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ABSTRACT

Models like OpenAl-03 pioneer visual grounded reasoning by dynamically ref-
erencing visual regions, just like human “thinking with images”. However, no
benchmark exists to evaluate these capabilities holistically. To bridge this gap, we
propose TreeBench (Traceable Evidence Evaluation Benchmark), a diagnostic
benchmark built on three principles: (1) focused visual perception of subtle targets
in complex scenes, (2) traceable evidence via bounding box evaluation, and (3)
second-order reasoning to test object interactions and spatial hierarchies beyond
simple object localization. Prioritizing images with dense objects, we initially
sample 1K high-quality images from SA-1B, and incorporate eight LMM experts
to manually annotate questions, candidate options, and answers for each image.
After three stages of quality control, TreeBench consists of 405 challenging vi-
sual question-answering pairs, even the most advanced models struggle with this
benchmark, where none of them reach 60% accuracy, e.g., OpenAl-03 scores only
54.87. Furthermore, we introduce TreeVGR (Traceable Evidence Enhanced Visual
Grounded Reasoning), a training paradigm to supervise localization and reasoning
jointly with reinforcement learning, enabling accurate localizations and explainable
reasoning pathways. Initialized from Qwen2.5-VL-7B, it improves V* Bench
(+16.8), MME-RealWorld (+12.6), and TreeBench (+13.4), proving traceability is
key to advancing vision-grounded reasoning. The code and data will be released.

1 INTRODUCTION

Recent breakthroughs in Large Language Models (LLMs) reasoning, such as OpenAl-ol (OpenAl,
2024b) and DeepSeek-R1 (Guo et al., 2025a) with remarkable test-time scaling properties, have
motivated researchers to explore reasoning for Large Multimodal Models (LMMs) (Huang et al.,
2025; Wei et al., 2025a;b; Chen et al., 2025). These models are typically remarkable in their
mathematical and scientific reasoning, particularly through text-space reasoning. However, they
exhibit critical limitations when applied to perception-heavy tasks (Jiang et al., 2025) or general
multimodal benchmarks (Wang et al., 2024c), primarily due to accumulated language bias from their
exclusive reliance on textual reasoning pathways. A paradigm shift toward visual grounded reasoning
emerged with models like OpenAlI-03 (OpenAl, 2025), which is able to “think with images” by
dynamically referencing and amplifying task-relevant regions during reasoning, resulting in image-
text interleaved reasoning pathways. Yet, despite growing interest, the community currently lacks
comprehensive evaluation benchmarks for assessing these capabilities.

Classical benchmarks like POPE (Li et al., 2023c), MMBench (Liu et al., 2023b), SEED-Bench (Li
et al., 2023a), and MMMU (Yue et al., 2024) usually overlook fine-grained localization and verifiable
reasoning chains. Others (Wu & Xie, 2024; Zhang et al., 2024a; Wang et al., 2025f; Dong et al.,
2024; Wang et al., 2025b;a; Zhang et al., 2024b) partially address localization but lack traceability
or complex reasoning: V* Bench (Wu & Xie, 2024) is restricted to simple spatial queries (e.g., “Is
A left of B?”) and risks data contamination with COCO-derived images (Lin et al., 2014); MME-
RealWorld (Zhang et al., 2024a), HR-Bench (Wang et al., 2025f), and document benchmarks (Biten
et al., 2022; Mathew et al., 2021; Liu et al., 2023c) support high-resolution inputs but lack traceable
evidence and second-order reasoning such as perspective shifts. In short, these benchmarks fail
to adequately evaluate three key elements central to visual grounded reasoning: nuanced visual
grounding, traceable multi-step reasoning, and dynamic cross-modal interaction through interleaved
box-text reasoning pathways.
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Attributes Material Physical State Object Retrieval OCR-Integrated QA

A
Question: What is the girl wearing while sitting | Question: What the materials for the bottles on | Question: What is the condition of the rear Question: What is attached to the top of the | Question: Recognize the question and options
on the chair in the center of the image, which is | the bike? cargo door on the small white box-shaped truck | hat in the middle of the image? in the image and answer it.
partially obscured by a tall street light? parked in the leftmost lane?

A. Pink shoes A Plastic A. Fully closed and latched ¢ &
B. Fully open upward B. Sunglasses G

A. Flag A. Flag

B. White skirt B. White Glass B. Sunglasses G

C. Light blue skirt C. Bronze-aware product C. Half-open (partially raised) C. Flower C. Flower

D. Black shoes D. Insulation material D. Missing entirely D. Grass ring D. Grass ring

Target Instances: Target Instances: Target Instances: Target Instances: Target Instances:
Perspective Transformation Ordering Contact and Occlusion Spatial Containment Comparison

Question: From the perspective of the woman | Question: Among the signs with text, which | Question: Considering the soccer player in red | Question: Which of the following objectsis | Question: Considering the relative distances in
scated in a wheelchair, what is the relative one (counting from left to right) has the most | (number 22) in the foreground, is his left foot | inside the building on the right? the image, which abject s closer to the police
direction of the signboard with "PROGRAMS" | text? occluded with the soccer ball? officer holding the ice cream cone?
A. Front left A. The first one A. Yes, they are in direct contac A. The Buddhist monk in orange & #s| A. The tree behind the bus stop

B. Front right G e B. The second one B. No, they are separated by a gap .o | B.The person in bluc on the right &) B. The black bollard on the sidewal
C. Left rear C. The third one C. It cannot be determined C. The couple in the middle of the image C. The police van parked on the sidk
D. Right rear @ D. The fourth one D. They partially overlap D. The black car in the middle D. The bus stop sign

Target Instances: Target Instances: Target Instances: Target Instances: Target Instances:

Figure 1: Qualitative examples from TreeBench for each discipline. Each question requires focused
visual parsing on mere objects, and some even request second-order reasoning beyond precise
localization. Moreover, the bounding boxes of all target instances are provided, ensuring a traceable
evaluation. All these questions are challenging, as OpenAl-o3 (OpenAl, 2025) and Gemini-2.5-
Pro (DeepMind, 2025b) cannot answer them correctly simultaneously.

To bridge this gap, we propose TreeBench (Traceable Evidence Evaluation Benchmark), designed
around three foundational principles essential for evaluating true “thinking with images” capabilities:

* Focused Visual Perception. It evaluates a model’s ability to identify subtle targets within
cluttered, real-world scenes using detailed, precise, and unique textual descriptions, which
requires hierarchical scene understanding and the discrimination of extremely similar distractors.

* Traceable Evidence. It not only evaluates the final accuracy but also pioneers quantifiable
evaluation of reasoning chains, resulting in an explainable, reliable, and transparent evaluation.

¢ Vision-Centric Second-Order Reasoning Capabilities. It moves beyond simple object lo-
calization and primitive “what/where” queries. It focuses on complex physical interactions
between objects (such as contact and occlusion), as well as spatial containment (inside/outside,
above/below) and relative relationships with perspective transformation.

To conduct TreeBench, we sample 1K images from SA-1B (Kirillov et al., 2023), prioritizing
images with dense objects, as SA-1B (Kirillov et al., 2023) offers high-resolution, real-world scenes
with many small and varied objects, making it particularly suitable for evaluating visual grounded
reasoning. Subsequently, 8 experts with solid technical backgrounds are involved in hand-crafted
annotation for 10 sub-tasks, as demonstrated in Figure 1. In particular, we present a semi-automated
pipeline. Each of OpenAl-03 (OpenAl, 2025) and Gemini-2.5-Pro (DeepMind, 2025b) is required
to create three distinct questions belonging to a specific subtask, accompanied by multiple-choice
options and the respective correct answers. Subsequently, experts curated or replaced these to ensure
quality and difficulty. We additionally incorporate a cross-verification stage for further quality control.
Finally, TreeBench incorporates 405 high-quality and extremely challenging VQA pairs with accurate
bounding boxes of target instances. A comprehensive comparison between TreeBench and other
related benchmarks is provided in Table 1. Key advantages are:

* Annotation Quality. Unlike benchmarks relying on LMM-generated labels such as MMT-
Bench (Ying et al., 2024) and SEED-Bench (Li et al., 2023a), our expert-driven process ensures
correctness and extreme difficulty. However, relying on models would inevitably introduce
significant noise, compromising the quality of the annotations. On the contrary, our TreeBench
is manually designed by 8 LMM experts, ensuring the annotation correctness and ensuring the
difficulty of all questions.
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Table 1: Comparison between benchmarks related to “thinking with images”. TreeBench features
traceable evidence annotations, as well as high input resolution and challenging questions.

Benchmark Resolution Traceable Evidence Mean Area of Qwen2.5-VL-72B

Annotation Target Objects ({) Performance ()
V* Bench 2,246x1,583 X - 85.9
HR-Bench-4K 4,023x3,503 X - 79.3
HR-Bench-8K 5,727x4,430 X - 76.0
MME-RealWorld 2,076x1,434 X - 62.9
TreeBench 2,152x1,615 v 3.05% 42.2

* Small Target Objects. All questions in TreeBench focus on extremely small objects in complex
real-world scenes, where target instances occupy an average of 3.05% of the image.

