot \mathbf{M}_{\text{Causal}})\mathbf{V}, \quad \mathbf{M}_{\text{Causal}}[i, j] = \begin{cases} \gamma^{i-j} & i \geq j, \\ 0 & i < j. \end{cases} \quad (2)$$

136 where $\mathbf{S}_i \in \mathbb{R}^{d \times d}$ is the hidden state. This recurrent form can be parallelized using matrix
 137 multiplication with a Toeplitz decay mask \mathbf{M} (Qin et al., 2023; Sun et al., 2023). Though linear
 138 masked attention was initially proposed for causal NLP tasks, it is later adapted to non-causal tasks
 139 using full Toeplitz masks (Afzal et al., 2025). The decay mask naturally extends context length,
 140 supports variable sequence lengths, and provides locality information that inspired VIOLIN .
 141

142 **Scans in Linear Vision Transformers and SSMs** Linear Transformers and SSMs have been
 143 applied to vision tasks (Alkin et al., 2024; Liu et al., 2024b; Zhu et al., 2024). To enhance spatial
 144 representation, these models often traverse image patches using a Z-curve, typically scanning in both
 145 vertical and horizontal directions. Each scan acts as a separate recurrence, capturing distinct spatial
 146 patterns through their own decay factors.

147 Space Filling Curves

148 **Definition 2.1.** A *Space Filling Curve (SFC)* is a continuous mapping from a closed unit interval
 149 $S = [0, 1]$ to a closed unit hypercube $Q = [0, 1]^N$, passing through every point in Q exactly
 150 once (Peano, 1990). In this work, we focus on the 2D Euclidean case $Q = [0, 1]^2$, corresponding to
 151 the image domain.

152 Based on definition 2.1, many SFCs can be defined, including the **Snake**, **Peano** (also known as the
 153 Morton curve) (Peano, 1990), **Hilbert** (Hilbert, 1935), **Z** (or Sweep), and **Zig-zag** (Wallace, 1992)
 154 curves as illustrated in Figure 1. Additionally, other curves include the Sierpinski (Sierpinski, 1915),
 155 Lebesgue (Lebesgue, 1904), and Schoenberg curves (Schoenberg, 1938).

156 Flattening or scanning can be viewed as applying an SFC c to a 2D patched image \mathcal{I} with N total
 157 patches, mapping it into a 1D sequence $\mathbf{X}_c \in \mathbb{R}^N$ via a flattening function $F_c(\mathcal{I}) : \mathbb{R}^{H \times W} \rightarrow \mathbb{R}^N$
 158

$$159 \quad F_c(i, j) : (i, j) \mapsto n, \quad i \in \{0, \dots, H-1\}, \quad j \in \{0, \dots, W-1\}, \quad n \in \{0, \dots, N-1\}, \quad (3)$$

$$160 \quad \mathbf{X}_c = F_c(\mathcal{I}), \quad \mathbf{X}_c[n] = \mathcal{I}[i, j] \quad \text{where} \quad n = F_c(i, j). \quad (4)$$

162 This flattening can be applied independently across each embedding dimension d for $\mathcal{I} \in \mathbb{R}^{H \times W \times d}$.
 163 While SFCs have diverse applications in other domains, their role in image classification remains un-
 164 derexplored (Zhao et al., 2024; Kutscher et al., 2025). For further details, please refer to Appendix B.3.
 165
 166

167 3 METHODOLOGY

169 In this section, we first introduce decay-masked attention in Section 3.1, then extend it to capture
 170 diverse scanning patterns in Sections 3.2 and 3.3, and finally formulate VIOLIN attention in Section 3.4.
 171

172 3.1 ATTENTION WITH DECAY MASK

174 As shown in Appendix C.1, attention (eq. (1)) is permutation equivariant. In other words, changing
 175 the order of tokens in the sequence results in the same reordering in the output. Therefore, standard
 176 attention does not encode relative spatial priors within an image. To introduce locality, we take
 177 inspiration from Linear Transformers and multiply a decay mask with the attention:

$$178 \mathbf{Y} = \text{Softmax} \left(\frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \mathbf{M} \right) \mathbf{V}, \quad \mathbf{M}[i, j] = \gamma^{|i-j|}, \quad 0 < \gamma \leq 1. \quad (5)$$

180 This decay mask \mathbf{M} , also known as the KacMurdockSzeg matrix (Kac et al., 1953), extends the
 181 causal decay mask to full attention (Sun et al., 2023; Afzal et al., 2025). It dampens the attention
 182 score between tokens i and j by $\gamma^{|i-j|}$, enforcing locality in the flattened sequence \mathbf{X} . However, both
 183 the token order in \mathbf{X} and the notion of distance in \mathbf{M} depend entirely on how the original image \mathcal{I} is
 184 flattened. This raises a natural question: *What are alternative, principled ways to flatten an image?*

186 3.2 SFCs AS PRINCIPLED WAY OF IMAGE FLATTENING

187 Following eq. (4), scanning an image along a path c yields the sequence $\mathbf{X}_c = F_c(\mathcal{I})$. Many
 188 ViTs (Dosovitskiy et al., 2021; Touvron et al., 2021) use the Z-curve as the default scanning method.
 189

190 **Z-Curve** The Z-curve, also called sweep, row-major order, or raster scan, traverses the image row
 191 by rowtop to bottom, and left to right within each row. Its flattening function is $F_z(i, j) = iW + j$.
 192 See Appendix B.3 for details on curves used in this study.

193 Although flattening with different curves usually requires reprocessing the image, we propose a
 194 simpler and significantly more efficient alternative: *applying a permutation to the flattened sequence*.
 195

196 **Permutation of a flattened image** Given a sequence \mathbf{X}_{c_1} flattened via SFC c_1 , and noting that
 197 flattening is one-to-one, we define a permutation $\pi_{c_1 \rightarrow c_2} : \{0, \dots, N-1\} \rightarrow \{0, \dots, N-1\}$ that
 198 maps it to \mathbf{X}_{c_2} from curve c_2

$$199 \mathbf{X}_{c_2} = \pi_{c_1 \rightarrow c_2}(\mathbf{X}_{c_1}). \quad (6)$$

200 Note that since each index in \mathbf{X}_{c_1} uniquely corresponds to one in \mathbf{X}_{c_2} , $\pi_{c_1 \rightarrow c_2}$ is invertible. Alterna-
 201 tively, we can represent it as a permutation matrix $\mathbf{P}_{c_1 \rightarrow c_2} \in \{0, 1\}^{N \times N}$

$$203 \mathbf{P}_{c_1 \rightarrow c_2}[n, m] = \begin{cases} 1 & \text{if } m = \pi_{c_1 \rightarrow c_2}(n), \\ 0 & \text{otherwise,} \end{cases} \quad \mathbf{X}_{c_2} = \mathbf{P}_{c_1 \rightarrow c_2} \mathbf{X}_{c_1}. \quad (7)$$

205 Since $\mathbf{P}_{c_1 \rightarrow c_2}$ is a permutation matrix, $\mathbf{P}_{c_2 \rightarrow c_1} = \mathbf{P}_{c_1 \rightarrow c_2}^{-1} = \mathbf{P}_{c_1 \rightarrow c_2}^\top$. Thus, by flattening the image
 206 once using the Z-curve, it is possible to obtain \mathbf{X}_c for other curves by applying $\pi_{z \rightarrow c}(\cdot)$.
 207

208 3.3 SFCs MEET ATTENTION

209 With the naive approach, using \mathbf{X}_c for each curve individually and following eq. (5), the output of
 210 masked attention \mathbf{Y}_c can be calculated such that
 211

$$212 \mathbf{Y}_c = \text{Softmax} \left(\frac{\mathbf{Q}_c \mathbf{K}_c^\top}{\sqrt{d}} \odot \mathbf{M}_c \right) \mathbf{V}_c, \quad \text{where } \mathbf{M}_c[i, j] = \gamma_c^{|i-j|}, \quad (8)$$

214 where $\mathbf{Q}_c, \mathbf{K}_c, \mathbf{V}_c$ are the corresponding query, key, and value matrices. Note that as the token order
 215 of \mathbf{Y}_c depends on the curve c , when multiple curves are used, the outputs (e.g. \mathbf{Y}_{c_1} and \mathbf{Y}_{c_2}) will
 have mismatched positions. To overcome this issue we can define a basis for our curves as below.

216 **Basis Curve** After computing the attention output \mathbf{Y}_c for each curve c , we permute them into a
 217 common basis order to align all outputs. This preserves each curves spatial locality while ensuring
 218 they share a consistent reference order. Following standard ViT flattening, we use the Z-curve as the
 219 basis and perform all permutations relative to it, simplifying notation as $\pi_{z \rightarrow c} = \pi_c$, $\pi_{c \rightarrow z} = \pi_c^{-1}$
 220 and $\mathbf{P}_{z \rightarrow c} = \mathbf{P}_c$, $\mathbf{P}_{c \rightarrow z} = \mathbf{P}_c^{-1}$. The output aligned to the basis is

$$\widetilde{\mathbf{Y}}_c = \pi_c^{-1}(\mathbf{Y}_c) = \mathbf{P}_c^\top \mathbf{Y}_c. \quad (9)$$

224 **Permutation of Decay Mask** The aligned output $\widetilde{\mathbf{Y}}_c$ of the masked attention in eq. (8) is
 225

$$\widetilde{\mathbf{Y}}_c = \mathbf{P}_c^\top \mathbf{Y}_c = \mathbf{P}_c^\top \text{Softmax} \left(\frac{\mathbf{Q}_c \mathbf{K}_c^\top}{\sqrt{d}} \odot \mathbf{M}_c \right) \mathbf{V}_c. \quad (10)$$

228 Equivalently, we can permute the decay mask \mathbf{M}_c to the basis order as $\widetilde{\mathbf{M}}_c = \pi_c^{-1}(\mathbf{M}_c) = \mathbf{P}_c^\top \mathbf{M}_c \mathbf{P}_c$,
 229 allowing attention to be computed directly in the basis, see Section C.3 for proof. The attention
 230 output then becomes

$$\widetilde{\mathbf{Y}}_c = \text{Softmax} \left(\frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \widetilde{\mathbf{M}}_c \right) \mathbf{V}, \quad \widetilde{\mathbf{M}}_c = \pi_c^{-1}(\mathbf{M}_c), \quad \mathbf{M}_c[i, j] = \gamma_c^{|i-j|}. \quad (11)$$

231 This approach is more efficient than the naive one, as $\mathbf{Q}, \mathbf{K}, \mathbf{V}$ are computed only once from the
 232 basis curve, and, more importantly, a single $\mathbf{Q} \mathbf{K}^\top \in \mathbb{R}^{N \times N}$ is shared across all curves per head.
 233

3.4 VIOLIN ATTENTION

234 For a single head, we define VIOLIN attention as a decay-masked attention guided by multiple SFCs
 235

$$\mathbf{Y} = \text{Softmax} \left(\alpha \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \mathbf{M}_{\text{VIOLIN}} \right) \mathbf{V},$$

$$\mathbf{M}_{\text{VIOLIN}} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \widetilde{\mathbf{M}}_c. \quad (12)$$

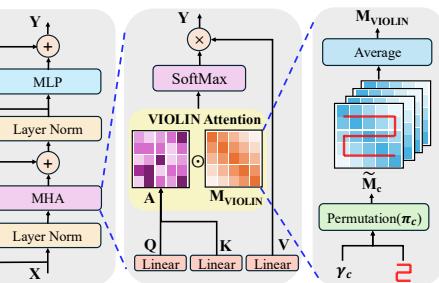
236 Here, $\mathbf{M}_{\text{VIOLIN}}$ is the average of decay masks from all curves $c \in \mathcal{C}$, each first aligned to the
 237 basis (Z-curve) order. The matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V}$ are computed from the input \mathbf{X} flattened with
 238 respect to the basis. The learnable scalar $\alpha \in \mathbb{R}$ controls how strongly the mask influences
 239 attention.

240 For VIOLIN, we use Snake, Zig-zag, Peano, and Hilbert curves together with their transposed variants
 241 (Figure 1 (b2-e2)) to capture diverse scanning patterns in both row and column major order. This
 242 gives the curve set

$$\mathcal{C} = \{\text{Snake}, \text{Zig-Zag}, \text{Peano}, \text{Hilbert}, \text{Snake}^\top, \text{Zig-Zag}^\top, \text{Peano}^\top, \text{Hilbert}^\top\}. \quad (13)$$

243 Each curve c has a decay factor $\gamma_c \in [0, 1]$ for its mask \mathbf{M}_c , parameterized as $\gamma_c = \text{sigmoid}(\beta_c)$ with
 244 learnable $\beta_c \in \mathbb{R}$ for stability, following prior work (Orvieto et al., 2023). In multi-head attention, each
 245 head k has its own β_c^k and α^k , and thus computes \mathbf{M}_c^k , $\mathbf{M}_{\text{VIOLIN}}^k$, and $\pi_c^{-1}(\mathbf{M}_c^k)$ independently.
 246 Permutations are applied efficiently via indexing, see code in Appendix G.3. The full VIOLIN block
 247 is shown in Figure 2, with further design choices and ablations in Appendix D and Appendix E.

248 **Parameter and computational overhead** A key
 249 advantage of VIOLIN is that it does not introduce
 250 significant parameter or computational overhead. As
 251 shown in Table 1, the additional cost amounts to
 252 only **0.0002% more parameters** and **0.64% more**
 253 **FLOPs** compared to the baseline DeiT-B model with
 254 86M parameters and 55.4G FLOPs. These values are
 255 effectively negligible in practice.



256 Figure 2: VIOLIN : **(Left)** ViT block with VIOLIN
 257 multi-head attention. **(Middle)** Single-head VIOLIN
 258 attention. **(Right)** Decay mask $\mathbf{M}_{\text{VIOLIN}}$ formed by
 259 averaging masks from curves in \mathcal{C} .

Table 1: *Parameter and computational overhead of VIOLIN* : calculated relative to DeiT-B (86M parameters, 55.4G FLOPs).

Metric	Theoretical Computation	% Change (over DeiT-B)
# Param.	$Lh(\mathcal{C} + 1)$	0.0002%
FLOPs	$\mathcal{O}(LhdN^2)$	0.64%

270
 271 Table 2: *GPU memory and inference time*
 272 *comparison*: for DeiT-S and VIOLIN-S at
 273 different input resolutions. Batch size is 256.

Model	GPU Memory (GB)	Runtime (ms/batch)
DeiT-S (224 × 224)	0.80	206.1
VIOLIN-S (224 × 224)	0.81	233.1
DeiT-S (512 × 512)	13.88	1739.3
VIOLIN-S (512 × 512)	13.90	1789.7

To quantify the practical computational cost of VIOLIN, we report both GPU memory consumption and inference runtime on the same hardware when evaluating a DeiT-S backbone. Measurements are taken for a batch size of 256 at two resolutions: 224×224 for classification tasks and 512×512 for dense prediction. As shown in Table 2, VIOLIN closely matches the vanilla DeiT model in both runtime and memory usage. These results are consistent with our theoretical analysis and confirm that VIOLIN introduces only minimal overhead.

281 4 EXPERIMENTS

282
 283 We evaluate VIOLIN across diverse settings to assess its effect on the spatial awareness of ViTs.
 284 Our experiments include fine-tuning on small datasets in Section 4.1, and pretraining small-scale
 285 models on ImageNet-1K and on pixel-level CIFAR-100 in Section 4.2. Additional ablations on curve
 286 configurations, and decay factors are presented in Section 4.3. Beyond classification, we analyze the
 287 strong gains on the Structured group of VTAB and extend evaluation to dense prediction tasks such
 288 as detection and segmentation. Overall, VIOLIN consistently improves performance, with the notable
 289 benefits in small models and data-scarce regimes.

290 4.1 VTAB-1K FINE-TUNING

291 The Visual Task Adaptation Benchmark (VTAB) (Zhai et al., 2019) evaluates the adaptability of
 292 learned representations to diverse unseen tasks with limited data. It consists of three groups, Natural,
 293 Specialized, and Structured, covering 19 datasets from varied domains and semantic categories. In
 294 our experiments we use VTAB-1K, a subset with 1,000 examples per task, specifically designed to
 295 test model adaptation in data-scarce settings.

296 We evaluate VIOLIN on small datasets and specialized tasks under two configurations: full fine-
 297 tuning and parameter-efficient fine-tuning (PEFT). In both cases, we compare fine-tuning results
 298 of the original pretrained models (Baseline), and Baseline \odot M_{VIOLIN} where pretrained models
 299 are combined with freshly initialized mask before fine-tuning and then optimized jointly with the
 300 backbone during fine-tuning. For all models, both baselines and VIOLIN , we use the finetuning
 301 implementation from Alkin (2022). For each model, every dataset is first split into a 800/200
 302 train/validation partition to select the optimal learning rate per dataset. We then train on the full
 303 dataset using 5 random seeds and report the average of the best 3 runs. The complete set of training
 304 hyperparameters is provided in Table 29, and per-dataset results are included in Appendix F.5.

305
 306 **Full fine-tuning** In the first setting, we test the plug-in capability of VIOLIN by fully fine-tuning
 307 pretrained DeiT, DeiT-III, and DINO models across scales ranging from 5M to 630M parameters.

308
 309 Table 3: *Full fine-tuning results on VTAB-1K*: Comparison of the top-1 accuracies of
 310 baseline models and their Baseline \odot M_{VIOLIN} counterparts across the VTAB-1K benchmark.
 311 The three task groups are abbreviated as NAT. = Natural, SPE. = Specialized, and STR. = Structured.
 312 The values in parentheses (·) indicate the accuracy difference compared to the baseline. The best
 313 performance within each model pair is highlighted in **bold**. Green highlights the improvement.

Model	Param.	Baseline				Top-1 Accuracy (%)			
		NAT.	SPE.	STR.	Avg.	NAT.	SPE.	STR.	Avg.
DeiT-T	5M	69.56	82.34	53.57	65.52	71.90 (+2.34)	83.75 (+1.41)	57.50 (+3.93)	68.33 (+2.81)
DeiT-S	22M	73.64	84.30	53.44	67.38	76.06 (+2.42)	85.05 (+0.75)	58.26 (+4.82)	70.46 (+3.08)
DeiT-B	86M	76.93	85.52	57.00	70.35	77.96 (+1.03)	86.29 (+0.77)	61.89 (+4.89)	72.95 (+2.60)
DeiT-III-S	22M	75.13	83.63	52.92	67.57	77.03 (+1.90)	85.46 (+1.83)	61.61 (+8.69)	72.31 (+4.74)
DeiT-III-B	86M	78.19	85.26	56.71	70.63	79.24 (+1.05)	86.47 (+1.21)	63.03 (+6.32)	73.94 (+3.31)
DeiT-III-L	304M	88.68	84.38	51.40	67.41	90.39 (+1.71)	84.68 (+0.30)	54.95 (+3.55)	69.51 (+2.10)
DeiT-III-H	632M	88.15	84.18	50.70	66.91	89.10 (+0.95)	84.43 (+0.25)	53.65 (+2.95)	68.50 (+1.41)
DINO-S	22M	75.35	85.09	60.65	71.21	76.26 (+0.91)	85.32 (+0.23)	61.24 (+0.59)	71.84 (+0.63)
DINO-B	86M	77.50	85.77	58.47	71.23	78.65 (+1.15)	86.44 (+0.67)	60.84 (+2.37)	72.79 (+1.56)

324 During fine-tuning, the VIOLIN decay mask M_{VIOLIN} is applied together with the scaling factor α
 325 as defined in eq. (12), and the resulting accuracies are reported in Table 3. The **freshly initialized**
 326 mask enables fast adaptation by allowing models to learn task-specific structural biases, which is
 327 critical in data-scarce fine-tuning. We also fine-tune the VIOLIN pretrained models from Section 4.2
 328 on the same tasks and noticed that **masks learned only during downstream fine-tuning** consistently
 329 outperform pretrained ones, full results are provided in Appendix F.2.

