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ABSTRACT

Vision Transformers (ViTs) have become a dominant backbone in computer vision,
yet their attention mechanism lacks inherent spatial inductive biases, which are
especially crucial in small models and low-data regimes. Inspired by the masking
in Linear Transformers and the scanning patterns of Vision SSMs, we propose
VIOLIN 1, a lightweight masked attention mechanism that integrates Space Filling
Curves (SFCs) to enhance spatial awareness with negligible computational over-
head. VIOLIN scans the input image with multiple SFCs to build curve specific
decay masks, which are averaged and multiplied with the attention matrix to encode
spatial relationships. It yields notable gains in data-scarce settings: when fine-
tuning on VTAB-1K, VIOLIN improves accuracy by up to 8.7% on the Structured
group, and it can be combined with parameter-efficient tuning methods such as
LoRA. Beyond fine-tuning, VIOLIN consistently improves various tiny or small
scale ViT architectures (e.g., DeiT, DINO) during pretraining, achieving gains of up
to 0.9% on on ImageNet-1K and 7.2% on pixel level CIFAR-100. Overall, VIOLIN
offers a computationally efficient yet effective way to inject spatial inductive bias
into ViTs, particularly benefiting small models and data-scarce scenarios.

Anonymous VIOLIN Code

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have rapidly become a dominant architecture
in computer vision, achieving strong performance across diverse tasks. Their success comes from
capturing global dependencies through self-attention, but unlike Convolutional Neural Networks
(CNNs) (O’Shea & Nash, 2015), ViTs lack inherent spatial priors such as locality (Fan et al.,
2024). This makes them highly data-hungry and dependent on larger model sizes.2 While sufficient
parameters and massive datasets allow ViTs to learn these biases directly (Lu et al., 2022; Sun et al.,
2017), many downstream tasks require adapting a pretrained backbone with limited data. In such
cases, even large ViTs struggle to specialize, making stronger inductive biases essential across scales.
Prior works have attempted to address this limitation with convolutions (Guo et al., 2022), novel
positional encodings (Wu et al., 2021b), or masking strategies (Fan et al., 2024).

Concurrently, in natural language processing, State Space Models (SSMs) and Linear Transformers
have emerged as efficient alternatives to standard transformers (Gu & Dao, 2024; Dao & Gu, 2024;
Sun et al., 2023), and their vision adaptations have achieved strong results (Alkin et al., 2024; Liu
et al., 2024b; Zhu et al., 2024). Through recurrence and a decay factor on attention scores, these
models can capture the relative spatial order of image patches. However, this information depends
entirely on the chosen scanning order, and to capture both vertical and horizontal relations, they
typically require multiple directional scans (Li et al., 2024).

Scanning an image converts its 2D patch layout into a 1D sequence, with the order of patches
determined by a traversal path. This process can be viewed as a Space Filling Curve (SFC): a
continuous path that passes through every point in a multidimensional grid while systematically
covering the entire image (Sagan, 1994). Many vision backbones, including vanilla ViT (Dosovitskiy
et al., 2021), Vision x-LSTM (Alkin et al., 2024), VMamba (Liu et al., 2024b), and Vim (Zhu et al.,

1As a subtle homage to Giuseppe Peano, the creator of space filling curves, we named our model in a way
that also reflects a musical instrument, just like Peanos family name resembles Piano.

2We define models with ≤ 30M parameters as small-scale and those with ∼86M+ as large-scale.
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Figure 1: Space Filling Curve paths: Examples of traversal paths used in VIOLIN on a 4× 4 patched
image. (a1) Original image. (a2) Z-curve (b1) Snake curve, (b2) Transposed Snake curve, (c1)
Zig-zag curve, (c2) Transposed Zig-zag curve, (d1) Hilbert curve, (d2) Transposed Hilbert curve,
(e1) Peano curve, (e2) Transposed Peano curve.

2024), use the simple Z-curve, or row-by-row scan, for this linearization (see Figure 1 (a2)). Given
that other SFCs, such as Snake, Zig-zag, Peano, and Hilbert curves, preserve locality in different
ways (see Figure 1), we ask the following question:

Can incorporating SFC-inspired structure into attention help to enhance the spatial understanding of
ViTs, thereby improving their performance in small models and limited-data settings?

In this work, we answer this question affirmatively by proposing VIOLIN , a lightweight attention
mechanism that injects spatial priors through SFC-guided decay masks. Specifically, VIOLIN
integrates multiple SFC based scans into a single decay mask, MVIOLIN , which captures the relative
spatial locations of image patches without altering the rest of the architecture. As a result, VIOLIN
provides an efficient, plug-and-play way to introduce locality into ViTs, particularly benefiting small
models and data-scarce scenarios. Figure 1 (b - e) shows the SFCs used in VIOLIN to traverse the
image, with their corresponding linearized sequences presented in Figure 10.

We evaluate VIOLIN across a broad set of settings:

• Fine-tuning DeiT, DeiT-III, and DINO (Touvron et al., 2021; 2022; Caron et al., 2021) on
VTAB (Zhai et al., 2019), across scales from Tiny (5M) to Huge (632M), where VIOLIN
consistently improves baselines with gains up to 8.7% on individual tasks and 4.7% on
average. VIOLIN can also be seamlessly combined with parameter-efficient fine-tuning
methods, further boosting adaptability.

• Pretraining small-scale models on ImageNet-1K (Russakovsky et al., 2015), where VIOLIN
improves performance by up to 0.9%, and on pixel-level CIFAR-100 (Krizhevsky, 2009),
achieving a striking 7.2% improvement.

• Additional analyses, including the complementary contributions of different curves, perfor-
mance on the Structured VTAB category, and extensions to dense prediction tasks such as
object detection on COCO (Lin et al., 2015) and semantic segmentation on ADE20K (Zhou
et al., 2017), further highlight the versatility of VIOLIN and the importance of explicitly
modeling spatial priors.

2 BACKGROUND

Notations and preliminaries We denote a patched image as I ∈ RH×W×d, where H and W are
the number of patches along height and width, and d is the embedding dimension. Its flattened form is
X ∈ RN×d with N = H ×W as the sequence length. For single head attention, the query, key, and
value matrices Q,K,V ∈ RN×d are computed using learnable weights WQ,WK ,WV ∈ Rd×d,

2
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and the standard ViT attention is computed as

Q = XWQ, K = XWK , V = XWV , Y = Softmax
(
QK⊤
√
d

)
V. (1)

where Y ∈ RN×d is the attention output. We use h and L for the number of attention heads and
transformer layers respectively. Elements of matrices and vectors are accessed by [·], and ⊙ denotes
the Hadamard product. A full list of notations is provided in Appendix A.

Vision Transformers and spatial priors After dividing an image into patches (tokens), ViTs
process them as a 1D sequence, typically flattened with a Z-curve (Dosovitskiy et al., 2021; Touvron
et al., 2021; Caron et al., 2021), as shown in Figure 1 (a2), which discards information about
neighboring patches. To reintroduce spatial information, most ViTs add positional embeddings before
transformer blocks, where self-attention captures token interactions. Recent works have further
improved performance through self-supervised learning (e.g., DINO (Caron et al., 2021; Oquab et al.,
2023)) and optimized training strategies (e.g., DeiT and DeiT-III (Touvron et al., 2021; 2022)). In
this study, we show how VIOLIN improves upon these models and training recipes.

By processing patches independently, ViTs lack the strong spatial inductive bias of architectures
like CNNs, which inherently encode locality (Yuan et al., 2021). Although ViTs capture global
interactions, they struggle with fine-grained local structures, making training data-hungry (d’Ascoli
et al., 2021). Sufficiently large models and datasets can mitigate this by learning locality from data,
but when model size or data is limited, ViTs struggle to achieve strong performance (Lu et al., 2022),
see Appendix B.1 for details.

Linear Transformers Linear attention was introduced as an alternative to softmax attention,
reducing quadratic complexity to linear time via a recurrent formulation eq. (2) (Katharopou-
los et al., 2020). Instead of relying on positional embeddings to capture the order within a
sequence, most modern Linear Transformers (Sun et al., 2023) incorporate a decay factor (γ),

Si = γSi−1 + k⊤
i vi, yi = q⊤

i Si ⇔ Y = (QK⊤ ⊙MCausal)V, MCausal[i, j] =

{
γi−j i ≥ j,

0 i < j.
(2)

where Si ∈ Rd×d is the hidden state. This recurrent form can be parallelized using matrix
multiplication with a Toeplitz decay mask M (Qin et al., 2023; Sun et al., 2023). Though linear
masked attention was initially proposed for causal NLP tasks, it is later adapted to non-causal tasks
using full Toeplitz masks (Afzal et al., 2025). The decay mask naturally extends context length,
supports variable sequence lengths, and provides locality information that inspired VIOLIN .

Scans in Linear Vision Transformers and SSMs Linear Transformers and SSMs have been
applied to vision tasks (Alkin et al., 2024; Liu et al., 2024b; Zhu et al., 2024). To enhance spatial
representation, these models often traverse image patches using a Z-curve, typically scanning in both
vertical and horizontal directions. Each scan acts as a separate recurrence, capturing distinct spatial
patterns through their own decay factors.

Space Filling Curves
Definition 2.1. A Space Filling Curve (SFC) is a continuous mapping from a closed unit interval
S = [0, 1] to a closed unit hypercube Q = [0, 1]N , passing through every point in Q exactly
once (Peano, 1990). In this work, we focus on the 2D Euclidean case Q = [0, 1]2, corresponding to
the image domain.

Based on definition 2.1, many SFCs can been defined, including the Snake, Peano (also known as the
Morton curve) (Peano, 1990), Hilbert (Hilbert, 1935), Z (or Sweep), and Zig-zag (Wallace, 1992)
curves as illustrated in Figure 1. Additionally, other curves include the Sierpiski (Sierpiski, 1915),
Lebesgue (Lebesgue, 1904), and Schoenberg curves (Schoenberg, 1938).

Flattening or scanning can be viewed as applying an SFC c to a 2D patched image I with N total
patches, mapping it into a 1D sequence Xc ∈ RN via a flattening function Fc(I) : RH×W → RN

Fc(i, j) : (i, j) 7→ n, i ∈ {0, . . . , H−1}, j ∈ {0, . . . ,W−1}, n ∈ {0, . . . , N−1}, (3)

Xc = Fc(I), Xc[n] = I[i, j] where n = Fc(i, j). (4)

3
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This flattening can be applied independently across each embedding dimension d for I ∈ RH×W×d.
While SFCs have diverse applications in other domains, their role in image classification remains un-
derexplored (Zhao et al., 2024; Kutscher et al., 2025). For further details, please refer to Appendix B.3.

3 METHODOLOGY

In this section, we first introduce decay-masked attention in Section 3.1, then extend it to capture
diverse scanning patterns in Sections 3.2 and 3.3, and finally formulate VIOLIN attention in Section 3.4.

3.1 ATTENTION WITH DECAY MASK

As shown in Appendix C.1, attention (eq. (1)) is permutation equivariant. In other words, changing
the order of tokens in the sequence results in the same reordering in the output. Therefore, standard
attention does not encode relative spatial priors within an image. To introduce locality, we take
inspiration from Linear Transformers and multiply a decay mask with the attention:

Y = Softmax
(
QK⊤
√
d

⊙M

)
V, M[i, j] = γ|i−j|, 0 < γ ≤ 1. (5)

This decay mask M, also known as the KacMurdockSzeg matrix (Kac et al., 1953), extends the
causal decay mask to full attention (Sun et al., 2023; Afzal et al., 2025). It dampens the attention
score between tokens i and j by γ|i−j|, enforcing locality in the flattened sequence X. However, both
the token order in X and the notion of distance in M depend entirely on how the original image I is
flattened. This raises a natural question: What are alternative, principled ways to flatten an image?

3.2 SFCS AS PRINCIPLED WAY OF IMAGE FLATTENING

Following eq. (4), scanning an image along a path c yields the sequence Xc = Fc(I). Many
ViTs (Dosovitskiy et al., 2021; Touvron et al., 2021) use the Z-curve as the default scanning method.

Z-Curve The Z-curve, also called sweep, row-major order, or raster scan, traverses the image row
by rowtop to bottom, and left to right within each row. Its flattening function is Fz(i, j) = iW + j.
See Appendix B.3 for details on curves used in this study.

Although flattening with different curves usually requires reprocessing the image, we propose a
simpler and significantly more efficient alternative: applying a permutation to the flattened sequence.

Permutation of a flattened image Given a sequence Xc1 flattened via SFC c1, and noting that
flattening is one-to-one, we define a permutation πc1→c2 : {0, . . . , N − 1}→{0, . . . , N − 1} that
maps it to Xc2 from curve c2

Xc2 = πc1→c2(Xc1). (6)
Note that since each index in Xc1 uniquely corresponds to one in Xc2 , πc1→c2 is invertible. Alterna-
tively, we can represent it as a permutation matrix Pc1→c2 ∈ {0, 1}N×N

Pc1→c2 [n,m] =

{
1 if m = πc1→c2(n),

0 otherwise,
Xc2 = Pc1→c2Xc1 . (7)

Since Pc1→c2 is a permutation matrix, Pc2→c1 = P−1
c1→c2 = P⊤

c1→c2 . Thus, by flattening the image
once using the Z-curve, it is possible to obtain Xc for other curves by applying πz→c(·).

3.3 SFCS MEET ATTENTION

With the naive approach, using Xc for each curve individually and following eq. (5), the output of
masked attention Yc can be calculated such that

Yc = Softmax
(
QcK

⊤
c√

d
⊙Mc

)
Vc, where Mc[i, j] = γ|i−j|

c , (8)

where Qc,Kc,Vc are the corresponding query, key, and value matrices. Note that as the token order
of Yc depends on the curve c, when multiple curves are used, the outputs (e.g Yc1 and Yc2) will
have mismatched positions. To overcome this issue we can define a basis for our curves as below.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Basis Curve After computing the attention output Yc for each curve c, we permute them into a
common basis order to align all outputs. This preserves each curves spatial locality while ensuring
they share a consistent reference order. Following standard ViT flattening, we use the Z-curve as the
basis and perform all permutations relative to it, simplifying notation as πz→c = πc, πc→z = π−1

c
and Pz→c = Pc, Pc→z = P−1

c . The output aligned to the basis is

Ỹc = π−1
c (Yc) = P⊤

c Yc. (9)

Permutation of Decay Mask The aligned output Ỹc of the masked attention in eq. (8) is

Ỹc = P⊤
c Yc = P⊤

c Softmax
(
QcK

⊤
c√

d
⊙Mc

)
Vc. (10)

Equivalently, we can permute the decay mask Mc to the basis order as M̃c = π−1
c (Mc) = P⊤

c McPc,
allowing attention to be computed directly in the basis, see Section C.3 for proof. The attention
output then becomes

Ỹc = Softmax

(
QK⊤
√
d

⊙ M̃c

)
V, M̃c = π−1

c (Mc), Mc[i, j] = γ|i−j|
c . (11)

This approach is more efficient than the naive one, as Q,K,V are computed only once from the
basis curve, and, more importantly, a single QK⊤ ∈ RN×N is shared across all curves per head.