¢ Traceable Evidence Evaluation. Our TreeBench provides bounding box annotations of each
target instance. It not only evaluates the final answer, but also reveals the quality of intermediate
reasoning steps. Those predicted bounding boxes serve as a window into its process, helping to
diagnose the source of errors, i.e., whether the model misunderstood the question or failed to
locate the relevant object.

« Task Difficulty. While models approach saturation (>90%) on benchmarks like V* Bench (Wu
& Xie, 2024), even open-sourced state-of-the-art performers like Qwen2.5-VL-72B (Bai et al.,
2025a) achieve only 42.2 on our TreeBench, implying a large potential improvement.

Beyond evaluation, we further introduce TreeVGR (Trace- Phy. State
able Evidence for Visual Grounded Reasoning), a training 00l Retr
paradigm enhancing localization-driven visual reasoning.
Previous attempts like (Wang et al., 2025e; Zheng et al.,
2025b; Cao et al., 2025; Fan et al., 2025; Shao et al., 2024a; OCR
Qi et al., 2024; Su et al., 2025; Liu et al., 2025a) solely
supervise final answers and neglect intermediate region-of-
interest generation processes. It becomes hard to quantify — per fans.
the actual contribution of the “grounding-then-answering”

Material

Attributes

framework. On the contrary, we propose TreeVGR, a Comparison
novel training methodology emphasizing traceable evi-

dence through reinforcement learning (RL), which explic- con soe O

itly supervises bounding box generation. —— Qwen25VL7B  — Pixel-Reasoner78 |

DeepEyes-7B —— TreeVGR-7B

Building on RL with conventional accuracy-based and for- Figure 2: Normalized performance
matting rewards, TreeVGR leverages a novel dual IoU comparison with our TreeVGR and
reward to ensure both precision and recall in localizing  ,iher works (Bai et al., 2025a; Zheng
the ground-truth bounding boxes for each target instance. al., 2025b; Su et al., 2025) on our
To implement this, we curate 37K samples for RL train-
ing, each comprising an image, a question, an answer,
and corresponding bounding box annotations for all target instances. Empirically, initialized from
Qwen2.5-VL-7B (Bai et al., 2025a), TreeVGR brings significant improvements on various bench-
marks, i.e., +16.8 on V* Bench (Wu & Xie, 2024), +12.6 on MME-RealWorld-Lite (Zhang et al.,
2024a), and +13.4 on our TreeBench. Moreover, as illustrated in Figure 2, compared with related
approaches, our TreeVGR enables traceable and explainable reasoning pathways with more accurate
localizations (mloU), and finally contributes to bootstrapped overall performance.

TreeBench for each category.

In conclusion, TreeBench pioneers the evaluation of how models “think with images”, while
TreeVGR establishes a blueprint for training them. Together, they significantly advance the depth
and utility of multimodal reasoning assessment with traceable evidence.

2 RELATED WORK

Large Multimodal Models. Initial breakthroughs in Large Multimodal Models (LMM:s), such
as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023b), achieved this by integrating
visual features into the LLM backbone via cross-attention mechanisms. A significant shift towards
efficiency emerged with LLaVA (Liu et al., 2023a), which introduced a much more efficient approach.
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It projects visual features from a pre-trained encoder (e.g., CLIP (Radford et al., 2021)) directly
into the LLM’s semantic space using a simple two-layer MLP. This paradigm of feature projection
catalyzed rapid advancement. Subsequent research has dramatically scaled LMM capabilities and
tackled increasingly complex tasks (Wang et al., 2025c; Liu et al., 2024a; Li et al., 2024; Wang
et al., 2025d; Bai et al., 2025a; Wang et al., 2024b; Lei et al., 2025; Zhu et al., 2025; Wu et al.,
2024; Wang et al., 2024a). A critical frontier has been handling high-resolution inputs. Models
like LLaVA-NeXT (Liu et al., 2024a) and InternVL-1.5 (Chen et al., 2024b) adopt any resolution
strategy. Qwen2-VL (Wang et al., 2024b) and Qwen2.5-VL (Bai et al., 2025a) introduce multimodal
Rotary Position Embedding (mROPE) to support arbitrary resolution inputs. Beyond resolution,
scaling pretraining with high-quality data is also vital, as demonstrated by InternVL3 (Zhu et al.,
2025). Collectively, these models represent the state-of-the-art, forming robust baselines for diverse
real-world multimodal applications. Our work builds upon these advances by leveraging their strong
native visual grounding capabilities. However, existing LMMs do not naturally perform an explicit
"grounding-then-answering" process, often resulting in misaligned or incomplete responses. By
explicitly modeling this sequential process, our approach ensures more accurate and interpretable
answers through grounded reasoning.

Reasoning LMMs. The groundbreaking reasoning capabilities of LL.Ms, exemplified by systems
like OpenAl-ol (OpenAl, 2024b) and DeepSeek-R1 (Guo et al., 20252a) have motivated efforts to
extend similar competencies to multimodal settings using reinforcement learning (RL) (Sutton et al.,
1998). Early approaches primarily focused on equipping LMMs to solve complex math and science
problems involving image inputs (Huang et al., 2025; Wei et al., 2025a;b; Chen et al., 2025). Other
approaches (Shen et al., 2025; Liu et al., 2025b; Bai et al., 2025b) directly adopt GRPO (Shao et al.,
2024b) to open-ended visual grounding. Moreover, some attempts (Liu et al., 2024b; Mondal et al.,
2024; Shao et al., 2024a; Qi et al., 2024) focus on regions-of-interest localization before actually
answering the question. A recent milestone, OpenAl-03 (OpenAl, 2025), advanced multimodal
reasoning by enabling dynamic image manipulation, e.g., cropping and zooming into regions of
interest, to emulate human-like "thinking with images." Subsequent research has sought to replicate
this capability through diverse strategies: constructing SFT data (Wang et al., 2025¢e), vanilla RL (Fan
et al., 2025), framing grounding as a function (Zheng et al., 2025b), decoupling grounding and
answering (Cao et al., 2025), multi-task reinforcement learning (Liu et al., 2025a), and curiosity-
driven reasoning (Su et al., 2025). Critically, these RL-based methods supervise only the final answer.
In contrast, our TreeVGR emphasizes traceable evidence during RL training, i.e., supervising
generated bounding boxes to ensure precise localization throughout the reasoning process. By doing
so, TreeVGR enables more transparent, reliable, and fine-grained control over the reasoning pipeline.

Benchmarks for LMMs. Current benchmarks lack comprehensive evaluation of multimodal models’
ability to “think with images”, a capability demanding three core competencies: (1) focused visual
perception (identifying small targets in large scenes), (2) traceable evidence (evaluating generated
bounding boxes for explainability), and (3) second-order reasoning (deriving insights beyond precise
instance localization). Some benchmarks may partially satisfy the first condition. While some
benchmarks address isolated aspects, critical gaps persist. Classical benchmarks like POPE (Li et al.,
2023c), MMBench (Liu et al., 2023b), SEED-Bench (Li et al., 2023a), and MMMU (Yue et al., 2024)
usually overlook fine-grained localization and verifiable reasoning chains. V¥ (Wu & Xie, 2024)
evaluates detailed attributes and spatial relationships (e.g., “Is A left of B?”) but relies on COCO-
derived images (Lin et al., 2014), introducing high contamination risk. MME-RealWorld (Zhang et al.,
2024a) and HR-Bench (Wang et al., 2025f) support high-resolution inputs but lack traceable evidence,
and their questions often become easy when grounded precisely. Crucially, no benchmark integrates
all three requirements, particularly the need for complex reasoning conditional on precise grounding,
e.g., perspective transform: “From the perspective of person A, what is the relative direction of
object B?”. To bridge this gap, we propose TreeBench, the first benchmark designed explicitly for
“thinking with images” with traceable, multistep evaluation. Beyond accuracy, TreeBench assesses:
(1) region quality, i.e., faithfulness of generated regions-of-interest in visual reasoning chains, and
(2) second-order reasoning, i.e., capabilities requiring inference beyond localization. State-of-the-art
models, Gemini-2.5-Pro (DeepMind, 2025b) and OpenAl-03 (OpenAl, 2025), perform poorly on
TreeBench (<60%), underscoring its rigor and the unmet challenges in multimodal reasoning.
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3 TREEBENCH

TreeBench is designed to address a critical gap in multimodal evaluation by establishing the first
comprehensive benchmark for assessing “thinking with images” capabilities. Specifically, it mainly
evaluates (1) the ability of identifying small target objects with long, detailed, and unique text
captions in large, complex, and real-world scenes, (2) the explainability of reasoning pathways and
traceable evidence, and (3) second-order reasoning beyond precise localization. Our TreeBench
systematically evaluates 10 core competencies through 405 distinct questions, organized into two
progressive protocols, i.e., “Perception” and ‘“Reasoning”, with representative examples in Figure 1.
In the following, we provide a detailed exploration of task definitions. The annotation pipeline and
the final statistics of TreeBench can be found in Appendix B and Appendix C, respectively.

