

000 TRACEABLE EVIDENCE ENHANCED VISUAL 001 GROUNDED REASONING: EVALUATION AND METHOD 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Models like OpenAI-o3 pioneer visual grounded reasoning by dynamically ref-
007 erencing visual regions, just like human “thinking with images”. However, no
008 benchmark exists to evaluate these capabilities holistically. To bridge this gap, we
009 propose **TreeBench** (Traceable Evidence Evaluation Benchmark), a diagnostic
010 benchmark built on three principles: (1) *focused visual perception* of subtle targets
011 in complex scenes, (2) *traceable evidence* via bounding box evaluation, and (3)
012 *second-order reasoning* to test object interactions and spatial hierarchies beyond
013 simple object localization. Prioritizing images with dense objects, we initially
014 sample 1K high-quality images from SA-1B, and incorporate eight LMM experts
015 to manually annotate questions, candidate options, and answers for each image.
016 After three stages of quality control, **TreeBench** consists of 405 challenging vi-
017 sual question-answering pairs, even the most advanced models struggle with this
018 benchmark, where none of them reach 60% accuracy, *e.g.*, OpenAI-o3 scores only
019 54.87. Furthermore, we introduce **TreeVGR** (Traceable Evidence Enhanced Visual
020 Grounded Reasoning), a training paradigm to supervise localization and reasoning
021 jointly with reinforcement learning, enabling accurate localizations and explainable
022 reasoning pathways. Initialized from Qwen2.5-VL-7B, it improves V* Bench
023 (+16.8), MME-RealWorld (+12.6), and **TreeBench** (+13.4), proving traceability is
024 key to advancing vision-grounded reasoning. The code and data will be released.
025

026 1 INTRODUCTION

027 Recent breakthroughs in Large Language Models (LLMs) reasoning, such as OpenAI-o1 (OpenAI,
028 2024b) and DeepSeek-R1 (Guo et al., 2025a) with remarkable test-time scaling properties, have
029 motivated researchers to explore reasoning for Large Multimodal Models (LMMs) (Huang et al.,
030 2025; Wei et al., 2025a;b; Chen et al., 2025). These models are typically remarkable in their
031 mathematical and scientific reasoning, particularly through *text-space* reasoning. However, they
032 exhibit critical limitations when applied to perception-heavy tasks (Jiang et al., 2025) or general
033 multimodal benchmarks (Wang et al., 2024c), primarily due to accumulated language bias from their
034 exclusive reliance on textual reasoning pathways. A paradigm shift toward *visual grounded reasoning*
035 emerged with models like OpenAI-o3 (OpenAI, 2025), which is able to “think with images” by
036 dynamically referencing and amplifying task-relevant regions during reasoning, resulting in *image-
037 text interleaved* reasoning pathways. Yet, despite growing interest, the community currently lacks
038 comprehensive evaluation benchmarks for assessing these capabilities.

039 Classical benchmarks like POPE (Li et al., 2023c), MMBench (Liu et al., 2023b), SEED-Bench (Li
040 et al., 2023a), and MMMU (Yue et al., 2024) usually overlook fine-grained localization and verifiable
041 reasoning chains. Others (Wu & Xie, 2024; Zhang et al., 2024a; Wang et al., 2025f; Dong et al.,
042 2024; Wang et al., 2025b;a; Zhang et al., 2024b) partially address localization but lack traceability
043 or complex reasoning: V* Bench (Wu & Xie, 2024) is restricted to simple spatial queries (*e.g.*, “Is
044 A left of B?”) and risks data contamination with COCO-derived images (Lin et al., 2014); MME-
045 RealWorld (Zhang et al., 2024a), HR-Bench (Wang et al., 2025f), and document benchmarks (Biten
046 et al., 2022; Mathew et al., 2021; Liu et al., 2023c) support high-resolution inputs but lack traceable
047 evidence and second-order reasoning such as perspective shifts. In short, these benchmarks fail
048 to adequately evaluate three key elements central to visual grounded reasoning: nuanced visual
049 grounding, traceable multi-step reasoning, and dynamic cross-modal interaction through *interleaved*
050 box-text reasoning pathways.