3.4 VIOLIN ATTENTION

For a single head, we define VIOLIN attention as a decay-masked attention guided by multiple SFCs

Y = Softmax

(
α
QK⊤
√
d

⊙MVIOLIN

)
V,

MVIOLIN =
1

|C|
∑
c∈C

M̃c. (12)

Here, MVIOLIN is the average of decay masks
from all curves c ∈ C, each first aligned to the
basis (Z-curve) order. The matrices Q,K,V
are computed from the input X flattened with
respect to the basis. The learnable scalar α ∈
R controls how strongly the mask influences
attention.

Mc

𝜸𝒄

Layer Norm

MHA

+

Layer Norm

MLP

+

X

Y

SoftMax

Linear Linear Linear

MVIOLINA

⨀

VIOLIN Attention

Q K V

Y MVIOLIN

Average
×

~

Permutation(𝝅𝒄)

Figure 2: VIOLIN : (Left) ViT block with VIOLIN
multi-head attention. (Middle) Single-head VIOLIN
attention. (Right) Decay mask MVIOLIN formed by
averaging masks from curves in C.

For VIOLIN , we use Snake, Zig-zag, Peano, and Hilbert curves together with their transposed variants
(Figure 1 (b2-e2)) to capture diverse scanning patterns in both row and column major order. This
gives the curve set

C = {Snake, Zig-Zag, Peano, Hilbert, Snake⊤, Zig-Zag⊤, Peano⊤, Hilbert⊤}. (13)

Each curve c has a decay factor γc ∈ [0, 1] for its mask Mc, parameterized as γc = sigmoid(βc) with
learnable βc ∈ R for stability, following prior work (Orvieto et al., 2023). n multi-head attention, each
head k has its own βk

c and αk, and thus computes Mck, MVIOLIN k, and π−1
c (Mk

c ) independently.
Permutations are applied efficiently via indexing, see code in Appendix G.3. The full VIOLIN block
is shown in Figure 2, with further design choices and ablations in Appendix D and Appendix E.

Table 1: Parameter and computational over-
head of VIOLIN : calculated relative to DeiT-
B (86M parameters, 55.4G FLOPs).

Metric Theoretical % Change
Computation (over DeiT-B)

# Param. Lh(|C|+ 1) 0.0002%
FLOPs O(LhdN2) 0.64%

Parameter and computational overhead A key
advantage of VIOLIN is that it does not introduce
significant parameter or computational overhead. As
shown in Table 1, the additional cost amounts to
only 0.0002% more parameters and 0.64% more
FLOPs compared to the baseline DeiT-B model with
86M parameters and 55.4G FLOPs. These values are
effectively negligible in practice.
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Table 2: GPU memory and inference time
comparison: for DeiT-S and VIOLIN-S at
different input resolutions. Batch size is 256.

Model GPU Memory Runtime
(GB) (ms/batch)

DeiT-S (224× 224) 0.80 206.1
VIOLIN-S (224× 224) 0.81 233.1
DeiT-S (512× 512) 13.88 1739.3
VIOLIN-S (512× 512) 13.90 1789.7

To quantify the practical computational cost of VIO-
LIN, we report both GPU memory consumption and
inference runtime on the same hardware when evalu-
ating a DeiT-S backbone. Measurements are taken for
a batch size of 256 at two resolutions: 224× 224 for
classification tasks and 512× 512 for dense predic-
tion. As shown in Table 2, VIOLIN closely matches
the vanilla DeiT model in both runtime and memory
usage. These results are consistent with our theoreti-
cal analysis and confirm that VIOLIN introduces only
minimal overhead.

4 EXPERIMENTS

We evaluate VIOLIN across diverse settings to assess its effect on the spatial awareness of ViTs.
Our experiments include fine-tuning on small datasets in Section 4.1, and pretraining small-scale
models on ImageNet-1K and on pixel-level CIFAR-100 in Section 4.2. Additional ablations on curve
configurations, and decay factors are presented in Section 4.3. Beyond classification, we analyze the
strong gains on the Structured group of VTAB and extend evaluation to dense prediction tasks such
as detection and segmentation. Overall, VIOLIN consistently improves performance, with the notable
benefits in small models and data-scarce regimes.

4.1 VTAB-1K FINE-TUNING

The Visual Task Adaptation Benchmark (VTAB) (Zhai et al., 2019) evaluates the adaptability of
learned representations to diverse unseen tasks with limited data. It consists of three groups, Natural,
Specialized, and Structured, covering 19 datasets from varied domains and semantic categories. In
our experiments we use VTAB-1K, a subset with 1,000 examples per task, specifically designed to
test model adaptation in data-scarce settings.

We evaluate VIOLIN on small datasets and specialized tasks under two configurations: full fine-
tuning and parameter-efficient fine-tuning (PEFT). In both cases, we compare fine-tuning results
of the original pretrained models ( Baseline ), and Baseline ⊙MVIOLIN where pretrained models
are combined with freshly initialized mask before fine-tuning and then optimized jointly with the
backbone during fine-tuning. For all models, both baselines and VIOLIN , we use the finetuning
implementation from Alkin (2022). For each model, every dataset is first split into a 800/200
train/validation partition to select the optimal learning rate per dataset. We then train on the full
dataset using 5 random seeds and report the average of the best 3 runs. The complete set of training
hyperparameters is provided in Table 29, and per-dataset results are included in Appendix F.5.

Full fine-tuning In the first setting, we test the plug-in capability of VIOLIN by fully fine-tuning
pretrained DeiT, DeiT-III, and DINO models across scales ranging from 5M to 630M parameters.

Table 3: Full fine-tuning results on VTAB-1K: Comparison of the top-1 accuracies of
baseline models and their Baseline ⊙MVIOLIN counterparts across the VTAB-1K benchmark.

The three task groups are abbreviated as NAT. = Natural, SPE. = Specialized, and STR. = Structured.
The values in parentheses (·) indicate the accuracy difference compared to the baseline. The best
performance within each model pair is highlighted in bold. Green highlights the improvement.

Model Param.
Top-1 Accuracy (%)

Baseline Baseline ⊙MVIOLIN

NAT. SPE. STR. Avg. NAT. SPE. STR. Avg.
DeiT-T 5M 69.56 82.34 53.57 65.52 71.90 (+2.34) 83.75 (+1.41) 57.50 (+3.93) 68.33 (+2.81)
DeiT-S 22M 73.64 84.30 53.44 67.38 76.06 (+2.42) 85.05 (+0.75) 58.26 (+4.82) 70.46 (+3.08)
DeiT-B 86M 76.93 85.52 57.00 70.35 77.96 (+1.03) 86.29 (+0.77) 61.89 (+4.89) 72.95 (+2.60)
DeiT-III-S 22M 75.13 83.63 52.92 67.57 77.03 (+1.90) 85.46 (+1.83) 61.61 (+8.69) 72.31 (+4.74)
DeiT-III-B 86M 78.19 85.26 56.71 70.63 79.24 (+1.05) 86.47 (+1.21) 63.03 (+6.32) 73.94 (+3.31)
DeiT-III-L 304M 88.68 84.38 51.40 67.41 90.39 (+1.71) 84.68 (+0.30) 54.95 (+3.55) 69.51 (+2.10)
DeiT-III-H 632M 88.15 84.18 50.70 66.91 89.10(+0.95) 84.43 (+0.25) 53.65 (+2.95) 68.50 (+1.41)
DINO-S 22M 75.35 85.09 60.65 71.21 76.26 (+0.91) 85.32 (+0.23) 61.24 (+0.59) 71.84 (+0.63)
DINO-B 86M 77.50 85.77 58.47 71.23 78.65 (+1.15) 86.44 (+0.67) 60.84 (+2.37) 72.79 (+1.56)
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During fine-tuning, the VIOLIN decay mask MVIOLIN is applied together with the scaling factor α
as defined in eq. (12), and the resulting accuracies are reported in Table 3. The freshly initialized
mask enables fast adaptation by allowing models to learn task-specific structural biases, which is
critical in data-scarce fine-tuning. We also fine-tune the VIOLIN pretrained models from Section 4.2
on the same tasks and noticed that masks learned only during downstream fine-tuning consistently
outperform pretrained ones, full results are provided in Appendix F.2.

This property offers a key advantage: VIOLIN can improve any pretrained model when
applied only at fine-tuning. It removes the need for costly pretraining from scratch and
allows model to specialize on the downstream task better. The improvements are sub-
stantial, up to 4.7% on average and 8.7% on individual group, showing that the spatial
bias introduced by VIOLIN enables more effective learning in data-scarce regimes. More-
over, the computational overhead is negligible, and the method generalizes well across train-
ing setups, datasets, and model scales, including large models with over 600M parameters.

Table 4: PEFT results on VTAB-1K with DeiT-B: #
Param. denotes the number of learnable parameters
per method. The baseline uses PEFT alone, while
VIOLIN combines PEFT with mask fine-tuning.

Method # Param. Avg. Accuracy (%)
Baseline Baseline ⊙MVIOLIN

Full-FT 86 M 70.35 72.95 (+2.60)
LoRA ∼0.3M 71.04 72.55 (+1.41)
DoRA ∼0.6M 70.75 71.90 (+1.15)

PEFT with VIOLIN Secondly, we use the
PEFT methods LoRA (Hu et al., 2022) and
DoRa (Liu et al., 2024a) to fine-tune the DeiT-B
model, with results shown in Table 4. In this
setting, the VIOLIN mask is freshly initialized
and updated alongside the PEFT weights. The
additional cost introduced by VIOLIN remains
insignificant, only 0.002% additional parameters
compared to 0.35% introduced by LoRA. The
results demonstrate that VIOLIN can be seam-
lessly combined with different PEFT methods,

further highlighting its applicability and generalizability.

4.2 PRETRAINING

ImageNet-1K pretraining We pretrain VIOLIN on small-scale models 3 under two paradigms:
supervised and self-supervised training, as shown in Table 5. For supervised training, we use DeiT in
tiny and small scales, a well established baseline specifically designed for data efficient supervised
training. The DeiT paper provides two components: (1) a data-efficient training recipe with tuned
augmentations and hyperparameters, and (2) a distillation mechanism that uses a teacher model. In
all our DeiT-based pretraining experiments, we use only the training recipe and do not employ any
form of distillation. VIOLIN consistently improves performance without any additional tuning, with
DeiT-T gaining 0.8% and DeiT-S achieving a notable 0.9% improvement, demonstrating strong
compatibility. For these models, we adopt Global Average Pooling (GAP) (Lin et al., 2013; Lu et al.,
2022) instead of a class token, as GAP is more compatible with VIOLIN , see Appendix E.5 for
details.

For self-supervised training, we adopt DINO, a state-of-the-art teacherstudent framework for label-
free representation learning, known for its stable training dynamics and strong downstream perfor-
mance. In our experiments, both teacher and student networks are equipped with VIOLIN attention.
In this setup, VIOLIN consistently improves performance across model scales and training durations,
yielding gains in both KNN and linear evaluations on ImageNet. For all models, we strictly follow
the original training recipes from the respective papers, without modifying any hyperparameters for
VIOLIN . Baseline accuracies are taken directly from the reported values.

Ablation studies In Appendix E, we provide comprehensive ablations on key aspects of VIOLIN
attention, all within the same pretraining setup. Appendices E.1 and E.5 examine the effects of
global average pooling and positional embeddings, while Appendix E.2 explores different curve
configurations, covering all combinations in C, Z-curve only, Manhattan distance-based masking (as
used in RMT (Fan et al., 2024)), random curve orderings, and variants without transposed curves.
Appendix E.3 compares alternative masking strategies, and Appendix E.4 analyzes key design choices
such as initialization, the scaling factor α, and fixed vs. learnable decay parameters. Together, these

3We observed that for ImageNet pretraining with larger models, the performance gains are smaller, which is
expected. See Appendix F.1 for numerical results and a detailed explanation.
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Table 5: Pretraining results on ImageNet-1K: Comparison of the top-1 accuracies of baseline models
with their VIOLIN counterparts. The values in parentheses (·) indicate the accuracy difference
compared to the baseline. The best performance between each pair of models is highlighted in bold.
For DINO models, both KNN and linear probe evaluations are reported and (100), (300) indicate
the number of training epochs of the models. (Left) Supervised training, (Right) Self-supervised
training. Similar sized CNN baselines are added for comparison.

Model # Param. Top-1 Accuracy (%)
Baseline VIOLIN

DeiT-T 5M 72.2 73.0 (+0.8)
DeiT-S 22M 79.8 80.7 (+0.9)
ResNet-18 12M 69.8
ResNet-50 25M 76.2

Model # Param. Top-1 Accuracy (%)
Baseline VIOLIN

DINO-S (100) KNN 22M 69.3 70.0 (+0.7)
Linear 74.0 74.6 (+0.6)

DINO-S (300) KNN 22M 72.8 73.4 (+0.6)
Linear 76.1 76.4 (+0.3)

ablations provide a detailed view of each components contribution to the effectiveness of VIOLIN
attention. Additionally, in Section F.3, we evaluate the context extrapolation capability of VIOLIN
using multi-resolution classification and video generation with a pretrained VIOLIN DINO model,
leveraging the natural extrapolation property of the KMS decay mask MVIOLIN .

Table 6: Pixel level CIFAR-100 pretrain-
ing: Comparison of the top-1 accuracies of
baseline and VIOLIN models.