Perception evaluates the model’s ability to accurately “see” and “identify” specific content, which
is one of the basic capabilities of directly extracting and interpreting visual information from every
detail of the provided image. These tasks primarily evaluate first-order visual reasoning capabilities,
where correct answers usually depend on the accurate localization of target questions (e.g., objects,
regions, or text) and directly recognize their explicit attributes without requiring higher-level logical
inference or abstract conceptualization. It includes:

1. Attributes evaluates the ability to identify and describe specific visual properties (e.g., color,
shape, material, or precise classification) of objects or elements within images, particularly
requiring attention to fine details, subtle distinctions, and accurate recognition of small-scale or
context-dependent features.

2. Material measures the ability to analyze and distinguish material properties (e.g., texture, surface
finish, composition, or physical state) through visual cues such as light reflection, transparency,
wear patterns, or microscopic structural characteristics, requiring precise reasoning about tactile
qualities and material-specific visual indicators.

3. Physical State assesses the ability to assess structural integrity (e.g., damage, wear, or breakage),
detect positional states (e.g., open/closed, bent/straight), and interpret age-related features (e.g.,
freshness, decay) through precise analysis of visual cues like cracks, alignment anomalies,
lighting/shadow patterns, or contextual degradation markers.

4. Object Retrieval probes the ability to interpret linguistically complex, spatially explicit de-
scriptions and map them to visually subtle or contextually embedded targets in images, testing
the integration of natural language understanding, spatial grounding, and discriminative object
recognition under high specificity constraints.

5. OCR-Integrated Question-Answering evaluates the ability to extract text-based questions
and answer options from images, requiring seamless integration of OCR, natural language
understanding, and multimodal alignment to produce accurate responses grounded in both
textual and visual modalities.

Reasoning evaluates the ability to analyze and infer meaningful conclusions beyond recognition.
These tasks demand second-order visual reasoning capabilities, where correct answers require not
only accurate localization but also higher-level cognitive operations over aggregated visual evidence.
Precise perceptual grounding is just the first step for these tasks. It includes:

1. Perspective Transform measures the capacity to perform viewpoint transformations (e.g.,
aligning viewer-centric and agent-centric frames of reference) and interpret spatial relations
under mirror-reversed or perspective-shifted conditions, testing the ability to disambiguate
directional relationships that depend on the visualized entity’s orientation rather than the image’s
literal pixel layout.

2. Ordering evaluates the ability to analyze linearly ordered arrangements of objects (e.g., left-to-
right, front-to-back, or depth-based sequences) and resolve ordinal relationships by integrating
spatial context with discriminative feature recognition, requiring precise localization within
continuous layouts and contextual comparison of positional cues (e.g., adjacency, centrality, or
extremity) to answer questions dependent on sequential alignment and relative placement.

3. Contact and Occlusion measures the ability to analyze physical interactions between multiple
objects (e.g., direct contact, occlusion layers, or shadow-based overlaps) and resolve ambiguities
in object identification by leveraging spatial dependencies, requiring precise parsing of contact
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“ <think>The question asks for the color of the dogs in the image. Looking at the two
' dogs on the bed, the dog on the left <box>[20,127,240,322]</box> has a brown coat.

' 00 l Now, let’s look at <box>[150,321,466,344]</box>. Wait, this box seems wrong. Let

- me check again. The dog on the right <box>[310,97,470,292]</box> has a brown coat,

Ve @l e e Base perhaps a bit darker. There are no other significant colors in their fur. So the color of

—_—
dogs in the image? Model the dogs is brown.</think> <answer>The dogs in the image are brown.</answer>

=g S | “ <think> To answer this, | should focus on <box> ... </think><answer>No</answer>
R ap — e
p—_ “im& T ) <think> Okay, let’s look at <box> ... </think><answer>No</answer> —
Is the lead elephant -

. . <think> The lead elephant is located at <box> ... </think><answer>Yes</answer> —
on the right side of

the elephant with Cold-Start

lots of people? Model <think> By looking at <box> ... </think><answer>No</answer> —
Target Objects R = Racc + Rformat + Riou Reward

— P
Answer: Yes {Right, Wrong} ﬁ ﬁ Traceable Evidence Manager

N t

Figure 3: Training pipeline of TreeVGR, including (a) a cold-start initialization stage and (b) a
reinforcement learning with traceable evidence post-training stage.

cues (e.g., alignment, boundary fusion), occlusion boundaries (e.g., partial/full coverage, layer
stacking), and contextual constraints to answer questions that hinge on understanding how
objects physically coexist and obscure one another in complex scenes.

4. Spatial Containment benchmarks the ability to analyze hierarchical spatial relationships (e.g.,
containment, surface attachment, or regional boundaries) by parsing visual cues like object
boundaries, spatial context, and contextual containment rules, requiring precise interpretation of
containment hierarchies, surface dependencies, and regional constraints to resolve questions
dependent on explicit spatial membership rather than isolated positional attributes.

5. Comparison assesses to compare attributes across multiple objects (e.g., distance, size, color)
and resolve spatial or perceptual differences, requiring precise parsing of attribute discrimination
and contextual distance estimation to answer questions demanding explicit comparison of
visually co-present entities.

4 TREEVGR

In this section, we introduce our TreeVGR. Specifically, we leverage the native grounding capabilities
of pre-trained LMMs and unlock visual grounded reasoning capabilities, i.e., localizing regions-of-
interest first and answering the question next, through a two-stage training pipeline shown in Figure 3,
i.e., cold initialization introduced in Section 4.1 and reinforcement learning with traceable evidence
elaborated in Section 4.2.

Notably, our TreeVGR does not require actually replaying cropped images as previous ap-
proaches (Wang et al., 2025¢e; Zheng et al., 2025b; Su et al., 2025) do, as text-space grounding
is already effective. It leads to much more efficient training and inference procedures.

4.1 COLD-START INITIALIZATION

While end-to-end reinforcement learning (RL) has demonstrated validity by (Zheng et al., 2025b)
for visual grounded reasoning (VGR) tasks, its practical deployment remains hindered by extreme
computational demands. Specifically, DeepEyes-7B (Zheng et al., 2025b) requests RL training on
47K samples across 32 episodes, a process requiring 32 H100 (80GB) GPUs operating continuously
for 48 hours. Such resource intensity creates barriers to broader accessibility.
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To address these limitations, we investigate a computationally efficient alternative. Initial attempts re-
vealed significant training inefficiencies when applying direct RL to VGR: models required extensive
iterations to autonomously identify task-relevant visual regions before generating answers. This bot-
tleneck motivates our adoption of a cold initialization strategy as illustrated in Figure 3a. Specifically,
we introduce a supervised fine-tuning (SFT) phase using a curated dataset comprising multimodal
samples: each sample includes an image, a question, reasoning trajectories with corresponding
bounding boxes, and a final answer. This structured initialization ensures VGR capabilities are
established prior to RL. Details of data construction and optimization can be found in Appendix E.1.

4.2 REINFORCEMENT LEARNING WITH TRACEABLE EVIDENCE

We proceed to reinforcement learning (RL) to refine reasoning trajectories through traceable evidence
supervision as demonstrated in Figure 3b. Specifically, the bounding boxes generated are evaluated
using a box intersection-over-union (IoU) reward, a precise and interpretable metric that measures the
alignment between predicted and ground-truth regions. This reward ensures explicit accountability to
human-annotated visual evidence, guiding the policy toward spatially accurate and logically coherent
reasoning pathways.

Reward Design. The total reward consists of three parts: an accuracy reward R,.. € {0,1}, a
formatting reward Reoma € {0, 1}, and a dual Intersection-over-Union (IoU) reward Rjoy € [0, 1]:

R= Racc + Rforma[ + Rlan (1)

where the accuracy reward assesses whether the final answer is correct. We utilize exact-matching for
multiple-choice questions, and leverage an online reward model, i.e., Qwen2.5-72B-Instruct (Team,
2024), to judge whether the prediction is correct given the question and the ground-truth answer.
The formatting reward ensures the reasoning process and the final answer must be enclosed be-
tween <think> and </think>, and <answer> and </answer>, respectively. The dual ToU
reward measures the quality of predicted boxes against ground-truths. Specifically, for N pre-
dicted bounding boxes {b;}Y,, where b; = [#, 74, &%, 94] and M ground-truths {by, }2~ |, where
by, = 2%, y¥ 2k y&], the dual ToU is an average of a recall term and a precision term.

1
By = §(R§>U + Riy), @

where the RY ; indicates the recall and R}, ; means the precision. Specifically, the recall term ensures
that each ground-truth bounding box by, is matched with at least one prediction.

M
Ry = 22> 10U [(bi} L b G)
k=1

where IoU [{131}511, bk} = max; IoU(lA)i7 by) indicates the maximum IoU between all predictions

{ Bz}fvzl and each ground-truth by,. Maximizing this term ensures each ground-truth by, is matched
with at least one prediction. However, we empirically find that the policy model tends to enumerate
all possible boxes to obtain a larger recall. Therefore, we introduce a dual term, i.e., R}, to ensure
the precision and discourage “empty” boxes that do not match with any ground-truths:

N
Rpy = %ZIOU [{bk}l]cw:h Bz} . “
i=1

Similarly, IoU [{bk}{y: 15 IA)I} = maxy, [oU(bg, b;) indicates the maximum IoU between all ground-
truths by, and each prediction { lA)L}fV:1 Maximizing this term encourages each prediction b; to be
matched with at least one ground-truth. Therefore, simultaneous optimization of both recall and

precision eliminates the need for exhaustive enumeration of bounding boxes, thereby contributing to
more accurate reasoning pathways. Details of data and optimization can be found in Appendix E.2.