054	Attributes	Material	Physical State	Object Retrieval	OCR-Integrated QA
055					
056	Question: What is the girl wearing while sitting on the chair in the center of the image, which is partially obscured by a tall street light? A. Pink shoes B. White skirt C. Light blue skirt D. Black shoes	Question: What the materials for the bottles on the bike? A. Plastic B. White Glass C. Bronze-aware product D. Insulation material	Question: What is the condition of the rear cargo door on the small white box-shaped truck parked in the leftmost lane? A. Fully closed and latched B. Fully open upward C. Half-open (partially raised) D. Missing entirely	Question: What is attached to the top of the hat in the middle of the image? A. Flag B. Sunglasses C. Flower D. Grass ring	Question: Recognize the question and options in the image and answer it. A. Flag B. Sunglasses C. Flower D. Grass ring
057	Target Instances:	Target Instances:	Target Instances:	Target Instances:	Target Instances:
058	Perspective Transformation	Ordering	Contact and Occlusion	Spatial Containment	Comparison
059					
060	Question: From the perspective of the woman seated in a wheelchair, what is the relative direction of the signboard with "PROGRAMS"? A. Front left B. Front right C. Left rear D. Right rear	Question: Among the signs with text, which one (counting from left to right) has the most text? A. The first one B. The second one C. The third one D. The fourth one	Question: Considering the soccer player in red (number 22) in the foreground, is his left foot occluded with the soccer ball? A. Yes, they are in direct contact B. No, they are separated by a gap C. It cannot be determined D. They partially overlap	Question: Which of the following objects is inside the building on the right? A. The Buddhist monk in orange B. The person in blue on the right C. The couple in the middle of the image D. The black car in the middle	Question: Considering the relative distances in the image, which object is closer to the police officer holding the ice cream cone? A. The tree on the bus stop B. The black bollard on the sidewalk C. The police van parked on the side of the road D. The bus stop sign
061	Target Instances:	Target Instances:	Target Instances:	Target Instances:	Target Instances:
062					
063					
064					
065					
066					
067					
068					
069					
070					
071					

Figure 1: Qualitative examples from **TreeBench** for each discipline. Each question requires focused visual parsing on mere objects, and some even request second-order reasoning beyond precise localization. Moreover, the bounding boxes of all target instances are provided, ensuring a traceable evaluation. All these questions are challenging, as OpenAI-o3 (OpenAI, 2025) and Gemini-2.5-Pro (DeepMind, 2025b) *cannot* answer them correctly simultaneously.

To bridge this gap, we propose **TreeBench** (Traceable Evidence Evaluation Benchmark), designed around three foundational principles essential for evaluating true “thinking with images” capabilities:

- **Focused Visual Perception.** It evaluates a model’s ability to identify *subtle* targets within cluttered, real-world scenes using detailed, precise, and unique textual descriptions, which requires hierarchical scene understanding and the discrimination of extremely similar distractors.
- **Traceable Evidence.** It not only evaluates the final accuracy but also pioneers quantifiable evaluation of reasoning chains, resulting in an explainable, reliable, and transparent evaluation.
- **Vision-Centric Second-Order Reasoning Capabilities.** It moves beyond simple object localization and primitive “what/where” queries. It focuses on complex physical interactions between objects (such as contact and occlusion), as well as spatial containment (inside/outside, above/below) and relative relationships with perspective transformation.

To conduct **TreeBench**, we sample 1K images from SA-1B (Kirillov et al., 2023), prioritizing images with dense objects, as SA-1B (Kirillov et al., 2023) offers high-resolution, real-world scenes with many small and varied objects, making it particularly suitable for evaluating visual grounded reasoning. Subsequently, 8 experts with solid technical backgrounds are involved in hand-crafted annotation for 10 sub-tasks, as demonstrated in Figure 1. In particular, we present a semi-automated pipeline. Each of OpenAI-o3 (OpenAI, 2025) and Gemini-2.5-Pro (DeepMind, 2025b) is required to create three distinct questions belonging to a specific subtask, accompanied by multiple-choice options and the respective correct answers. Subsequently, experts curated or replaced these to ensure quality and difficulty. We additionally incorporate a cross-verification stage for further quality control. Finally, **TreeBench** incorporates 405 high-quality and extremely challenging VQA pairs with accurate bounding boxes of target instances. A comprehensive comparison between **TreeBench** and other related benchmarks is provided in Table 1. Key advantages are:

- **Annotation Quality.** Unlike benchmarks relying on LMM-generated labels such as MMT-Bench (Ying et al., 2024) and SEED-Bench (Li et al., 2023a), our expert-driven process ensures correctness and extreme difficulty. However, relying on models would inevitably introduce significant noise, compromising the quality of the annotations. On the contrary, our **TreeBench** is manually designed by 8 LMM experts, ensuring the annotation correctness and ensuring the difficulty of all questions.