Model # Param. Avg. Accuracy (%)
Baseline VIOLIN

DeiT-T 5 M 60.8 68.0 (+7.2)

Pixel-level CIFAR-100 pretraining Recent
work has explored pixel-level tokenization for
ViTs (Nguyen et al., 2025; Wang et al., 2025),
which provides fine-grained image representations
and avoids hand-crafted choices around patch size.
However, this setting is challenging because patching
is the main source of locality bias in ViTs, removing
it makes models more data-hungry and harder to
optimize on small or medium sized datasets such as CIFAR-100 (Krizhevsky, 2009). This setting
aligns perfectly with the goal of VIOLIN , as it introduces locality into the model independently of
the patching process.

On CIFAR-100, when ViT-T is trained using the DeiT ImageNet training recipe, VIOLIN achieves a
striking improvement of over 7% compared to the vanilla pixel-level baseline, as shown in Table 6.
This demonstrates that our locality mechanism provides a powerful inductive bias, enabling effective
learning in small-data, small-model regimes where standard ViTs collapse. These results highlight
both the effectiveness of VIOLIN and the importance of locality awareness for pixel-level ViTs,
particularly in resource-constrained scenarios where large-scale pretraining or very long training
schedules are impractical.

4.3 UNDERSTANDING SPATIAL AWARENESS IN VIOLIN Original Image VIOLINDeiT

Figure 3: Attention heatmaps on Struc-
tured tasks: Examples are drawn from
three datasets in the Structured group:
CLEVR-Count, dSprites-Location, and
SmallNORB-Azimuth. All visualiza-
tions are taken from layer 12, using the
same attention head for each image.

Performance gain on the Structured group The Struc-
tured category of VTAB includes tasks that require under-
standing the spatial structure of the images such as object
counting and 3D depth prediction, many of which are de-
rived from simulated environments. These scenes often
consist of rendered geometric objects that are simple to
humans but differ significantly from images in ImageNet.
s a result, success in these tasks often depends on recogniz-
ing positional, orientational, or shape-based information,
making local spatial layout especially important.

As shown in Table 3, the VIOLIN mask provides the largest
improvements in this category, with gains of up to 8.69%,
a 16% relative increase over the baseline. These results
highlight the strength of VIOLIN in enhancing spatial ca-
pabilities, supporting our claims, and demonstrate its abil-
ity to generalize effectively to tasks that depend heavily
on spatial structure. In Figure 3, we illustrate images
from three datasets in the Structured group with attention
heatmaps of DeiT-B models fine-tuned with and without

8
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Snake Curves Zig-Zag Curves Hilbert Curves Peano Curves 
b1) b2) c1) c2) d1) d2)  e1) e2) a) Patch 

Location

Figure 4: Mask patterns for different patches: Visualization of decay mask patterns for three
reference patches, top-left, center, and bottom-right, (1st, 2nd and 3rd rows) across all curves and
their transposed counterparts. Lighter values indicate stronger spatial relevance, showing more
strongly attended regions. a1) Reference patch locations, b1) Snake, b2) Snake⊤, c1) Zig-zag, c2)
Zig-zag⊤, d1) Hilbert, d2) Hilbert⊤, e1) Peano, e2) Peano⊤ curves.

MVIOLIN . The comparisons show that models fine-tuned with VIOLIN attend to objects more ac-
curately, suppress noise on irrelevant patches, and produce more uniform responses in background
regions, further demonstrating its benefit for spatial understanding. Additional visualizations are
provided in Appendix F.4.

Curve configurations We examine the individual contribution of each curve by pretraining DeiT-S
with all 24 = 16 combinations of four curves (including their transposed variants), with accuracies
reported in Table 12. While some combinations yield larger gains, every curve contributes meaning-
fully, motivating the use of all four in VIOLIN to leverage their complementary spatial information.
To illustrate this, Figure 4 visualizes the decay masks for three reference patches (top-left, center,
bottom-right) across all curves and their transposes. Lighter regions indicate stronger attention, and
the distinct patterns show how different curves bias the model toward diverse spatial regions.

We further analyze the learned decay parameters γc for DeiT-B in Figure 7, observing that most
remain close to one, indicating active use of long-range spatial information. Smaller values act
as implicit curve selection, as these decay masks would contribute to the average minimally, with
certain layers and heads emphasizing particular curves. Finally, additional attention heatmaps and
visualizations of sequences flattened by different curves are provided in Appendix F.4.

Table 7: Comparison of locality methods: The pretrained
DeiT-B model fine-tuned with different locality methods
on the VTAB Structured group. Best result is highlighted
on bold.

Method # Extra Parameters Structured Avg. (%)

Baseline (DeiT-B) – 57.00
VIOLIN ∼1.3K 61.89
Additive MVIOLIN ∼1.3K 61.34
Swin RPB ∼105K 61.58
i-RPE QKV ∼115K 61.45
LocalViT ∼6.2M 61.50
Manhattan Mask ∼0.4K 58.37
Single SFC (MPeano) ∼0.4K 61.63
Random Curve (MRandom) ∼0.4K 61.43

Comparison against other inductive
bias methods In Table 7, we pro-
vide an extended comparison of various
locality-enforcing baselines on the Struc-
tured group in the fine-tuning setting.
For each approach, we use the same pre-
trained DeiT-B backbone and initialize
the corresponding locality mechanism on
top of it, ensuring that all models start
from an identical initialization. All meth-
ods are then fine-tuned under the same
protocol, using the hyperparameter set
described in Table 29.

These results show that while most local-
ity priors offer some improvement, VIO-
LIN achieves the strongest gains with minimal overhead. This indicates that the improvements come
specifically from the usage of multiple SFC curves, rather than from the presence of any local bias.
Moreover, the results highlight VIOLIN’s effectiveness as a plug-and-play spatial prior in small-data
finetuning regimes. Full implementation details, initialization choices, and per-dataset results are
provided in Appendix F.6.
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Table 8: Results on dense prediction tasks: (Left) mIoU scores on semantic segmentation on
ADE20K with DeiT-B model. (Right) box AP and mask AP scores on object detection and instance
segmentation on COCO with Swin-T.

Backbone mIoU
Baseline Baseline ⊙MVIOLIN

DeiT-B 45.24 45.80 (+0.56)

Backbone Baseline Baseline ⊙MVIOLIN

box AP mask AP box AP mask AP
Swin-T 42.7 39.3 42.8 (+0.1) 39.7 (+0.4)

Dense prediction tasks To assess the capabilities of VIOLIN beyond classification, we evaluate
it on semantic segmentation and object detection. For both tasks, baseline and VIOLIN enhanced
models are trained under identical setups to ensure fair comparison, with results reported in Table 8.
These experiments also highlight the flexibility of MVIOLIN , which naturally generalizes to arbitrary
input shapes, enabling resolution expansion and non-square images.

For semantic segmentation, we use ADE20K (Zhou et al., 2017; 2019), a challenging scene parsing
dataset, implemented in the mmsegmentation framework (Contributors, 2020). The backbone
is an ImageNet pretrained DeiT-B model combined with UPerNet (Xiao et al., 2018).The MVIOLIN

mask is freshly initialized at fine-tuning, and training is performed for 80k iterations with batch size
16. As reported in Table 8, VIOLIN achieves a +0.56 mIoU improvement, further demonstrating that
spatial priors help ViTs adapt effectively to dense prediction tasks.

For object detection, we experiment on COCO (Lin et al., 2015) using the mmdetection frame-
work (Chen et al., 2019). The backbone is an ImageNet pretrained Swin-T (Liu et al., 2021), paired
with Mask R-CNN (He et al., 2017) as the detector. As in segmentation, the VIOLIN mask MVIOLIN

is freshly initialized at fine-tuning, and models are trained with a 1× schedule and batch size 16.
As shown in Table 8, VIOLIN improves performance by +0.4 mAP over the baseline, showing that
spatial priors from space-filling curves enhance object localization.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced VIOLIN , a masked attention mechanism inspired by the decay masks of
Linear Transformers and the perspective of flattening via space filling curves. By integrating diverse
spatial patterns into a unified decay mask, VIOLIN enhances the understanding of relative spatial
relationships without altering the training recipe, or introducing a significant computational cost.

Our experiments show that VIOLIN is particularly effective in small models and data-scarce settings,
where spatial inductive bias is most critical. It also serves as a plug-and-play module that can be
applied only during fine-tuning, combining seamlessly with parameter-efficient methods. More
broadly, VIOLIN emphasizes the overlooked role of patch ordering and spatial priors in ViT design,
offering a lightweight and practical approach to strengthen locality in vision transformers.

Future directions Since VIOLIN operates directly on the attention scores, it can be used in any
setting where spatial relationships are important and a global attention mechanism is used. This
opens up many exciting future directions, including applications to depth estimation, super-resolution,
tracking, and even video understanding. VIOLIN also opens several promising directions, such as
dynamic or task-adaptive curve selection, as well as to domains such as video, multimodal learning,
and data-scarce applications like medical imaging or satellite analysis. These settings offer promising
opportunities to further explore the impact of explicit spatial priors in vision backbones.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Jakub Cerveny. Gilbert: Generalized hilbert space-filling curve for rectangular domains. https:
//github.com/jakubcerveny/gilbert, 2025. Accessed: 2025-05-09.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019.

Wanli Chen, Xufeng Yao, Xinyun Zhang, and Bei Yu. Efficient Deep Space Filling Curve . In 2023
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 17479–17488, Los Alamitos,
CA, USA, October 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.01607. URL
https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.01607.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with performers. In
International Conference on Learning Representations, 2021.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia,
and Chunhua Shen. Conditional positional encodings for vision transformers. arXiv preprint
arXiv:2102.10882, 2021.

Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
encodings for vision transformers. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=3KWnuT-R1bh.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and
benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

Revital Dafner, Daniel Cohen-Or, and Yossi Matias. Context-based space filling curves. Computer
Graphics Forum, 19(3):209–218, 2000. doi: 10.1111/1467-8659.00413.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context, 2019. URL https:
//arxiv.org/abs/1901.02860.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, 2024.

11

https://github.com/BenediktAlkin/vtab1k-pytorch
https://github.com/BenediktAlkin/vtab1k-pytorch
https://www.sciencedirect.com/science/article/pii/S0022000069800103
https://www.sciencedirect.com/science/article/pii/S0022000069800103
https://arxiv.org/abs/2008.01684
https://arxiv.org/abs/2008.01684
https://github.com/jakubcerveny/gilbert
https://github.com/jakubcerveny/gilbert
https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.01607
https://openreview.net/forum?id=3KWnuT-R1bh
https://github.com/open-mmlab/mmsegmentation
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stefano d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli, and Levent Sagun.
Convit: Improving vision transformers with soft convolutional inductive biases. In Proceedings
of the 38th International Conference on Machine Learning (ICML), volume 139, pp. 2286–2296.
PMLR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Qihang Fan, Huaibo Huang, Mingrui Chen, Hongmin Liu, and Ran He. Rmt: Retentive networks
meet vision transformers. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5641–5651, 2024.

Henning Fernau, Meenakshi Paramasivan, Markus L. Schmid, and D. Gnanaraj Thomas. Scanning
pictures the boustrophedon way. In Reneta P. Barneva, Bhargab B. Bhattacharya, and Valentin E.
Brimkov (eds.), Combinatorial Image Analysis, pp. 202–216, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-26145-4.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
Conference on Learning and Modeling (COLM 2024), 2024.

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12175–12185, 2022.

Kaiming He, Georgia Gkioxari, Piotr Dollr, and Ross Girshick. Mask r-cnn. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 2980–2988, 2017. doi: 10.1109/ICCV.2017.322.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009, June 2022.

Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision
transformer. In European Conference on Computer Vision (ECCV), 2024.
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A NOTATIONS

In Table 9, we summarize the notations used in the paper.

Table 9: Notations: Summary of notations used throughout the paper.

Definition Notation
Image I ∈ RH×W×d

Curves set C
Curve ID c ∈ C
Flattening operator with curve c Fc(I) : RH×W → RN

Flattened image with curve c Xc ∈ RN×d

Permutation from curve c1 to c2 πc1→c2(i)
Permutation matrix from curve c1 to c2 Pc1→c2 ∈ RN×N

Decay mask for basis curve (Z-curve) M ∈ RN×N

Decay mask for curve c Mc ∈ RN×N

Permuted decay mask for curve c M̃c ∈ RN×N

Average of all decay masks for all curves MVIOLIN ∈ RN×N

Average mask scaling parameter α ∈ R
Decay parameter for mask Mc γc ∈ R
Queries, keys, values Q,K,V ∈ RN×d

B EXTENDED BACKGROUND

B.1 VITS AND SPATIAL PRIORS

ViTs are powerful alternatives to Convolutional Neural Networks (CNNs) (O’Shea & Nash, 2015),
but their design comes with a fundamental limitation: a lack of inherent spatial inductive bias. Unlike
CNNs, where convolutions naturally encode locality and translation equivariance, ViTs treat images as
sequences of independent patches. Spatial relations must therefore be inferred entirely from data, with
positional embeddings and patching serving as the primary source of spatial information (Dosovitskiy
et al., 2021; Yuan et al., 2021). This design provides ViTs with flexibility in modeling global
dependencies, however it also removes the strong inductive priors that are especially critical in
data-scarce settings (d’Ascoli et al., 2021; Wu et al., 2021b).

The absence of spatial inductive bias makes ViTs particularly fragile and data hungry when model
capacity or training data is limited. Small ViTs trained on large datasets often underperform com-
pared to CNNs, since they cannot rely on built-in locality to efficiently capture low-level spatial
features (Touvron et al., 2021; Yuan et al., 2021). In contrast, when both models and datasets are
sufficiently large, and training is long enough, ViTs can learn these biases directly from data. For
instance, large-scale training on ImageNet-21k (Ridnik et al., 2021) or JFT (Sun et al., 2017) demon-
strates that ViTs can eventually match or surpass CNNs, but this comes at considerable computational
and data cost (Dosovitskiy et al., 2021; Touvron et al., 2021). Therefore, spatial inductive bias is
highly beneficial in practice, especially for downstream tasks, resource-constrained scenarios and
small scale models.

Motivated by this tradeoff, various approaches have emerged to reintroduce spatial priors into
transformer architectures. Hierarchical models such as Swin Transformer (Liu et al., 2021; 2022) and
Pyramid Vision Transformer (PVT) (Wang et al., 2021; 2022b) adopt CNN-like multi-scale processing,
enabling more efficient capture of local and global dependencies. Similarly, T2T-ViT (Yuan et al.,
2021) progressively aggregates tokens to embed local structure. These designs restore the inductive
biases of locality and scale, improving performance in regimes where pure ViTs struggle.