330 This property offers a key advantage: VIOLIN *can improve any pretrained model when*
 331 *applied only at fine-tuning*. It removes the need for costly pretraining from scratch and
 332 allows model to specialize on the downstream task better. The improvements are sub-
 333 stantial, up to **4.7%** on average and **8.7%** on individual group, showing that the spatial
 334 bias introduced by VIOLIN enables more effective learning in data-scarce regimes. More-
 335 over, the computational overhead is negligible, and the method generalizes well across train-
 336 ing setups, datasets, and model scales, including large models with over 600M parameters.

337
 338
 339 Table 4: *PEFT results on VTAB-IK with DeiT-B*: #
 340 Param. denotes the number of learnable parameters
 341 per method. The baseline uses PEFT alone, while
 342 VIOLIN combines PEFT with mask fine-tuning.

Method	# Param.	Avg. Accuracy (%)	
		Baseline	Baseline $\odot M_{VIOLIN}$
Full-FT	86 M	70.35	72.95 (+2.60)
LoRA	$\sim 0.3M$	71.04	72.55 (+1.41)
DoRA	$\sim 0.6M$	70.75	71.90 (+1.15)

343 further highlighting its applicability and generalizability.

344 4.2 PRETRAINING

345 **ImageNet-1K pretraining** We pretrain VIOLIN on small-scale models³ under two paradigms:
 346 supervised and self-supervised training, as shown in Table 5. For supervised training, we use DeiT in
 347 tiny and small scales, a well established baseline specifically designed for data efficient supervised
 348 training. **The DeiT paper provides two components: (1) a data-efficient training recipe with tuned**
 349 **augmentations and hyperparameters, and (2) a distillation mechanism that uses a teacher model. In**
 350 **all our DeiT-based pretraining experiments, we use only the training recipe and do not employ any**
 351 **form of distillation.** VIOLIN consistently improves performance without any additional tuning, with
 352 DeiT-T gaining **0.8%** and DeiT-S achieving a notable **0.9%** improvement, demonstrating strong
 353 compatibility. For these models, we adopt Global Average Pooling (GAP) (Lin et al., 2013; Lu et al.,
 354 2022) instead of a class token, as GAP is more compatible with VIOLIN, see Appendix E.5 for
 355 details.

356 For self-supervised training, we adopt DINO, a state-of-the-art teacherstudent framework for label-
 357 free representation learning, known for its stable training dynamics and strong downstream perfor-
 358 mance. In our experiments, both teacher and student networks are equipped with VIOLIN attention.
 359 In this setup, VIOLIN consistently improves performance across model scales and training durations,
 360 yielding gains in both KNN and linear evaluations on ImageNet. For all models, *we strictly follow*
 361 *the original training recipes from the respective papers, without modifying any hyperparameters for*
 362 *VIOLIN*. Baseline accuracies are taken directly from the reported values.

363 **Ablation studies** In Appendix E, we provide comprehensive ablations on key aspects of VIOLIN
 364 attention, all within the same pretraining setup. Appendices E.1 and E.5 examine the effects of
 365 global average pooling and positional embeddings, while Appendix E.2 explores different curve
 366 configurations, covering all combinations in \mathcal{C} , Z-curve only, Manhattan distance-based masking (as
 367 used in RMT (Fan et al., 2024)), random curve orderings, and variants without transposed curves.
 368 Appendix E.3 compares alternative masking strategies, and Appendix E.4 analyzes key design choices
 369 such as initialization, the scaling factor α , and fixed vs. learnable decay parameters. Together, these

370
 371
 372
 373
 374
 375
 376
 377
³We observed that for ImageNet pretraining with larger models, the performance gains are smaller, which is
 378 expected. See Appendix F.1 for numerical results and a detailed explanation.

378 Table 5: *Pretraining results on ImageNet-1K*: Comparison of the top-1 accuracies of baseline models
 379 with their VIOLIN counterparts. The values in parentheses (.) indicate the accuracy difference
 380 compared to the baseline. The best performance between each pair of models is highlighted in bold.
 381 For DINO models, both KNN and linear probe evaluations are reported and (100), (300) indicate
 382 the number of training epochs of the models. (Left) Supervised training, (Right) Self-supervised
 383 training. Similar sized CNN baselines are added for comparison.

Model	# Param.	Top-1 Accuracy (%)		Model	# Param.	Top-1 Accuracy (%)	
		Baseline	VIOLIN			Baseline	VIOLIN
DeiT-T	5M	72.2	73.0 (+0.8)	DINO-S (100)	KNN	69.3	70.0 (+0.7)
DeiT-S	22M	79.8	80.7 (+0.9)	Linear	22M	74.0	74.6 (+0.6)
ResNet-18	12M	69.8		DINO-S (300)	KNN	72.8	73.4 (+0.6)
ResNet-50	25M	76.2		Linear	22M	76.1	76.4 (+0.3)

390 ablations provide a detailed view of each components contribution to the effectiveness of VIOLIN
 391 attention. Additionally, in Section F.3, we evaluate the context extrapolation capability of VIOLIN
 392 using multi-resolution classification and video generation with a pretrained VIOLIN DINO model,
 393 leveraging the natural extrapolation property of the KMS decay mask \mathbf{M}_{VIOLIN} .
 394

395 **Pixel-level CIFAR-100 pretraining** Recent
 396 work has explored pixel-level tokenization for
 397 ViTs (Nguyen et al., 2025; Wang et al., 2025),
 398 which provides fine-grained image representations
 399 and avoids hand-crafted choices around patch size.
 400 However, this setting is challenging because patching
 401 is the main source of locality bias in ViTs, removing
 402 it makes models more data-hungry and harder to
 403 optimize on small or medium sized datasets such as CIFAR-100 (Krizhevsky, 2009). This setting
 404 aligns perfectly with the goal of VIOLIN, as it introduces locality into the model independently of
 405 the patching process.

406 On CIFAR-100, when ViT-T is trained using the DeiT ImageNet training recipe, VIOLIN achieves a
 407 striking improvement of over 7% compared to the vanilla pixel-level baseline, as shown in Table 6.
 408 This demonstrates that our locality mechanism provides a powerful inductive bias, enabling effective
 409 learning in small-data, small-model regimes where standard ViTs collapse. These results highlight
 410 both the effectiveness of VIOLIN and the importance of locality awareness for pixel-level ViTs,
 411 particularly in resource-constrained scenarios where large-scale pretraining or very long training
 412 schedules are impractical.

413 4.3 UNDERSTANDING SPATIAL AWARENESS IN VIOLIN

414 **Performance gain on the Structured group** The Structured
 415 category of VTAB includes tasks that require under-
 416 standing the spatial structure of the images such as object
 417 counting and 3D depth prediction, many of which are de-
 418 rived from simulated environments. These scenes often
 419 consist of rendered geometric objects that are simple to
 420 humans but differ significantly from images in ImageNet.
 421 As a result, success in these tasks often depends on *recognizing positional, orientational, or shape-based information, making local spatial layout especially important*.

422 As shown in Table 3, the VIOLIN mask provides the largest
 423 improvements in this category, with gains of up to 8.69%,
 424 a 16% relative increase over the baseline. These results
 425 highlight the strength of VIOLIN in enhancing spatial ca-
 426 pabilities, supporting our claims, and demonstrate its abil-
 427 ity to generalize effectively to tasks that depend heavily
 428 on spatial structure. In Figure 3, we illustrate images
 429 from three datasets in the Structured group with attention
 430 heatmaps of DeiT-B models fine-tuned with and without

Table 6: *Pixel level CIFAR-100 pretrain-
 ing*: Comparison of the top-1 accuracies of
 baseline and VIOLIN models.

Model	# Param.	Avg. Accuracy (%)	
		Baseline	VIOLIN
DeiT-T	5 M	60.8	68.0 (+7.2)

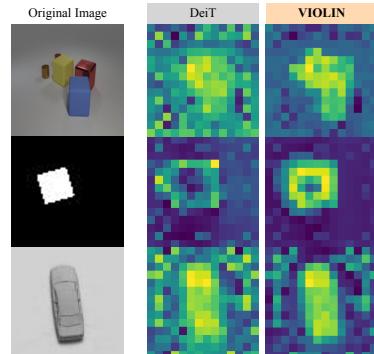


Figure 3: *Attention heatmaps on Structured tasks*: Examples are drawn from three datasets in the Structured group: CLEVR-Count, dSprites-Location, and SmallNORB-Azimuth. All visualizations are taken from layer 12, using the same attention head for each image.

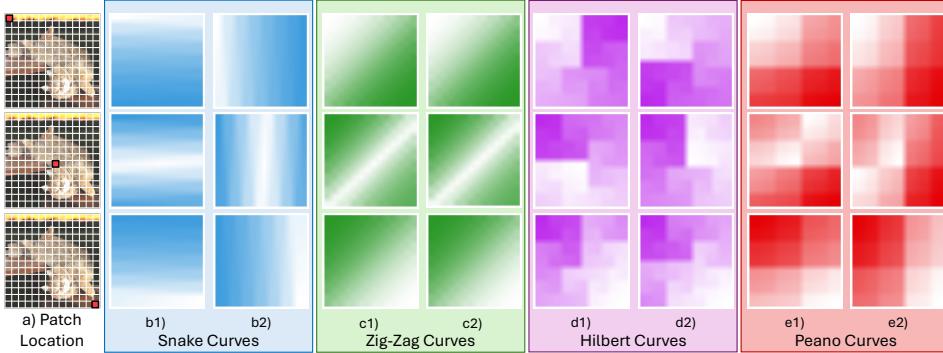


Figure 4: *Mask patterns for different patches*: Visualization of decay mask patterns for three reference patches, top-left, center, and bottom-right, (1st, 2nd and 3rd rows) across all curves and their transposed counterparts. Lighter values indicate stronger spatial relevance, showing more strongly attended regions. **a1**) Reference patch locations, **b1**) Snake, **b2**) Snake^\top , **c1**) Zig-zag, **c2**) Zig-zag^\top , **d1**) Hilbert, **d2**) Hilbert^\top , **e1**) Peano, **e2**) Peano^\top curves.

M_{VIOLIN} . The comparisons show that models fine-tuned with VIOLIN attend to objects more accurately, suppress noise on irrelevant patches, and produce more uniform responses in background regions, further demonstrating its benefit for spatial understanding. Additional visualizations are provided in Appendix F.4.

Curve configurations We examine the individual contribution of each curve by pretraining DeiT-S with all $2^4 = 16$ combinations of four curves (including their transposed variants), with accuracies reported in Table 12. While some combinations yield larger gains, every curve contributes meaningfully, motivating the use of all four in VIOLIN to leverage their complementary spatial information. To illustrate this, Figure 4 visualizes the decay masks for three reference patches (top-left, center, bottom-right) across all curves and their transposes. Lighter regions indicate stronger attention, and the distinct patterns show how different curves bias the model toward diverse spatial regions.

We further analyze the learned decay parameters γ_c for DeiT-B in Figure 7, observing that most remain close to one, indicating active use of long-range spatial information. Smaller values act as implicit curve selection, as these decay masks would contribute to the average minimally, with certain layers and heads emphasizing particular curves. Finally, additional attention heatmaps and visualizations of sequences flattened by different curves are provided in Appendix F.4.

Comparison against other inductive bias methods In Table 7, we provide an extended comparison of various locality-enforcing baselines on the Structured group in the fine-tuning setting. For each approach, we use the same pre-trained DeiT-B backbone and initialize the corresponding locality mechanism on top of it, ensuring that all models start from an identical initialization. All methods are then fine-tuned under the same protocol, using the hyperparameter set described in Table 29.

These results show that while most locality priors offer some improvement, VIOLIN achieves the strongest gains with minimal overhead. This indicates that the improvements come specifically from the usage of multiple SFC curves, rather than from the presence of any local bias. Moreover, the results highlight VIOLIN’s effectiveness as a plug-and-play spatial prior in small-data finetuning regimes. Full implementation details, initialization choices, and per-dataset results are provided in Appendix F.6.

Table 7: *Comparison of locality methods*: The pre-trained DeiT-B model fine-tuned with different locality methods on the VTAB Structured group. Best result is highlighted on **bold**.

Method	# Extra Parameters	Structured Avg. (%)
Baseline (DeiT-B)	–	57.00
VIOLIN	~1.3K	61.89
Additive M_{VIOLIN}	~1.3K	61.34
Swin RPB	~105K	61.58
i-RPE QKV	~115K	61.45
LocalViT	~6.2M	61.50
Manhattan Mask	~0.4K	58.37
Single SFC (M_{Peano})	~0.4K	61.63
Random Curve (M_{Random})	~0.4K	61.43

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 8: *Results on dense prediction tasks*: **(Left)** mIoU scores on semantic segmentation on ADE20K with DeiT-B model. **(Right)** box AP and mask AP scores on object detection and instance segmentation on COCO with Swin-T.

Backbone	mIoU		Backbone	Baseline		Baseline \odot M_{VIOLIN}	
	Baseline	Baseline \odot M_{VIOLIN}		box AP	mask AP	box AP	mask AP
DeiT-B	45.24	45.80 (+0.56)	Swin-T	42.7	39.3	42.8 (+0.1)	39.7 (+0.4)

Dense prediction tasks To assess the capabilities of VIOLIN beyond classification, we evaluate it on semantic segmentation and object detection. For both tasks, baseline and VIOLIN enhanced models are trained under identical setups to ensure fair comparison, with results reported in Table 8. These experiments also highlight the flexibility of M_{VIOLIN} , which naturally generalizes to arbitrary input shapes, enabling resolution expansion and non-square images.

For semantic segmentation, we use ADE20K (Zhou et al., 2017; 2019), a challenging scene parsing dataset, implemented in the `mmsegmentation` framework (Contributors, 2020). The backbone is an ImageNet pretrained DeiT-B model combined with UPerNet (Xiao et al., 2018). The M_{VIOLIN} mask is freshly initialized at fine-tuning, and training is performed for 80k iterations with batch size 16. As reported in Table 8, VIOLIN achieves a **+0.56** mIoU improvement, further demonstrating that spatial priors help ViTs adapt effectively to dense prediction tasks.

For object detection, we experiment on COCO (Lin et al., 2015) using the `mmdetection` framework (Chen et al., 2019). The backbone is an ImageNet pretrained Swin-T (Liu et al., 2021), paired with Mask R-CNN (He et al., 2017) as the detector. As in segmentation, the VIOLIN mask M_{VIOLIN} is freshly initialized at fine-tuning, and models are trained with a $1 \times$ schedule and batch size 16. As shown in Table 8, VIOLIN improves performance by **+0.4** mAP over the baseline, showing that spatial priors from space-filling curves enhance object localization.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced VIOLIN, a masked attention mechanism inspired by the decay masks of Linear Transformers and the perspective of flattening via space filling curves. By integrating diverse spatial patterns into a unified decay mask, VIOLIN enhances the understanding of relative spatial relationships without altering the training recipe, or introducing a significant computational cost.

Our experiments show that VIOLIN is particularly effective in small models and data-scarce settings, where spatial inductive bias is most critical. It also serves as a plug-and-play module that can be applied only during fine-tuning, combining seamlessly with parameter-efficient methods. More broadly, VIOLIN emphasizes the overlooked role of patch ordering and spatial priors in ViT design, offering a lightweight and practical approach to strengthen locality in vision transformers.

Future directions Since VIOLIN operates directly on the attention scores, it can be used in any setting where spatial relationships are important and a global attention mechanism is used. This opens up many exciting future directions, including applications to depth estimation, super-resolution, tracking, and even video understanding. VIOLIN also opens several promising directions, such as dynamic or task-adaptive curve selection, as well as to domains such as video, multimodal learning, and data-scarce applications like medical imaging or satellite analysis. These settings offer promising opportunities to further explore the impact of explicit spatial priors in vision backbones.

540 REFERENCES
541

542 Arshia Afzal, Elias Abad Rocamora, Leyla Naz Candogan, Pol Puigdemont, Francesco Tonin,
543 Yongtao Wu, Mahsa Shoaran, and Volkan Cevher. Linear attention for efficient bidirectional
544 sequence modeling. *arXiv preprint arXiv:2502.16249*, 2025.

545 Benedikt Alkin. vtab1k-pytorch. <https://github.com/BenediktAlkin/vtab1k-pytorch>, 2022.

546 Benedikt Alkin, Maximilian Beck, Korbinian Pöppel, Sepp Hochreiter, and Johannes Brandstetter.
547 Vision-LSTM: xLSTM as generic vision backbone. *arXiv preprint arXiv:2406.04303*, 2024.

548 Arthur R. Butz. Convergence with hilbert's space filling curve. *Journal of Computer
549 and System Sciences*, 3(2):128–146, 1969. ISSN 0022-0000. doi: [https://doi.org/10.1016/S0022-0000\(69\)80010-3](https://doi.org/10.1016/S0022-0000(69)80010-3). URL <https://www.sciencedirect.com/science/article/pii/S0022000069800103>.

550 Christian Bhm. Space-filling curves for high-performance data mining, 2020. URL <https://arxiv.org/abs/2008.01684>.

551 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
552 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the
553 IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

554 Jakub Cerveny. Gilbert: Generalized hilbert space-filling curve for rectangular domains. <https://github.com/jakubcerveny/gilbert>, 2025. Accessed: 2025-05-09.

555 Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
556 Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
557 Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
558 Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
559 *arXiv preprint arXiv:1906.07155*, 2019.

560 Wanli Chen, Xufeng Yao, Xinyun Zhang, and Bei Yu. Efficient Deep Space Filling Curve . In *2023
561 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 17479–17488, Los Alamitos,
562 CA, USA, October 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.01607. URL
563 <https://doi.ieee.org/10.1109/ICCV51070.2023.01607>.

564 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane,
565 Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
566 jamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with performers. In
567 *International Conference on Learning Representations*, 2021.

568 Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia,
569 and Chunhua Shen. Conditional positional encodings for vision transformers. *arXiv preprint
570 arXiv:2102.10882*, 2021.

571 Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
572 encodings for vision transformers. In *The Eleventh International Conference on Learning Representations*,
573 2023. URL <https://openreview.net/forum?id=3KWnuT-R1bh>.

574 MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and
575 benchmark. <https://github.com/open-mmlab/mmsegmentation>, 2020.