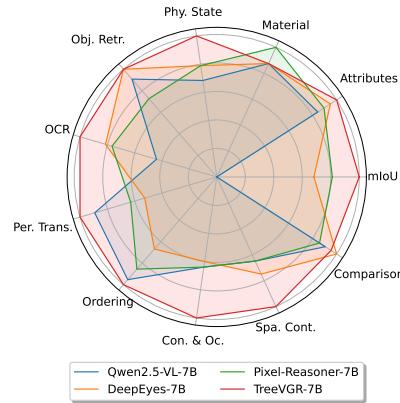
108
109
110
111 Table 1: Comparison between benchmarks related to “thinking with images”. **TreeBench** features
112 traceable evidence annotations, as well as high input resolution and challenging questions.
113
114

Benchmark	Resolution	Traceable Evidence Annotation	Mean Area of Target Objects (↓)	Qwen2.5-VL-72B Performance (↓)
V* Bench	2,246×1,583	✗	—	85.9
HR-Bench-4K	4,023×3,503	✗	—	79.3
HR-Bench-8K	5,727×4,430	✗	—	76.0
MME-RealWorld	2,076×1,434	✗	—	62.9
TreeBench	2,152×1,615	✓	3.05%	42.2

115
116
117
118 • **Small Target Objects.** All questions in **TreeBench** focus on extremely small objects in complex
119 real-world scenes, where target instances occupy an average of 3.05% of the image.

120
121 • **Traceable Evidence Evaluation.** Our **TreeBench** provides bounding box annotations of each
122 target instance. It not only evaluates the final answer, but also reveals the quality of *intermediate*
123 *reasoning steps*. Those predicted bounding boxes serve as a window into its process, helping to
124 diagnose the source of errors, *i.e.*, whether the model misunderstood the question or failed to
125 locate the relevant object.

126 • **Task Difficulty.** While models approach saturation (>90%) on benchmarks like V* Bench (Wu
127 & Xie, 2024), even open-sourced state-of-the-art performers like Qwen2.5-VL-72B (Bai et al.,
128 2025a) achieve only 42.2 on our **TreeBench**, implying a large potential improvement.


129 Beyond evaluation, we further introduce **TreeVGR** (Trace-
130 able Evidence for Visual Grounded Reasoning), a training
131 paradigm enhancing localization-driven visual reasoning.
132 Previous attempts like (Wang et al., 2025e; Zheng et al.,
133 2025b; Cao et al., 2025; Fan et al., 2025; Shao et al., 2024a;
134 Qi et al., 2024; Su et al., 2025; Liu et al., 2025a) solely
135 supervise final answers and neglect intermediate region-of-
136 interest generation processes. It becomes hard to quantify
137 the actual contribution of the “grounding-then-answering”
138 framework. On the contrary, we propose **TreeVGR**, a
139 novel training methodology emphasizing traceable evi-
140 dence through reinforcement learning (RL), which *explicitly*
141 supervises bounding box generation.

142 Building on RL with conventional accuracy-based and
143 formatting rewards, **TreeVGR** leverages a novel *dual* IoU
144 reward to ensure both precision and recall in localizing
145 the ground-truth bounding boxes for each target instance.
146 To implement this, we curate 37K samples for RL train-
147 ing, each comprising an image, a question, an answer,
148 and corresponding *bounding box annotations* for all target
149 instances. Empirically, initialized from
150 Qwen2.5-VL-7B (Bai et al., 2025a), **TreeVGR** brings significant
151 improvements on various benchmarks, *i.e.*, +16.8 on V* Bench (Wu & Xie, 2024), +12.6 on MME-RealWorld-Lite (Zhang et al.,
152 2024a), and +13.4 on our **TreeBench**. Moreover, as illustrated in Figure 2, compared with related
153 approaches, our **TreeVGR** enables traceable and explainable
154 reasoning pathways with more accurate
155 localizations (mIoU), and finally contributes to bootstrapped overall performance.

156 In conclusion, **TreeBench** pioneers the evaluation of how models “think with images”, while
157 **TreeVGR** establishes a blueprint for training them. Together, they significantly advance the depth
158 and utility of multimodal reasoning assessment with *traceable evidence*.