Another line of work incorporates convolutions directly into the transformer pipeline. Convolutional
hybrids such as CvT (Wu et al., 2021b), ConViT (d’Ascoli et al., 2021), and CMT (Guo et al.,
2022) explicitly embed local connectivity into the attention mechanism or token embedding process,
bridging the gap between CNNs and ViTs. Other methods explore novel locality-aware mechanisms,
including vicinity attention (Zhang et al., 2023), shuffle-based spatial mixing (Huang et al., 2021),
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and localized attention modules (Li et al., 2021; Chu et al., 2021). Even more recent innovations,
such as RMT (Fan et al., 2024), propose decay masks inspired by RetNet (Sun et al., 2023) to enforce
local inductive constraints.

Despite their effectiveness, most of these approaches achieve improved spatial priors by directly
modifying the ViT architecture such as embedding convolutions into tokenization, or restructuring
the model into hierarchical stages. While such changes enhance locality, they also increase design
complexity, reduce modularity, and often require pretraining from scratch on large datasets to fully
realize their benefits. This makes them less practical in settings where one wishes to reuse widely
available pretrained vanilla ViTs. In contrast, methods that can inject spatial inductive bias without
altering the base architecture, for instance, during fine-tuning, offer a more lightweight and flexible
alternative, enabling broader applicability to downstream tasks and smaller models without sacrificing
compatibility with existing pretrained checkpoints.

What remains missing is a simple mechanism to bridge this gap: an approach that can utilize already
trained ViTs while still strengthening their spatial priors, which can be achieved via VIOLIN with
close to zero additional cost.

B.2 LINEAR TRANSFORMERS

Linear attention is mathematically equivalent to an RNN (Katharopoulos et al., 2020)

Si = Si−1 + k⊤
i vi, yi = q⊤

i Si ⇔ Y = (QK⊤ ⊙ LCausal)V, (14)

where Si ∈ Rd×d represents the hidden state of the Linear Transformer in its equivalent RNN form
and LCausal ∈ RN×N is lower triangular matrix of ones.

Building on that, Linear Transformers with a scalar decay factor commonly take the following
recurrent form:

Si = ΛiSi−1 + k⊤
i vi, ui = q⊤

i Si (15)

with hidden state Si and output yi. Here, the behavior of the model is determined by the choice of the
decay parameter Λi. It is also standard practice to apply a non-linearity to the queries and keys, such
that Q,K = ϕ(WQX), ϕ(WKX), and to scale attention in relation to past tokens, as discussed in
Katharopoulos et al. (2020).

No decay In vanilla Linear Transformers (eq. (2)), there is no decay term, or equivalently Λi = I
where I is the identity matrix. As a result, these models do not encode relative positional information.
Performer (Choromanski et al., 2021) is a representative example, using Random Fourier Features
(RFF) (Peng et al., 2021) as the non-linear function ϕ(·), without any form of decay mechanism.

Non input-dependent decay A key example in this category is RetNet (Sun et al., 2023), which
employs a fixed scalar decay parameter Λi = γ. This introduces a locality bias in the attention
computation, but the decay remains constant and independent of the input sequence.

Input-dependent decay Several recent linear transformers in the NLP domain fall into this category,
where the decay parameter Λi = g(xi) is a function of the input and thus varies across tokens. For
example, DeltaNet (Yang et al., 2024) defines the decay using the Delta Rule (Schlag et al., 2021) as
Λi = I− kik

⊤
i , while Gated RFA (Peng et al., 2021) uses an input-dependent scalar decay of the

form Λi = σ(Wxi), where σ(·) is the sigmoid function and W ∈ Rd, resulting in a scalar decay
value per token.

Selective SMMs This category of models is closely related to linear transformers with input-
dependent decay. A prominent example is Mamba (Gu & Dao, 2024), which can be interpreted as a
linear transformer with an input-dependent diagonal matrix as the decay parameter Λi (Yang et al.,
2023). Mamba-2 (Dao & Gu, 2024), a simplified variant, further refines this by using an exponential
formulation for the decay factor: Λi = exp(− exp(Wxi)), enabling a more stable and expressive
modeling of token-wise recurrence.
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B.3 SPACE FILLING CURVES

SFCs have diverse applications across various domains, including image compression and gener-
ation (Wang et al., 2022a; Dafner et al., 2000), point cloud processing (Chen et al., 2023), data
mining (Bhm, 2020), and data movement (Walker & Skjellum, 2023). In this section, we define
the curves used in this study as flattening operation Fc for each curve. The definitions are adapted
from (Sagan, 1994; Peano, 1990; Hilbert, 1935; Zhao et al., 2024).

Z-curve The Z-curve, also known as sweep, row-major order, or raster scan, is the simplest and
most widely used method for flattening a 2D image into a 1D sequence. It scans the image row by
row, from top to bottom and left to right within each row. More concretely, for an image with width
W , the flattening function can be defined as

Fz(i, j) = iW + j. (16)

This flattening order is the default scanning method in many vision models, including ViTs. As a
result, we use it as our basis in the paper.

Snake Curve The snake curve, also known as boustrophedon order (Fernau et al., 2015), is a
variation of the Z-curve that alternates the scanning direction across rows. Even-indexed rows are
traversed left to right, while odd-indexed rows are traversed right to left, creating a continuous snake
path through the image. The flattening function is given by:

Fsnake(i, j) =

{
i ·W + j if i mod 2 = 0

i ·W + (W − 1− j) if i mod 2 = 1
(17)

This curve has a simplicity similar to the Z-curve while reducing long jumps between the end of one
row and the beginning of the next. It is utilized in various applications, including image processing
and path planning, due to its efficiency in covering areas without unnecessary repositioning.

Zig-zag Curve The Zig-zag curve (Wallace, 1992) is a diagonal scanning pattern that visits patches
of an image along consecutive diagonals, alternating direction at each level. More concretely, with
an image of size H ×W , for each diagonal g ∈ {0, . . . , H +W − 2}, it scans the elements where
i+ j = g, from top-right to bottom-left on odd-numbered diagonals and from bottom-left to top-right
on even-numbered ones. In other words, for each diagonal g, let the set of valid coordinates on that
diagonal be Dg = {(i, j) | i+ j = g, 0 ≤ i < H, 0 ≤ j < W}. Then the ordering of Fzigzag(i, j)
can be defined by

Fzigzag(i, j) =

(
g−1∑
k=0

|Dk|

)
+ offsetg(i, j), (18)

where |Dk| is the length of the diagonal and offsetg(i, j) is

offsetg(i, j) =

{
#{(i′, j′) ∈ Dg | j′ < j} if g mod 2 = 0,

#{(i′, j′) ∈ Dg | j′ > j} if g mod 2 = 1.

The zig-zag curve is most commonly used in applications where frequency components are spatially
grouped such as the JPEG compression standard to serialize the block of discrete cosine transform
(DCT) coefficients, to ensure that low-frequency components that carry the most information appear
early in the sequence.

Hilbert Curve The Hilbert curve (Hilbert, 1935) recursively divides the space into quadrants and
connects them in a continuous path that fills the entire 2D grid. Similar to Peano curve, the Hilbert
curve is most naturally defined on square images of size 2p × 2p where the recursive quadrant-
based construction aligns with the binary structure of the coordinates. The flattening function
Fhilbert(i, j) does not have a simple closed-form expression, but can be computed via recursive or
bitwise algorithms, for example, Butz or Moore methods (Butz, 1969; Moore, 1900).

For an image of size H ×W with H = W = 2p, we can define the Hilbert curve flattening function
as

Fhilbert(i, j) =

n∑
k=1

qk · 4n−k (19)
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(a) Hilbert on 5× 5 grid. (b) Hilbert on 10×10 grid. (c) Peano on 5× 5 grid. (d) Peano on 10× 10 grid.

Figure 5: Extension of Hilbert and Peano curves: Visualization of how Hilbert and Peano curves
extend to non-power-of-2 grids.

where q1q2 · · · qn is the base-4 Hilbert index corresponding to the normalized pixel center:(
i

2n
+

1

2n+1
,

j

2n
+

1

2n+1

)
∈ [0, 1)2 (20)

Each digit qk ∈ {0, 1, 2, 3} represents the quadrant at level k in the recursive Hilbert construction.

Points that are close in 2D space tend to remain close in 1D, which makes it especially valuable in
image processing, spatial indexing, and contexts where locality is significant.

Peano Curve The Peano curve, also called Z-order curve or Morton curve, (Peano, 1990) is a
recursive scanning approach that preserves spatial locality by interleaving the binary representations
of the row and column indices. It is particularly well-suited to square grids of size 2p × 2p as the bit
structure of the coordinates aligns naturally with the recursive subdivisions of the curve.

For H = W = 2p, let (i, j) ∈ {0, . . . , 2p − 1}2 be the pixel coordinates, and we can write their
binary expansions:

i =

n−1∑
k=0

ik · 2k, j =

n−1∑
k=0

jk · 2k with ik, jk ∈ {0, 1} (21)

Fpeano(i, j) = interleave bits(i, j) =
p−1∑
k=0

(
jk · 22k+1 + ik · 22k

)
(22)

As it can be constructed bitwise, it is computationally efficient and commonly used in applications
like image tiling, spatial databases, and quadtree indexing.

Remark: While the Peano and Hilbert curves are most naturally defined on square grids with
power-of-two dimensions, they can be easily extended to arbitrary image sizes by truncating higher-
order bits, using padding, clipping, or floating-point mapping techniques (Cerveny, 2025; Sasidharan
et al., 2015). In Figure 5, we visually show how to extend these curves to non-power-of-2 cases with
codes provided in Appendix G.3.

Flattening with transposed curves Standard SFCs are typically defined over fixed scans using row-
major or column-major orderings. To increase the diversity of locality preserving patterns without
incurring additional cost, we introduce transposed variants of standard SFCssuch as column-major
Snake or vertical Zig-Zag. These variants simply swap coordinates during traversal. We define the
flattened image under a transposed curve as:

Xc⊤ [n] = I[i, j] where n = Fc⊤(i, j) = Fc(j, i). (23)

Accordingly, we expand our curve set to include these rotated versions, resulting in the final VIOLIN
curve set:

C = {Snake, Zig-Zag, Peano, Hilbert, Snake⊤, Zig-Zag⊤, Peano⊤, Hilbert⊤} (24)
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B.4 LOCALITY VIA DECAY MASK

Decay mask structure An example of a 4× 4 causal decay mask with non-input-dependent decay
factor, as used in RetNet (Sun et al., 2023), is

MCausal =

 1
γ 1
γ2 γ 1
γ3 γ2 γ 1

 , MCausal[i, j] =

{
γi−j i ≥ j

0 i < j
(25)

As seen in the causal decay mask above, the decay masking the attention MCausal[i, j] depends only
on the difference between i and j, specifically MCausal[i, j] = γ|i−j|. which reflects the locality
information in the causal decay mask.

As an extension for bidirectional tasks, such as image classification, the causal mask can be extended
to a full Toeplitz decay mask, as shown in (Afzal et al., 2025):

M =

 1 γ γ2 γ3

γ 1 γ γ2

γ2 γ 1 γ
γ3 γ2 γ 1

 , M[i, j] = γ|i−j| (26)

in this case, the attention between each pair of tokens i and j is masked based on their distance |i− j|.
Additionally, the decay factor 0 < γ < 1 is bounded between to ensure that M[i, j] does not overflow
and remains stable (Orvieto et al., 2023).

Extrapolation capabilities of decay mask The decay mask M can easily be extrapolated beyond
the context length (Dao & Gu, 2024; Sun et al., 2023) because M[i, j] = γ|i−j| is independent of
the sequence length. This is especially useful since we can change the resolution of images during
inference without needing to interpolate or extrapolate the position embeddings (Dosovitskiy et al.,
2021; Caron et al., 2021). This capability is particularly valuable when generating videos for object
tracking in VIOLIN DINO.

B.5 EFFICIENCY OF TOEPLITZ DECAY MASK

As mentioned in the background Appendix B.2, the decay parameter γ can be input dependent as
well, which means that it is extracted for each token as:

γi = g(Wγxi), M[i, j] = γjγj+1...γi =

i∏
k=j

γk (27)

with g(.) being a bounded function such that 0 < g(x) < 1 (i.e. sigmoid). This results in each element
of the decay mask M[i, j] representing the cumulative product of decay contributions from all tokens
between positions i and j leading to input-dependent decay masks. While these type of masks can
offer finer-grained control, they are slower to train, requiring O(log(N)) time points to compute (Gu
& Dao, 2024; Dao & Gu, 2024), consume more memory, and must be dynamically constructed during
inference. In contrast, input-independent decay masks such as the one used in VIOLIN are much more
efficient. We adopt the decay mask in VIOLIN as it is faster to train, memory-efficient (requiring only
a single learned scalar γ per curve), and eliminates the need for recomputation during inference. This
simple scalar-based design still performs effectively and achieves strong results in practice (Afzal
et al., 2025).

B.6 CONNECTIONS OF VIOLIN TO OTHER MODELS

As VIOLIN is inspired by the forget gate (also known as the decay mask) in Linear Transformers,
it shares strong connections with these models and their adaptations for vision tasks. Below, we
highlight some of the most relevant connections:

RMT RMT (Fan et al., 2024) also introduces a decay mask (via Manhattan distance) to enhance
the spatial awareness of ViTs, addressing a similar challenge. However, it differs from VIOLIN in key
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ways. RMT uses only a single flattening strategy and applies a fixed distance metric (Manhattan),
while VIOLIN generates multiple masks based on different SFCs and defines a KacMurdockSzeg
(KMS) matrix for the decay. Architecturally, VIOLIN is a modular attention mechanism that can be
plugged into various ViT backbones, whereas RMT is a standalone model. We also conducted an
ablation using the Manhattan distance decay as in RMT, and found it underperforms compared to
VIOLIN . Detailed results are provided in Table 13.

FoX FoX, or Forgetting Transformer (Lin et al., 2025), is designed for causal sequence modeling,
specifically to capture long-range dependencies in the NLP domain. It uses an input-dependent causal
decay mask, as shown in eq. (27), which differs significantly from VIOLIN in both application domain
and mask design. Moreover, the perspective central to VIOLIN , based on flattening and scanning via
space-filling curves, does not appear in FoX, as it operates in the NLP setting rather than vision tasks.