576 Revital Dafner, Daniel Cohen-Or, and Yossi Matias. Context-based space filling curves. *Computer
577 Graphics Forum*, 19(3):209–218, 2000. doi: 10.1111/1467-8659.00413.

578 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
579 Transformer-xl: Attentive language models beyond a fixed-length context, 2019. URL <https://arxiv.org/abs/1901.02860>.

580 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
581 structured state space duality. In *Forty-first International Conference on Machine Learning*, 2024.

594 Stefano d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli, and Levent Sagun.
 595 Convit: Improving vision transformers with soft convolutional inductive biases. In *Proceedings*
 596 *of the 38th International Conference on Machine Learning (ICML)*, volume 139, pp. 2286–2296.
 597 PMLR, 2021.

598 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 599 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 600 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 601 In *International Conference on Learning Representations*, 2021.

602 Qihang Fan, Huaibo Huang, Mingrui Chen, Hongmin Liu, and Ran He. Rmt: Retentive networks
 603 meet vision transformers. In *Proceedings of the IEEE/CVF conference on computer vision and*
 604 *pattern recognition*, pp. 5641–5651, 2024.

605 Henning Fernau, Meenakshi Paramasivan, Markus L. Schmid, and D. Gnanaraj Thomas. Scanning
 606 pictures the boustrophedon way. In Reneta P. Barneva, Bhargab B. Bhattacharya, and Valentin E.
 607 Brimkov (eds.), *Combinatorial Image Analysis*, pp. 202–216, Cham, 2015. Springer International
 608 Publishing. ISBN 978-3-319-26145-4.

609 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
 610 *Conference on Learning and Modeling (COLM 2024)*, 2024.

611 Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
 612 Convolutional neural networks meet vision transformers. In *Proceedings of the IEEE/CVF*
 613 *conference on computer vision and pattern recognition*, pp. 12175–12185, 2022.

614 Kaiming He, Georgia Gkioxari, Piotr Dollr, and Ross Girshick. Mask r-cnn. In *2017 IEEE Interna-*
 615 *tional Conference on Computer Vision (ICCV)*, pp. 2980–2988, 2017. doi: 10.1109/ICCV.2017.322.

616 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 617 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF Conference on*
 618 *Computer Vision and Pattern Recognition (CVPR)*, pp. 16000–16009, June 2022.

619 Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision
 620 transformer. In *European Conference on Computer Vision (ECCV)*, 2024.

621 David Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. *Dritter Band: Analysis-*
 622 *Grundlagen der Mathematik- Physik Verschiedenes: Nebst Einer Lebensgeschichte*, pp. 1–2, 1935.

623 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 624 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International*
 625 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

626 Zilong Huang, Xinggang Wang, Lichao Huang, Chang Wang, and Wenyu Liu. Shuffle transformer:
 627 Rethinking spatial shuffle for vision transformer. *arXiv preprint arXiv:2106.03650*, 2021.

628 Sukjun Hwang, Aakash Lahoti, Tri Dao, and Albert Gu. Hydra: Bidirectional state space models
 629 through generalized matrix mixers. *arXiv preprint arXiv:2407.09941*, 2024.

630 Marek Kac, WL Murdock, and Gabor Szegö. On the eigen-values of certain hermitian forms. *Journal*
 631 *of Rational Mechanics and Analysis*, 2:767–800, 1953.

632 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
 633 Fast autoregressive transformers with linear attention. In *International conference on machine*
 634 *learning*, pp. 5156–5165. PMLR, 2020.

635 Alex Krizhevsky. Learning multiple layers of features from tiny images. In *Tech Report*, 2009.

636 Declan Kutscher, David M. Chan, Yutong Bai, Trevor Darrell, and Ritwik Gupta. Reordering patches
 637 improves vision models, 2025. URL <https://arxiv.org/abs/2505.23751>.

638 Henri Lebesgue. *Leons sur l’intgration et la recherche des fonctions primitives*. Gauthier-Villars,
 639 Paris, 1904.

648 Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
 649 State space model for efficient video understanding. In *European Conference on Computer Vision*,
 650 pp. 237–255. Springer, 2024.

651 Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool. Localvit: Bringing locality to
 652 vision transformers. *arXiv preprint arXiv:2104.05707*, 2021.

653 Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. *arXiv preprint arXiv:1312.4400*,
 654 2013. doi: 10.48550/arXiv.1312.4400. URL <https://arxiv.org/abs/1312.4400>.

655 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 656 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollr. Microsoft coco: Common objects
 657 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

658 Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer: Softmax
 659 attention with a forget gate. *arXiv preprint arXiv:2503.02130*, 2025.

660 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 661 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. *arXiv preprint*
 662 *arXiv:2402.09353*, 2024a.

663 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
 664 Jiao, and Yunfan Liu. Vmamba: Visual state space model. *Advances in neural information*
 665 *processing systems*, 37:103031–103063, 2024b.

666 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 667 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 668 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

669 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
 670 Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and reso-
 671 lution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 672 (*CVPR*), pp. 12009–12019, 2022.

673 Zhiying Lu, Hongtao Xie, Chuanbin Liu, and Yongdong Zhang. Bridging the gap between vision
 674 transformers and convolutional neural networks on small datasets. In Alice H. Oh, Alekh Agarwal,
 675 Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*,
 676 2022. URL <https://openreview.net/forum?id=bfz-jhJ8wn>.

677 Eliakim Hastings Moore. On certain crinkly curves. *Transactions of the American Mathematical*
 678 *Society*, 1(1):72–90, 1900. ISSN 00029947, 10886850. URL <http://www.jstor.org/stable/1986405>.

679 Duy Kien Nguyen, Mido Assran, Unnat Jain, Martin R. Oswald, Cees G. M. Snoek, and Xinlei
 680 Chen. An image is worth more than 16x16 patches: Exploring transformers on individual
 681 pixels. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 682 <https://openreview.net/forum?id=tjNf0L8QjR>.

683 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 684 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 685 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

686 Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
 687 and Soham De. Resurrecting recurrent neural networks for long sequences. In *International*
 688 *Conference on Machine Learning*, pp. 26670–26698. PMLR, 2023.

689 Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks, 2015. URL
 690 <https://arxiv.org/abs/1511.08458>.

691 Giuseppe Peano. *Sur une courbe, qui remplit toute une aire plane*. Springer, 1990.

692 Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
 693 Random feature attention. *arXiv preprint arXiv:2103.02143*, 2021.

702 Trevor Prater. pymorton: A lightweight and efficient python morton encoder with support for geo-
 703 hashing. <https://github.com/trevorprater/pymorton>. Accessed: 2025-05-09.
 704

705 Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Ling-
 706 peng Kong, and Yiran Zhong. Toeplitz neural network for sequence modeling. *arXiv preprint*
 707 *arXiv:2305.04749*, 2023.

708 Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
 709 the masses, 2021.

710

711 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 712 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 713 challenge. *IJCV*, 115(3):211–252, 2015.

714 Hans Sagan. *Space-Filling Curves*. Universitext. Springer, New York, NY, 1994. ISBN 978-0-387-
 715 94265-0. doi: 10.1007/978-1-4612-0871-6. URL <https://link.springer.com/book/10.1007/978-1-4612-0871-6>.

716

717 Aparna Sasidharan, John M. Dennis, and Marc Snir. A general space-filling curve algorithm for
 718 partitioning 2d meshes. In *2015 IEEE 17th International Conference on High Performance*
 719 *Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety*
 720 *and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems*,
 721 pp. 875–879, 2015. doi: 10.1109/HPCC-CSS-ICESS.2015.192.

722

723 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
 724 programmers. In *International Conference on Machine Learning*, pp. 9355–9366. PMLR, 2021.

725

726 I. J. Schoenberg. A remark on the mapping of the line onto a plane region. *Bulletin of the American*
 727 *Mathematical Society*, 44(12):831–834, 1938.

728

729 Ren Schubotz. zCurve: Multi-dimensional indexing using Morton space filling curves., May 2021.
 URL <https://github.com/rmrschub/zCurve>.

730

731 Wacaw Sierpiski. Sur une courbe dont tout point est un point de ramification. *Comptes Rendus*
 732 *Hebdomadaires des Sances de l'Academie des Sciences*, 160:302–305, 1915.

733

734 Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
 735 effectiveness of data in deep learning era, 2017. URL <https://arxiv.org/abs/1707.02968>.

736

737 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 738 Furu Wei. Retentive network: A successor to transformer for large language models. *arXiv preprint*
arXiv:2307.08621, 2023.

739

740 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 741 Jégou. Training data-efficient image transformers & distillation through attention. In *International*
742 conference on machine learning, pp. 10347–10357. PMLR, 2021.

743

744 Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In *European conference*
745 on computer vision, pp. 516–533. Springer, 2022.

746

747 David Walker and Anthony Skjellum. The impact of space-filling curves on data movement in parallel
 748 systems, 2023. URL <https://arxiv.org/abs/2307.07828>.

749

750 G.K. Wallace. The jpeg still picture compression standard. *IEEE Transactions on Consumer*
751 Electronics, 38(1):xviii–xxxiv, 1992. doi: 10.1109/30.125072.

752

753 Feng Wang, Yaodong Yu, Wei Shao, Yuyin Zhou, Alan Yuille, and Cihang Xie. Scaling laws
 754 in patchification: An image is worth 50,176 tokens and more. In *Forty-second International*
755 Conference on Machine Learning, 2025. URL <https://openreview.net/forum?id=uEsWuHra1Y>.

756

757 Hanyu Wang, Kamal Gupta, Larry Davis, and Abhinav Shrivastava. Neural space-filling curves. In
 758 *European Conference on Computer Vision*, pp. 418–434. Springer, 2022a.

756 Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao.
 757 Videomae v2: Scaling video masked autoencoders with dual masking. In *Proceedings of the*
 758 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14549–14560,
 759 June 2023.

760 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 761 and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
 762 convolutions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 763 568–578, 2021.

764 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 765 and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. *Computational*
 766 *Visual Media*, 8(3):415–424, 2022b.

767 Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang Chao. Rethinking and improving
 768 relative position encoding for vision transformer. In *Proceedings of the IEEE/CVF International*
 769 *Conference on Computer Vision (ICCV)*, pp. 10033–10041, October 2021a.

770 Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang Chao. Rethinking and improving
 771 relative position encoding for vision transformer. In *Proceedings of the IEEE/CVF international*
 772 *conference on computer vision*, pp. 10033–10041, 2021b.

773 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
 774 scene understanding. In *European Conference on Computer Vision*. Springer, 2018.

775 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 776 transformers with hardware-efficient training. *arXiv preprint arXiv:2312.06635*, 2023.

777 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
 778 with the delta rule over sequence length. *arXiv preprint arXiv:2406.06484*, 2024.

779 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis E. H. Tay,
 780 Jiashi Feng, and Shuicheng Yan. Tokens-to-Token ViT: Training Vision Transformers from
 781 Scratch on ImageNet . In *2021 IEEE/CVF International Conference on Computer Vision (ICCV)*,
 782 pp. 538–547, Los Alamitos, CA, USA, October 2021. IEEE Computer Society. doi: 10.1109/
 783 ICCV48922.2021.00060. URL <https://doi.ieee.org/10.1109/ICCV48922.2021.00060>.

784 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
 785 Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer,
 786 Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and Neil
 787 Houlsby. A large-scale study of representation learning with the visual task adaptation benchmark.
 788 *arXiv preprint arXiv:1910.04867*, 2019. URL <https://arxiv.org/abs/1910.04867>.

789 Weixuan Zhang, Zhen Qin, Hui Deng, Jianyuan Wang, Kaihao Zhang, Nick Barnes, Horst Bischof,
 790 Lingpeng Kong, and Yiran Zhong. Vicinity vision transformer. *IEEE Transactions on Pattern*
 791 *Analysis and Machine Intelligence*, 2023.

792 Qingsong Zhao, Yi Wang, Zhipeng Zhou, Duoqian Miao, Limin Wang, Yu Qiao, and Cairong Zhao.
 793 Rethinking the zigzag flattening for image reading, 2024. URL <https://arxiv.org/abs/2202.10240>.

794 Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
 795 parsing through ade20k dataset. In *Proceedings of the IEEE Conference on Computer Vision and*
 796 *Pattern Recognition*, 2017.

797 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
 798 Semantic understanding of scenes through the ade20k dataset. *International Journal of Computer*
 799 *Vision*, 127(3):302–321, 2019.

800 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
 801 mamba: Efficient visual representation learning with bidirectional state space model, 2024.

810 811 812 813 814 815 816 Appendix

817 818 Table of Contents

819	A Notations	17
820	B Extended Background	17
821	B.1 ViTs and spatial priors	17
822	B.2 Linear Transformers	18
823	B.3 Space Filling Curves	19
824	B.4 Locality via decay mask	21
825	B.5 Efficiency of Toeplitz decay mask	21
826	B.6 Connections of VIOLIN to other models	21
827	C Proofs	22
828	C.1 Attention is permutation equivariant	22
829	C.2 SFCs in decay mask are a distance metric	23
830	C.3 VIOLIN SFC flattening only reflects in decay mask	23
831	D Futher design details	25
832	D.1 Initialization	25
833	D.2 Adaptation of VIOLIN to various architectures	25
834	E Ablation studies	27
835	E.1 Positional embeddings	27
836	E.2 Alternative curve configurations	27
837	E.3 Alternative masking strategies	28
838	E.4 Other design elements	28
839	E.5 Global Average Pooling (GAP)	28
840	F Additional results	30
841	F.1 Pretraining of larger models	30
842	F.2 Fine-tuning of VIOLIN pretrained models	30
843	F.3 Multi-resolution classification	31
844	F.4 Additional visualizations	32
845	F.5 Details and individual results on VTAB-1K dataset	35
846	F.6 Comparison against other locality methods.	37
847	F.7 Learned curve order	38
848	F.8 Comparison with relative positional encodings	39
849	G Codes and implementation details	40
850	G.1 Compute resources	40
851	G.2 VTAB-1K hyperparameters	40
852	G.3 Codes for curves	41
853	G.4 Code of efficient decay mask	43
854	G.5 The Use of Large Language Models (LLMs)	43

864
865
A NOTATIONS866
867
In Table 9, we summarize the notations used in the paper.868
869
Table 9: *Notations*: Summary of notations used throughout the paper.

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 Definition	870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 Notation
Image	$\mathcal{I} \in \mathbb{R}^{H \times W \times d}$
Curves set	\mathcal{C}
Curve ID	$c \in \mathcal{C}$
Flattening operator with curve c	$F_c(\mathcal{I}) : \mathbb{R}^{H \times W} \rightarrow \mathbb{R}^N$
Flattened image with curve c	$\mathbf{X}_c \in \mathbb{R}^{N \times d}$
Permutation from curve c_1 to c_2	$\pi_{c_1 \rightarrow c_2}(i)$
Permutation matrix from curve c_1 to c_2	$\mathbf{P}_{c_1 \rightarrow c_2} \in \mathbb{R}^{N \times N}$
Decay mask for basis curve (Z-curve)	$\mathbf{M} \in \mathbb{R}^{N \times N}$
Decay mask for curve c	$\mathbf{M}_c \in \mathbb{R}^{N \times N}$
Permuted decay mask for curve c	$\tilde{\mathbf{M}}_c \in \mathbb{R}^{N \times N}$
Average of all decay masks for all curves	$\mathbf{M}_{\text{VIOLIN}} \in \mathbb{R}^{N \times N}$
Average mask scaling parameter	$\alpha \in \mathbb{R}$
Decay parameter for mask \mathbf{M}_c	$\gamma_c \in \mathbb{R}$
Queries, keys, values	$\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$

885
886
B EXTENDED BACKGROUND887
888
B.1 ViTs AND SPATIAL PRIORS889
890
ViTs are powerful alternatives to Convolutional Neural Networks (CNNs) (O’Shea & Nash, 2015),
891 but their design comes with a fundamental limitation: a lack of inherent spatial inductive bias. Unlike
892 CNNs, where convolutions naturally encode locality and translation equivariance, ViTs treat images as
893 sequences of independent patches. Spatial relations must therefore be inferred entirely from data, with
894 positional embeddings and patching serving as the primary source of spatial information (Dosovitskiy
895 et al., 2021; Yuan et al., 2021). This design provides ViTs with flexibility in modeling global
896 dependencies, however it also removes the strong inductive priors that are especially critical in
897 data-scarce settings (d’Ascoli et al., 2021; Wu et al., 2021b).898
899
The absence of spatial inductive bias makes ViTs particularly fragile and data hungry when model
900 capacity or training data is limited. Small ViTs trained on large datasets often underperform com-
901 pared to CNNs, since they cannot rely on built-in locality to efficiently capture low-level spatial
902 features (Touvron et al., 2021; Yuan et al., 2021). In contrast, when both models and datasets are
903 sufficiently large, and training is long enough, ViTs can learn these biases directly from data. For
904 instance, large-scale training on ImageNet-21k (Ridnik et al., 2021) or JFT (Sun et al., 2017) demon-
905 strates that ViTs can eventually match or surpass CNNs, but this comes at considerable computational
906 and data cost (Dosovitskiy et al., 2021; Touvron et al., 2021). Therefore, spatial inductive bias is
907 highly beneficial in practice, especially for downstream tasks, resource-constrained scenarios and
908 small scale models.909
910
Motivated by this tradeoff, various approaches have emerged to reintroduce spatial priors into
911 transformer architectures. Hierarchical models such as Swin Transformer (Liu et al., 2021; 2022) and
912 Pyramid Vision Transformer (PVT) (Wang et al., 2021; 2022b) adopt CNN-like multi-scale processing,
913 enabling more efficient capture of local and global dependencies. Similarly, T2T-ViT (Yuan et al.,
914 2021) progressively aggregates tokens to embed local structure. These designs restore the inductive
915 biases of locality and scale, improving performance in regimes where pure ViTs struggle.916
917
Another line of work incorporates convolutions directly into the transformer pipeline. Convolutional
918 hybrids such as CvT (Wu et al., 2021b), ConViT (d’Ascoli et al., 2021), and CMT (Guo et al.,
919 2022) explicitly embed local connectivity into the attention mechanism or token embedding process,
920 bridging the gap between CNNs and ViTs. Other methods explore novel locality-aware mechanisms,
921 including vicinity attention (Zhang et al., 2023), shuffle-based spatial mixing (Huang et al., 2021),

918 and localized attention modules (Li et al., 2021; Chu et al., 2021). Even more recent innovations,
 919 such as RMT (Fan et al., 2024), propose decay masks inspired by RetNet (Sun et al., 2023) to enforce
 920 local inductive constraints.

921 Despite their effectiveness, most of these approaches achieve improved spatial priors by directly
 922 modifying the ViT architecture such as embedding convolutions into tokenization, or restructuring
 923 the model into hierarchical stages. While such changes enhance locality, they also increase design
 924 complexity, reduce modularity, and often require pretraining from scratch on large datasets to fully
 925 realize their benefits. This makes them less practical in settings where one wishes to reuse widely
 926 available pretrained vanilla ViTs. In contrast, methods that can inject spatial inductive bias without
 927 altering the base architecture, for instance, during fine-tuning, offer a more lightweight and flexible
 928 alternative, enabling broader applicability to downstream tasks and smaller models without sacrificing
 929 compatibility with existing pretrained checkpoints.