2 RELATED WORK

159 **Large Multimodal Models.** Initial breakthroughs in Large Multimodal Models (LMMs), such
160 as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023b), achieved this by integrating
161 visual features into the LLM backbone via cross-attention mechanisms. A significant shift towards
efficiency emerged with LLaVA (Liu et al., 2023a), which introduced a much more efficient approach.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
13

162 It projects visual features from a pre-trained encoder (*e.g.*, CLIP (Radford et al., 2021)) directly
 163 into the LLM’s semantic space using a simple two-layer MLP. This paradigm of feature projection
 164 catalyzed rapid advancement. Subsequent research has dramatically scaled LMM capabilities and
 165 tackled increasingly complex tasks (Wang et al., 2025c; Liu et al., 2024a; Li et al., 2024; Wang
 166 et al., 2025d; Bai et al., 2025a; Wang et al., 2024b; Lei et al., 2025; Zhu et al., 2025; Wu et al.,
 167 2024; Wang et al., 2024a). A critical frontier has been handling high-resolution inputs. Models
 168 like LLaVA-NeXT (Liu et al., 2024a) and InternVL-1.5 (Chen et al., 2024b) adopt any resolution
 169 strategy. Qwen2-VL (Wang et al., 2024b) and Qwen2.5-VL (Bai et al., 2025a) introduce multimodal
 170 Rotary Position Embedding (mROPE) to support arbitrary resolution inputs. Beyond resolution,
 171 scaling pretraining with high-quality data is also vital, as demonstrated by InternVL3 (Zhu et al.,
 172 2025). Collectively, these models represent the state-of-the-art, forming robust baselines for diverse
 173 real-world multimodal applications. Our work builds upon these advances by leveraging their strong
 174 native visual grounding capabilities. However, existing LMMs do not naturally perform an explicit
 175 “grounding-then-answering” process, often resulting in misaligned or incomplete responses. By
 176 explicitly modeling this sequential process, our approach ensures more accurate and interpretable
 177 answers through grounded reasoning.

178 **Reasoning LMMs.** The groundbreaking reasoning capabilities of LLMs, exemplified by systems
 179 like OpenAI-o1 (OpenAI, 2024b) and DeepSeek-R1 (Guo et al., 2025a) have motivated efforts to
 180 extend similar competencies to multimodal settings using reinforcement learning (RL) (Sutton et al.,
 181 1998). Early approaches primarily focused on equipping LMMs to solve complex math and science
 182 problems involving image inputs (Huang et al., 2025; Wei et al., 2025a;b; Chen et al., 2025). Other
 183 approaches (Shen et al., 2025; Liu et al., 2025b; Bai et al., 2025b) directly adopt GRPO (Shao et al.,
 184 2024b) to open-ended visual grounding. Moreover, some attempts (Liu et al., 2024b; Mondal et al.,
 185 2024; Shao et al., 2024a; Qi et al., 2024) focus on regions-of-interest localization before actually
 186 answering the question. A recent milestone, OpenAI-o3 (OpenAI, 2025), advanced multimodal
 187 reasoning by enabling dynamic image manipulation, *e.g.*, cropping and zooming into regions of
 188 interest, to emulate human-like “thinking with images.” Subsequent research has sought to replicate
 189 this capability through diverse strategies: constructing SFT data (Wang et al., 2025e), vanilla RL (Fan
 190 et al., 2025), framing grounding as a function (Zheng et al., 2025b), decoupling grounding and
 191 answering (Cao et al., 2025), multi-task reinforcement learning (Liu et al., 2025a), and curiosity-
 192 driven reasoning (Su et al., 2025). Critically, these RL-based methods supervise *only* the final answer.
 193 In contrast, our **TreeVGR** emphasizes *traceable evidence* during RL training, *i.e.*, supervising
 194 generated bounding boxes to ensure precise localization throughout the reasoning process. By doing
 195 so, **TreeVGR** enables more transparent, reliable, and fine-grained control over the reasoning pipeline.