Vision Linear Transformer This class includes models such as Vision LSTM (Alkin et al., 2024),
Vision Mamba (Zhu et al., 2024), and VMamba (Liu et al., 2024b), which are related to VIOLIN
due to their use of different scanning strategies primarily based on the Z-curve in both standard
and transposed (horizontal and vertical) directions. However, these models significantly differ from
VIOLIN in architecture, as they are based on SSMs like Mamba (Gu & Dao, 2024) or other linear
attention mechanisms, rather than softmax-based Transformers. In contrast, VIOLIN is a softmax-
based masked attention module that can be easily integrated into various ViT backbones. In this
study, we apply VIOLIN to DeiT, DeiT-III, and DINO as representative examples.

MAE Masked Auto Encoders (MAE) (He et al., 2022) apply random input masking as a pretraining
objective, dropping patches and training the model to reconstruct them. This masking affects only the
input and does not influence attention computation. In contrast, VIOLIN applies structured masking
within the attention mechanism, using decay masks based on space-filling curves to rescale attention
scores, without dropping tokens or reconstructing inputs. It serves as a spatial inductive bias, guiding
the model to attend more to nearby regions without altering the input or training objective.

C PROOFS

C.1 ATTENTION IS PERMUTATION EQUIVARIANT

Claim C.1. Attention without positional embeddings is permutation-equivariant. That is,

A(π(X)) = π(A(X)) (28)

where A(·) is the output of the attention mechanism, and π(·) denotes a permutation of the sequence.

Proof. Let X ∈ RN×d be the input sequence with N tokens and model dimension d. The attention
is defined as

Q = XWQ, K = XWK , V = XWV , A(X) = Softmax
(
QK⊤
√
d

)
V. (29)

Let π be a permutation of the input sequence, represented by a permutation matrix P ∈ RN×N such
that π(X) = PX and PP⊤ = I. Then

π(Q) = PXWQ = PQ, π(K) = PK, π(V) = PV. (30)

Now compute the attention on the permuted input

A(π(X)) = Softmax
(
(PQ)(PK)⊤√

d

)
(PV) = Softmax

(
PQK⊤P⊤

√
d

)
PV (31)

Since softmax is applied row-wise and permutation matrices preserve row-wise operations, we can
factor P out

A(π(X)) = P Softmax
(

QK⊤
√
d

)
���P⊤P

I
V = PSoftmax

(
QK⊤
√
d

)
V = PA(X) = π(A(X)) (32)

Thus, attention is permutation-equivariant in the absence of positional embeddings.
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C.2 SFCS IN DECAY MASK ARE A DISTANCE METRIC

Claim C.2. Let Xc1 ∈ RN×d be the flattened image using a space-filling curve c1, with the sequence
indexed by i, j, k ∈ {0, . . . , N − 1}. Any permutation πc2 , corresponding to a new flattening order
defined by a different curve c2, when applied to Xc1 , induces a new sequence order. In this new order,
the term |π(i)− π(j)| satisfies the non-negativity, identity of indiscernibles, symmetry and triangle
inequality properties of a distance metric between tokens i and j.

Proof. To show that |π(i)− π(j)| is a valid distance metric, we verify that it satisfies the standard
properties of a metric:

Non-negativity: For all i, j, we have

|π(i)− π(j)| ≥ 0 (33)

since absolute values are always non-negative.

Identity of indiscernibles:

|π(i)− π(j)| = 0 ⇐⇒ π(i) = π(j) ⇐⇒ i = j (34)

because π is a permutation (i.e., a bijective function), so π(i) = π(j) implies i = j.

Symmetry:
|π(i)− π(j)| = |π(j)− π(i)| (35)

by the symmetry of absolute value.

Triangle inequality: For any i, j, k ∈ {0, . . . , N − 1},

|π(i)− π(j)| ≤ |π(i)− π(k)|+ |π(k)− π(j)| (36)

holds due to the triangle inequality property of absolute values.

Therefore, |π(i)− π(j)| satisfies all the conditions of a distance metric. This property is particularly
interesting because the term |π(i) − π(j)| appears as the exponent in the decay mask, leading to
Mc2 [i, j] = γ|π(i)−π(j)|. As a result, taking the logarithm of the decay mask yields a distance matrix,
log(Mc2 [i, j]) = |π(i)− π(j)| · log(γ) thus, log(Mc2) is a scaled distance matrix, encoding relative
positional distances under the permutation induced by curve c2.

C.3 VIOLIN SFC FLATTENING ONLY REFLECTS IN DECAY MASK

Claim C.3. Let the input sequence flattened using a base space-filling curve (e.g., Z-curve) be
denoted by X ∈ RN×d, and let the output of VIOLIN attention be Y ∈ RN×d, computed as:

Y = Softmax

(
α
QK⊤
√
d

⊙M

)
V (37)

where M ∈ RN×N is the base decay mask with entries M[i, j] = γ|i−j|.

Now, let Xc = πc(X) be the input sequence reordered using a space-filling curve c, with permutation
πc. Then, the output of the VIOLIN attention for the permuted input Xc, re-ordered back to the
original (basis) input order, is given by:

Ỹ = Softmax

(
α
QK⊤
√
d

⊙ πc(M)

)
V (38)

where πc(M) = M[πc(i), πc(j)] denotes the decay mask permuted along both rows and columns
according to the curve c.

Proof. It is easy to see that flattening the input I into a sequence Xc1 using any space-filling curve
c1 defines a one-to-one mapping from the 2D grid to a 1D sequence. Therefore, there exists a
permutation πc1→c2 and an associated permutation matrix Pc1→c2 such that the sequence obtained
by flattening with another curve c2 is given by:

Xc2 = Pc1→c2 Xc1 (39)
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Now, considering c1 as the z-Curve (our basis flattening), and renaming c2 simply as c, we simplify
the notation as follows:

πc1→c2 = πc, Pc1→c2 = Pc, Xc = πc(X) = PcX (40)

From eq. (30) we know that permuting the input X will result in permutation of query, key and value
matrices so for the input Xc the attention presented at eq. (37) is re-written as:

Yc = Softmax

(
α
πc(Q)πc(K)

⊤
√
d

⊙M

)
πc(V)

= Softmax

(
α
PcQ(PcK)

⊤
√
d

⊙M

)
PcV

= Softmax

(
α
Pc(QK⊤)Pc

⊤

√
d

⊙M

)
PcV (41)

by multiplying PcP
⊤
c to both sides of M we have:

Yc = Softmax

(
α
Pc(QK⊤)Pc

⊤

√
d

⊙PcP
⊤
c MPcP

⊤
c

)
Pc(V) (42)

= Softmax

(
α
Pc(QK⊤)Pc

⊤

√
d

⊙Pc(P
⊤
c MPc)P

⊤
c

)
Pc(V) (43)

Since the multiplication with the decay mask and the softmax operation are element-wise (i.e., applied
row-wise for each query), the permutation matrices Pc and P⊤

c can be factored out of the attention
computation. This results in the following expression:

Yc = PcSoftmax
(
αQK⊤

√
d

⊙P⊤
c MPc

)
���
P⊤

c Pc
I

V = PcSoftmax

αQK⊤
√
d

⊙P⊤
c MPc︸ ︷︷ ︸

π−1
c (M)

V (44)

Since the order of Yc corresponds to the permuted input Xc, we can recover the output in the original
(basis) order by applying the inverse permutation, i.e., multiplying by P⊤

c . Therefore, the final output
Ỹc aligned with the original input X is:

Ỹc = P⊤
c Yc = Softmax

(
α
QK⊤
√
d

⊙P⊤
c MPc

)
V (45)

This confirms that applying attention to a permuted input using the base decay mask is equivalent to
applying attention to the original input with a permuted (reordered) decay mask π−1

c (M) = P⊤
c MPc.

This proof is also visualized in Figure 6, illustrating that applying attention using a permuted decay
mask based on curve c (e.g., the snake curve in the figure) is equivalent to permuting the input
sequence according to c, computing attention with the original decay mask defined in the basis curve
(e.g., Z-curve in our study), and then reordering the output back to the original sequence order.

Disclaimer In practice, it is unnecessary to explicitly define a permutation function π or construct
a matrix P. The reordering can be efficiently achieved by simply storing the corresponding indices.
P and π are used for mathematical clarity and formalism only.
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Figure 6: Effect of SFCs on flattened Image: Visually showing the equivalence between a) Permuting
the input sequence according to c (e.g., the snake curve) to get XS , multiplying the attention AS with
the original decay mask defined in the basis curve M (e.g., Z-curve in our study), and then reordering
the output back to the original and b) Calculating attention Az with basis curve ordered Xz , using a
permuted decay mask M̃c.

D FUTHER DESIGN DETAILS

In this section, we outline key design choices made in the implementation of VIOLIN models.

D.1 INITIALIZATION

Since γc = sigmoid(βc) is exponentiated over the sequence length in the VIOLIN decay mask, it is
important to initialize it close to 1, which is also highlighted in the Linear Transformer literature (Orvi-
eto et al., 2023; Sun et al., 2023). For pretraining VIOLIN models, we initialize βc uniformly in the
range [5, 9], which corresponds to γc ∈ (0.9820, 0.9998). This ensures that the initial mask values
Mc[i, j] ∈ (0.03, 0.962) for N = 196, maintaining a stable and controlled decay. For numerical
results on the effect of initialization, see Appendix E.4.

During full fine-tuning, we initialize the model using the pretrained baseline. In this setting, since
the query/key/value weights WQ,WK,WV are already trained during pretraining and VIOLIN
attention is introduced and used only at fine-tuning, we initialize the scaling factor α using a Gaussian
distribution centered at 1 to allow for smooth adaptation. For βc, we use a uniform initialization
in the range [15, 20]. This setup avoids a steep drop in attention scores while allowing the model
to gradually adapt to the newly introduced decay mask MVIOLIN . All other initialization settings in
VIOLIN exactly follow those of the original baselines without any modification.

All other configurations, such as data augmentation, optimizer, initialization, model parameters, and
training setups are kept exactly the same as in the original baselines, with no modifications.

D.2 ADAPTATION OF VIOLIN TO VARIOUS ARCHITECTURES

VIOLIN attention supports both the use of a classification token and Global Average Pooling
(GPA) (Lin et al., 2013; Lu et al., 2022). For pretraining of DeiT models, we remove the clas-
sification token and instead apply Global Average Pooling (GAP). The attention module is replaced
with VIOLIN attention, while the rest of the model, including positional embeddings, layer normaliza-
tion, and other components, remains unchanged, see Appendix E.5 for details. For fine-tuning the
classification token remains intact.

In the DINO setting, both teacher and student models are initialized with VIOLIN attention, with
all other weights handled as usual. Due to the multi-crop training, the attention module encounters
varying sequence lengths. However, since the construction of MVIOLIN naturally adapts to any
sequence length, this poses no issue.

To accommodate the classification token, we modify the corresponding rows and columns of MVIOLIN

by setting γcls = 1. We also experimented with a learnable γcls ∈ [0, 1] but observed no significant
performance gains. The rest of the model structure follows the original DINO architecture.
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VIOLIN with hierarchical and convolutional architectures Hierarchical transformer architectures
such as Swin (Liu et al., 2021) and convolutional-transformer hybrids like PVT (Wang et al., 2021)
differ fundamentally from vanilla ViTs in how attention is computed. Instead of applying full attention
across the entire sequence, they restrict the receptive field by using windowed or spatially localized
attention, often combined with hierarchical feature maps. This design introduces locality explicitly
into the architecture, reducing the need for additional spatial priors such as those provided by SFCs.

In such settings, applying SFC-guided decay masks becomes problematic for two main reasons.
First, SFCs are meaningful when attention spans the entire sequence of image patches, since the
curve defines a global traversal order. In hierarchical models, however, attention is restricted to local
windows or pyramid levels, where the notion of a global SFC ordering no longer applies. Second,
many of these architectures already incorporate inductive biases (through localized windows, shifting
strategies, or convolutional layers), so introducing additional SFC-based priors could interfere with
rather than complement their design.

Thus, VIOLIN is best suited for standard ViTs and related architectures where attention is fully global,
the sequence is flattened in a fixed order (commonly the Z-curve), and inductive biases are otherwise
minimal. In contrast, hierarchical or convolutional variants already bake spatial priors directly into
their architecture, making SFC-based masking redundant or ill defined.

Consistent with our analysis, when we integrated VIOLIN into Swin at tiny and small scales during
pretraining, we achieved minimal accuracy improvements of 0.2% and 0.1%, respectively, as shown
in Table 10. The VIOLIN mask is applied at every stage and layer, with each mask being independently
learned and unique to its respective layer. The remaining architecture follows the original Swin model
structure.

Table 10: Pretraining of Swin models: The performance of baseline model is compared against
VIOLIN for ImageNet pretraining. Changes with respect to the baseline are shown inside (·) next to
the accuracies.

Model Top-1 Accuracy (%)
Baseline VIOLIN

Swin-T 81.3 81.5 (+0.2)
Swin-S 83.0 83.1 (+0.1)

VIOLIN with video transformers Video transformers operate on spatiotemporal tokens, and
VIOLIN can be incorporated into these models in a straightforward way because it only rescales the
attention scores between tokens. This makes VIOLIN orthogonal to additional mechanisms used in
video models, such as the dual masking strategy in VideoMAE V2 (Wang et al., 2023).

There are two natural ways to extend VIOLIN :

1. Spatial-only SFCs (2D per frame). The same 2D SFCs used for images can be applied
independently to the (H,H) grid of each frame, while keeping the temporal dimension
unchanged. This provides a per-frame spatial prior and mirrors the image setting.

2. Full spatiotemporal SFCs (3D). Following definition 2.1, SFCs naturally generalize to
arbitrary dimensions. Thus, we can define 3D SFCs over the full (T,H,W ) grid (e.g.,
3D Hilbert or 3D Morton curves) and compute distances based on each token’s original
spatiotemporal position. The resulting decay masks encourage locality across both space
and time. Masks can be computed once over the full grid and then indexed to the visible
token subset, analogous to how positional embeddings are handled in VideoMAE.

Both approaches are fully compatible with video MAE-style training: they require no changes to
masking or reconstruction objectives, they can be applied to both encoder and decoder, and they
provide a meaningful structural prior, especially under high masking ratios where positional structure
becomes crucial.