930 What remains missing is a simple mechanism to bridge this gap: an approach that can utilize already
 931 trained ViTs while still strengthening their spatial priors, which can be achieved via VIOLIN with
 932 close to zero additional cost.

934 B.2 LINEAR TRANSFORMERS

936 Linear attention is mathematically equivalent to an RNN (Katharopoulos et al., 2020)

$$938 \quad \mathbf{S}_i = \mathbf{S}_{i-1} + \mathbf{k}_i^\top \mathbf{v}_i, \quad \mathbf{y}_i = \mathbf{q}_i^\top \mathbf{S}_i \quad \Leftrightarrow \quad \mathbf{Y} = (\mathbf{Q}\mathbf{K}^\top \odot \mathbf{L}_{\text{Causal}})\mathbf{V}, \quad (14)$$

940 where $\mathbf{S}_i \in \mathbb{R}^{d \times d}$ represents the hidden state of the Linear Transformer in its equivalent RNN form
 941 and $\mathbf{L}_{\text{Causal}} \in \mathbb{R}^{N \times N}$ is lower triangular matrix of ones.

942 Building on that, Linear Transformers with a scalar decay factor commonly take the following
 943 recurrent form:

$$944 \quad \mathbf{S}_i = \mathbf{\Lambda}_i \mathbf{S}_{i-1} + \mathbf{k}_i^\top \mathbf{v}_i, \quad \mathbf{u}_i = \mathbf{q}_i^\top \mathbf{S}_i \quad (15)$$

946 with hidden state \mathbf{S}_i and output \mathbf{y}_i . Here, the behavior of the model is determined by the choice of the
 947 decay parameter $\mathbf{\Lambda}_i$. It is also standard practice to apply a non-linearity to the queries and keys, such
 948 that $\mathbf{Q}, \mathbf{K} = \phi(\mathbf{W}_Q \mathbf{X}), \phi(\mathbf{W}_K \mathbf{X})$, and to scale attention in relation to past tokens, as discussed in
 949 Katharopoulos et al. (2020).

951 **No decay** In vanilla Linear Transformers (eq. (2)), there is no decay term, or equivalently $\mathbf{\Lambda}_i = \mathbf{I}$
 952 where \mathbf{I} is the identity matrix. As a result, these models do not encode relative positional information.
 953 Performer (Choromanski et al., 2021) is a representative example, using Random Fourier Features
 954 (RFF) (Peng et al., 2021) as the non-linear function $\phi(\cdot)$, without any form of decay mechanism.

956 **Non input-dependent decay** A key example in this category is RetNet (Sun et al., 2023), which
 957 employs a fixed scalar decay parameter $\mathbf{\Lambda}_i = \gamma$. This introduces a locality bias in the attention
 958 computation, but the decay remains constant and independent of the input sequence.

960 **Input-dependent decay** Several recent linear transformers in the NLP domain fall into this category,
 961 where the decay parameter $\mathbf{\Lambda}_i = g(\mathbf{x}_i)$ is a function of the input and thus varies across tokens. For
 962 example, DeltaNet (Yang et al., 2024) defines the decay using the Delta Rule (Schlag et al., 2021) as
 963 $\mathbf{\Lambda}_i = \mathbf{I} - \mathbf{k}_i \mathbf{k}_i^\top$, while Gated RFA (Peng et al., 2021) uses an input-dependent scalar decay of the
 964 form $\mathbf{\Lambda}_i = \sigma(\mathbf{W} \mathbf{x}_i)$, where $\sigma(\cdot)$ is the sigmoid function and $\mathbf{W} \in \mathbb{R}^d$, resulting in a scalar decay
 965 value per token.

967 **Selective SMMs** This category of models is closely related to linear transformers with input-
 968 dependent decay. A prominent example is Mamba (Gu & Dao, 2024), which can be interpreted as a
 969 linear transformer with an input-dependent diagonal matrix as the decay parameter $\mathbf{\Lambda}_i$ (Yang et al.,
 970 2023). Mamba-2 (Dao & Gu, 2024), a simplified variant, further refines this by using an exponential
 971 formulation for the decay factor: $\mathbf{\Lambda}_i = \exp(-\exp(\mathbf{W} \mathbf{x}_i))$, enabling a more stable and expressive
 modeling of token-wise recurrence.

972 B.3 SPACE FILLING CURVES
973

974 SFCs have diverse applications across various domains, including image compression and generation (Wang et al., 2022a; Dafner et al., 2000), point cloud processing (Chen et al., 2023), data mining (Bhm, 2020), and data movement (Walker & Skjellum, 2023). In this section, we define the curves used in this study as flattening operation F_c for each curve. The definitions are adapted from (Sagan, 1994; Peano, 1990; Hilbert, 1935; Zhao et al., 2024).

979 **Z-curve** The Z-curve, also known as sweep, row-major order, or raster scan, is the simplest and
980 most widely used method for flattening a 2D image into a 1D sequence. It scans the image row by
981 row, from top to bottom and left to right within each row. More concretely, for an image with width
982 W , the flattening function can be defined as
983

$$F_z(i, j) = iW + j. \quad (16)$$

985 This flattening order is the default scanning method in many vision models, including ViTs. As a
986 result, we use it as our basis in the paper.
987

988 **Snake Curve** The snake curve, also known as boustrophedon order (Fernau et al., 2015), is a
989 variation of the Z-curve that alternates the scanning direction across rows. Even-indexed rows are
990 traversed left to right, while odd-indexed rows are traversed right to left, creating a continuous snake
991 path through the image. The flattening function is given by:
992

$$F_{\text{snake}}(i, j) = \begin{cases} i \cdot W + j & \text{if } i \bmod 2 = 0 \\ i \cdot W + (W - 1 - j) & \text{if } i \bmod 2 = 1 \end{cases} \quad (17)$$

994 This curve has a simplicity similar to the Z-curve while reducing long jumps between the end of one
995 row and the beginning of the next. It is utilized in various applications, including image processing
996 and path planning, due to its efficiency in covering areas without unnecessary repositioning.
997

998 **Zig-zag Curve** The Zig-zag curve (Wallace, 1992) is a diagonal scanning pattern that visits patches
999 of an image along consecutive diagonals, alternating direction at each level. More concretely, with
1000 an image of size $H \times W$, for each diagonal $g \in \{0, \dots, H + W - 2\}$, it scans the elements where
1001 $i + j = g$, from top-right to bottom-left on odd-numbered diagonals and from bottom-left to top-right
1002 on even-numbered ones. In other words, for each diagonal g , let the set of valid coordinates on that
1003 diagonal be $D_g = \{(i, j) \mid i + j = g, 0 \leq i < H, 0 \leq j < W\}$. Then the ordering of $F_{\text{zigzag}}(i, j)$
1004 can be defined by
1005

$$F_{\text{zigzag}}(i, j) = \left(\sum_{k=0}^{g-1} |D_k| \right) + \text{offset}_g(i, j), \quad (18)$$

1008 where $|D_k|$ is the length of the diagonal and $\text{offset}_g(i, j)$ is
1009

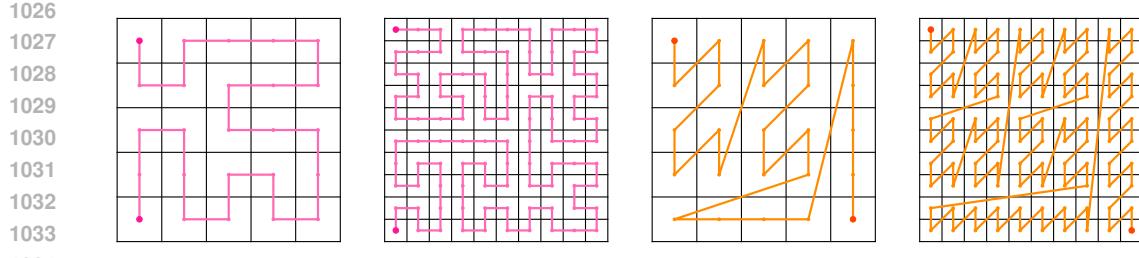
$$\text{offset}_g(i, j) = \begin{cases} \#\{(i', j') \in D_g \mid j' < j\} & \text{if } g \bmod 2 = 0, \\ \#\{(i', j') \in D_g \mid j' > j\} & \text{if } g \bmod 2 = 1. \end{cases}$$

1012 The zig-zag curve is most commonly used in applications where frequency components are spatially
1013 grouped such as the JPEG compression standard to serialize the block of discrete cosine transform
1014 (DCT) coefficients, to ensure that low-frequency components that carry the most information appear
1015 early in the sequence.
1016

1017 **Hilbert Curve** The Hilbert curve (Hilbert, 1935) recursively divides the space into quadrants and
1018 connects them in a continuous path that fills the entire 2D grid. Similar to Peano curve, the Hilbert
1019 curve is most naturally defined on square images of size $2^p \times 2^p$ where the recursive quadrant-
1020 based construction aligns with the binary structure of the coordinates. The flattening function
1021 $F_{\text{hilbert}}(i, j)$ does not have a simple closed-form expression, but can be computed via recursive or
1022 bitwise algorithms, for example, Butz or Moore methods (Butz, 1969; Moore, 1900).

1023 For an image of size $H \times W$ with $H = W = 2^p$, we can define the Hilbert curve flattening function
1024 as
1025

$$F_{\text{hilbert}}(i, j) = \sum_{k=1}^n q_k \cdot 4^{n-k} \quad (19)$$

(a) Hilbert on 5×5 grid. (b) Hilbert on 10×10 grid. (c) Peano on 5×5 grid. (d) Peano on 10×10 grid.Figure 5: *Extension of Hilbert and Peano curves*: Visualization of how Hilbert and Peano curves extend to non-power-of-2 grids.

where $q_1 q_2 \cdots q_n$ is the base-4 Hilbert index corresponding to the normalized pixel center:

$$\left(\frac{i}{2^n} + \frac{1}{2^{n+1}}, \quad \frac{j}{2^n} + \frac{1}{2^{n+1}} \right) \in [0, 1]^2 \quad (20)$$

Each digit $q_k \in \{0, 1, 2, 3\}$ represents the quadrant at level k in the recursive Hilbert construction.

Points that are close in 2D space tend to remain close in 1D, which makes it especially valuable in image processing, spatial indexing, and contexts where locality is significant.

Peano Curve The Peano curve, also called Z-order curve or Morton curve, (Peano, 1990) is a recursive scanning approach that preserves spatial locality by interleaving the binary representations of the row and column indices. It is particularly well-suited to square grids of size $2^p \times 2^p$ as the bit structure of the coordinates aligns naturally with the recursive subdivisions of the curve.

For $H = W = 2^p$, let $(i, j) \in \{0, \dots, 2^p - 1\}^2$ be the pixel coordinates, and we can write their binary expansions:

$$i = \sum_{k=0}^{n-1} i_k \cdot 2^k, \quad j = \sum_{k=0}^{n-1} j_k \cdot 2^k \quad \text{with } i_k, j_k \in \{0, 1\} \quad (21)$$

$$F_{\text{peano}}(i, j) = \text{interleave_bits}(i, j) = \sum_{k=0}^{p-1} (j_k \cdot 2^{2k+1} + i_k \cdot 2^{2k}) \quad (22)$$

As it can be constructed bitwise, it is computationally efficient and commonly used in applications like image tiling, spatial databases, and quadtree indexing.

Remark: While the Peano and Hilbert curves are most naturally defined on square grids with power-of-two dimensions, they can be easily extended to arbitrary image sizes by truncating higher-order bits, using padding, clipping, or floating-point mapping techniques (Cerveny, 2025; Sasidharan et al., 2015). In Figure 5, we visually show how to extend these curves to non-power-of-2 cases with codes provided in Appendix G.3.

Flattening with transposed curves Standard SFCs are typically defined over fixed scans using row-major or column-major orderings. To increase the diversity of locality preserving patterns without incurring additional cost, we introduce transposed variants of standard SFCs such as column-major Snake or vertical Zig-Zag. These variants simply swap coordinates during traversal. We define the flattened image under a transposed curve as:

$$\mathbf{X}_{c^\top}[n] = \mathcal{I}[i, j] \quad \text{where} \quad n = F_{c^\top}(i, j) = F_c(j, i). \quad (23)$$

Accordingly, we expand our curve set to include these rotated versions, resulting in the final VIOLIN curve set:

$$\mathcal{C} = \{\text{Snake}, \text{Zig-Zag}, \text{Peano}, \text{Hilbert}, \text{Snake}^\top, \text{Zig-Zag}^\top, \text{Peano}^\top, \text{Hilbert}^\top\} \quad (24)$$

1080 B.4 LOCALITY VIA DECAY MASK
10811082 **Decay mask structure** An example of a 4×4 causal decay mask with non-input-dependent decay
1083 factor, as used in RetNet (Sun et al., 2023), is

1084
1085
$$\mathbf{M}_{\text{Causal}} = \begin{bmatrix} 1 & & & \\ \gamma & 1 & & \\ \gamma^2 & \gamma & 1 & \\ \gamma^3 & \gamma^2 & \gamma & 1 \end{bmatrix}, \quad \mathbf{M}_{\text{Causal}}[i, j] = \begin{cases} \gamma^{i-j} & i \geq j \\ 0 & i < j \end{cases} \quad (25)$$

1086
1087
1088

1089 As seen in the causal decay mask above, the decay masking the attention $\mathbf{M}_{\text{Causal}}[i, j]$ depends only
1090 on the difference between i and j , specifically $\mathbf{M}_{\text{Causal}}[i, j] = \gamma^{|i-j|}$. which reflects the locality
1091 information in the causal decay mask.1092 As an extension for bidirectional tasks, such as image classification, the causal mask can be extended
1093 to a full Toeplitz decay mask, as shown in (Afzal et al., 2025):

1094
1095
$$\mathbf{M} = \begin{bmatrix} 1 & \gamma & \gamma^2 & \gamma^3 \\ \gamma & 1 & \gamma & \gamma^2 \\ \gamma^2 & \gamma & 1 & \gamma \\ \gamma^3 & \gamma^2 & \gamma & 1 \end{bmatrix}, \quad \mathbf{M}[i, j] = \gamma^{|i-j|} \quad (26)$$

1096
1097
1098

1099 in this case, the attention between each pair of tokens i and j is masked based on their distance $|i - j|$.
1100 Additionally, the decay factor $0 < \gamma < 1$ is bounded between to ensure that $\mathbf{M}[i, j]$ does not overflow
1101 and remains stable (Orvieto et al., 2023).1102 **Extrapolation capabilities of decay mask** The decay mask \mathbf{M} can easily be extrapolated beyond
1103 the context length (Dao & Gu, 2024; Sun et al., 2023) because $\mathbf{M}[i, j] = \gamma^{|i-j|}$ is independent of
1104 the sequence length. This is especially useful since we can change the resolution of images during
1105 inference without needing to interpolate or extrapolate the position embeddings (Dosovitskiy et al.,
1106 2021; Caron et al., 2021). This capability is particularly valuable when generating videos for object
1107 tracking in VIOLIN DINO.1109 B.5 EFFICIENCY OF TOEPLITZ DECAY MASK
11101111 As mentioned in the background Appendix B.2, the decay parameter γ can be input dependent as
1112 well, which means that it is extracted for each token as:

1113
1114
$$\gamma_i = g(\mathbf{W}_\gamma \mathbf{x}_i), \quad \mathbf{M}[i, j] = \gamma_j \gamma_{j+1} \dots \gamma_i = \prod_{k=j}^i \gamma_k \quad (27)$$

1115
1116

1117 with $g(\cdot)$ being a bounded function such that $0 < g(x) < 1$ (i.e. sigmoid). This results in each element
1118 of the decay mask $\mathbf{M}[i, j]$ representing the cumulative product of decay contributions from all tokens
1119 between positions i and j leading to input-dependent decay masks. While these type of masks can
1120 offer finer-grained control, they are slower to train, requiring $\mathcal{O}(\log(N))$ time points to compute (Gu
1121 & Dao, 2024; Dao & Gu, 2024), consume more memory, and must be dynamically constructed during
1122 inference. In contrast, input-independent decay masks such as the one used in VIOLIN are much more
1123 efficient. We adopt the decay mask in VIOLIN as it is faster to train, memory-efficient (requiring only
1124 a single learned scalar γ per curve), and eliminates the need for recompilation during inference. This
1125 simple scalar-based design still performs effectively and achieves strong results in practice (Afzal
1126 et al., 2025).1127 B.6 CONNECTIONS OF VIOLIN TO OTHER MODELS
11281129 As VIOLIN is inspired by the forget gate (also known as the decay mask) in Linear Transformers,
1130 it shares strong connections with these models and their adaptations for vision tasks. Below, we
1131 highlight some of the most relevant connections:1132 **RMT** RMT (Fan et al., 2024) also introduces a decay mask (via Manhattan distance) to enhance
1133 the spatial awareness of ViTs, addressing a similar challenge. However, it differs from VIOLIN in key

ways. RMT uses only a single flattening strategy and applies a fixed distance metric (Manhattan), while VIOLIN generates multiple masks based on different SFCs and defines a KacMurdockSzeg (KMS) matrix for the decay. Architecturally, VIOLIN is a modular attention mechanism that can be plugged into various ViT backbones, whereas RMT is a standalone model. We also conducted an ablation using the Manhattan distance decay as in RMT, and found it underperforms compared to VIOLIN. Detailed results are provided in Table 13.

FoX FoX, or Forgetting Transformer (Lin et al., 2025), is designed for causal sequence modeling, specifically to capture long-range dependencies in the NLP domain. It uses an input-dependent causal decay mask, as shown in eq. (27), which differs significantly from VIOLIN in both application domain and mask design. Moreover, the perspective central to VIOLIN, based on flattening and scanning via space-filling curves, does not appear in FoX, as it operates in the NLP setting rather than vision tasks.

Vision Linear Transformer This class includes models such as Vision LSTM (Alkin et al., 2024), Vision Mamba (Zhu et al., 2024), and VMamba (Liu et al., 2024b), which are related to VIOLIN due to their use of different scanning strategies primarily based on the Z-curve in both standard and transposed (horizontal and vertical) directions. However, these models significantly differ from VIOLIN in architecture, as they are based on SSMs like Mamba (Gu & Dao, 2024) or other linear attention mechanisms, rather than softmax-based Transformers. In contrast, VIOLIN is a softmax-based masked attention module that can be easily integrated into various ViT backbones. In this study, we apply VIOLIN to DeiT, DeiT-III, and DINO as representative examples.

MAE Masked Auto Encoders (MAE) (He et al., 2022) apply random input masking as a pretraining objective, dropping patches and training the model to reconstruct them. This masking affects only the input and does not influence attention computation. In contrast, VIOLIN applies structured masking within the attention mechanism, using decay masks based on space-filling curves to rescale attention scores, without dropping tokens or reconstructing inputs. It serves as a spatial inductive bias, guiding the model to attend more to nearby regions without altering the input or training objective.

C PROOFS

C.1 ATTENTION IS PERMUTATION EQUIVARIANT

Claim C.1. Attention without positional embeddings is permutation-equivariant. That is,

$$A(\pi(\mathbf{X})) = \pi(A(\mathbf{X})) \quad (28)$$

where $A(\cdot)$ is the output of the attention mechanism, and $\pi(\cdot)$ denotes a permutation of the sequence.