5 EXPERIMENTS

Baselines. We include four state-of-the-art private models, GPT-40-1120 (OpenAl, 2024a) and
03-0416 (OpenAl, 2025) from OpenAl, and Gemini-2.5-Flash-0520 (DeepMind, 2025a) and Gemini-
2.5-Pro-0605 (DeepMind, 2025b) from Google. Additionally, representative open-source general
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Table 2: Selected results of different models on TreeBench. Evaluations of open-source general
models are implemented using VLMEvalKit (Duan et al., 2024), while evaluations of visual grounded
reasoning models are conducted by us. TReasoning pathways of 03 (OpenAl, 2025) are unavailable,
and thus traceable evaluations are not valid. Best performances for open-source models are highlighted
in bold. Our TreeVGR-7B achieves comparable performance with InternVL3-78B (Zhu et al., 2025).

) & & § § & %QQ
() ~N L. ) Y
s & g & & & v ¢ §
§F §F o S & F 5 & §
v <~ & O S & <o ¢ & ¢
Overall mloU Perception Reasoning
Private Models

Gemini-2.5-Flash-0520  45.9 - 483 539 696 688 750 153 193 56.1 724 432
GPT-40-1120 46.9 - 517 615 652 438 69.1 188 386 488 724 432
Gemini-2.5-Pro-0605 54.1 - 517 615 565 750 838 200 368 659 86.2 54.6
03-0416 54.8 _t 69.0 692 652 688 794 224 386 61.0 86.2 50.0

Open-source General Models
LLaVA-OneVision-7B 37.3 - 552 538 565 500 324 212 228 415 724 36.4
LLaVA-OneVision-72B  40.5 - 62.1 538 652 623 368 129 28.1 537 65.5 47.7
Qwen2.5-VL-7B 37.0 - 552 538 565 625 279 200 351 390 4438 432
Qwen2.5-VL-72B 422 - 655 692 565 563 485 11.8 333 512 72.4 38.6
InternVL3-8B 38.8 - 517 692 565 563 337 212 246 390 72.4 432
InternVL3-78B 46.4 - 62.1 615 522 688 529 165 333 610 86.2 455

Open-source Visual Grounded Reasoning Models

DeepEyes-7B 375 300 621 538 652 688 515 11.8 246 36.6 51.7 47.7
Pixel-Reasoner-7B 390 357 586 615 652 500 485 141 316 390 448 40.9
TreeVGR-7B 504 440 655 538 826 688 633 224 368 610 69.0 455
Avs. Qwen2.5-VL-7B 1134 - 1117 1261 163 1354 122 117 1220 1242 123

models are incorporated, including LLaVA-OneVision series (Li et al., 2024), Qwen2.5-VL series (Bai
et al., 2025a), and InternVL3 series (Zhu et al., 2025). Furthermore, two very recent visual grounded
reasoning models are also included, i.e., DeepEyes (Zheng et al., 2025b) and Pixel-Reasoner (Su
et al., 2025), as both of them follow a “grounding then answering” pipeline, with the capability of
“thinking with images”. Evaluations are mainly conducted on TreeBench, V* Bench (Wu & Xie,
2024), HR-Bench (Wang et al., 2025f), and MME-RealWorld-Lite (Zhang et al., 2024a).

Results on TreeBench. Table 2 presents per per-category performance of different models. Overall,
OpenAl’s 03-0416 (OpenAl, 2025), the state-of-the-art visual grounded reasoning model, demon-
strates the strongest perception abilities, as expected. Larger models usually contribute to better
performance. Notably, our TreeVGR-7B even achieves comparable performance with InternVL3-
78B (Zhu et al., 2025), demonstrating the effectiveness of the visual grounded reasoning pipeline.
Moreover, compared with visual grounded reasoning models, our TreeVGR not only achieves a
higher overall performance, but also obtains a larger mloU, indicating its effectiveness in precisely
localizing target objects. More in-depth analysis on TreeBench can be found in Appendix D.

Results on High-Resolution Benchmarks. In Table 3, TreeVGR achieves open-source state-of-
the-art on V* Bench (Wu & Xie, 2024). On HR-Bench (Wang et al., 2025f) and MME-RealWorld-
Lite (Zhang et al., 2024a) illustrated in Table 3 and Table 4, respectively, our TreeVGR brings
significant improvements over our base model, Qwen2.5-VL-7B (Bai et al., 2025a). Results on other
general benchmarks can be found in Appendix F.1.

Ablation Studies. The core contribution of TreeVGR is the traceable training pipeline, where Rjoy is
incorporated in conventional RL training. The effectiveness of this design is ablated in Appendix F.2.

6 CONCLUSION

This paper introduces TreeBench, a benchmark designed to rigorously evaluate visual grounded
reasoning (VGR) or “thinking with images” in large multimodal models, and TreeVGR, a two-stage
training framework that enhances VGR methods through traceable evidence supervision.

TreeBench addresses critical gaps in existing benchmarks by focusing on three principles: focused
visual perception (identifying subtle targets in cluttered scenes), traceable evidence (quantifiable
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Table 3: Comparison with state-of-the-art alternatives on V* Bench (Wu & Xie, 2024) and
HRBench (Wang et al., 2025f). All results are self-collected. Best performances of visual grounded
reasoning models are highlighted in bold.

V* Bench HR-Bench-4K HR-Bench-8K
Overall Attr. Spatial Overall Single Cross Overall Single Cross
Private Models
GPT-40-1120 66.0 - - - - - - - -
03-0416 95.7 - - - - - - - -

Open-source General Models

LLaVA-OneVision-7B 70.7 73.0  60.5 64.3 74.8  53.8 59.8 653 543
LLaVA-OneVision-72B  73.8 809 632 66.3 76.5  56.0 60.9 68.8 53.0

InternVL3-8B 72.3 73.0 711 70.8 79.3 623 62.0 643 598
InternVL3-78B 76.4 757 776 75.5 845 665 67.3 71.8 628
Qwen2.5-VL-7B 74.3 774  69.7 72.1 88.8 555 68.8 835 54.0
Qwen2.5-VL-72B 84.8 90.8 809 79.4 88.8  70.0 76.3 843 683
Open-source Visual Grounded Reasoning Models
Pixel-Reasoner-7B 80.6 835 763 72.9 86.0 603 66.9 80.0 543
DeepEyes-7B 90.0 92.1 86.8 75.1 91.3 59.0 72.6 86.8 585
TreeVGR-7B 91.1 940 87.0 77.1 90.3 64.0 73.1 86.5 59.8

Avs. Qwen2.5-VL-7B 1168 1166 71173 150 T15 185 143 73.0 158

Table 4: Comparison with state-of-the-art alternatives on MME-RealWorld-Lite (Zhang et al., 2024a).
All results are self-collected. The best performance is highlighted in bold.

Perception Reasoning
Overall OCR RS DT MO AD OCR DT MO AD
General Models
Qwen2.5-VL-7B 423 876 327 830 273 300 720 620 287 230
Qwen2.5-VL-72B 437 90.8 340 870 279 306 740 61.0 267 255

LLaVA-OneVision-7B 43.7 80.0 400 560 317 394 650 33.0 38.0 320
LLaVA-OneVision-72B  48.7 79.2 507 670 379 400 76.0 41.0 387 393

InternVL3-8B 479 836 493 750 345 369 700 440 400 370
InternVL3-78B 52.3 87.6 547 770 426 366 760 560 46.0 403
Visual Grounded Reasoning Models
Pixel-Reasoner-7B 497 896 52.0 860 389 309 710 720 460 325
DeepEyes-7B 532 900 527 89.0 433 334 760 690 440 350
TreeVGR-7B 549 876 50.7 830 47.0 434 740 660 513 390
Avs. Qwen2.5-VL-7B 1 12.6 118.0 1197 1134 120 140 1226 1160

reasoning chains via bounding box annotations), and vision-centric second-order reasoning. Con-
structed through expert-driven annotation and multi-stage quality control, TreeBench features 405
high-difficulty visual question-answer pairs with precise bounding boxes, emphasizing small objects
in real-world scenarios. It reveals the limitations of state-of-the-art models, e.g., OpenAl-03 (OpenAl,
2025) scores 54.8%, while setting a new standard for assessing nuanced visual grounding, multi-step
reasoning transparency, and cross-modal interaction.

TreeVGR advances VGR training through reinforcement learning guided by dual IoU rewards, which
explicitly supervise bounding box generation to ensure both precision and recall. This approach
enables explainable reasoning pathways and achieves significant improvements across benchmarks.

Limitation and future works. The current implementation of TreeVGR is based on a 7B parameter
model, which may limit scalability compared to larger architectures. TreeBench contains only 405
rigorously curated question-answer pairs. Expanding the benchmark with additional samples across
broader domains would further challenge model capabilities. Scaling up would be future work.
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APPENDIX

A OVERVIEW
Here, we provide a table of contents:

* First, in Appendix B, we provide the annotation pipeline in detail, which includes three
rounds of quality control.

* In Appendix C, we introduce statistics of our TreeBench.
* In Appendix D, we perform in-depth analysis on our TreeBench.