Overall, extending VIOLIN to video models is a promising direction for future work, as spatiotemporal
SFCs may offer strong inductive bias with minimal additional cost.
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E ABLATION STUDIES

In this section, we provide comprehensive ablation studies on various elements of VIOLIN . For all
ablations, we utilize different scales of DeiT models and we keep the training recipe the same. We
use a patch size of 16 and a resolution 224× 224 for each one of the models.

E.1 POSITIONAL EMBEDDINGS

To evaluate the impact of positional embeddings, we pretrain the VIOLIN DeiT-B model both with and
without them, see Table 11. The results indicate that positional embeddings provide a performance
boost, leading us to retain the original positional embedding configurations of the base models.

Table 11: Ablation on positional embeddings (PE): The performance of the baseline model with PE
is compared against VIOLIN with (w) and without (wo) PE. Changes with respect to the baseline are
shown inside (·) next to the accuracies.

Model Top-1 Accuracy (%)
Baseline VIOLIN w PE VIOLIN wo PE

DeiT-B 81.8 81.9 (+0.1) 81.5 (-0.3)

E.2 ALTERNATIVE CURVE CONFIGURATIONS

We examine the individual contribution of each curve to the overall performance. To do so, we
pretrain DeiT-S using all possible combinations of the four curves, resulting in 24 = 16 variations.
The accuracies of each configuration are presented in Table 12. Note that whenever a curve has
is used, the transposed version is also included. In other words, if the snake curve is included, its
transposed variant Snake⊤ is also utilized.

The results reveal that while certain curve combinations yield more substantial improvements than
others, each curve contributes meaningfully to the overall performance. Thus, we retain all four
curves in the VIOLIN configuration, leveraging their complementary spatial information.

We further analyze the learned decay parameters γc for DeiT-B in Figure 7, observing that most
remain close to one, indicating active use of long-range spatial information. Smaller values act as
implicit curve selection, as these decay masks would contribute to the average minimally, with certain
layers and heads emphasizing particular curves.

0 1 2 3 4 5 6 7 8 9 10 11
Layer

0.0

0.2

0.4

0.6

0.8

1.0

c

Snake Hilbert Peano Zig-zag

Figure 7: γc values: γc values of VIOLIN DeiT-B model are presented across layers, heads and curves.
Most remain close to one, indicating active use of long-range spatial information.

Additionally, we explore several alternative configurations, as detailed in Table 13. For instance,
we evaluate the use of only the four original curves referred as Cnormal (snake, zig-zag, Hilbert, and
Peano) and only their rotated counterparts Ctransposed (snake⊤, zig-zag⊤, Hilbert⊤, and Peano⊤). We
also test using only the default Z-curve ordering, which results in a 0.7% accuracy gain.

Moreover, we define relative distances using a Manhattan mask, inspired by RMT (Fan et al., 2024).
Lastly, we experiment with a set of randomized SFCs, where the flattened image is shuffled with a
random fixed order across all layers and heads. This model fails to converge to a meaningful accuracy.
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Table 12: Ablation on the effect of each curve: The performance of the baseline model is compared
against VIOLIN with different curve combinations. ✔ indicates the curse is in the set, whereas
✗ means it is not. Changes with respect to the baseline are shown inside (·) next to the accuracies.

Model Snake Curve Zig-Zag Curve Hilbert Curve Peano Curve Top-1 Acc (%)

DeiT-S (Baseline) ✗ ✗ ✗ ✗ 79.9
✔ ✗ ✗ ✗ 80.0 (+0.1)
✗ ✔ ✗ ✗ 80.2 (+0.3)
✗ ✗ ✔ ✗ 79.9 —
✗ ✗ ✗ ✔ 80.4 (+0.5)
✔ ✔ ✗ ✗ 80.3 (+0.4)
✔ ✗ ✔ ✗ 80.4 (+0.5)
✔ ✗ ✗ ✔ 80.3 (+0.4)
✗ ✔ ✔ ✗ 80.3 (+0.4)
✗ ✔ ✗ ✔ 80.5 (+0.6)
✗ ✗ ✔ ✔ 80.2 (+0.3)
✔ ✔ ✔ ✗ 80.4 (+0.5)
✔ ✔ ✗ ✔ 80.4 (+0.5)
✔ ✗ ✔ ✔ 80.5 (+0.6)
✗ ✔ ✔ ✔ 80.5 (+0.6)

VIOLIN DeiT-S (Ours) ✔ ✔ ✔ ✔ 80.7 (+0.8)

This further emphasizes the importance of a structured SFC as the unstructured curves do not allow
model to capture meaningful information from the data.

E.3 ALTERNATIVE MASKING STRATEGIES

Another critical design choice is the masking strategy. We compare VIOLIN , which follows the
structure S(A′ ⊙M), where S denotes the row-wise softmax operation, A′ = αQK⊤

√
d

, and M =

MVIOLIN for a cleaner notation. Our findings indicate that the S(A′ ⊙M) configuration outperforms
all other masking alternatives.

E.4 OTHER DESIGN ELEMENTS

Furthermore, in Table 15, we illustrate the impact of additional design choices described in Ap-
pendix D, such as initialization and the scaling parameter α. Additionally, we assess the effect
of fixing γc at a constant value of 0.9996 instead of learning it. The results indicate that proper
initialization and a learnable γc are essential for achieving accuracy gains, while the scaling parameter
α primarily contributes to training stability, particularly in larger models.

E.5 GLOBAL AVERAGE POOLING (GAP)

Considering the output of the attention mechanism for each token in the last layer, we can write

yi =

N∑
j=1

exp
(
q⊤
i kj

)∑N
j′=1 exp

(
q⊤
i kj′

) vj . (46)

When the classification (CLS) token is used, the sequrnce length becomes N +1 where the first token
is the CLS. When comparing the use of a global average pooling (GAP) (Lin et al., 2013; Lu et al.,

Table 13: Ablation on different curve configurations: The performance of the baseline model is
compared against VIOLIN with different curve configurations: only original curves (Cnormal), only
transposed curves (Ctransposed), only Z-curve, Manhattan distance-based mask and random curves.
Changes with respect to the baseline are shown inside (·) next to the accuracies.

Model Top-1 Accuracy (%)
Baseline VIOLIN Cnormal Ctransposed Z-curve Manhattan Random

DeiT-S 79.8 80.7 (+0.9) 80.3 (+0.5) 80.4 (+0.6) 80.5 (+0.7) 80.4 (+0.6) ✗
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Table 14: Ablation on masking strategies: The performance of the baseline model is compared against
VIOLIN with different masking methods: S(M+A′), S(A′)+M, S(A′)⊙M, and S(A′⊙(I+M)).
Changes with respect to the baseline are shown inside (·) next to the accuracies.

Model Top-1 Accuracy (%)
Baseline VIOLIN S(M+A′) S(A′) +M S(A′)⊙M S(A′ ⊙ (I+M))

DeiT-S 79.8 80.7 (+0.9) 80.1 (+0.3) 80.5 (+0.7) 80.5 (+0.7) 79.1 (-0.7)

Table 15: Ablation on other elements of VIOLIN : The performance of the baseline model is compared
against VIOLIN with and without certain design elements: initialization, scaling factor α and learned
γc. ✔ indicates it is included in the model, whereas ✗ means it is not. Changes with respect to the
baseline are shown inside (·) next to the accuracies.

Model Initialization Scaling Learned γc Top-1 Acc (%)

DeiT-S (Baseline) ✗ ✗ ✗ 79.9
✗ ✔ ✔ 80.0 (+0.1)
✔ ✗ ✔ 80.7 (+0.8)
✔ ✔ ✗ 80.3 (+0.4)

VIOLIN DeiT-S (Ours) ✔ ✔ ✔ 80.7 (+0.8)

2022) head versus a CLS head with a decay mask, the attention outputs are extracted as follows

yCLS =

N+1∑
j=1

exp
(
(q⊤

CLSkj)M[CLS, j]
)∑N+1

j′=1 exp
(
(q⊤

CLSkj′)M[CLS, j′]
) vj , (47)

yGAP =
1

N

N∑
i=1

N∑
j=1

exp
(
(q⊤

i kj)M[i, j]
)∑N

j′=1 exp
(
(q⊤

i kj′)M[i, j′]
) vj . (48)

As shown, in the case of the CLS token, the model only requires the attention distribution and relative
distances with respect to the CLS token. In our setup, this reduces to M[CLS, j] = 1, (or a a learned
parameter βCLS . By contrast, the GAP formulation is more expressive, as it aggregates attention
information across all tokens. Importantly, the inclusion of the relative distance decay mask M[i, j]
for all tokens makes GAP more effective in constructing the final representation. Therefore, similar to
Vision SSMs such as Vision LSTM and Hydra (Alkin et al., 2024; Hwang et al., 2024), pooling-based
outputs align naturally with spatially informed attention. Note that this calculations holds for last
layer only, the remaining layers utilizes the mask fully.

VIOLIN attention supports both the use of a classification token and GPA. To assess the role of the
classification token versus GAP with the VIOLIN mask, we pretrain all three scales of DeiT and
report results in Table 16. While GAP often yields slightly better compatibility with VIOLIN , the
improvements cannot be attributed to pooling alone, the gains are additive.

Most importantly, VIOLIN is not dependent on GAP. In DINO pretraining and VTAB-1K fine-tuning,
where the cls token is retained, VIOLIN still improves performance. This confirms that the benefits
arise from the spatial priors introduced by VIOLIN , not from the choice of pooling strategy.

Table 16: Ablation on GAP: The performance of baseline model and VIOLIN is compared when they
both have CLS or uses GAP. Baseline† indicates results taken from Chu et al. (2023). Changes with
respect to the baseline, original model with CLS, are shown inside (·) next to the accuracies.

Model
Top-1 Accuracy (%)

CLS GAP
Baseline VIOLIN Baseline† VIOLIN

DeiT-T 72.2 72.3 (+0.2) 72.6 73.0 (+0.8)
DeiT-S 79.8 80.1 (+0.3) 80.2 80.7 (+0.9)
DeiT-B 81.8 79.0 (-1.8) - 81.9 (+0.1)
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F ADDITIONAL RESULTS

F.1 PRETRAINING OF LARGER MODELS

As discussed in Appendix B.1, when both model capacity and training data are sufficiently large, ViTs
can implicitly learn spatial biases directly from data. In such scenarios, the relative contribution of
VIOLIN is naturally smaller, as seen in the DeiT and DINO base scale pretraining results in Table 17,
which show only marginal gains. This is expected and lies beyond the primary scope of our work,
which focuses on small models and data-scarce settings where inductive biases are most impactful.

It is important to note that smaller gains at scale do not diminish the relevance of VIOLIN for larger
models. In fact, our fine-tuning experiments (Section 4.1, Table 18) demonstrate that when data is
limited, spatial priors provided by VIOLIN substantially improve performance, even for models with
hundreds of millions of parameters. This highlights that VIOLIN remains valuable in practice, not by
competing with scale, but by enhancing efficiency and adaptability in data-constrained regimes.

Table 17: Pretraining results of larger models on ImageNet-1K: Comparison of the top-1 accuracies
of baseline models with their VIOLIN counterparts. The values in parentheses (·) indicate the
accuracy difference compared to the baseline. The best performance between each pair of models
is highlighted in bold. For DINO models, both KNN and linear probe evaluations are reported and
(300) indicate the number of training epochs. (Left) Supervised, (Right) Self-supervised training.

Model # Param. Top-1 Accuracy (%)
Baseline VIOLIN

DeiT-B 86M 81.8 81.9 (+0.1)

Model # Param. Top-1 Accuracy (%)
Baseline VIOLIN

DINO-B (300) KNN 86M 76.1 76.1 (—–)
Linear 78.2 78.4 (+0.2)

F.2 FINE-TUNING OF VIOLIN PRETRAINED MODELS

We fine-tune the VIOLIN DeiT, and DINO pretrained models from Section 4.2 and Appendix F.1 on
the VTAB-1K dataset. The accuracies for each category and the overall average are presented in
Table 18, alongside the baseline accuracies of the baseline fine-tuned models. We observe that VIOLIN
increases the performance across all models and scales compared to original baselines. DeiT,and
DINO models achieve impressive improvements of up to 1.92% with up to 2.87% improvement in
individual categories. We note that similar to Table 3 in this setting, Structured group shows the
highest accuracy gain. This further shows the broad applicability of VIOLIN , enhancing diverse
architectures with close to zero computational overhead.

Notably, we compare Table 3 and Table 18, fine-tuning with an mask learned only during fine-tuning
for all models yields better performance in different tasks compared to pretraining with it. We
hypothesize that this is because the model starts with generic pretrained representations and gains
additional flexibility by learning spatial structure tailored specifically to the downstream task. This is
particularly advantageous when the target task differs substantially from the pretraining domain.

Table 18: Fine-tuning results on VTAB-1K (Setting 2): Comparison of the top-1 accuracies of
baseline models and their pretrained VIOLIN counterparts across the VTAB-1K benchmark. The

three task groups are abreviated as NAT. = Natural, SPE. = Specialized, and STR. = Structured.
The values in parentheses (·) indicate the accuracy difference compared to the baseline. The best
performance within each model pair is highlighted in bold.

Model Param.
Top-1 Accuracy (%)

Baseline VIOLIN
NAT. SPE. STR. Avg. NAT. SPE. STR. Avg.

DeiT-T 5M 69.56 82.34 53.57 65.52 70.71 (+1.15) 82.64 (+0.30) 54.52 (+0.95) 66.41 (+0.89)
DeiT-S 22M 73.64 84.30 53.44 67.38 75.24 (+1.60) 84.87 (+0.57) 56.31 (+2.87) 69.30 (+1.92)
DeiT-B 86M 76.93 85.52 57.00 70.35 76.54 (-0.39) 85.44 (-0.08) 58.90 (+1.90) 70.99 (+0.64)
DINO-S 22M 75.35 85.09 60.65 71.21 76.29 (+0.94) 85.75 (+0.66) 60.61 (-0.04) 71.68 (+0.47)
DINO-B 86M 77.50 85.77 58.47 71.23 77.82 (+0.32) 85.83 (+0.06) 58.77 (+0.30) 71.49 (+0.26)
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F.3 MULTI-RESOLUTION CLASSIFICATION

Following Heo et al. (2024), we test the resolution scalability of VIOLIN models. We present the
top-1 accuracies for DeiT-S, and DeiT-B models across input resolutions ranging from 144 to 512 in
Figure 8. We use bicubic interpolation for all positional embeddings (Heo et al., 2024). In the top
plot, we observe that although VIOLIN without positional embeddings performs slightly worse than
the baseline at the training resolution (224), it begins to outperform the baseline at higher resolutions.
In the second and third plots, where VIOLIN is combined with positional embeddings, for most
resolutions, VIOLIN preserves or expands the performance gap compared to baselines. These results
suggest that the decay mask used in VIOLIN generalizes effectively to higher resolutions, making it a
resolution-robust enhancement for ViTs.