Proof. Let $\mathbf{X} \in \mathbb{R}^{N \times d}$ be the input sequence with N tokens and model dimension d . The attention is defined as

$$\mathbf{Q} = \mathbf{XW}_Q, \quad \mathbf{K} = \mathbf{XW}_K, \quad \mathbf{V} = \mathbf{XW}_V, \quad A(\mathbf{X}) = \text{Softmax} \left(\frac{\mathbf{QK}^\top}{\sqrt{d}} \right) \mathbf{V}. \quad (29)$$

Let π be a permutation of the input sequence, represented by a permutation matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$ such that $\pi(\mathbf{X}) = \mathbf{PX}$ and $\mathbf{PP}^\top = \mathbf{I}$. Then

$$\pi(\mathbf{Q}) = \mathbf{PXW}_Q = \mathbf{PQ}, \quad \pi(\mathbf{K}) = \mathbf{PK}, \quad \pi(\mathbf{V}) = \mathbf{PV}. \quad (30)$$

Now compute the attention on the permuted input

$$A(\pi(\mathbf{X})) = \text{Softmax} \left(\frac{(\mathbf{PQ})(\mathbf{PK})^\top}{\sqrt{d}} \right) (\mathbf{PV}) = \text{Softmax} \left(\frac{\mathbf{PQK}^\top \mathbf{P}^\top}{\sqrt{d}} \right) \mathbf{PV} \quad (31)$$

Since softmax is applied row-wise and permutation matrices preserve row-wise operations, we can factor \mathbf{P} out

$$A(\pi(\mathbf{X})) = \mathbf{P} \text{Softmax} \left(\frac{\mathbf{QK}^\top}{\sqrt{d}} \right) \mathbf{P}^\top \mathbf{PV} = \mathbf{P} \text{Softmax} \left(\frac{\mathbf{QK}^\top}{\sqrt{d}} \right) \mathbf{V} = \mathbf{PA}(\mathbf{X}) = \pi(A(\mathbf{X})) \quad (32)$$

Thus, attention is permutation-equivariant in the absence of positional embeddings. \square

1188
1189

C.2 SFCs IN DECAY MASK ARE A DISTANCE METRIC

1190
1191
1192
1193
1194

Claim C.2. Let $\mathbf{X}_{c_1} \in \mathbb{R}^{N \times d}$ be the flattened image using a space-filling curve c_1 , with the sequence indexed by $i, j, k \in \{0, \dots, N-1\}$. Any permutation π_{c_2} , corresponding to a new flattening order defined by a different curve c_2 , when applied to \mathbf{X}_{c_1} , induces a new sequence order. In this new order, the term $|\pi(i) - \pi(j)|$ satisfies the non-negativity, identity of indiscernibles, symmetry and triangle inequality properties of a distance metric between tokens i and j .

1195
1196
1197

Proof. To show that $|\pi(i) - \pi(j)|$ is a valid distance metric, we verify that it satisfies the standard properties of a metric:

1198
1199
1200

Non-negativity: For all i, j , we have

$$|\pi(i) - \pi(j)| \geq 0 \quad (33)$$

1201

since absolute values are always non-negative.

1202
1203

Identity of indiscernibles:

$$|\pi(i) - \pi(j)| = 0 \iff \pi(i) = \pi(j) \iff i = j \quad (34)$$

1204
1205
1206

because π is a permutation (i.e., a bijective function), so $\pi(i) = \pi(j)$ implies $i = j$.

1207
1208

Symmetry:

$$|\pi(i) - \pi(j)| = |\pi(j) - \pi(i)| \quad (35)$$

1209
1210
1211

by the symmetry of absolute value.

Triangle inequality: For any $i, j, k \in \{0, \dots, N-1\}$,

$$|\pi(i) - \pi(j)| \leq |\pi(i) - \pi(k)| + |\pi(k) - \pi(j)| \quad (36)$$

1212
1213

holds due to the triangle inequality property of absolute values.

1214
1215
1216
1217
1218

Therefore, $|\pi(i) - \pi(j)|$ satisfies all the conditions of a distance metric. This property is particularly interesting because the term $|\pi(i) - \pi(j)|$ appears as the exponent in the decay mask, leading to $\mathbf{M}_{c_2}[i, j] = \gamma^{|\pi(i) - \pi(j)|}$. As a result, taking the logarithm of the decay mask yields a distance matrix, $\log(\mathbf{M}_{c_2}[i, j]) = |\pi(i) - \pi(j)| \cdot \log(\gamma)$ thus, $\log(\mathbf{M}_{c_2})$ is a scaled distance matrix, encoding relative positional distances under the permutation induced by curve c_2 . \square

1219
1220
1221

C.3 VIOLIN SFC FLATTENING ONLY REFLECTS IN DECAY MASK

1222
1223

Claim C.3. Let the input sequence flattened using a base space-filling curve (e.g., Z-curve) be denoted by $\mathbf{X} \in \mathbb{R}^{N \times d}$, and let the output of VIOLIN attention be $\mathbf{Y} \in \mathbb{R}^{N \times d}$, computed as:

1224
1225
1226

$$\mathbf{Y} = \text{Softmax} \left(\alpha \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \mathbf{M} \right) \mathbf{V} \quad (37)$$

1227

where $\mathbf{M} \in \mathbb{R}^{N \times N}$ is the base decay mask with entries $\mathbf{M}[i, j] = \gamma^{|i-j|}$.

1228
1229
1230
1231

Now, let $\mathbf{X}_c = \pi_c(\mathbf{X})$ be the input sequence reordered using a space-filling curve c , with permutation π_c . Then, the output of the VIOLIN attention for the permuted input \mathbf{X}_c , re-ordered back to the original (basis) input order, is given by:

1232
1233
1234

$$\tilde{\mathbf{Y}} = \text{Softmax} \left(\alpha \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \pi_c(\mathbf{M}) \right) \mathbf{V} \quad (38)$$

1235
1236

where $\pi_c(\mathbf{M}) = \mathbf{M}[\pi_c(i), \pi_c(j)]$ denotes the decay mask permuted along both rows and columns according to the curve c .

1237
1238
1239
1240
1241

Proof. It is easy to see that flattening the input \mathcal{I} into a sequence \mathbf{X}_{c_1} using any space-filling curve c_1 defines a one-to-one mapping from the 2D grid to a 1D sequence. Therefore, there exists a permutation $\pi_{c_1 \rightarrow c_2}$ and an associated permutation matrix $\mathbf{P}_{c_1 \rightarrow c_2}$ such that the sequence obtained by flattening with another curve c_2 is given by:

$$\mathbf{X}_{c_2} = \mathbf{P}_{c_1 \rightarrow c_2} \mathbf{X}_{c_1} \quad (39)$$

Now, considering c_1 as the z-Curve (our basis flattening), and renaming c_2 simply as c , we simplify the notation as follows:

$$\pi_{c_1 \rightarrow c_2} = \pi_c, \quad \mathbf{P}_{c_1 \rightarrow c_2} = \mathbf{P}_c, \quad \mathbf{X}_c = \pi_c(\mathbf{X}) = \mathbf{P}_c \mathbf{X} \quad (40)$$

From eq. (30) we know that permuting the input \mathbf{X} will result in permutation of query, key and value matrices so for the input \mathbf{X}_c the attention presented at eq. (37) is re-written as:

$$\begin{aligned} \mathbf{Y}_c &= \text{Softmax} \left(\alpha \frac{\pi_c(\mathbf{Q}) \pi_c(\mathbf{K})^\top}{\sqrt{d}} \odot \mathbf{M} \right) \pi_c(\mathbf{V}) \\ &= \text{Softmax} \left(\alpha \frac{\mathbf{P}_c \mathbf{Q} (\mathbf{P}_c \mathbf{K})^\top}{\sqrt{d}} \odot \mathbf{M} \right) \mathbf{P}_c \mathbf{V} \\ &= \text{Softmax} \left(\alpha \frac{\mathbf{P}_c (\mathbf{Q} \mathbf{K}^\top) \mathbf{P}_c^\top}{\sqrt{d}} \odot \mathbf{M} \right) \mathbf{P}_c \mathbf{V} \end{aligned} \quad (41)$$

by multiplying $\mathbf{P}_c \mathbf{P}_c^\top$ to both sides of \mathbf{M} we have:

$$\mathbf{Y}_c = \text{Softmax} \left(\alpha \frac{\mathbf{P}_c (\mathbf{Q} \mathbf{K}^\top) \mathbf{P}_c^\top}{\sqrt{d}} \odot \mathbf{P}_c \mathbf{P}_c^\top \mathbf{M} \mathbf{P}_c \mathbf{P}_c^\top \right) \mathbf{P}_c(\mathbf{V}) \quad (42)$$

$$= \text{Softmax} \left(\alpha \frac{\mathbf{P}_c (\mathbf{Q} \mathbf{K}^\top) \mathbf{P}_c^\top}{\sqrt{d}} \odot \mathbf{P}_c (\mathbf{P}_c^\top \mathbf{M} \mathbf{P}_c) \mathbf{P}_c^\top \right) \mathbf{P}_c(\mathbf{V}) \quad (43)$$

Since the multiplication with the decay mask and the softmax operation are element-wise (i.e., applied row-wise for each query), the permutation matrices \mathbf{P}_c and \mathbf{P}_c^\top can be factored out of the attention computation. This results in the following expression:

$$\mathbf{Y}_c = \mathbf{P}_c \text{Softmax} \left(\alpha \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \mathbf{P}_c^\top \mathbf{M} \mathbf{P}_c \right) \cancel{\mathbf{P}_c^\top} \cancel{\mathbf{P}_c} \mathbf{V} = \mathbf{P}_c \text{Softmax} \left(\alpha \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \underbrace{\mathbf{P}_c^\top \mathbf{M} \mathbf{P}_c}_{\pi_c^{-1}(\mathbf{M})} \right) \mathbf{V} \quad (44)$$

Since the order of \mathbf{Y}_c corresponds to the permuted input \mathbf{X}_c , we can recover the output in the original (basis) order by applying the inverse permutation, i.e., multiplying by \mathbf{P}_c^\top . Therefore, the final output $\tilde{\mathbf{Y}}_c$ aligned with the original input \mathbf{X} is:

$$\tilde{\mathbf{Y}}_c = \mathbf{P}_c^\top \mathbf{Y}_c = \text{Softmax} \left(\alpha \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \odot \mathbf{P}_c^\top \mathbf{M} \mathbf{P}_c \right) \mathbf{V} \quad (45)$$

This confirms that applying attention to a permuted input using the base decay mask is equivalent to applying attention to the original input with a permuted (reordered) decay mask $\pi_c^{-1}(\mathbf{M}) = \mathbf{P}_c^\top \mathbf{M} \mathbf{P}_c$. \square

This proof is also visualized in Figure 6, illustrating that applying attention using a permuted decay mask based on curve c (e.g., the snake curve in the figure) is equivalent to permuting the input sequence according to c , computing attention with the original decay mask defined in the basis curve (e.g., Z-curve in our study), and then reordering the output back to the original sequence order.

Disclaimer In practice, it is unnecessary to explicitly define a permutation function π or construct a matrix \mathbf{P} . The reordering can be efficiently achieved by simply storing the corresponding indices. \mathbf{P} and π are used for mathematical clarity and formalism only.

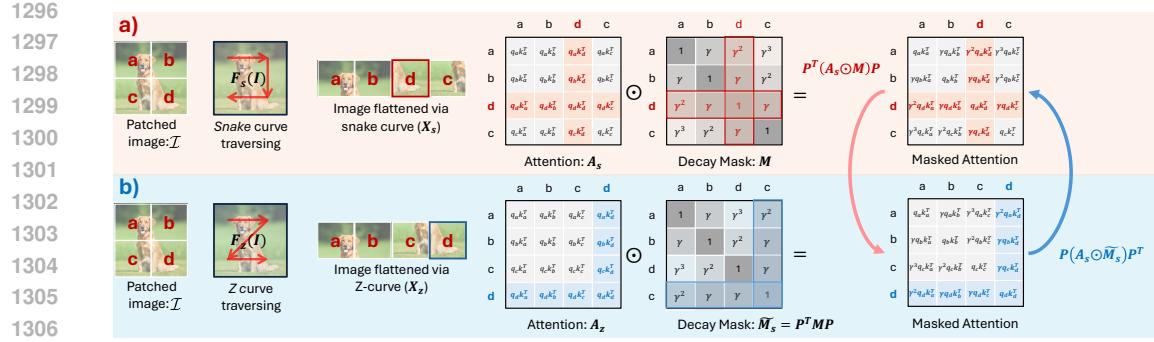


Figure 6: *Effect of SFCs on flattened Image*: Visually showing the equivalence between **a)** Permuting the input sequence according to c (e.g., the snake curve) to get \mathbf{X}_s , multiplying the attention \mathbf{A}_s with the original decay mask defined in the basis curve \mathbf{M} (e.g., Z-curve in our study), and then reordering the output back to the original and **b)** Calculating attention \mathbf{A}_z with basis curve ordered \mathbf{X}_z , using a permuted decay mask $\tilde{\mathbf{M}}_c$.

D FUTHER DESIGN DETAILS

In this section, we outline key design choices made in the implementation of VIOLIN models.

D.1 INITIALIZATION

Since $\gamma_c = \text{sigmoid}(\beta_c)$ is exponentiated over the sequence length in the VIOLIN decay mask, it is important to initialize it close to 1, which is also highlighted in the Linear Transformer literature (Orvieto et al., 2023; Sun et al., 2023). For pretraining VIOLIN models, we initialize β_c uniformly in the range [5, 9], which corresponds to $\gamma_c \in (0.9820, 0.9998)$. This ensures that the initial mask values $\mathbf{M}_c[i, j] \in (0.03, 0.962)$ for $N = 196$, maintaining a stable and controlled decay. For numerical results on the effect of initialization, see Appendix E.4.

During full fine-tuning, we initialize the model using the pretrained baseline. In this setting, since the query/key/value weights $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$ are already trained during pretraining and VIOLIN attention is introduced and used only at fine-tuning, we initialize the scaling factor α using a Gaussian distribution centered at 1 to allow for smooth adaptation. For β_c , we use a uniform initialization in the range [15, 20]. This setup avoids a steep drop in attention scores while allowing the model to gradually adapt to the newly introduced decay mask $\mathbf{M}_{\text{VIOLIN}}$. All other initialization settings in VIOLIN exactly follow those of the original baselines without any modification.

All other configurations, such as data augmentation, optimizer, initialization, model parameters, and training setups are kept exactly the same as in the original baselines, with no modifications.

D.2 ADAPTATION OF VIOLIN TO VARIOUS ARCHITECTURES

VIOLIN attention supports both the use of a classification token and Global Average Pooling (GPA) (Lin et al., 2013; Lu et al., 2022). For pretraining of DeiT models, we remove the classification token and instead apply Global Average Pooling (GAP). The attention module is replaced with VIOLIN attention, while the rest of the model, including positional embeddings, layer normalization, and other components, remains unchanged, see Appendix E.5 for details. For fine-tuning the classification token remains intact.

In the DINO setting, both teacher and student models are initialized with VIOLIN attention, with all other weights handled as usual. Due to the multi-crop training, the attention module encounters varying sequence lengths. However, since the construction of $\mathbf{M}_{\text{VIOLIN}}$ naturally adapts to any sequence length, this poses no issue.

To accommodate the classification token, we modify the corresponding rows and columns of $\mathbf{M}_{\text{VIOLIN}}$ by setting $\gamma_{\text{cls}} = 1$. We also experimented with a learnable $\gamma_{\text{cls}} \in [0, 1]$ but observed no significant performance gains. The rest of the model structure follows the original DINO architecture.

1350
1351 VIOLIN with hierarchical and convolutional architectures Hierarchical transformer architectures
1352 such as Swin (Liu et al., 2021) and convolutional-transformer hybrids like PVT (Wang et al., 2021)
1353 differ fundamentally from vanilla ViTs in how attention is computed. Instead of applying full attention
1354 across the entire sequence, they restrict the receptive field by using windowed or spatially localized
1355 attention, often combined with hierarchical feature maps. This design introduces locality explicitly
1356 into the architecture, reducing the need for additional spatial priors such as those provided by SFCs.

1357 In such settings, applying SFC-guided decay masks becomes problematic for two main reasons.
1358 First, SFCs are meaningful when attention spans the *entire* sequence of image patches, since the
1359 curve defines a global traversal order. In hierarchical models, however, attention is restricted to local
1360 windows or pyramid levels, where the notion of a global SFC ordering no longer applies. Second,
1361 many of these architectures already incorporate inductive biases (through localized windows, shifting
1362 strategies, or convolutional layers), so introducing additional SFC-based priors could interfere with
1363 rather than complement their design.

1363 Thus, VIOLIN is best suited for standard ViTs and related architectures where attention is fully global,
1364 the sequence is flattened in a fixed order (commonly the Z-curve), and inductive biases are otherwise
1365 minimal. In contrast, hierarchical or convolutional variants already bake spatial priors directly into
1366 their architecture, making SFC-based masking redundant or ill defined.

1367 Consistent with our analysis, when we integrated VIOLIN into Swin at tiny and small scales during
1368 pretraining, we achieved minimal accuracy improvements of 0.2% and 0.1%, respectively, as shown
1369 in Table 10. The VIOLIN mask is applied at every stage and layer, with each mask being independently
1370 learned and unique to its respective layer. The remaining architecture follows the original Swin model
1371 structure.

1372 Table 10: *Pretraining of Swin models*: The performance of baseline model is compared against
1373 VIOLIN for ImageNet pretraining. Changes with respect to the baseline are shown inside (·) next to
1374 the accuracies.
1375

Model	Top-1 Accuracy (%)	
	Baseline	VIOLIN
Swin-T	81.3	81.5 (+0.2)
Swin-S	83.0	83.1 (+0.1)

1382 **VIOLIN with video transformers** Video transformers operate on spatiotemporal tokens, and
1383 VIOLIN can be incorporated into these models in a straightforward way because it only rescales the
1384 attention scores between tokens. This makes VIOLIN orthogonal to additional mechanisms used in
1385 video models, such as the dual masking strategy in VideoMAE V2 (Wang et al., 2023).

1386 There are two natural ways to extend VIOLIN :

- 1388 **1. Spatial-only SFCs (2D per frame).** The same 2D SFCs used for images can be applied
1389 independently to the (H, H) grid of each frame, while keeping the temporal dimension
1390 unchanged. This provides a per-frame spatial prior and mirrors the image setting.
- 1392 **2. Full spatiotemporal SFCs (3D).** Following definition 2.1, SFCs naturally generalize to
1393 arbitrary dimensions. Thus, we can define 3D SFCs over the full (T, H, W) grid (e.g.,
1394 3D Hilbert or 3D Morton curves) and compute distances based on each token’s original
1395 spatiotemporal position. The resulting decay masks encourage locality across both space
1396 and time. Masks can be computed once over the full grid and then indexed to the visible
1397 token subset, analogous to how positional embeddings are handled in VideoMAE.