* In Appendix E, we provide implementation details of our two-stage training pipeline,
including cold-start initialization and reinforcement learning with traceable evidence.

* In Appendix F, we provide more experiments of our TreeVGR, including results on general
multimodal benchmarks and ablation studies.

* In Appendix G, we discuss our limitations in detail.
* Finally, in Appendix H, we provide qualitative examples and failure cases of our TreeVGR.

B ANNOTATION PIPELINE

TreeBench was constructed through a systematic pipeline combining automated sampling, LMM-
assisted generation, and three rounds of human validation. The annotation team contains eight human
experts in LMMs, including six Ph.D candidates and two senior research scientists.

1. Image Selection. A total of 1K images are initially sampled from the SA-1B (Kirillov et al., 2023),
with deliberate prioritization of images containing high-density objects (e.g., scenes with overlapping
or clustered items), as it offers high-resolution, real-world scenes with a large number of small and
varied objects, making it particularly suitable for evaluating visual grounded reasoning. To ensure
balanced representation across categories, 100 images are initially allocated per category.

2. First Round Quality Control. The annotation team manually evaluates the relevance and
quality of each image for its assigned category. This step is critical for addressing category-specific
requirements, e.g., the “Ordering” category necessitates images with visually similar or repetitive
objects for practical reasoning tasks. Following this review, 647 images meet the criteria.

3. Automated Question Generation. Question-option-answer trios are then generated using two
advanced LMMs, i.e., OpenAl-03 (OpenAl, 2025) and Gemini-2.5-Pro (DeepMind, 2025b), each
tasked with producing three diverse, high-quality questions per image. Prompts are designed to
emphasize task-specific complexity and visual-semantic alignment.

4. Second Round Quality Control. Human experts then manually review all six model-generated
questions per image. For each image, annotators selected the most semantically coherent and
task-relevant question from the pool of six, prioritizing: (1) alignment with the target subtask, (2)
avoidance of trivial or ambiguous object referring, and (3) clarity and unambiguous answerability. If
none of the six questions met these criteria, annotators manually constructed a new question. This
step ensures that only high-quality, human-vetted questions advance to the next stage.

5. Difficulty Filtering. Questions deemed insufficiently challenging are removed through model-
based consensus screening. Specifically, any question answered correctly by all four state-of-
the-art vision-language models (Qwen2.5-VL-72B (Bai et al., 2025a), InternVL3-78B (Zhu et al.,
2025), GPT-40 (OpenAl, 2024a), Gemini-2.5-Flash (DeepMind, 2025a)) was excluded to ensure the
benchmark retained meaningful difficulty.

6. Third Round Quality Control. The final cross-verification phase engages independent human
annotators to cross-validate the accuracy and relevance of each question-option-answer pair. The
final dataset comprised 405 rigorously validated questions.

C BENCHMARK STATISTICS

Distribution of Each Subtask. As demonstrated in Figure 4, TreeBench emphasizes advanced
reasoning tasks, accounting for 63% of the total subtasks (256 questions), while basic perception-
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which prioritizes reasoning with 3 instances of E and 4 in-  TreeBench, with one question
over perception. stances of F. with 8 target instances.

related tasks constitute 37% (149 questions). Within the reasoning category, key subtasks reflect
a focus on complex spatial and relational understanding. This structure underscores a deliberate
prioritization of higher-order reasoning over foundational perceptual tasks, aligning with the goal
of challenging models to process nuanced relationships and transformations rather than mere object
recognition or attribute detection.

Distribution of Answers. As illustrated in Figure 5, the ground-truth distribution of TreeBench is
dominated by four main categories: A (28.6%, 116 instances), B (27.9%, 113 instances), C (27.9%,
113 instances), and D (13.8%, 56 instances). These account for 98.2% of the total 405 instances. The
remaining 1.8% (7 instances) includes E (3 instances) and F (4 instances). This structure highlights a
balanced emphasis on categories A, B, and C, with D as a notable secondary group, while E and F
represent minor but distinct components.

Distribution of the Number of Target Instances. Figure 6 shows the distribution of the number
of target instances per question. The majority of questions in TreeBench require identifying 1 or
2 target instances, accounting for 41.5% (168 questions) and 44.9% (182 questions) of the total,
respectively. Questions requiring 3, 4, 5, or 6 targets constitute smaller fractions: 4.2% (17 questions),
4.0% (16 questions), 4.0% (16 questions), and 1.2% (5 questions), respectively. Notably, a single
question (highlighted in gray) demands 8 target instances, representing an extreme case. Overall,
86.4% of questions focus on 1-2 targets, suggesting a balance between simplicity and complexity in
task design while incorporating rare multi-target scenarios for comprehensive evaluation.

Distribution of Target Instance Area. We
compute the relative area for each target in-
stance using its bounding box, i.e., area =
ﬁ(yg —y1)(x2 — x1), where H and W are
the input resolution. Figure 7 is the histogram
of the mean area for each question. It illus-
trates that the majority of target instances in
TreeBench are extremely small, with a sharp
peak near 0.0 and a long tail extending to larger 501
areas (up to 0.7). The mean area across all ques-

tions is 0.0305, confirming that targets are pre- 00 01 02 03 04 05 06 07

dominantly tiny. Most questions (highest fre- . Area for Bach Target Instance
-y iy qu ( & Figure 7: The histogram of mean target instance
quency bin) involve target instances with areas

clustered around 0.0 to 0.05, while only a small arcas per question With. a low average of 0.0305
fraction require identifying larger objects. This (indicating small target instances).

distribution highlights the importance of addressing challenging scenarios where small-scale object
detection and reasoning are crucial, potentially compromising model performance.
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D ANALYSIS OF TREEBENCH

Correlation between Localization and Performance. Importantly, for visual grounded reasoning
models, our traceable evaluation demonstrates a positive correlation between localization preci-
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sion and the overall performance, as illustrated in Table 2. This positive correlation between
precise localization (mloU) and overall performance is evident in the progressive improvement from
DeepEyes-7B (Zheng et al., 2025b) to Pixel-Reasoner-7B (Su et al., 2025) to our final TreeVGR-7B.
As mloU increases, the overall scores rise correspondingly, with TreeVGR-7B achieving the highest
mloU and strongest overall performance at the same time.

Beyond global analysis, we further plot the histogram of IoU for each question in Figure 8, where blue
bars represent wrong predictions and orange bars are correct predictions. Overall, wrong predictions
tend to have smaller IoU values. However, by going deeper through the lens of perception and
reasoning, the relationship between mloU and performance diverges. Precise localization (mlIoU)
aligns closely with perception performance demonstrated in Figure 9. In contrast, as shown in
Figure 10, reasoning performance reveals a weaker correlation with mloU, as improvements in
localization alone fail to fully translate to complex reasoning tasks. This disconnect suggests that
reasoning questions of TreeBench require second-order cognitive capabilities that go beyond precise
spatial localization.

Correlation with Other Multimodal Benchmarks. We systematically compare our TreeBench
with three existing multimodal benchmarks: AI2D (Hiippala et al., 2021), MathVista (Lu et al., 2023),
and MMStar (Chen et al., 2024a), in Figure 11, Figure 12, and Figure 13, respectively, to investigate
potential performance correlations. Our analysis reveals a decoupling of performance characteristics.
For instance, while GPT-40-1120 (OpenAl, 2024a) ranks among the top performers on TreeBench, it
lags significantly behind alternatives on other benchmarks. This dissociation underscores the unique
emphasis on “thinking with images” of our TreeBench.

The Quality of Visual Evidence in TreeBench. First, in Table 5, we mask all instances during
inference on TreeBench. The results show a significant performance drop across all models. This
confirms that the bounding boxes in TreeBench are not only high-quality but also indispensable for
accurate visual grounded reasoning, directly validating the importance of the annotated evidence.
Moreover, we conduct dual experiments in Table 6. When we provide ground-truth bounding boxes
as explicit evidence hints to models, all models achieve consistent performance gains. It indicates
that bounding boxes indeed help models explicitly anchor their reasoning to visual evidence: without
boxes, models may rely on ambiguous textual biases or global image impressions, while with boxes,
they are forced to align their answers with the specific visual content in the evidence region, which
reflects a shift from “heuristic reasoning” to “evidence-based reasoning”.

O
=]
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Table 5: Performance comparison with masked target instances. When masking out all target
instances on TreeBench, we observe a significant performance drop across all models, confirming
that the annotated bounding boxes are not only high-quality but also indispensable for accurate visual
grounded reasoning.

Masking Qwen2.5-VL-7B InternVL3-8B GPT-40 03 Gemini-2.5-Flash Gemini-2.5-Pro
37.0 38.8 46.9 54.8 45.9 54.1
v 31.8152 29.619.2 29.1 1 17.8 33.8121.0 29.9 | 16.0 33.1/21.0

Table 6: Performance comparison with explicit bounding boxes-based textual hints. When
we provide ground-truth bounding boxes as explicit evidence hints to models, all models achieve
consistent performance gains.