Another interesting application of context extrapolation is video understanding. Following Caron
et al. (2021), we generate a segmentation video using VIOLIN DINO-B model. While the training
resolution is 224, for video, VIOLIN extends to 768× 432 resolution. Some frames are provided in
Figure 9 and the full video can be found in our GitHub repository.
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Figure 8: Resolution expansion: Top-1 accuracies of DeiT-B (top), DeiT-S (middle) and DeiT-III-S
(bottom) models and their VIOLIN counterparts at different resolutions on ImageNet. Training
resolution of 224 is highlighted in red.

Figure 9: Video undertanding: Frame by frame video understanding of VIOLIN -DINO in base scale.
The full video and generation codes are also included in the github repository of VIOLIN .
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F.4 ADDITIONAL VISUALIZATIONS

In Figure 10, we present the 1D flattened sequences of the patched image (a), corresponding to
the curves illustrated in Figure 1. Figure 12 compares attention heatmaps of DeiT and VIOLIN
models, fine-tuned on Structured group datasets. Figure 13 visualizes the attention heatmaps of the
VIOLIN DeiT-B model using various images. We adopt the average diagonal visualization strategy as
proposed in (Liu et al., 2024b). Additionally, in Figure 11 we visualize the mask pattern for a middle
pixel under the snake curve for different values of γ. As expected, when γ ≈ 1, the head attends
broadly across the entire image, whereas smaller γ values produce a much more localized receptive
field, emphasizing spatial neighbors.

b1)

a2) 

b2)a1)

c1)

c2)

d1)

d2)

e1)

e2)

Figure 10: Flattened Space Filling Curve paths: Examples of flattened images with different traversal
paths followed in VIOLIN . (a1) Original patchedimage. (a2) Z-curve (b1) Snake curve, (b2)
Transposed Snake curve, (c1) Zig-zag curve, (c2) Transposed Zig-zag curve, (d1) Hilbert curve, (d2)
Transposed Hilbert curve, (e1) Peano curve, (e2) Transposed Peano curve.
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Figure 11: Effect of γ on the decay mask: Visualization of the decay mask for a central pixel under
the Snake curve for different values of γ. Larger γ values yield more global attention, while smaller
γ restrict the effective receptive field to local regions.
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Figure 12: Attention heatmaps on Structured tasks: Examples are taken from three datasets in
the Structured group: CLEVR-Count, dSprites-Location, and SmallNORB-Azimuth. We compare
attention scores of DeiT-B (left) and VIOLIN (right), fine-tuned on the corresponding dataset.
Visualizations are from layer 12, with rows showing heads 112. Since both models share the same
pretrained initialization, attention heads are initially identical before fine-tuning. After fine-tuning,
VIOLIN produces more accurate and focused heads, with better object coverage and more uniform
color outside the objects, indicating reduced attention to irrelevant regions.
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Figure 13: Attention heatmap visualization of VIOLIN DeiT-B: The average diagonal of the masked
attention is visualized followed by (Liu et al., 2024b).
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F.5 DETAILS AND INDIVIDUAL RESULTS ON VTAB-1K DATASET

VTAB (Zhai et al., 2019) contains 19 tasks which cover a broad spectrum of domains and semantics
that are grouped into three sets: NATURAL, SPECIALIZED, and STRUCTURED.

The NATURAL group represents natural images and classical vision problems. The group includes
Caltech101, CIFAR-100, DTD, Flowers102, Pets, Sun397, and SVHN datasets.

The SPECIALIZED group also contains images of the world, but they are captured through specialist
equipment. These images have different invariances to those in the NATURAL tasks. It includes
Resisc45 and EuroSAT, Patch Camelyon, and Diabetic Retinopathy datasets.

The STRUCTURED group assesses comprehension of the structure of a scene, for example, object
counting, or 3D depth prediction. Most of the tasks are generated from simulated environments,
whose structure is easy for a human, but their domain differs greatly to datasets like ImageNet. It
includes Clevr count and distance, dSprites location and orientation, SmallNORB, DMLab, and
KITTI. In Tables 19 to 21, we present the accuracy scores of each model on all VTAB-1K datasets.

Table 19: VTAB Results-Natural Subset: Individual scores for each dataset.

Model CIFAR Caltech101 DTD Flowers102 Pets SVHN Sun397

N
at

ur
al

DeiT-T 48.36 86.9 63.97 86.43 87.14 78.28 35.87
VIOLIN DeiT-T 51.21 86.48 64.75 87.24 86.77 83.16 35.38
DeiT-T ⊙MVIOLIN 51.17 87.8 65.43 89.17 86.75 85.78 37.17
DeiT-S 57.38 89.06 68.83 91.09 91.13 75.82 42.19
VIOLIN DeiT-S 60.71 88.06 68.33 91.12 91.19 85.38 41.93
DeiT-S ⊙MVIOLIN 59.6 89.78 69.08 92.5 91.89 86.15 43.45
DeiT-B 61.38 90.33 69.06 93.73 92.43 85.95 45.59
VIOLIN DeiT-B 63.32 89.55 68.37 92.1 92.04 86.22 44.15
DeiT-B ⊙MVIOLIN 61.99 91.07 70.14 93.97 92.75 90.22 45.56
DeiT-B LoRA 62.37 90.07 69.27 93.26 92.3 90.58 44.35
DeiT-B ⊙MVIOLIN LoRA 65.36 90.92 70.62 93.57 92.37 91.86 45.19
DeiT-B DoRA 63.81 90.78 69.29 91.79 89.95 88.75 44.12
DeiT-B ⊙MVIOLIN DoRA 66.38 90.97 69.82 92.77 91.71 90.26 44.64
DeiT-III-S 59.08 88.53 67.09 91.13 91.85 84.65 43.57
DeiT-III-S ⊙MVIOLIN 62.18 88.78 69.4 93.92 91.35 89.98 43.6
DeiT-III-B 64.39 89.56 70.8 94.63 93.38 87.28 47.28
DeiT-III-B ⊙MVIOLIN 66.77 89.97 71.38 95.53 93.61 91.24 46.19
DeiT-III-L 65.16 87.89 71.58 94.39 93.23 71.17 48.65
DeiT-III-L ⊙MVIOLIN 66.74 87.67 72.34 95.01 93.28 78.7 48.58
DeiT-III-H 64.34 88.2 71.22 94.95 92.96 68.76 48.46
DeiT-III-H ⊙MVIOLIN 65.16 88.18 71.35 95.18 93.33 72.72 48.7
DINO-S 54.32 93.95 68.12 91.28 88.62 90.24 40.93
VIOLIN DINO-S 56.05 91.95 69.33 95.26 89.62 91.65 40.2
DINO-S ⊙MVIOLIN 57.38 90.92 68.88 95.18 89.44 90.61 41.45
DINO-B 58.57 93.7 70.64 95.84 90.21 89.69 43.86
VIOLIN DINO-B 59.96 92.13 71.84 95.69 90.49 90.78 43.83
DINO-B ⊙MVIOLIN 62.21 93.32 71.58 96.1 90.74 91.74 44.87
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Table 20: VTAB Results-Structured Subset: Individual scores for each dataset. SN refers to Small-
Norm, and dS represents dSprites.

Model CLEVR Count CLEVR Dist DMLab KITTI dS Loc dS Ori SN Azi SN Ere
St

ru
ct

ur
ed

DeiT-T 71.37 60.37 44.26 78.81 69.04 41.86 30.28 32.57
VIOLIN DeiT-T 72.73 61.7 47.98 79.7 68.7 46.11 25.31 33.96
DeiT-T ⊙MVIOLIN 74.41 59.84 46.37 80.78 78.32 50.91 31.33 38.05
DeiT-S 75.08 58.15 45.74 78.43 63.3 48.13 26.24 32.48
VIOLIN DeiT-S 78.26 59.25 49.91 81.29 64.63 53.16 27.37 36.59
DeiT-S ⊙MVIOLIN 78.87 59.2 50.59 80.4 73.52 53.44 32.48 37.62
DeiT-B 79.01 60.1 47.03 82.61 66.7 53.38 30.87 36.32
VIOLIN DeiT-B 82.6 61.72 52.84 80.97 68.44 55.47 31.72 37.45
DeiT-B ⊙MVIOLIN 81.33 61.31 53.93 83.22 81.72 57.28 35.37 40.98
DeiT-B LoRA 79.1 60.15 51.93 81.25 78.53 53.71 28.28 32.12
DeiT-B ⊙MVIOLIN LoRA 82.36 63.46 52.86 82.18 78.52 55.25 32.21 39.79
DeiT-B DoRA 76.97 60.62 50.37 81.34 73.34 54.11 28.69 39.43
DeiT-B ⊙MVIOLIN DoRA 81.64 63.29 51.06 82.42 78.65 56.14 27.62 38.89
DeiT-III-S 76.53 57.29 46.23 81.81 58.12 50.48 26.33 26.57
DeiT-III-S ⊙MVIOLIN 77.78 61.9 54.84 83.17 85.91 59.78 33.45 36.07
DeiT-III-B 80.54 61.82 50.95 82.7 60.75 55.35 30.36 31.18
DeiT-III-B ⊙MVIOLIN 84.51 61.92 55.64 82.79 84.06 60.34 36.59 38.4
DeiT-III-L 72.99 53.23 47.59 80.78 50.19 50.72 25.21 30.51
DeiT-III-L ⊙MVIOLIN 76.66 55.64 50.03 81.86 55.42 57.35 28.69 33.91
DeiT-III-H 75.17 55.24 48.66 81.11 41.57 46.99 25.15 31.74
DeiT-III-H ⊙MVIOLIN 77.89 55.96 50.96 81.9 47.85 55.07 26.57 33
DINO-S 83.29 65.03 53.44 80.03 78.72 48.61 34.23 41.87
VIOLIN DINO-S 84.19 63.35 55.72 81.43 75.82 49.37 32.92 42.06
DINO-S ⊙MVIOLIN 83.69 64.23 55.35 79.98 79.42 49.18 36.43 41.61
DINO-B 80.93 62.76 52.17 79.23 69.22 48.39 33.73 41.34
VIOLIN DINO-B 81.96 63.04 53.45 79 72.12 49.59 30.29 40.76
DINO-B ⊙MVIOLIN 83.87 63.65 55.66 81.2 74.14 54.18 34.79 39.27

Table 21: VTAB Results-Specialized Subset: Individual scores for each dataset. SN refers to Small-
Norm, and dS represents dSprites.

Model Patch Camelyon EuroSAT Resisc45 Diabetic Retinopathy

Sp
ec

ia
liz

ed

DeiT-T 82.79 93.53 80.98 72.05
VIOLIN DeiT-T 82.47 93.35 81.3 73.43
DeiT-T ⊙MVIOLIN 84.04 93.88 83.23 73.87
DeiT-S 84.08 94.4 84.01 74.72
VIOLIN DeiT-S 85.36 95.41 83.86 74.85
DeiT-S ⊙MVIOLIN 85.19 95.02 85.68 74.32
DeiT-B 85.74 95.38 86.37 74.6
VIOLIN DeiT-B 85.62 95.44 85.68 75.02
DeiT-B ⊙MVIOLIN 86.74 95.91 87.31 75.2
DeiT-B LoRA 86.2 95.46 85.72 75.09
DeiT-B ⊙MVIOLIN LoRA 85.9 95.66 86.71 73.73
DeiT-B DoRA 85.53 95.39 85.21 74.8
DeiT-B ⊙MVIOLIN DoRA 85.92 95.56 84.98 73.35
DeiT-III-S 84.57 93.33 82.68 73.94
DeiT-III-S ⊙MVIOLIN 85.76 94.98 86.43 74.67
DeiT-III-B 86.4 94.47 85.83 74.33
DeiT-III-B ⊙MVIOLIN 87.77 95.8 87.57 74.73
DeiT-III-L 84.5 93.28 84.47 75.28
DeiT-III-L ⊙MVIOLIN 84.54 94.11 85.24 74.83
DeiT-III-H 84.64 92.64 84.99 74.46
DeiT-III-H ⊙MVIOLIN 84.81 93.3 84.66 74.93
DINO-S 86.82 94.29 86.13 73.14
VIOLIN DINO-S 87.7 94.76 86.59 73.96
DINO-S ⊙MVIOLIN 85.94 94.9 86.17 74.26
DINO-B 87.02 94.45 87.05 74.55
VIOLIN DINO-B 87.57 94.46 87.25 74.03
DINO-B ⊙MVIOLIN 87.81 95.44 87.96 74.54
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F.6 COMPARISON AGAINST OTHER LOCALITY METHODS.

There are many methods for enhancing locality in plain ViTs. To compare these approaches with
VIOLIN , we start from the same pretrained DeiT-B model, add each locality mechanism on top of it,
and fine-tune all models under the exact same protocol. This ensures that every method begins from
an identical initialization. The results show that while all methods offer some improvement, VIOLIN
achieves the strongest gains. Below, we detail how each method is incorporated and initialized to
preserve the pretrained model at the start of fine-tuning, and we report results in Tables 22 to 24.

Swin RPB Swin transformers (Liu et al., 2021) introduces locality two ways, by partitioning the
feature map into shifted windows, and with relative position biases (RPB) that encode spatial offsets
inside each window. These biases give the attention mechanism information about relative spatial
relationships within a window, improving performance on vision tasks where nearby pixels are
correlated. To incorporate RPB into a pretrained global-attention ViT, we add a learnable bias term
B ∈ RN×N as in eq. (49) where B[i, j] depends on the relative position of the tokens i and j.

Y = Softmax

(
QK⊤
√
d

+B

)
V. (49)

By initializing B with zeros, the modified attention reduces exactly to the original attention. This
guarantees that adding the Swin-RPB does not alter the models capabilities and new positional biases
can be learned during fine-tuning.