1398 Both approaches are fully compatible with video MAE-style training: they require no changes to
1399 masking or reconstruction objectives, they can be applied to both encoder and decoder, and they
1400 provide a meaningful structural prior, especially under high masking ratios where positional structure
1401 becomes crucial.

1402 Overall, extending VIOLIN to video models is a promising direction for future work, as spatiotemporal
1403 SFCs may offer strong inductive bias with minimal additional cost.

1404 E ABLATION STUDIES

1405
 1406 In this section, we provide comprehensive ablation studies on various elements of VIOLIN . For all
 1407 ablations, we utilize different scales of DeiT models and we keep the training recipe the same. We
 1408 use a patch size of 16 and a resolution 224×224 for each one of the models.

1409 E.1 POSITIONAL EMBEDDINGS

1410 To evaluate the impact of positional embeddings, we pretrain the VIOLIN DeiT-B model both with and
 1411 without them, see Table 11. The results indicate that positional embeddings provide a performance
 1412 boost, leading us to retain the original positional embedding configurations of the base models.

1413 Table 11: *Ablation on positional embeddings (PE)*: The performance of the baseline model with PE
 1414 is compared against VIOLIN with (w) and without (wo) PE. Changes with respect to the baseline are
 1415 shown inside (·) next to the accuracies.

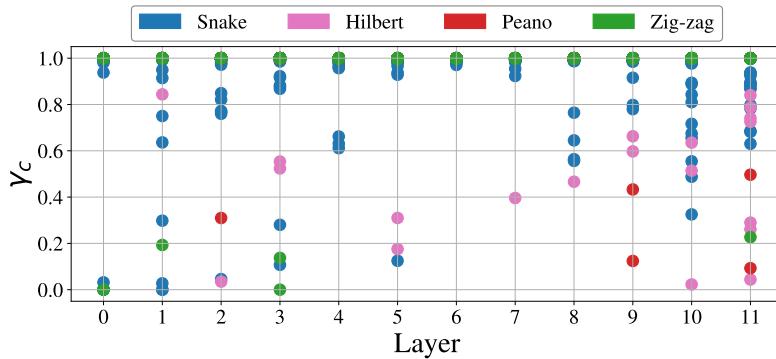
Model	Top-1 Accuracy (%)		
	Baseline	VIOLIN w PE	VIOLIN wo PE
DeiT-B	81.8	81.9 (+0.1)	81.5 (-0.3)

1422 E.2 ALTERNATIVE CURVE CONFIGURATIONS

1423 We examine the individual contribution of each curve to the overall performance. To do so, we
 1424 pretrain DeiT-S using all possible combinations of the four curves, resulting in $2^4 = 16$ variations.
 1425 The accuracies of each configuration are presented in Table 12. Note that whenever a curve has
 1426 is used, the transposed version is also included. In other words, if the snake curve is included, its
 1427 transposed variant Snake^\top is also utilized.

1428 The results reveal that while certain curve combinations yield more substantial improvements than
 1429 others, each curve contributes meaningfully to the overall performance. Thus, we retain all four
 1430 curves in the VIOLIN configuration, leveraging their complementary spatial information.

1431 We further analyze the learned decay parameters γ_c for DeiT-B in Figure 7, observing that most
 1432 remain close to one, indicating active use of long-range spatial information. Smaller values act as
 1433 implicit curve selection, as these decay masks would contribute to the average minimally, with certain
 1434 layers and heads emphasizing particular curves.



1437 Figure 7: γ_c values: γ_c values of VIOLIN DeiT-B model are presented across layers, heads and curves.
 1438 Most remain close to one, indicating active use of long-range spatial information.

1439 Additionally, we explore several alternative configurations, as detailed in Table 13. For instance,
 1440 we evaluate the use of only the four original curves referred as $\mathcal{C}_{\text{normal}}$ (snake, zig-zag, Hilbert, and
 1441 Peano) and only their rotated counterparts $\mathcal{C}_{\text{transposed}}$ (snake $^\top$, zig-zag $^\top$, Hilbert $^\top$, and Peano $^\top$). We
 1442 also test using only the default Z-curve ordering, which results in a 0.7% accuracy gain.

1443 Moreover, we define relative distances using a Manhattan mask, inspired by RMT (Fan et al., 2024).
 1444 Lastly, we experiment with a set of randomized SFCs, where the flattened image is shuffled with a
 1445 random fixed order across all layers and heads. This model fails to converge to a meaningful accuracy.

Table 12: *Ablation on the effect of each curve*: The performance of the baseline model is compared against VIOLIN with different curve combinations. \checkmark indicates the curve is in the set, whereas \times means it is not. Changes with respect to the baseline are shown inside (\cdot) next to the accuracies.

Model	Snake Curve	Zig-Zag Curve	Hilbert Curve	Peano Curve	Top-1 Acc (%)
DeiT-S (Baseline)	\times	\times	\times	\times	79.9
	\checkmark	\times	\times	\times	80.0 $(+0.1)$
	\times	\checkmark	\times	\times	80.2 $(+0.3)$
	\times	\times	\checkmark	\times	79.9 $_$
	\times	\times	\times	\checkmark	80.4 $(+0.5)$
	\checkmark	\checkmark	\times	\times	80.3 $(+0.4)$
	\checkmark	\times	\checkmark	\times	80.4 $(+0.5)$
	\checkmark	\times	\times	\checkmark	80.3 $(+0.4)$
	\times	\checkmark	\checkmark	\times	80.3 $(+0.4)$
	\times	\checkmark	\times	\checkmark	80.5 $(+0.6)$
	\times	\times	\checkmark	\checkmark	80.2 $(+0.3)$
	\checkmark	\checkmark	\checkmark	\times	80.4 $(+0.5)$
	\checkmark	\times	\checkmark	\checkmark	80.5 $(+0.6)$
	\times	\checkmark	\checkmark	\checkmark	80.5 $(+0.6)$
VIOLIN DeiT-S (Ours)	\checkmark	\checkmark	\checkmark	\checkmark	80.7 $(+0.8)$

This further emphasizes the importance of a *structured* SFC as the unstructured curves do not allow model to capture meaningful information from the data.

E.3 ALTERNATIVE MASKING STRATEGIES

Another critical design choice is the masking strategy. We compare VIOLIN, which follows the structure $S(\mathbf{A}' \odot \mathbf{M})$, where S denotes the row-wise softmax operation, $\mathbf{A}' = \alpha \frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}}$, and $\mathbf{M} = \mathbf{M}_{VIOLIN}$ for a cleaner notation. Our findings indicate that the $S(\mathbf{A}' \odot \mathbf{M})$ configuration outperforms all other masking alternatives.

E.4 OTHER DESIGN ELEMENTS

Furthermore, in Table 15, we illustrate the impact of additional design choices described in Appendix D, such as initialization and the scaling parameter α . Additionally, we assess the effect of fixing γ_c at a constant value of 0.9996 instead of learning it. The results indicate that proper initialization and a learnable γ_c are essential for achieving accuracy gains, while the scaling parameter α primarily contributes to training stability, particularly in larger models.

E.5 GLOBAL AVERAGE POOLING (GAP)

Considering the output of the attention mechanism for each token in the last layer, we can write

$$\mathbf{y}_i = \sum_{j=1}^N \frac{\exp(\mathbf{q}_i^\top \mathbf{k}_j)}{\sum_{j'=1}^N \exp(\mathbf{q}_i^\top \mathbf{k}_{j'})} \mathbf{v}_j. \quad (46)$$

When the classification (CLS) token is used, the sequence length becomes $N + 1$ where the first token is the CLS. When comparing the use of a global average pooling (GAP) (Lin et al., 2013; Lu et al.,

Table 13: *Ablation on different curve configurations*: The performance of the baseline model is compared against VIOLIN with different curve configurations: only original curves (\mathcal{C}_{normal}), only transposed curves ($\mathcal{C}_{transposed}$), only Z-curve, Manhattan distance-based mask and random curves. Changes with respect to the baseline are shown inside (\cdot) next to the accuracies.

Model	Top-1 Accuracy (%)						
	Baseline	VIOLIN	\mathcal{C}_{normal}	$\mathcal{C}_{transposed}$	Z-curve	Manhattan	Random
DeiT-S	79.8	80.7 $(+0.9)$	80.3 $(+0.5)$	80.4 $(+0.6)$	80.5 $(+0.7)$	80.4 $(+0.6)$	\times

1512 Table 14: *Ablation on masking strategies*: The performance of the baseline model is compared against
 1513 VIOLIN with different masking methods: $S(\mathbf{M} + \mathbf{A}')$, $S(\mathbf{A}') + \mathbf{M}$, $S(\mathbf{A}') \odot \mathbf{M}$, and $S(\mathbf{A}' \odot (\mathbf{I} + \mathbf{M}))$.
 1514 Changes with respect to the baseline are shown inside (·) next to the accuracies.

Model	Top-1 Accuracy (%)					
	Baseline	VIOLIN	$S(\mathbf{M} + \mathbf{A}')$	$S(\mathbf{A}') + \mathbf{M}$	$S(\mathbf{A}') \odot \mathbf{M}$	$S(\mathbf{A}' \odot (\mathbf{I} + \mathbf{M}))$
DeiT-S	79.8	80.7 (+0.9)	80.1 (+0.3)	80.5 (+0.7)	80.5 (+0.7)	79.1 (-0.7)

1519 Table 15: *Ablation on other elements of VIOLIN* : The performance of the baseline model is compared
 1520 against VIOLIN with and without certain design elements: initialization, scaling factor α and learned
 1521 γ_c . ✓ indicates it is included in the model, whereas ✗ means it is not. Changes with respect to the
 1522 baseline are shown inside (·) next to the accuracies.

Model	Initialization	Scaling	Learned γ_c	Top-1 Acc (%)
DeiT-S (Baseline)	✗	✗	✗	79.9
	✗	✓	✓	80.0 (+0.1)
	✓	✗	✓	80.7 (+0.8)
	✓	✓	✗	80.3 (+0.4)
VIOLIN DeiT-S (Ours)	✓	✓	✓	80.7 (+0.8)

1532 2022) head versus a CLS head with a decay mask, the attention outputs are extracted as follows

$$\mathbf{y}_{\text{CLS}} = \sum_{j=1}^{N+1} \frac{\exp((\mathbf{q}_{\text{CLS}}^\top \mathbf{k}_j) \mathbf{M}[\text{CLS}, j])}{\sum_{j'=1}^{N+1} \exp((\mathbf{q}_{\text{CLS}}^\top \mathbf{k}_{j'}) \mathbf{M}[\text{CLS}, j'])} \mathbf{v}_j, \quad (47)$$

$$\mathbf{y}_{\text{GAP}} = \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^N \frac{\exp((\mathbf{q}_i^\top \mathbf{k}_j) \mathbf{M}[i, j])}{\sum_{j'=1}^N \exp((\mathbf{q}_i^\top \mathbf{k}_{j'}) \mathbf{M}[i, j'])} \mathbf{v}_j. \quad (48)$$

1541 As shown, in the case of the CLS token, the model only requires the attention distribution and relative
 1542 distances with respect to the CLS token. In our setup, this reduces to $\mathbf{M}[\text{CLS}, j] = 1$, (or a learned
 1543 parameter β_{CLS}). By contrast, the GAP formulation is more expressive, as it aggregates attention
 1544 information across all tokens. Importantly, the inclusion of the relative distance decay mask $\mathbf{M}[i, j]$
 1545 for all tokens makes GAP more effective in constructing the final representation. Therefore, similar to
 1546 Vision SSMs such as Vision LSTM and Hydra (Alkin et al., 2024; Hwang et al., 2024), pooling-based
 1547 outputs align naturally with spatially informed attention. Note that this calculations holds for last
 1548 layer only, the remaining layers utilizes the mask fully.

1549 VIOLIN attention supports both the use of a classification token and GAP. To assess the role of the
 1550 classification token versus GAP with the VIOLIN mask, we pretrain all three scales of DeiT and
 1551 report results in Table 16. While GAP often yields slightly better compatibility with VIOLIN, the
 1552 improvements cannot be attributed to pooling alone, the gains are additive.

1553 Most importantly, VIOLIN is *not dependent on GAP*. In DINO pretraining and VTAB-1K fine-tuning,
 1554 where the `cls_token` is retained, VIOLIN still improves performance. This confirms that the benefits
 1555 arise from the spatial priors introduced by VIOLIN, not from the choice of pooling strategy.

1556 Table 16: *Ablation on GAP*: The performance of baseline model and VIOLIN is compared when they
 1557 both have CLS or uses GAP. Baseline[†] indicates results taken from Chu et al. (2023). Changes with
 1558 respect to the baseline, original model with CLS, are shown inside (·) next to the accuracies.

Model	Top-1 Accuracy (%)			
	CLS		GAP	
Baseline	VIOLIN	Baseline [†]	VIOLIN	
DeiT-T	72.2	72.3 (+0.2)	72.6	73.0 (+0.8)
DeiT-S	79.8	80.1 (+0.3)	80.2	80.7 (+0.9)
DeiT-B	81.8	79.0 (-1.8)	-	81.9 (+0.1)

1566 **F ADDITIONAL RESULTS**
 1567

1568 **F.1 PRETRAINING OF LARGER MODELS**
 1569

1570 As discussed in Appendix B.1, when both model capacity and training data are sufficiently large, ViTs
 1571 can implicitly learn spatial biases directly from data. In such scenarios, the relative contribution of
 1572 VIOLIN is naturally smaller, as seen in the DeiT and DINO base scale pretraining results in Table 17,
 1573 which show only marginal gains. This is expected and lies beyond the primary scope of our work,
 1574 which focuses on small models and data-scarce settings where inductive biases are most impactful.
 1575

1576 It is important to note that smaller gains at scale do not diminish the relevance of VIOLIN for larger
 1577 models. In fact, our fine-tuning experiments (Section 4.1, Table 18) demonstrate that when data is
 1578 limited, spatial priors provided by VIOLIN substantially improve performance, even for models with
 1579 hundreds of millions of parameters. This highlights that VIOLIN remains valuable in practice, not by
 1580 competing with scale, but by enhancing efficiency and adaptability in data-constrained regimes.
 1581

1582 **Table 17: Pretraining results of larger models on ImageNet-1K:** Comparison of the top-1 accuracies
 1583 of baseline models with their VIOLIN counterparts. The values in parentheses (·) indicate the
 1584 accuracy difference compared to the baseline. The best performance between each pair of models
 1585 is highlighted in **bold**. For DINO models, both KNN and linear probe evaluations are reported and
 1586 (300) indicate the number of training epochs. **(Left)** Supervised, **(Right)** Self-supervised training.
 1587

Model	# Param.	Top-1 Accuracy (%)		Model	# Param.	Top-1 Accuracy (%)	
		Baseline	VIOLIN			Baseline	VIOLIN
DeiT-B	86M	81.8	81.9 (+0.1)	DINO-B (300)	KNN	76.1	76.1 (—)
					Linear	78.2	78.4 (+0.2)

1591 **F.2 FINE-TUNING OF VIOLIN PRETRAINED MODELS**
 1592

1593 We fine-tune the VIOLIN DeiT, and DINO pretrained models from Section 4.2 and Appendix F.1 on
 1594 the VTAB-1K dataset. The accuracies for each category and the overall average are presented in
 1595 Table 18, alongside the baseline accuracies of the baseline fine-tuned models. We observe that VIOLIN
 1596 increases the performance across all models and scales compared to original baselines. DeiT, and
 1597 DINO models achieve impressive improvements of up to 1.92% with up to 2.87% improvement in
 1598 individual categories. We note that similar to Table 3 in this setting, Structured group shows the
 1599 highest accuracy gain. This further shows the broad applicability of VIOLIN, enhancing diverse
 1600 architectures with close to zero computational overhead.
 1601

1602 Notably, we compare Table 3 and Table 18, fine-tuning with an [mask learned only during fine-tuning](#)
 1603 for all models yields better performance in different tasks compared to pretraining with it. We
 1604 hypothesize that this is because the model starts with generic pretrained representations and gains
 1605 additional flexibility by learning spatial structure tailored specifically to the downstream task. This is
 1606 particularly advantageous when the target task differs substantially from the pretraining domain.
 1607

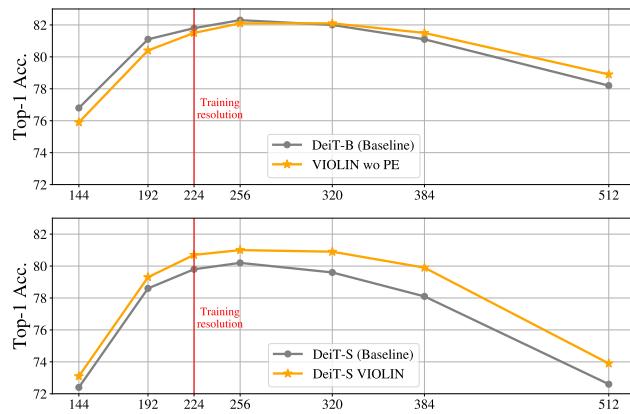
1608 **Table 18: Fine-tuning results on VTAB-1K (Setting 2):** Comparison of the top-1 accuracies of
 1609 baseline models and their pretrained VIOLIN counterparts across the VTAB-1K benchmark. The
 1610 three task groups are abbreviated as NAT. = Natural, SPE. = Specialized, and STR. = Structured.
 1611 The values in parentheses (·) indicate the accuracy difference compared to the baseline. The best
 1612 performance within each model pair is highlighted in **bold**.
 1613

Model	Param.	Top-1 Accuracy (%)							
		Baseline				VIOLIN			
		NAT.	SPE.	STR.	Avg.	NAT.	SPE.	STR.	Avg.
DeiT-T	5M	69.56	82.34	53.57	65.52	70.71 (+1.15)	82.64 (+0.30)	54.52 (+0.95)	66.41 (+0.89)
DeiT-S	22M	73.64	84.30	53.44	67.38	75.24 (+1.60)	84.87 (+0.57)	56.31 (+2.87)	69.30 (+1.92)
DeiT-B	86M	76.93	85.52	57.00	70.35	76.54 (-0.39)	85.44 (-0.08)	58.90 (+1.90)	70.99 (+0.64)
DINO-S	22M	75.35	85.09	60.65	71.21	76.29 (+0.94)	85.75 (+0.66)	60.61 (-0.04)	71.68 (+0.47)
DINO-B	86M	77.50	85.77	58.47	71.23	77.82 (+0.32)	85.83 (+0.06)	58.77 (+0.30)	71.49 (+0.26)

1620
1621 F.3 MULTI-RESOLUTION CLASSIFICATION
1622

1623 Following Heo et al. (2024), we test the resolution scalability of VIOLIN models. We present the
 1624 top-1 accuracies for DeiT-S, and DeiT-B models across input resolutions ranging from 144 to 512 in
 1625 Figure 8. We use bicubic interpolation for all positional embeddings (Heo et al., 2024). In the top
 1626 plot, we observe that although VIOLIN without positional embeddings performs slightly worse than
 1627 the baseline at the training resolution (224), it begins to outperform the baseline at higher resolutions.
 1628 In the second and third plots, where VIOLIN is combined with positional embeddings, for most
 1629 resolutions, VIOLIN preserves or expands the performance gap compared to baselines. These results
 1630 suggest that the decay mask used in VIOLIN generalizes effectively to higher resolutions, making it a
 1631 resolution-robust enhancement for ViTs.