Textual Boxes Qwen2.5-VL-7B InternVL3-8B GPT-40 03 Gemini-2.5-Flash Gemini-2.5-Pro
37.0 38.8 46.9 54.8 45.9 54.1
v 43.716.7 435147 494125 583135 519716.0 61.076.9

E IMPLEMENTATION DETAILS

E.1 COLD-START INITIALIZATION

Data Construction. We base our supervised fine-tuning (SFT) dataset on VGR-158K (Wang et al.,
2025e), which provides pseudo-chain-of-thought annotations paired with bounding boxes for visual
reasoning tasks. However, to align with the grounding capabilities of our base model (Qwen2.5-VL
series (Bai et al., 2025a)), which outputs absolute coordinates rather than the normalized coordinates
(ranging from O to 1) used by LLaVA-NeXT (Liu et al., 2024a) in (Wang et al., 2025¢), we perform
coordinate system conversion. Specifically, for each bounding box, we transform normalized coordi-
nates [Tz, , 'y, , Ty, Ty, ) 100 absolute coordinates via [x1, y1, T2, y2| = [Wry,, Hry, , Wre,, Hry, ],
where H x W is the resolution of the input image. Next, we filter samples to prioritize complex
reasoning pathways, retaining only entries with multiple bounding boxes (i.e., more than one box
per reasoning trajectory). This yields 35K samples, as multi-box interactions demand stronger
spatial-temporal reasoning compared to single-box tasks. Subsequently, we construct a reflective
subset of 4.7K samples among them by introducing controlled perturbations: for each sample, we (1)
inject a synthetic error by inserting a randomly generated incorrect bounding box into the reasoning
sequence, and (2) append the meta-cognitive prompt “Wait, this box seems to be wrong” immediately
afterward, resulting in our TreeVGR-SFT-35K. This design explicitly trains the model to detect and
correct erroneous visual grounding, which is a critical skill for robust real-world deployment.

Optimization. Initialized from Qwen2.5-VL-7B-Instruct (Bai et al., 2025a), we train TreeVGR-7B-
CI (“CI” here stands for Cold Initialization) with 8 GPUs using LLaMA-Factory (Zheng et al., 2024),
where the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 5e-6 and a global
batch size of 256 is utilized. The learning rate is decayed following a cosine schedule (Loshchilov &
Hutter, 2016) with a warmup ratio of 0.1.

E.2 REINFORCEMENT LEARNING

Data Construction. TreeVGR incorporates a novel dual IoU reward, which means each sample
should contain ground-truth bounding boxes during the RL phase. To this end, we filter hard samples
from the original 191K training set of V¥ (Wu & Xie, 2024) using Qwen2.5-VL-7B-Instruct (Bai
et al., 2025a), resulting in 30K samples. Additionally, we incorporate the VisDrone dataset (Zhu
et al., 2021), which is originally designed for detection and tracking under UAV images, which offers
extremely high-resolution, real-world scenes with a large number of small and varied objects and
their corresponding bounding box annotations. We reformulate the training set and the validation set
into 38K multiple-choice counting problems, and only retain samples with the ground-truth number
ranging from 5 to 10, contributing to the final 7K samples. Finally, our TreeVGR-RL-37K consists
of 30K open-ended question-answering samples from V* (Wu & Xie, 2024) and 7K multiple-choice
problems from VisDrone (Zhu et al., 2021).

Optimization. Initialized from TreeVGR-7B-CI, we train our final TreeVGR-7B with 8 GPUs,
with another 8 GPUs serving the reward model, i.e., Qwen2.5-72B-Instruct (Team, 2024), using
vLLM (Kwon et al., 2023). We adopt Group Relative Policy Optimization (GRPO) (Shao et al.,
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Table 7: Comparison with state-of-the-art alternatives on other multimodal benchmarks, including
CV-Bench (Tong et al., 2024a), MMVP (Tong et al., 2024b), MMBench (Liu et al., 2023b), POPE (Li
et al., 2023c), AI2D (Hiippala et al., 2021), and ChartQA (Masry et al., 2022). TResults are obtained
from (Guo et al., 2025b), otherwise are self-collected.

Capability Benchmark Qwen2.5-VL-7B TreeVGR-7B
Vision-centric CV-Bench-2D 74.1 76.9 1 2.8
question CV-Bench-3D 72.6 77.6 1 5.0
answering MMVP 66.7 7537 8.6
MMBenchgy, 83.1 8447 1.3
General QA popE 86.7 87.21 0.5
Document AI2Dest 84.9 84.8 \L 0.1
and chart ChartQA est 85.6 85.810.2

Table 8: Ablations of each component of our TreeVGR. “MME-RW” stands for MME-RealWorld-
Lite (Zhang et al., 2024a), and “Acc” represents the multiple-choice accuracy. f This improvement
mainly comes from the training set, as many training samples from V* (Wu & Xie, 2024) are included
in RL. ¥The model enumerates boxes to obtain larger IoU recall, and fails to produce final answers.

Rewards TreeBench V* MME-RW
Cold-Start Raec + Riomat By REuy Ace mloU Acc  Acc
Qwen2.5-VL-7B 37.0 - 712 423
Cold-Start 39.0 234 764 484
TreeVGR v v 504 440 91.1 549

38.0 272 879" 516
00 783 00 00
v 454 206 895 526
39.0 — 86.9T 46.3

w/o Traceable Evidence
w/o Precision?
w/o Recall

Text-Only RL
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2024b), which has been proved to be effective and efficient for diverse tasks. We have also tried
DAPO (Yu et al., 2025), but we find it unstable compared with GRPO. Therefore, we simply utilize
the original GRPO (Shao et al., 2024b). We implement using EasyR1 (Zheng et al., 2025a), which is
a clean fork of veRL (Sheng et al., 2024). We train our TreeVGR-7B with 5 epochs on TreeVGR-
RL-37K, which is significantly less than DeepEyes-7B (Zheng et al., 2025b) (which is trained on
47K samples with 32 epochs).

F MORE EXPERIMENTS

F.1 RESULTS ON OTHER MULTIMODAL BENCHMARKS

In Table 7, we compare our TreeVGR with its base model Qwen2.5-VL-7B (Bai et al., 2025a) on
a variety of conventional multimodal benchmarks. Specifically, we select CV-Bench (Tong et al.,
2024a) and MMVP (Tong et al., 2024b) to evaluate vision-centric question-answering capabilities.
MMBench (Liu et al., 2023b) and POPE (Li et al., 2023c¢) are selected for evaluating general VQA
capabilities, and AI2D (Hiippala et al., 2021) and ChartQA (Masry et al., 2022) for comprehension
with document and chart. We observe significant improvements in most cases, especially for vision-
centric benchmarks. Notably, TreeVGR-7B achieves 75.3 on MMVP (Tong et al., 2024b), even
surpasses Qwen2.5-VL-72B (Bai et al., 2025a) by a significant margin.

F.2 ABLATION STUDIES

The core contribution of TreeVGR is the traceable training pipeline, where the dual IoU reward
Ry is incorporated in conventional RL training. Therefore, we aim to evaluate the effectiveness
of including this traceable term. As demonstrated in Table 8, we ablate each component of our
TreeVGR, including the cost-start initialization and reward functions.

The cold-start stage is quite beneficial for visual grounded reasoning, when compared with (1)
and (2). This means the formatting of outputting bounding boxes of target instances is useful for
conventional visual grounded reasoning benchmarks like V* Bench (Wu & Xie, 2024) and MME-
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RealWorld-Lite (Zhang et al., 2024a). Note that these benchmarks can be regarded as Out-of-Domain
(OOD) samples for the SFT dataset.

©
S
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Traceable visual grounded reasoning is more effective
than untraceable one, when compared with (3) and (4).
Starting from the same cold-start checkpoint, integrating
dual IoU rewards into the RL framework yields substantial
performance gains, particularly on our TreeBench and
MME-RealWorld-Lite (Zhang et al., 2024a), which rep-
resent out-of-distribution (OOD) scenarios relative to the
RL training data. Notably, on TreeBench, our TreeVGR 1001
demonstrates significant enhancements in both overall ac- 5 & © AL stops % o 10
curacy and mloU. This dual improvement suggests that Figure 14: Mean response length with
precise and interpretable reasoning pathways are critical different IoU rewards. The precision
for achieving optimal performance, underscoring the value term is crucial for alleviating the repeti-
of structured reward design in complex, real-world tasks. tion problem.
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The precision term is crucial for alleviating the repetition problem, when compared with 3) and
(®. As illustrated in Figure 14, without precision, the mean response length grows rapidly. When
evaluating this model, we find that it tends to enumerate candidate bounding boxes to obtain larger
IoU recall and thus always fails to produce final answers.

The recall term is crucial for precise and complete localization, when compared with 3) and (o).
On TreeBench, without the recall term, the model achieves significant accuracy improvements, but
the localization accuracy (mloU) remains limited, usually grounding incomplete target instances.

Vanilla text-only RL is not so effective as visual grounded reasoning, when compared with (3) and
(. Vanilla RL in text-based tasks demonstrates value through its text-space reasoning capabilities.
However, when integrating visual grounded reasoning with traceable evidence, the performance gains
become more significant. This highlights the critical role of two factors: (1) pre-answer contextual
grounding to anchor responses in multimodal evidence, and (2) accurate spatial localization to refine
decision-making precision.