2D Relative Position Encoding (iRPE) iRPE (Wu et al., 2021a) add locality into attention, by
adding learnable bias terms based on the 2-D relative position of tokens. For any pair of tokens
(i, j), the offset ∆pij is mapped through a bucketing function to an index bij , which selects a bias
embedding from a table R ∈ RB×H . Depending on the chosen attachment mode, this embedding
is added to queries, keys or values (e.g., k̂j = kj + Rb·j ) and the attention scores are calculated
using this new parameters. To integrate iRPE into a pretrained ViT without disturbing its learned
representations, we initialize all bucket embeddings to zero,

Rb = 0 ∀ b
so that the queries/keys/values are not changed at the start of finetuning. This ensures that the model
initially behaves exactly like the pretrained backbone, while the RPE parameters gradually learn
non-zero spatial biases during training.

LocalVit LocalVit (Li et al., 2021) enhances locality inside the feed-forward network (FFN) rather
than attention. It replaces the MLP with a depthwise-convolutional residual branch. This allows
each token to mix information with its spatial neighbors, giving the transformer an inductive bias
similar to CNNs while preserving the global interactions of self-attention. For LocalViT, we gate the
convolutional branch with a learnable scalar initialized to zero, and initialize the depthwise conv as
an identity kernel (center=1, others=0). This allows the modified architecture to behave exactly the
same as the pretrained model at the first step, enabling smooth fine-tuning and gradual learning of
locality information.

VIOLIN variations Additionally, we evaluate several ablations discussed in previous sections,
including an additive version of MVIOLIN , Manhattan-distance masking, a single-curve variant
(MPeano), and random-curve masking (MRandom), under the same finetuning protocol for complete-
ness. These results further highlight the contributions of using multiple SFCs rather than relying on
any single locality pattern.
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Table 22: VTAB Results-Natural Subset: Individual scores for each dataset for different locality-
enforcing methods.

Model CIFAR Caltech101 DTD Flowers102 Pets SVHN Sun397

Additive MVIOLIN 63.64 91.11 69.27 93.6 92.6 90.46 44.28
Swin RPB 63.72 90.75 70.16 94.15 92.66 90.21 45.82
i-RPE-QKV 65.03 90.94 70.12 93.97 92.63 90.32 45.66
LocalVit 65.17 91.13 69.57 93.85 92.56 90.26 45.63
Manhattan 59.62 90.78 68.03 92.07 91.47 89.81 42.13
MPeano 65.04 90.78 69.18 94.11 92.61 90.14 45.89
MRandom 65.02 90.78 69.02 94.09 92.6 89.74 45.91

Table 23: VTAB Results-Structured Subset: Individual scores for each dataset for different locality-
enforcing methods. SN refers to SmallNorm, and dS represents dSprites.

Model CLEVR Count CLEVR Dist DMLab KITTI dS Loc dS Ori SN Azi SN Ere

Additive MVIOLIN 81.08 62.12 51.95 83.26 80.95 57.25 34.76 39.38
Swin RPB 81.42 61.67 53.83 83.17 81.39 56.81 35.42 38.9
i-RPE-QKV 81.25 61.58 53.42 83.12 81.49 57.28 35.13 38.34
LocalVit 81.28 61.53 53.43 82.56 81.38 57.6 35.5 38.71
Manhattan 76.74 60.73 50.16 82.51 74.69 55.03 32.49 34.57
MPeano 81.45 61.4 53.59 83.17 81.09 56.98 34.53 40.84
MRandom 81.45 61.33 53.36 82.84 80.21 56.98 34.5 40.76

Table 24: VTAB Results-Specialized Subset: Individual scores for each dataset for different locality-
enforcing methods.

Model Patch Camelyon EuroSAT Resisc45 Diabetic Retinopathy

Additive MVIOLIN 86.84 96.07 87.62 74.93
Swin RPB 86.17 95.66 87.47 75.37
i-RPE-QKV 86.76 95.72 87.51 74.91
LocalVit 86.55 95.85 87.58 75.4
Manhattan 86.44 94.93 86.29 74.21
MPeano 87.13 95.93 87.71 75.56
MRandom 86.8 95.57 87.63 75.26

F.7 LEARNED CURVE ORDER

Motivated by recent work on learned patch orderings (Kutscher et al., 2025), we implemented a
learned ordering variant within our framework and trained a DeiT-Tiny model using this learned
sequence. The results are shown in Table Table 25. Although the learned variant underperforms the
original VIOLIN mask in this initial experiment, it highlights several promising research directions,
such as jointly learning multiple traversal curves, exploring task-adaptive orderings, and studying how
different datasets induce specialized spatial structuresall of which may further improve performance
and interpretability.

Table 25: Comparison of DeiT-Tiny, VIOLIN, and a learned patch-ordering variant: learned patch
orderings (Kutscher et al., 2025) is adapted to VIOLIN framework.

Model Accuracy (%)

DeiT-Tiny 72.2
VIOLIN 73.0
VIOLIN w learned order 70.1
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F.8 COMPARISON WITH RELATIVE POSITIONAL ENCODINGS

VIOLIN and relative positional encodings (RPEs) introduce spatial inductive bias through different
mechanisms. As described in Appendix B.4, VIOLIN applies a lightweight multiplicative decay mask,
whereas modern RPEs add learned pairwise positional terms to the attention logits and often require
additional parameters or architecture-specific modifications. To assess their relationship, in addition
to the fine-tuning experiments in Appendix F.6, we include comparisons with several RPE-based
locality baselines in both the pretraining settings.

On ImageNet-1K supervised pretraining, VIOLIN achieves competitive performance to several
RPE variants while adding significantly fewer FLOPs. For example, on DeiT-S, VIOLIN introduces
5× fewer FLOPs than Transformer-XL and 1.3× fewer FLOPs than iRPE-QK, while obtaining
comparable accuracy.

Table 26: Comparison of VIOLIN and RPE variants: on DeiT-S pretraining in ImageNet-1K. Results
are taken from respective papers of i-RPE (Wu et al., 2021a) and Transformer-XL Dai et al. (2019).

Model Additional FLOPs (%) Top-1 Acc. (%)
Baseline - 79.9
VIOLIN 0.7 80.7
Transformer-XL 4.3 80.8
iRPE-K 0.9 80.9
iRPE-QK 2.2 81.1
iRPE-QKV 5.9 81.4

VIOLIN can also be combined with RPEs. On DeiT-T, adding VIOLIN to iRPE-K yields an additional
accuracy gain, indicating that the methods introduce complementary inductive information.

Table 27: Combination of VIOLIN with RPEs: pretraining results on DeiT-T model as baseline, with
PRE and with RPE+VIOLIN .

Model Additional FLOPs (%) Top-1 Acc. (%)

Baseline – 72.2
iRPE-K 1.7 73.7
iRPE-K + VIOLIN 2.3 73.9
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G CODES AND IMPLEMENTATION DETAILS

G.1 COMPUTE RESOURCES

Table 28: Compute resources for pertaining: The number of GPUS and approximate training time
for each model and scale are provided.

Model # GPUs Training time

DeiT-T 4 ≈ 17 Hour
DeiT-S 4 ≈ 23 Hour
DeiT-B 16 ≈ 1.7 Day
DINO-S 16 ≈ 3.2 Days
DINO-B 16 ≈ 7 Days

In Table 28, we report the compute resources required for each of the evaluated models. These
numbers also apply to the models used for ablation experiments.

For fine-tuning, we performed 30 runs per dataset for each model (25 for validation and 5 for final
evaluation). Each run took between 2 to 10 minutes, and the complete fine-tuning evaluation was
completed in approximately 10 days.

All experiments were conducted using a mix of NVIDIA A100 SXM4 80GB, NVIDIA GH200 96GB,
and NVIDIA H100 SXM5 80GB GPUs, used interchangeably depending on availability.

G.2 VTAB-1K HYPERPARAMETERS

To determine optimal learning rates, we use the VTAB-1K-pytorch repository (Alkin, 2022) and
conduct a grid search. Following the original implementation, we run 5 seeds for learning rate
selection on validation set and another 5 seeds for standard training. For each model, we average the
top 3 runs to report the final accuracy. The complete list of hyperparameters is provided in Table 29.
For parameter-efficient fine-tuning, we again use the same set of hyperparameters and grid search
over ranks [2,4,8,16].

Table 29: Hyperparameters for fine-tuning on VTAB-1K: The same hyperparameters are used for all
models, following (Alkin, 2022).

Parameter Value
Epochs 50
Batch size 64
Seeds 5
Optimizer AdamW

Learning rate [1e-3, 7.5e-4, 5.0e-4, 2.5e-4, 1.0e-4]
Layer-wise lr deca 0.65*
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999

Learning rate schedule linear warmup → cosine decay
Warmup epochs 5

Precision mixed bfloat16
Backend torch.autocast

Data Augmentation
Resize
interpolation bicubic
size 224x224

Normalize ImageNet-1K statistics
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G.3 CODES FOR CURVES

In this section, we provide the codes used to create the permutation orders of each SFC in basis of
Z-curve. In other words, we define efficiency the indexing needed for the permutation πc(.) for each
curve c used in our study.

Snake curve

1 def snake_curve(grid):
2 """Returns the elements of the grid in snake order."""
3 n_rows, n_cols = grid.shape
4 order = []
5 for y in range(n_rows):
6 if y % 2 == 0:
7 # Left-to-right for even rows
8 order.extend((x, y) for x in range(n_cols))
9 else:

10 # Right-to-left for odd rows
11 order.extend((x, y) for x in reversed(range(n_cols)))
12 return order

Zig-zag curve

1 def zigzag_curve(grid):
2 """Returns the elements of the grid in diagonal zig-zag order."""
3 n_rows, n_cols = grid.shape
4 order = []
5 for d in range(n_rows + n_cols - 1):
6 if d % 2 == 0:
7 r = min(d, n_rows - 1)
8 c = d - r
9 while r >= 0 and c < n_cols:

10 order.append((r, c))
11 r -= 1
12 c += 1
13 else:
14 c = min(d, n_cols - 1)
15 r = d - c
16 while c >= 0 and r < n_rows:
17 order.append((r, c))
18 c -= 1
19 r += 1
20 return order
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Hilbert curve Adapted from (Cerveny, 2025).

1 def hilbert_curve(grid):
2 rows = len(grid)
3 cols = len(grid[0]) if rows > 0 else 0
4 return [(x, y) for x,y in gilbert2d(rows, cols)]
5

6 def gilbert2d(width, height):
7 """
8 Generalized Hilbert (’gilbert’) space-filling curve for arbitrary

-sized
9 2D rectangular grids. Generates discrete 2D coordinates to fill a

rectangle
10 of size (width x height).
11 """
12 if width >= height:
13 yield from generate2d(0, 0, width, 0, 0, height)
14 else:
15 yield from generate2d(0, 0, 0, height, width, 0)
16

17 def sgn(x):
18 return -1 if x < 0 else (1 if x > 0 else 0)
19

20 def generate2d(x, y, ax, ay, bx, by):
21 w = abs(ax + ay)
22 h = abs(bx + by)
23 (dax, day) = (sgn(ax), sgn(ay)) # unit major direction
24 (dbx, dby) = (sgn(bx), sgn(by)) # unit orthogonal direction
25 if h == 1:
26 # trivial row fill
27 for i in range(0, w):
28 yield(x, y)
29 (x, y) = (x + dax, y + day)
30 return
31 if w == 1:
32 # trivial column fill
33 for i in range(0, h):
34 yield(x, y)
35 (x, y) = (x + dbx, y + dby)
36 return
37 (ax2, ay2) = (ax//2, ay//2)
38 (bx2, by2) = (bx//2, by//2)
39 w2 = abs(ax2 + ay2)
40 h2 = abs(bx2 + by2)
41 if 2*w > 3*h:
42 if (w2 % 2) and (w > 2):
43 # prefer even steps
44 (ax2, ay2) = (ax2 + dax, ay2 + day)
45 # long case: split in two parts only
46 yield from generate2d(x, y, ax2, ay2, bx, by)
47 yield from generate2d(x+ax2, y+ay2, ax-ax2, ay-ay2, bx, by)
48 else:
49 if (h2 % 2) and (h > 2):
50 # prefer even steps
51 (bx2, by2) = (bx2 + dbx, by2 + dby)
52 # standard case: one step up, one long horizontal, one step

down
53 yield from generate2d(x, y, bx2, by2, ax2, ay2)
54 yield from generate2d(x+bx2, y+by2, ax, ay, bx-bx2, by-by2)
55 yield from generate2d(x+(ax-dax)+(bx2-dbx), y+(ay-day)+(by2-

dby),
56 -bx2, -by2, -(ax-ax2), -(ay-ay2))
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Peano curve Adapted from (Schubotz, 2021; Prater).

1 def interleave_bits(x, y):
2 """
3 Interleave the bits of two integers (x, y) to compute Morton

order.
4 """
5 def split_bits(value):
6 result = 0
7 for i in range(32): # Support up to 32-bit integers
8 result |= ((value >> i) & 1) << (2 * i)
9 return result

10

11 return split_bits(x) | (split_bits(y) << 1)
12

13 def peano_curve(grid):
14 """Returns the elements of the grid in diagonal morton/peano

order."""
15 n_rows, n_cols = grid.shape
16 order = []
17

18 for y in range(n_rows):
19 for x in range(n_cols):
20 morton_key = interleave_bits(x, y)
21 order.append((morton_key, x, y))
22

23 # Sort by Morton key to achieve the Morton curve order
24 order.sort(key=lambda pair: pair[0])
25 return [(x, y) for _, x, y in order]

G.4 CODE OF EFFICIENT DECAY MASK

1 def Casual_Decay_Mask(b_i , N):
2 idx = torch.arange(N,device=b_i.device)
3 I, J = torch.meshgrid(idx, idx, indexing=’ij’)
4 E = (torch.abs((I-J)).float().view(1,1,N,N))
5 M = torch.sigmoid(b_i).view(1,-1,1,1)**E
6 return M

G.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

While preparing this manuscript, we limitedly used Large Language Models (LLMs). Their role was
restricted to assisting with editing and polishing the writing, such as improving clarity, grammar, and
flow. All conceptual ideas, methods, experiments, and analyses presented in this paper are entirely the
work of the authors. No ideas, algorithms, or research contributions were generated by an LLM. The
models served only as a tool to refine the presentation of the text without influencing the substance of
the research.
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