1632 Another interesting application of context extrapolation is video understanding. Following Caron
 1633 et al. (2021), we generate a segmentation video using VIOLIN DINO-B model. While the training
 1634 resolution is 224, for video, VIOLIN extends to 768×432 resolution. Some frames are provided in
 1635 Figure 9 and the full video can be found in our GitHub repository.



1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
Figure 8: *Resolution expansion*: Top-1 accuracies of DeiT-B (top), DeiT-S (middle) and DeiT-III-S (bottom) models and their VIOLIN counterparts at different resolutions on ImageNet. Training resolution of 224 is highlighted in red.

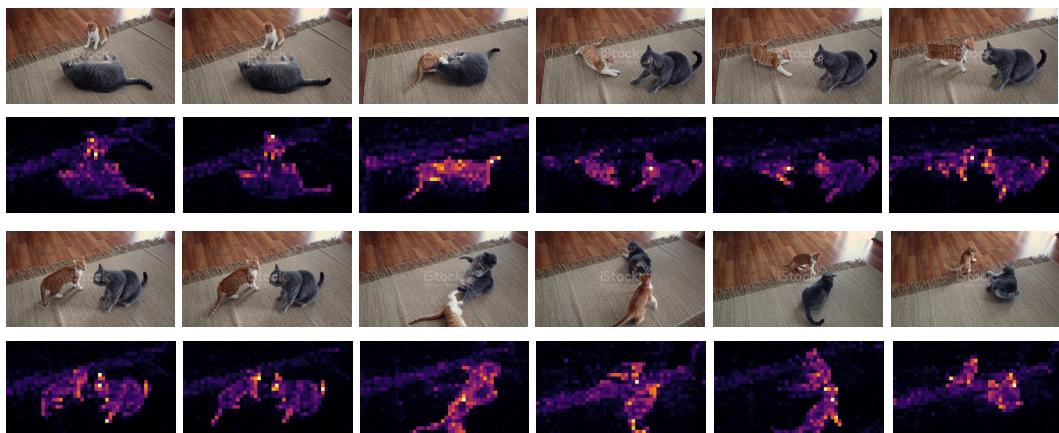


Figure 9: *Video understanding*: Frame by frame video understanding of VIOLIN -DINO in base scale. The full video and generation codes are also included in the github repository of VIOLIN .

1674
1675

F.4 ADDITIONAL VISUALIZATIONS

1676
1677
1678
1679
1680
1681
1682
1683

In Figure 10, we present the 1D flattened sequences of the patched image **(a)**, corresponding to the curves illustrated in Figure 1. Figure 12 compares attention heatmaps of DeiT and VIOLIN models, fine-tuned on Structured group datasets. Figure 13 visualizes the attention heatmaps of the VIOLIN DeiT-B model using various images. We adopt the average diagonal visualization strategy as proposed in (Liu et al., 2024b). Additionally, in Figure 11 we visualize the mask pattern for a middle pixel under the snake curve for different values of γ . As expected, when $\gamma \approx 1$, the head attends broadly across the entire image, whereas smaller γ values produce a much more localized receptive field, emphasizing spatial neighbors.

1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
16981699
1700
1701
1702

Figure 10: *Flattened Space Filling Curve paths*: Examples of flattened images with different traversal paths followed in VIOLIN . **(a1)** Original patched image. **(a2)** Z-curve **(b1)** Snake curve, **(b2)** Transposed Snake curve, **(c1)** Zig-zag curve, **(c2)** Transposed Zig-zag curve, **(d1)** Hilbert curve, **(d2)** Transposed Hilbert curve, **(e1)** Peano curve, **(e2)** Transposed Peano curve.

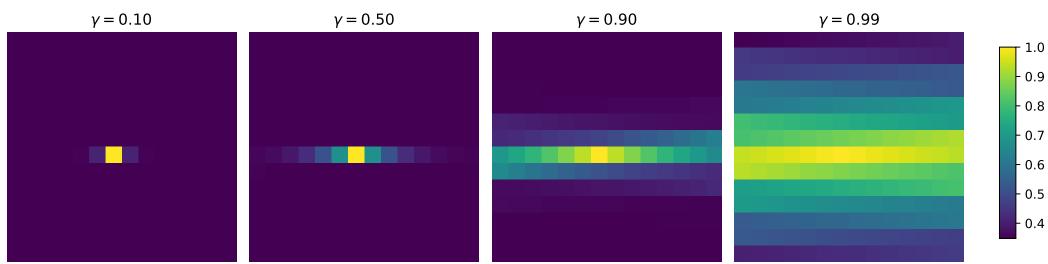
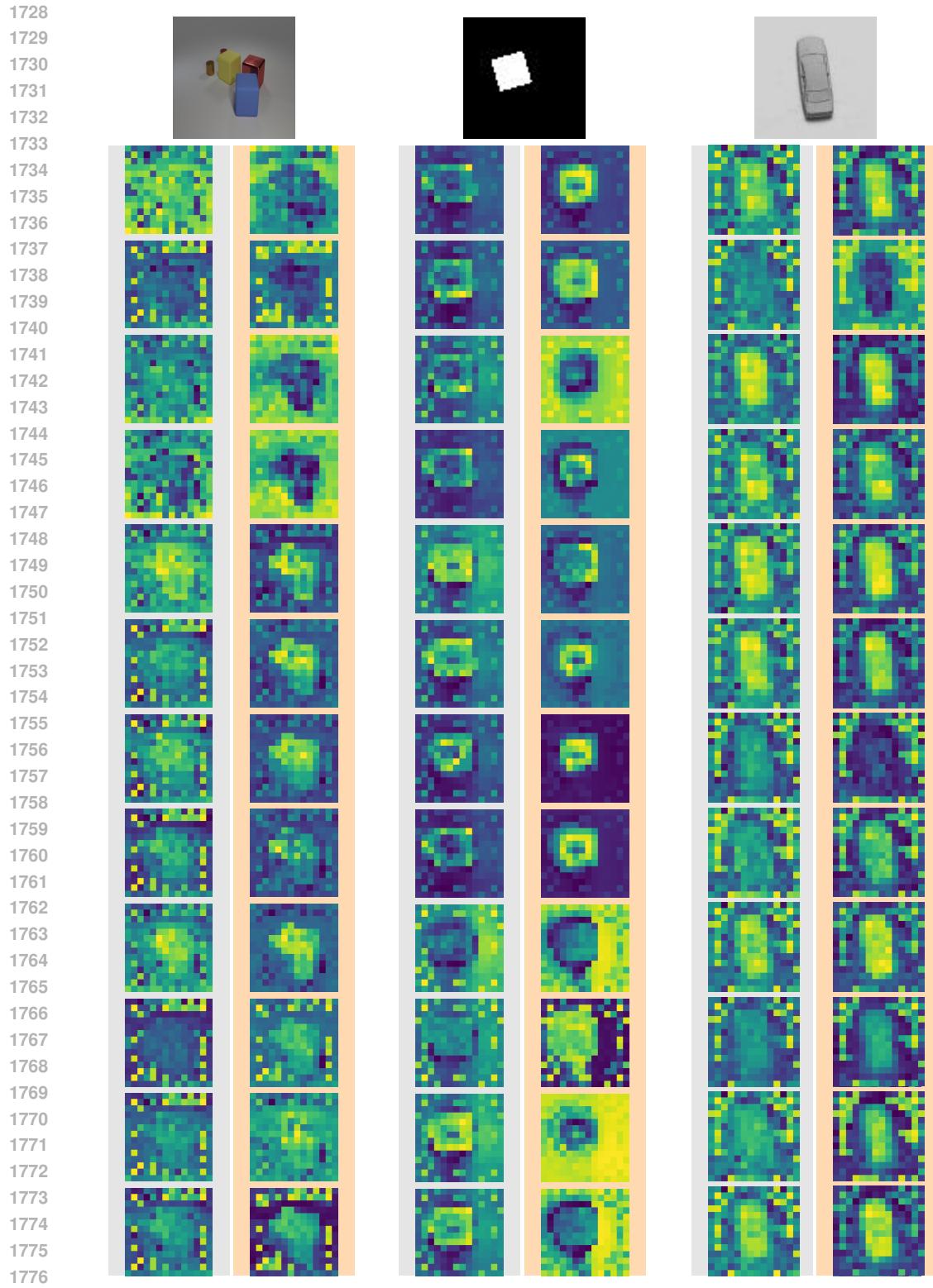
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
17131714
1715
1716

Figure 11: *Effect of γ on the decay mask*: Visualization of the decay mask for a central pixel under the Snake curve for different values of γ . Larger γ values yield more global attention, while smaller γ restrict the effective receptive field to local regions.

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727



1778 Figure 12: *Attention heatmaps on Structured tasks*: Examples are taken from three datasets in
 1779 the Structured group: CLEVR-Count, dSprites-Location, and SmallNORB-Azimuth. We compare
 1780 attention scores of DeiT-B (left) and VIOLIN (right), fine-tuned on the corresponding dataset.
 1781 Visualizations are from layer 12, with rows showing heads 112. Since both models share the same
 pretraining initialization, attention heads are initially identical before fine-tuning. After fine-tuning,
 VIOLIN produces more accurate and focused heads, with better object coverage and more uniform
 color outside the objects, indicating reduced attention to irrelevant regions.

Figure 13: *Attention heatmap visualization of VIOLIN DeiT-B*: The average diagonal of the masked attention is visualized followed by (Liu et al., 2024b).

1836
1837

F.5 DETAILS AND INDIVIDUAL RESULTS ON VTAB-1K DATASET

1838
1839

VTAB (Zhai et al., 2019) contains 19 tasks which cover a broad spectrum of domains and semantics that are grouped into three sets: NATURAL, SPECIALIZED, and STRUCTURED.

1840
1841

The NATURAL group represents natural images and classical vision problems. The group includes Caltech101, CIFAR-100, DTD, Flowers102, Pets, Sun397, and SVHN datasets.

1842
1843
1844
1845

The SPECIALIZED group also contains images of the world, but they are captured through specialist equipment. These images have different invariances to those in the NATURAL tasks. It includes Resisc45 and EuroSAT, Patch Camelyon, and Diabetic Retinopathy datasets.

1846
1847
1848
1849
1850

The STRUCTURED group assesses comprehension of the structure of a scene, for example, object counting, or 3D depth prediction. Most of the tasks are generated from simulated environments, whose structure is easy for a human, but their domain differs greatly to datasets like ImageNet. It includes Clevr count and distance, dSprites location and orientation, SmallNORB, DMLab, and KITTI. In Tables 19 to 21, we present the accuracy scores of each model on all VTAB-1K datasets.

1851
1852

Table 19: *VTAB Results-Natural Subset*: Individual scores for each dataset.

1853

	Model	CIFAR	Caltech101	DTD	Flowers102	Pets	SVHN	Sun397
Natural	DeiT-T	48.36	86.9	63.97	86.43	87.14	78.28	35.87
	VIOLIN DeiT-T	51.21	86.48	64.75	87.24	86.77	83.16	35.38
	DeiT-T $\odot M_{VIOLIN}$	51.17	87.8	65.43	89.17	86.75	85.78	37.17
	DeiT-S	57.38	89.06	68.83	91.09	91.13	75.82	42.19
	VIOLIN DeiT-S	60.71	88.06	68.33	91.12	91.19	85.38	41.93
	DeiT-S $\odot M_{VIOLIN}$	59.6	89.78	69.08	92.5	91.89	86.15	43.45
	DeiT-B	61.38	90.33	69.06	93.73	92.43	85.95	45.59
	VIOLIN DeiT-B	63.32	89.55	68.37	92.1	92.04	86.22	44.15
	DeiT-B $\odot M_{VIOLIN}$	61.99	91.07	70.14	93.97	92.75	90.22	45.56
	DeiT-B LoRA	62.37	90.07	69.27	93.26	92.3	90.58	44.35
	DeiT-B $\odot M_{VIOLIN}$ LoRA	65.36	90.92	70.62	93.57	92.37	91.86	45.19
	DeiT-B DoRA	63.81	90.78	69.29	91.79	89.95	88.75	44.12
	DeiT-B $\odot M_{VIOLIN}$ DoRA	66.38	90.97	69.82	92.77	91.71	90.26	44.64
	DeiT-III-S	59.08	88.53	67.09	91.13	91.85	84.65	43.57
	DeiT-III-S $\odot M_{VIOLIN}$	62.18	88.78	69.4	93.92	91.35	89.98	43.6
	DeiT-III-B	64.39	89.56	70.8	94.63	93.38	87.28	47.28
	DeiT-III-B $\odot M_{VIOLIN}$	66.77	89.97	71.38	95.53	93.61	91.24	46.19
	DeiT-III-L	65.16	87.89	71.58	94.39	93.23	71.17	48.65
	DeiT-III-L $\odot M_{VIOLIN}$	66.74	87.67	72.34	95.01	93.28	78.7	48.58
	DeiT-III-H	64.34	88.2	71.22	94.95	92.96	68.76	48.46
	DeiT-III-H $\odot M_{VIOLIN}$	65.16	88.18	71.35	95.18	93.33	72.72	48.7
	DINO-S	54.32	93.95	68.12	91.28	88.62	90.24	40.93
	VIOLIN DINO-S	56.05	91.95	69.33	95.26	89.62	91.65	40.2
	DINO-S $\odot M_{VIOLIN}$	57.38	90.92	68.88	95.18	89.44	90.61	41.45
	DINO-B	58.57	93.7	70.64	95.84	90.21	89.69	43.86
	VIOLIN DINO-B	59.96	92.13	71.84	95.69	90.49	90.78	43.83
	DINO-B $\odot M_{VIOLIN}$	62.21	93.32	71.58	96.1	90.74	91.74	44.87

1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890
1891
1892Table 20: *VTAB Results-Structured Subset*: Individual scores for each dataset. SN refers to Small-Norm, and dS represents dSprites.

1893

Model	CLEVR Count	CLEVR Dist	DMLab	KITTI	dS Loc	dS Ori	SN Azi	SN Ere
DeiT-T	71.37	60.37	44.26	78.81	69.04	41.86	30.28	32.57
VIOLIN DeiT-T	72.73	61.7	47.98	79.7	68.7	46.11	25.31	33.96
DeiT-T $\odot M_{VIOLIN}$	74.41	59.84	46.37	80.78	78.32	50.91	31.33	38.05
DeiT-S	75.08	58.15	45.74	78.43	63.3	48.13	26.24	32.48
VIOLIN DeiT-S	78.26	59.25	49.91	81.29	64.63	53.16	27.37	36.59
DeiT-S $\odot M_{VIOLIN}$	78.87	59.2	50.59	80.4	73.52	53.44	32.48	37.62
DeiT-B	79.01	60.1	47.03	82.61	66.7	53.38	30.87	36.32
VIOLIN DeiT-B	82.6	61.72	52.84	80.97	68.44	55.47	31.72	37.45
DeiT-B $\odot M_{VIOLIN}$	81.33	61.31	53.93	83.22	81.72	57.28	35.37	40.98
DeiT-B LoRA	79.1	60.15	51.93	81.25	78.53	53.71	28.28	32.12
DeiT-B $\odot M_{VIOLIN}$ LoRA	82.36	63.46	52.86	82.18	78.52	55.25	32.21	39.79
DeiT-B DoRA	76.97	60.62	50.37	81.34	73.34	54.11	28.69	39.43
DeiT-B $\odot M_{VIOLIN}$ DoRA	81.64	63.29	51.06	82.42	78.65	56.14	27.62	38.89
DeiT-III-S	76.53	57.29	46.23	81.81	58.12	50.48	26.33	26.57
DeiT-III-S $\odot M_{VIOLIN}$	77.78	61.9	54.84	83.17	85.91	59.78	33.45	36.07
DeiT-III-B	80.54	61.82	50.95	82.7	60.75	55.35	30.36	31.18
DeiT-III-B $\odot M_{VIOLIN}$	84.51	61.92	55.64	82.79	84.06	60.34	36.59	38.4
DeiT-III-L	72.99	53.23	47.59	80.78	50.19	50.72	25.21	30.51
DeiT-III-L $\odot M_{VIOLIN}$	76.66	55.64	50.03	81.86	55.42	57.35	28.69	33.91
DeiT-III-H	75.17	55.24	48.66	81.11	41.57	46.99	25.15	31.74
DeiT-III-H $\odot M_{VIOLIN}$	77.89	55.96	50.96	81.9	47.85	55.07	26.57	33
DINO-S	83.29	65.03	53.44	80.03	78.72	48.61	34.23	41.87
VIOLIN DINO-S	84.19	63.35	55.72	81.43	75.82	49.37	32.92	42.06
DINO-S $\odot M_{VIOLIN}$	83.69	64.23	55.35	79.98	79.42	49.18	36.43	41.61
DINO-B	80.93	62.76	52.17	79.23	69.22	48.39	33.73	41.34
VIOLIN DINO-B	81.96	63.04	53.45	79	72.12	49.59	30.29	40.76
DINO-B $\odot M_{VIOLIN}$	83.87	63.65	55.66	81.2	74.14	54.18	34.79	39.27

1913

1914

1915

Table 21: *VTAB Results-Specialized Subset*: Individual scores for each dataset. SN refers to Small-Norm, and dS represents dSprites.

1916

Model	Patch Camelyon	EuroSAT	Resisc45	Diabetic Retinopathy
DeiT-T	82.79	93.53	80.98	72.05
VIOLIN DeiT-T	82.47	93.35	81.3	73.43
DeiT-T $\odot M_{VIOLIN}$	84.04	93.88	83.23	73.87
DeiT-S	84.08	94.4	84.01	74.72
VIOLIN DeiT-S	85.36	95.41	83.86	74.85
DeiT-S $\odot M_{VIOLIN}$	85.19	95.02	85.68	74.32
DeiT-B	85.74	95.38	86.37	74.6
VIOLIN DeiT-B	85.62	95.44	85.68	75.02
DeiT-B $\odot M_{VIOLIN}$	86.74	95.91	87.31	75.2
DeiT-B LoRA	86.2	95.46	85.72	75.09
DeiT-B $\odot M_{VIOLIN}$ LoRA	85.9	95.66	86.71	73.73
DeiT-B DoRA	85.53	95.39	85.21	74.8
DeiT-B $\odot M_{VIOLIN}$ DoRA	85.92	95.56	84.98	73.35
DeiT-III-S	84.57	93.33	82.68	73.94
DeiT-III-S $\odot M_{VIOLIN}$	85.76	94.98	86.43	74.67
DeiT-III-B	86.4	94.47	85.83	74.33
DeiT-III-B $\odot M_{VIOLIN}$	87.77	95.8	87.57	74.73
DeiT-III-L	84.5	93.28	84.47	75.28
DeiT-III-L $\odot M_{VIOLIN}$	84.54	94.11	85.24	74.83
DeiT-III-H	84.64	92.64	84.99	74.46
DeiT-III-H $\odot M_{VIOLIN}$	84.81	93.3	84.66	74.93
DINO-S	86.82	94.29	86.13	73.14
VIOLIN DINO-S	87.7	94.76	86.59	73.96
DINO-S $\odot M_{VIOLIN}$	85.94	94.9	86.17	74.26
DINO-B	87.02	94.45	87.05	74.55
VIOLIN DINO-B	87.57	94.46	87.25	74.03
DINO-B $\odot M_{VIOLIN}$	87.81	95.44	87.96	74.54

1943

1944

1945

1946

F.6 COMPARISON AGAINST OTHER LOCALITY METHODS.