G LIMITATIONS AND FUTURE WORKS

One possible limitation of TreeVGR is the model scale and architecture, which is limited to Qwen2.5-
VL-7B (Bai et al., 2025a). Experiments with other base models and larger model scales could be
future work. Furthermore, TreeVGR is nor a general multimodal reasoner, as it is not designed
to perform ultra-long reasoning processes in math, sciences, and coding. How to effectively unify
vision-centric reasoning models with standard text-centric models could be a future work.

As for TreeBench, we find that the “perspective transform” protocol becomes one of the major
bottlenecks, which means current state-of-the-art multimodal models, even including visual grounded
reasoning models, have not effectively modeled the ego-view 3D awareness. Moreover, basic
perception capabilities under complex scenes are also limited, leading to relatively low scores on
“attributes” and “material”. How to effectively let LMMs perceive any details of the dense visual
world becomes a critical challenge.

H QUALITATIVE EXAMPLES OF TREEVGR

We first provide qualitative examples of the correlation between the predicted bounding boxes and
the model’s internal attention maps in Figure 15, where the attention values are the mean attention of
generated tokens related to bounding boxes (highlighted in red). Strong correlations are observed
across examples, indicating that the model’s focus is truly guided by those textual bounding boxes-
based hints. This explains why visual grounded reasoning pipelines could be such effective. Note
that sometimes the visual attention is still being overwhelmed by textual domain knowledge even if
the grounding is accurate (see the failure case in Figure 15). Explicitly enforcing the model’s focus
beyond attention may be one potential solution.

Next, we provide qualitative examples and failure cases of our TreeVGR on each category of
TreeBench in Figures 16 to 25.
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Question: What is the color of the candles?

(A) Red (B) Yellow
(C) Gray (D) White

TreeVGR-7B

<think>First, identify the candles in the image. They are located near the top-left
part of the table where there is a fruit display. <box>[1032,198,1104,324]</box>.
These candles have a distinct yellow hue. There are no white, red, or gray
candles visible among them. So, the color of the candles is yellow.</think>

<answer>B</answer>

Question: What is the color of the woman's shirt?

(A) White B) Purple
(C) Blue (D) Pink
TreeVGR-7B

First, identify the woman on the swing <box>[408,1172,524,1256]</box>. Then,
look at her shirt which is clearly visible as she is swinging. The shirt has a
distinct purple hue. Comparing this with the options A (purple), B (pink), C
(blue), D (white), we can see that the color matches the purple option.</think>

<answer>B</answer>

Question: What is the color of the flag?

(A)red and yellow (B) blue and yellow
(C) blue and red (D) green and white

TreeVGR-7B

First, identify the flag in the image. It is located near the bottom-right corner of
the image <box>[1592,1147,1650,1185]</box>. The flag has two distinct colors:
blue and yellow. There are no other flags visible in the image that could change
this conclusion. So, the color of the flag is blue and yellow.</think>

<answer>B</answer>

Question: What is the color of the Apple logo?

(A) Polychromatic (B) Red
(C) White (D) Silver

TreeVGR-7B

First, identify the Apple logo on the black bag <box>[158,216,197,254]</box>.
It is a well-known symbol that has been white for many years. There are no other
logos or colors that could change this conclusion. So, the color of the Apple logo
is white.</think>

<answer>C</answer>

Figure 15: Qualitative examples (first three rows) and failure cases (the last row) on V* Bench (Wu
& Xie, 2024) with attention maps.

Question: What is the color of the top of the tall pagoda located on the left? Question: What is the shape of the ornament fixed at the very peak of the tall,
sharply pointed wooden spire that rises from the shingled roof of the foreground

A. Yellow wooden building?

B. White

C. Blue A. A sphere B. A star

D. Red C. A cross D. A weather vane arrow

TreeVGR-7B TreeVGR-7B

<think> <think>First, identify the tall, sharply pointed wooden spire

First, identify the tall pagoda on the left side of the image <box>[998,25,1092,180]</box> which is part of the foreground wooden building.

<box>[212,448,264,824]</box>. It is a vertical structure with multiple tiers. The | Then, look at the ornament at its very peak. It is a small, metallic-looking object
top-most part of this pagoda is yellow in color. The other options like white, blue, = with a cross-like shape. Comparing it with the options, a sphere is round, a star
and red do not match the color of the top part of this pagoda. So, the color of the  has multiple points, a weather vane arrow is elongated and curved, and a cross has

top of the tall pagoda is yellow.</think> a vertical and horizontal bar. The ornament at the spire's peak matches the cross
shape. So, the best answer is C.</think>
<answer>A</answer> <answer>C</answer>

Figure 16: Qualitative examples (left) and failure cases (right) on the “Attributes” protocol of
TreeBench.
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on

material and finish
positioned in the center foreground, above the stainless steel sink?

ion of the tall, go k kitchen faucet prominently

A. Polished brass
C. Matte black coated alloy

TreeVGR-7B

<think>

First, identify the tall, gooseneck kitchen faucet
<box>[804,704,1128,1507]</box> in the center-foreground above the stainless-
steel sink. The faucet has a shiny, reflective surface. The stainless-steel sink also
has a reflective surface. The lighting in the image is bright, which enhances the
reflective quality. Considering the options: Polished brass would have a warm,
golden color and a different sheen. Brushed stainless steel has a light, metallic
sheen which matches the faucet's appearance. Matte black coated alloy would
have a dark, non-reflective finish, which doesn't match. Oil-rubbed bronze has a
dark, matte finish, also not matching. The faucet's finish is consistent with
brushed stainless steel, which is a common and durable material for kitchen
faucets. </think>

<answer>B</answer>

B. Brushed stainless steel
D. Oil-rubbed bronze

Question: The white plate in the foreground, adorned with a light brown
geometric pattern and holding the falafel, most likely has which type of surface
finish?

A. High-gloss. B. Matte.
C. Textured, non-shlip sillicone. D. Glass-like.

Target Instances: ||

TreeVGR-7B

<think>

First, identify the white plate in the foreground with the falafel
<box>[0,620,1536,2016]</box>. The plate has a light brown geometric pattern.
The light reflection on the plate is soft and diffused, not sharp or glossy. The
edges of the plate are well-defined, and the food items on it do not show any glare
or reflections that would indicate a high-gloss finish. The surface of the plate is
smooth and does not have the appearance of a textured, non-slip silicone surface.
Also, the plate is not glass-like as glass would have a different reflective quality.
So, the surface finish is matte.</think>

<answer>B</answer>

Figure 17: Qualitative examples (left) and failure cases (right) on the ‘“Material” protocol of

TreeBench.

Question: What is the physical posture of the boy in the red shirt on the grassy
hill at the far top left?

A. He is standing and watching the performance.

B. He is lying down flat on the grass.

C. He is in the middle of running down the hill.

D. He is sitting with his knees bent.

TreeVGR-7B

<think>

First, identify the boy in the red shirt on the grassy hill at the far top left.
<box>[120,492,175,571]</box>. He is sitting on the grass with his legs folded
under him, which is a typical sitting posture with knees bent. There is no
indication that he is standing, lying down, or running. So, the physical posture that
matches the description is sitting with his knees bent.</think>

<answer>D</answer>

Question: What is the current state of the soccer ball located near the lower-right
portion of the field?

A. Rolling along the grass B. Resting motionless on the ground
C. Suspended in mid-air ~ D. Trapped under the white-uniformed player's boot

TreeVGR-7B

<think>

First, identify the soccer ball near the lower-right portion of the field
<box>[1520,1008,1620,1112]</box>. It is a white ball with blue patterns. Then,
observe its position relative to the players. The player in the white uniform
(number 89) is in the process of kicking it. The ball is clearly on the ground and in
motion as it is being kicked. There is no indication that it is suspended in mid-air,
resting, or trapped under the player's boot. So, the ball is rolling along the
grass.</think>

<answer>A</answer>

Figure 18: Qualitative examples on the “Physical State” protocol of TreeBench.
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Question: Which object is located directly to the right of the man wearing a black
long-sleeve shirt, black pants, and a black cap who is standing on the left side of
the street?

A. A white, medium-sized commercial truck parked near a gate

B. A Scania P450 tanker truck with a red and white flag on top

C. A healthy, medium to large coniferous tree near a road and a checkpoint

D. A streetlight positioned on the side of a road, adjacent to a large concrete wall

TreeVGR-7B

<think>

First, identify the man wearing a black long-sleeve shirt, black pants, and a black
cap who is standing on the left side of the street <box>[454,340,944,1512]</box>.
Then, look to his right. The Scania P450 tanker truck with a red and white flag on
top <hox>[1172,430,1696,940]|</box> is directly to his right. The other options
are not directly to his right. Option A is behind him, Option C is further back, and
Option D is on the far right side of the street. So the best answer is B.</think>
<answer>B</answer>

POLLING PLACE

CENTR) DEVOTAGION
TorE A

Question: What color of the umbrella is the women in the right corner of house
holding?

A. Pink
B. Green
C. Black
D. Red

Target Instances:

TreeVGR-7B

<think>

First, identify the woman in the right corner of the house
<box>[1400,550,1595,1296]</box>. She is holding an umbrella. The umbrella is

pink <box>[800,464,1296,764]</box>. There are no green, black, or red
umbrellas in the image. So, the color of the umbrella she is holding is
pink.</think>

<answer>A</answer>

Figure 19: Qualitative examples (left) and failure cases (right) on the “Object Retrieval” protocol of

TreeBench.

e orange brick building? Options:

Question: Recognize the question and options in the image and answer it.