1947

1948

1949 There are many methods for enhancing locality in plain ViTs. To compare these approaches with
 1950 **VIOLIN**, we start from the same pretrained DeiT-B model, add each locality mechanism on top of it,
 1951 and fine-tune all models under the exact same protocol. This ensures that every method begins from
 1952 an identical initialization. The results show that while all methods offer some improvement, **VIOLIN**
 1953 achieves the strongest gains. Below, we detail how each method is incorporated and initialized to
 1954 preserve the pretrained model at the start of fine-tuning, and we report results in Tables 22 to 24.

1955

1956

1957

1958

1959

1960

Swin RPB Swin transformers (Liu et al., 2021) introduces locality two ways, by partitioning the
 1961 feature map into shifted windows, and with relative position biases (RPB) that encode spatial offsets
 1962 inside each window. These biases give the attention mechanism information about relative spatial
 1963 relationships within a window, improving performance on vision tasks where nearby pixels are
 1964 correlated. To incorporate RPB into a pretrained global-attention ViT, we add a learnable bias term
 1965 $\mathbf{B} \in \mathbb{R}^{N \times N}$ as in eq. (49) where $\mathbf{B}[i, j]$ depends on the relative position of the tokens i and j .

1966

1967

1968

$$\mathbf{Y} = \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} + \mathbf{B} \right) \mathbf{V}. \quad (49)$$

1969

1970

1971

1972 By initializing \mathbf{B} with zeros, the modified attention reduces exactly to the original attention. This
 1973 guarantees that adding the Swin-RPB does not alter the models capabilities and new positional biases
 1974 can be learned during fine-tuning.

1975

1976

1977

1978

1979

1980

2D Relative Position Encoding (iRPE) iRPE (Wu et al., 2021a) add locality into attention, by
 1981 adding learnable bias terms based on the 2-D relative position of tokens. For any pair of tokens
 1982 (i, j), the offset Δp_{ij} is mapped through a bucketing function to an index b_{ij} , which selects a bias
 1983 embedding from a table $R \in \mathbb{R}^{B \times H}$. Depending on the chosen attachment mode, this embedding
 1984 is added to queries, keys or values (e.g., $\hat{k}_j = k_j + R_{b_{ij}}$) and the attention scores are calculated
 1985 using this new parameters. To integrate iRPE into a pretrained ViT without disturbing its learned
 1986 representations, we initialize all bucket embeddings to zero,

$$R_b = 0 \quad \forall b$$

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

LocalViT LocalViT (Li et al., 2021) enhances locality inside the feed-forward network (FFN) rather
 1998 than attention. It replaces the MLP with a depthwise-convolutional residual branch. This allows
 1999 each token to mix information with its spatial neighbors, giving the transformer an inductive bias
 2000 similar to CNNs while preserving the global interactions of self-attention. For LocalViT, we gate the
 2001 convolutional branch with a learnable scalar initialized to zero, and initialize the depthwise conv as
 2002 an identity kernel (center=1, others=0). This allows the modified architecture to behave exactly the
 2003 same as the pretrained model at the first step, enabling smooth fine-tuning and gradual learning of
 2004 locality information.

2005

2006

2007

2008

2009

2010

2011

2012

VIOLIN variations Additionally, we evaluate several ablations discussed in previous sections,
 2013 including an additive version of **MVIOLIN**, Manhattan-distance masking, a single-curve variant
 2014 (**MPeano**), and random-curve masking (**M_{Random}**), under the same finetuning protocol for complete-
 2015 ness. These results further highlight the contributions of using multiple SFCs rather than relying on
 2016 any single locality pattern.

1998 Table 22: *VTAB Results-Natural Subset*: Individual scores for each dataset for different locality-
1999 enforcing methods.
2000

Model	CIFAR	Caltech101	DTD	Flowers102	Pets	SVHN	Sun397
Additive $\mathbf{M}_{\text{VIOLIN}}$	63.64	91.11	69.27	93.6	92.6	90.46	44.28
Swin RPB	63.72	90.75	70.16	94.15	92.66	90.21	45.82
i-RPE-QKV	65.03	90.94	70.12	93.97	92.63	90.32	45.66
LocalVit	65.17	91.13	69.57	93.85	92.56	90.26	45.63
Manhattan	59.62	90.78	68.03	92.07	91.47	89.81	42.13
$\mathbf{M}_{\text{Peano}}$	65.04	90.78	69.18	94.11	92.61	90.14	45.89
$\mathbf{M}_{\text{Random}}$	65.02	90.78	69.02	94.09	92.6	89.74	45.91

2009
2010 Table 23: *VTAB Results-Structured Subset*: Individual scores for each dataset for different locality-
2011 enforcing methods. SN refers to SmallNorm, and dS represents dSprites.
2012

Model	CLEVR Count	CLEVR Dist	DMLab	KITTI	dS Loc	dS Ori	SN Azi	SN Ere
Additive $\mathbf{M}_{\text{VIOLIN}}$	81.08	62.12	51.95	83.26	80.95	57.25	34.76	39.38
Swin RPB	81.42	61.67	53.83	83.17	81.39	56.81	35.42	38.9
i-RPE-QKV	81.25	61.58	53.42	83.12	81.49	57.28	35.13	38.34
LocalVit	81.28	61.53	53.43	82.56	81.38	57.6	35.5	38.71
Manhattan	76.74	60.73	50.16	82.51	74.69	55.03	32.49	34.57
$\mathbf{M}_{\text{Peano}}$	81.45	61.4	53.59	83.17	81.09	56.98	34.53	40.84
$\mathbf{M}_{\text{Random}}$	81.45	61.33	53.36	82.84	80.21	56.98	34.5	40.76

2020
2021 Table 24: *VTAB Results-Specialized Subset*: Individual scores for each dataset for different locality-
2022 enforcing methods.
2023

Model	Patch Camelyon	EuroSAT	Resisc45	Diabetic Retinopathy
Additive $\mathbf{M}_{\text{VIOLIN}}$	86.84	96.07	87.62	74.93
Swin RPB	86.17	95.66	87.47	75.37
i-RPE-QKV	86.76	95.72	87.51	74.91
LocalVit	86.55	95.85	87.58	75.4
Manhattan	86.44	94.93	86.29	74.21
$\mathbf{M}_{\text{Peano}}$	87.13	95.93	87.71	75.56
$\mathbf{M}_{\text{Random}}$	86.8	95.57	87.63	75.26

2032
2033 F.7 LEARNED CURVE ORDER
20342035 Motivated by recent work on learned patch orderings (Kutscher et al., 2025), we implemented a
2036 learned ordering variant within our framework and trained a DeiT-Tiny model using this learned
2037 sequence. The results are shown in Table Table 25. Although the learned variant underperforms the
2038 original VIOLIN mask in this initial experiment, it highlights several promising research directions,
2039 such as jointly learning multiple traversal curves, exploring task-adaptive orderings, and studying how
2040 different datasets induce specialized spatial structures all of which may further improve performance
2041 and interpretability.
20422043 Table 25: *Comparison of DeiT-Tiny, VIOLIN, and a learned patch-ordering variant*: learned patch
2044 orderings (Kutscher et al., 2025) is adapted to VIOLIN framework.
2045

Model	Accuracy (%)
DeiT-Tiny	72.2
VIOLIN	73.0
VIOLIN w learned order	70.1

2052
2053 F.8 COMPARISON WITH RELATIVE POSITIONAL ENCODINGS2054
2055 **VIOLIN** and relative positional encodings (RPEs) introduce spatial inductive bias through different
2056 mechanisms. As described in Appendix B.4, **VIOLIN** applies a lightweight multiplicative decay mask,
2057 whereas modern RPEs add learned pairwise positional terms to the attention logits and often require
2058 additional parameters or architecture-specific modifications. To assess their relationship, in addition
2059 to the fine-tuning experiments in Appendix F.6, we include comparisons with several RPE-based
2060 locality baselines in both the pretraining settings.2061
2062 On ImageNet-1K supervised pretraining, **VIOLIN** achieves competitive performance to several
2063 RPE variants while adding significantly fewer FLOPs. For example, on DeiT-S, **VIOLIN** introduces
2064 5 \times fewer FLOPs than Transformer-XL and 1.3 \times fewer FLOPs than iRPE-QK, while obtaining
2065 comparable accuracy.2066
2067 Table 26: *Comparison of VIOLIN and RPE variants*: on DeiT-S pretraining in ImageNet-1K. Results
2068 are taken from respective papers of i-RPE (Wu et al., 2021a) and Transformer-XL Dai et al. (2019).2069
2070
2071
2072
2073
2074

Model	Additional FLOPs (%)	Top-1 Acc. (%)
Baseline	-	79.9
VIOLIN	0.7	80.7
Transformer-XL	4.3	80.8
iRPE-K	0.9	80.9
iRPE-QK	2.2	81.1
iRPE-QKV	5.9	81.4

2075
2076 **VIOLIN** can also be combined with RPEs. On DeiT-T, adding **VIOLIN** to iRPE-K yields an additional
2077 accuracy gain, indicating that the methods introduce complementary inductive information.2078
2079 Table 27: *Combination of VIOLIN with RPEs*: pretraining results on DeiT-T model as baseline, with
2080 PRE and with RPE+VIOLIN .2081
2082
2083
2084
2085

Model	Additional FLOPs (%)	Top-1 Acc. (%)
Baseline	-	72.2
iRPE-K	1.7	73.7
iRPE-K + VIOLIN	2.3	73.9

2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106 **G CODES AND IMPLEMENTATION DETAILS**
21072108 **G.1 COMPUTE RESOURCES**
21092111 Table 28: *Compute resources for pertaining*: The number of GPUS and approximate training time
2112 for each model and scale are provided.
2113

Model	# GPUs	Training time
DeiT-T	4	\approx 17 Hour
DeiT-S	4	\approx 23 Hour
DeiT-B	16	\approx 1.7 Day
DINO-S	16	\approx 3.2 Days
DINO-B	16	\approx 7 Days

2121 In Table 28, we report the compute resources required for each of the evaluated models. These
2122 numbers also apply to the models used for ablation experiments.
21232124 For fine-tuning, we performed 30 runs per dataset for each model (25 for validation and 5 for final
2125 evaluation). Each run took between 2 to 10 minutes, and the complete fine-tuning evaluation was
2126 completed in approximately 10 days.2127 All experiments were conducted using a mix of NVIDIA A100 SXM4 80GB, NVIDIA GH200 96GB,
2128 and NVIDIA H100 SXM5 80GB GPUs, used interchangeably depending on availability.
21292130 **G.2 VTAB-1K HYPERPARAMETERS**
21312132 To determine optimal learning rates, we use the VTAB-1K-pytorch repository (Alkin, 2022) and
2133 conduct a grid search. Following the original implementation, we run 5 seeds for learning rate
2134 selection on validation set and another 5 seeds for standard training. For each model, we average the
2135 top 3 runs to report the final accuracy. The complete list of hyperparameters is provided in Table 29.
2136 For parameter-efficient fine-tuning, we again use the same set of hyperparameters and grid search
2137 over ranks [2,4,8,16].
21382139 Table 29: *Hyperparameters for fine-tuning on VTAB-1K*: The same hyperparameters are used for all
2140 models, following (Alkin, 2022).
2141

Parameter	Value
Epochs	50
Batch size	64
Seeds	5
Optimizer	AdamW
Learning rate	[1e-3, 7.5e-4, 5.0e-4, 2.5e-4, 1.0e-4]
Layer-wise lr deca	0.65*
Weight decay	0.05
Momentum	$\beta_1 = 0.9, \beta_2 = 0.999$
Learning rate schedule	linear warmup \rightarrow cosine decay
Warmup epochs	5
Precision	mixed bfloat16
Backend	<code>torch.autocast</code>
Data Augmentation	
Resize	
interpolation	bicubic
size	224x224
Normalize	ImageNet-1K statistics

2160 G.3 CODES FOR CURVES
21612162 In this section, we provide the codes used to create the permutation orders of each SFC in basis of
2163 Z-curve. In other words, we define efficiency the indexing needed for the permutation $\pi_c(\cdot)$ for each
2164 curve c used in our study.

2165

2166 **Snake curve**
2167

```

2168 1 def snake_curve(grid):
2169 2     """Returns the elements of the grid in snake order."""
2170 3     n_rows, n_cols = grid.shape
2171 4     order = []
2172 5     for y in range(n_rows):
2173 6         if y % 2 == 0:
2174 7             # Left-to-right for even rows
2175 8             order.extend((x, y) for x in range(n_cols))
2176 9         else:
2177 10            # Right-to-left for odd rows
2178 11            order.extend((x, y) for x in reversed(range(n_cols)))
2179 12
2180 13 return order

```

2179 **Zig-zag curve**
2180

```

2181 1 def zigzag_curve(grid):
2182 2     """Returns the elements of the grid in diagonal zig-zag order."""
2183 3     n_rows, n_cols = grid.shape
2184 4     order = []
2185 5     for d in range(n_rows + n_cols - 1):
2186 6         if d % 2 == 0:
2187 7             r = min(d, n_rows - 1)
2188 8             c = d - r
2189 9             while r >= 0 and c < n_cols:
2190 10                order.append((r, c))
2191 11                r -= 1
2192 12                c += 1
2193 13         else:
2194 14             c = min(d, n_cols - 1)
2195 15             r = d - c
2196 16             while c >= 0 and r < n_rows:
2197 17                 order.append((r, c))
2198 18                 c -= 1
2199 19                 r += 1
2200 20
2201 21 return order

```

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214 **Hilbert curve** Adapted from (Cerveny, 2025).
 2215

```

2216 1 def hilbert_curve(grid):
2217 2     rows = len(grid)
2218 3     cols = len(grid[0]) if rows > 0 else 0
2219 4     return [(x, y) for x, y in gilbert2d(rows, cols)]
2220
2221 6 def gilbert2d(width, height):
2222 7     """
2223 8         Generalized Hilbert ('gilbert') space-filling curve for arbitrary
2224 9             -sized
2225 10            2D rectangular grids. Generates discrete 2D coordinates to fill a
2226 11                rectangle
2227 12                of size (width x height).
2228 13                """
2229 14     if width >= height:
2230 15         yield from generate2d(0, 0, width, 0, 0, height)
2231 16     else:
2232 17         yield from generate2d(0, 0, 0, height, width, 0)
2233
2234 17 def sgn(x):
2235 18     return -1 if x < 0 else (1 if x > 0 else 0)
2236
2237 19
2238 20 def generate2d(x, y, ax, ay, bx, by):
2239 21     w = abs(ax + ay)
2240 22     h = abs(bx + by)
2241 23     (dax, day) = (sgn(ax), sgn(ay)) # unit major direction
2242 24     (dbx, dby) = (sgn(bx), sgn(by)) # unit orthogonal direction
2243 25     if h == 1:
2244 26         # trivial row fill
2245 27         for i in range(0, w):
2246 28             yield(x, y)
2247 29             (x, y) = (x + dax, y + day)
2248 30         return
2249 31     if w == 1:
2250 32         # trivial column fill
2251 33         for i in range(0, h):
2252 34             yield(x, y)
2253 35             (x, y) = (x + dbx, y + dby)
2254 36         return
2255 37     (ax2, ay2) = (ax//2, ay//2)
2256 38     (bx2, by2) = (bx//2, by//2)
2257 39     w2 = abs(ax2 + ay2)
2258 40     h2 = abs(bx2 + by2)
2259 41     if 2*w > 3*h:
2260 42         if (w2 % 2) and (w > 2):
2261 43             # prefer even steps
2262 44             (ax2, ay2) = (ax2 + dax, ay2 + day)
2263 45             # long case: split in two parts only
2264 46             yield from generate2d(x, y, ax2, ay2, bx, by)
2265 47             yield from generate2d(x+ax2, y+ay2, ax-ax2, ay-ay2, bx, by)
2266 48     else:
2267 49         if (h2 % 2) and (h > 2):
2268 50             # prefer even steps
2269 51             (bx2, by2) = (bx2 + dbx, by2 + dby)
2270 52             # standard case: one step up, one long horizontal, one step
2271 53                down
2272 54             yield from generate2d(x, y, bx2, by2, ax2, ay2)
2273 55             yield from generate2d(x+bx2, y+by2, ax, ay, bx-bx2, by-by2)
2274 56             yield from generate2d(x+(ax-dax)+(bx2-dbx), y+(ay-day)+(by2-
2275 57                dby),
2276 58                -bx2, -by2, -(ax-ax2), -(ay-ay2))
```

```

2268 Peano curve Adapted from (Schubotz, 2021; Prater).
2269
2270 1 def interleave_bits(x, y):
2271 2     """
2272 3     Interleave the bits of two integers (x, y) to compute Morton
2273 4             order.
2274 5     """
2275 6     def split_bits(value):
2276 7         result = 0
2277 8         for i in range(32): # Support up to 32-bit integers
2278 9             result |= ((value >> i) & 1) << (2 * i)
2279 10    return result
2280
2281 11 return split_bits(x) | (split_bits(y) << 1)
2282
2283 12
2284 13 def peano_curve(grid):
2285 14     """Returns the elements of the grid in diagonal morton/peano
2286 15             order."""
2287 16     n_rows, n_cols = grid.shape
2288 17     order = []
2289
2290 18     for y in range(n_rows):
2291 19         for x in range(n_cols):
2292 20             morton_key = interleave_bits(x, y)
2293 21             order.append((morton_key, x, y))
2294
2295 22     # Sort by Morton key to achieve the Morton curve order
2296 23     order.sort(key=lambda pair: pair[0])
2297 24     return [(x, y) for _, x, y in order]
2298
2299
2300
2301
2302
2303
2304

```

G.4 CODE OF EFFICIENT DECAY MASK

```

2305 1 def Casual_Decay_Mask(b_i, N):
2306 2     idx = torch.arange(N, device=b_i.device)
2307 3     I, J = torch.meshgrid(idx, idx, indexing='ij')
2308 4     E = (torch.abs((I-J)).float().view(1,1,N,N))
2309 5     M = torch.sigmoid(b_i).view(1, -1, 1, 1) ** E
2310 6     return M
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

```

G.5 THE USE OF LARGE LANGUAGE MODELS (LLMs)

While preparing this manuscript, we limitedly used Large Language Models (LLMs). Their role was restricted to assisting with editing and polishing the writing, such as improving clarity, grammar, and flow. All conceptual ideas, methods, experiments, and analyses presented in this paper are entirely the work of the authors. No ideas, algorithms, or research contributions were generated by an LLM. The models served only as a tool to refine the presentation of the text without influencing the substance of the research.