TreeVGR-7B

<think>

First, identify the patterned white building <box>[216,264,1832,1112]</box> and
the orange brick building <box>[1856,534,2240,1172]</box>. The white building

is on the left side of the image and the orange brick building is on the right side.
So, the white building is on the left of the orange brick building.
</think>

<answer>A</answer>

3 | =
Question: Recognize the question and options in the image and answer it.

TreeVGR-7B

<think>

First, identify the ferry labeled "Stadt Kiel" <box>[1164,1112,1712,1264|</box>
and the cargo ship "ColorLine CARGO" <box>[1435,894.2008,1115]</box>.
They are both docked at the same pier. The ferry is in the foreground and the
cargo ship is in the background. The image shows that the two ships are side-by-
side and there is no significant distance between them. The options A, B, and C all
suggest a separation, but the image clearly shows they are in contact. Option D is
the most accurate as it states that no part of the ferry is occluded by the structure,
which is true as the cargo ship is not obstructing the ferry.</think>
<answer>D</answer>

Figure 20: Qualitative examples on the “OCR-Integrated Question-Answering” protocol of

TreeBench.
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Question: From the perspective of the man wearing a mask and a brown-and-
white striped shirt, in which direction is the woman, wearing a white long-sleeve
top, dark brown trousers, and carrying a bag on her left shoulder, located?

A. Front left
B. Front right
C. Left rear
D. Right rear

TreeVGR-7B

<think>

First, identify the man wearing a mask and a brown-and-white striped shirt
<box>[584,1014,656,1140]</box>. Then, find the woman in a white long-sleeve
top, dark brown trousers, and carrying a bag on her left shoulder
<box>[724,884,784,1020]</box>. The woman is positioned behind and to the left
of the man. So, from the man's perspective, she is in the rear and to his left. Thus,
the woman is in the left-rear direction relative to the man.</think>

<answer>('</answer>

Question: From the perspective of the third person riding an electric scooter from
left to right, in which direction is the red compact SUV located?

A. Front right
B. Front left
C. Left rear

D. Right rear

Target Instances:

TreeVGR-7B

<think>

First, identify the red compact SUV <box>[1084,1054,1164,1096]</box> which
is parked near the building on the right side of the image. Then, consider the
perspective of a third-person riding an electric scooter from left to right. The SUV
is positioned behind and to the right of the scooter rider. So, relative to the scooter
rider, the SUV is in the rear and to the right. Thus, the SUV is in the right-rear
direction.</think>

<answer>D</answer>

Figure 21: Qualitative examples (left) and failure cases (right) on the “Perspective Transform”

protocol of TreeBench.

Question: Counting from right to left, which person has a black watch on his/her
left hand?

A. The first one
B. The second one
C. The third one
D. The fourth one

TreeVGR-7B

<think>

First, identify the person on the far right in the image
<box>[1640,584,2027,1224]</box>. This person is wearing a black watch on
their left hand. Then, check the person to their left
<box>[1432,480,1752,1371]</box>, who also has a black watch on their left
hand. Since the question asks for the first one, the person on the far right is the
first one in the sequence from right to left. So the answer is C.</think>

<answer>(</answer>

Question: Among the trees behind the pink sign, which one is the shortest when
counted from left to right?

A. The first one
B. The second one
C. The third one
D. The fourth one

Target Instances:

TreeVGR-7B

<think>

First, identify the pink sign <box>[844,832,1104,912]</box> in the image. Then,
look at the trees behind it. The first tree on the left is a tall, narrow evergreen tree.
The second tree is also tall and narrow. The third tree is shorter than the first two
and has a more rounded shape. The fourth tree is taller than the third one. So, the
third tree is the shortest among them when counted from left to right.</think>

<answer>C</answer>

Figure 22: Qualitative examples (left) and failure cases (right) on the “Ordering” protocol of

TreeBench.
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Question: What kind of occlusion relationship exists between the woman in the
central picture wearing traditional green clothing and the woman wearing a
peacock cloak behind her?

A. Completely blocked
C. Completely unblocked

TreeVGR-7B

<think>

First, identify the woman in the central picture wearing traditional green clothing
<box>[515,115,1056,844]</box>. Then, find the woman wearing a peacock cloak
behind her <box>[224,284,635,816|</box>. The woman in green is partially
obscured by the woman in the peacock cloak, but the peacock cloak is not fully
covering her. So, the relationship is a partial block.</think>

B. Partially blocked
D. Overlapping but visible

<answer>B</answer>

Figure 23: Qualitative examples (left) and failure cases (right) on the “Contact and Occlusion’

protocol of TreeBench.

Question: Is the golden ornament attached to the purple-robed statue on the float
completely enclosed by the transparent plastic sheet?

A. No, the ornament is entirely outside the sheet

B. Yes, it is fully inside the sheet

C. Only the lower part of the ornament is inside the sheet
D. Only the upper part of the ornament is inside the sheet

TreeVGR-7B

<think>

First, identify the golden ornament <box>[200,345,448,890]</box> and the
purple-robed statue on the float. The golden ornament is part of the statue. Then,
look at the transparent plastic sheet <box>[0,0.496,1000]</box> which covers the
statue. The plastic sheet is wrapped around the statue, and the golden ornament is
fully within the plastic sheet. There are no parts of the ornament that are outside
the sheet. So, the ornament is fully inside the sheet.</think>

<answer>B</answer>

Question: Is there any contact or obstruction relationship between the railing on
the far right of the picture and the towering power poles?

A. The base of the railing is in contact with the power pole.

B. The middle part of the railing is in contact with the power pole.
C. There is no contact at all between the two.

D. It cannot be determined.

Target Instances:

TreeVGR-7B
<think>
First, identify the railing on the far right of the picture
<box>[2528,475,2772,675]</box> and the towering power poles
hox>[2340,0,2416,600]</box>. The railing is a white fence running along the
cdge of the seating area, and the power pole is a tall, vertical structure. By
observing the image, the railing and the power pole are parallel and there is a
significant distance between them. The railing does not touch the power pole at
any point, and there is no indication of any connection or obstruction. So, the
correct answer is that there is no contact at all between the two.</think>
<answer>C</answer>

>

Question: Where is the slim, grey street-lamp with a white rectangular luminaire
(positioned just left of the teal pavilion) in relation to the dark-green metal fence?

A. Fully behind (inside) the fence, rooted in the garden area.
B. Straddling the fence, with its base outside and pole inside.

C. In front of the fence on the concrete sidewalk.

D. Hanging from the fade of the nearest tower.

Target Instances:

TreeVGR-7B

<think>

First, identify the teal pavilion <box>[416,1736,564,1832]</box> which is near
the center-left of the image. The slim, grey street-lamp with a white rectangular
luminaire is positioned just left of it. The dark-green metal fence
<box>0,1840,1240,2072]</box> is in front of the buildings. The street-lamp is
on the sidewalk and is in front of the fence, and it is not fully behind the fence,
nor is it hanging from the tower. So, it is in front of the fence on the concrete
sidewalk.</think>

<answer>C</answer>

Figure 24: Qualitative examples (left) and failure cases (right) on the “Spatial Containment” protocol

of TreeBench.
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Question: In the distant skyline, the actual height of the slender, blue-glass, cone-
shaped skyscraper towering in the center of the frame, the narrow, dark gray
chimney not far to its right, and the milky white building to the left of the frame.
‘Which object in the photo is actually taller?

A. The smokestack appears tallest among the 3 buildings
B. Themilky white buildin appears tallest among the 3 buildings

C. The blue-glass skyscraper appears stallest among the 3 buildings
D. All objects are not visible clearly enough to judge height.

TreeVGR-7B

<think>

First, identify the three key buildings in the image. The slender, blue-glass, cone-
shaped skyscraper <box>[1144,534,1283,1224]</box> is the tallest among the
three. The narrow, dark gray chimney <hox>[1688,592,1752.816|</box> is the
shortest. The milky white building <box>[0,0,731,1512]</box> is in the left-hand
side of the frame and is shorter than the skyscraper. So, the skyscraper is the
tallest among the three.</think>

<answer>(</answer>

Question: In the picture, the left side of the bus extends from the back of the car
to the front of the car, a total of 10 hand straps, counting from 1 to 10, which is
the actual distance and the little girl's head is the closest?

o>

FNINY

B.6

D.8

TreeVGR-7B

<think>

First, identify the left-side hand straps in the image.

<box>[192,75,288,450]</box> <box>[400,160,475,475]</box>

<box>[550,220,611,490]</box>

<box>[904,360,965,550]</box> <box>[965,385,1032,570]</box>
box>[1024,410,1075,575] <box>[1352,335,1432,515]</box>

Counting these, there are 10 hand straps. The

little girl's head is the closest among them. So, the left-side of the bus from the

back of the car to the front of the car is 10 units long, and the little girl's head is

the closest. The question asks for the option that matches this distance and the

position of the little girl's head. The option 6 is the closest match as it is the

closest among the given options. </think>

box

<answer>B</answer>

Figure 25: Qualitative examples (left) and failure cases (right) on the “Comparison” protocol of

TreeBench.
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