196 **Benchmarks for LMMs.** Current benchmarks lack comprehensive evaluation of multimodal models’
 197 ability to “think with images”, a capability demanding three core competencies: (1) focused visual
 198 perception (identifying small targets in large scenes), (2) traceable evidence (evaluating generated
 199 bounding boxes for explainability), and (3) second-order reasoning (deriving insights *beyond* precise
 200 instance localization). Some benchmarks may *partially* satisfy the first condition. While some
 201 benchmarks address isolated aspects, critical gaps persist. Classical benchmarks like POPE (Li et al.,
 202 2023c), MMBench (Liu et al., 2023b), SEED-Bench (Li et al., 2023a), and MMMU (Yue et al., 2024)
 203 usually overlook fine-grained localization and verifiable reasoning chains. V* (Wu & Xie, 2024)
 204 evaluates detailed attributes and spatial relationships (*e.g.*, “Is A left of B?”) but relies on COCO-
 205 derived images (Lin et al., 2014), introducing high contamination risk. MME-RealWorld (Zhang et al.,
 206 2024a) and HR-Bench (Wang et al., 2025f) support high-resolution inputs but lack traceable evidence,
 207 and their questions often become easy when grounded precisely. Crucially, no benchmark integrates
 208 all three requirements, particularly the need for complex reasoning conditional on precise grounding,
 209 *e.g.*, perspective transform: “*From the perspective of person A, what is the relative direction of*
 210 *object B?*”. To bridge this gap, we propose **TreeBench**, the first benchmark designed explicitly for
 211 “thinking with images” with *traceable*, multistep evaluation. Beyond accuracy, **TreeBench** assesses:
 212 (1) region quality, *i.e.*, faithfulness of generated regions-of-interest in visual reasoning chains, and
 213 (2) second-order reasoning, *i.e.*, capabilities requiring inference *beyond* localization. State-of-the-art
 214 models, Gemini-2.5-Pro (DeepMind, 2025b) and OpenAI-o3 (OpenAI, 2025), perform poorly on
 215 **TreeBench** (<60%), underscoring its rigor and the unmet challenges in multimodal reasoning.

216 **3 TREEBENCH**
 217

218 **TreeBench** is designed to address a critical gap in multimodal evaluation by establishing the first
 219 comprehensive benchmark for assessing “thinking with images” capabilities. Specifically, it mainly
 220 evaluates (1) the ability of identifying small target objects with long, detailed, and unique text
 221 captions in large, complex, and real-world scenes, (2) the explainability of reasoning pathways and
 222 traceable evidence, and (3) second-order reasoning beyond precise localization. Our **TreeBench**
 223 systematically evaluates 10 core competencies through 405 distinct questions, organized into two
 224 progressive protocols, *i.e.*, “Perception” and “Reasoning”, with representative examples in Figure 1.
 225 In the following, we provide a detailed exploration of task definitions. The annotation pipeline and
 226 the final statistics of **TreeBench** can be found in Appendix B and Appendix C, respectively.
 227

228 **Perception** evaluates the model’s ability to accurately “see” and “identify” specific content, which
 229 is one of the basic capabilities of directly extracting and interpreting visual information from every
 230 detail of the provided image. These tasks primarily evaluate *first-order* visual reasoning capabilities,
 231 where correct answers usually depend on the accurate localization of target questions (*e.g.*, objects,
 232 regions, or text) and directly recognize their explicit attributes *without* requiring higher-level logical
 233 inference or abstract conceptualization. It includes:

- 234 1. **Attributes** evaluates the ability to identify and describe specific visual properties (*e.g.*, color,
 235 shape, material, or precise classification) of objects or elements within images, particularly
 236 requiring attention to fine details, subtle distinctions, and accurate recognition of small-scale or
 237 context-dependent features.
- 238 2. **Material** measures the ability to analyze and distinguish material properties (*e.g.*, texture, surface
 239 finish, composition, or physical state) through visual cues such as light reflection, transparency,
 240 wear patterns, or microscopic structural characteristics, requiring precise reasoning about tactile
 241 qualities and material-specific visual indicators.
- 242 3. **Physical State** assesses the ability to assess structural integrity (*e.g.*, damage, wear, or breakage),
 243 detect positional states (*e.g.*, open/closed, bent/straight), and interpret age-related features (*e.g.*,
 244 freshness, decay) through precise analysis of visual cues like cracks, alignment anomalies,
 245 lighting/shadow patterns, or contextual degradation markers.
- 246 4. **Object Retrieval** probes the ability to interpret linguistically complex, spatially explicit de-
 247 scriptions and map them to visually subtle or contextually embedded targets in images, testing
 248 the integration of natural language understanding, spatial grounding, and discriminative object
 249 recognition under high specificity constraints.
- 250 5. **OCR-Integrated Question-Answering** evaluates the ability to extract text-based questions
 251 and answer options from images, requiring seamless integration of OCR, natural language
 252 understanding, and multimodal alignment to produce accurate responses grounded in both
 253 textual and visual modalities.

254 **Reasoning** evaluates the ability to analyze and infer meaningful conclusions beyond recognition.
 255 These tasks demand *second-order* visual reasoning capabilities, where correct answers require not
 256 only accurate localization but also higher-level cognitive operations over aggregated visual evidence.
 257 Precise perceptual grounding is just the first step for these tasks. It includes:

- 258 1. **Perspective Transform** measures the capacity to perform viewpoint transformations (*e.g.*,
 259 aligning viewer-centric and agent-centric frames of reference) and interpret spatial relations
 260 under mirror-reversed or perspective-shifted conditions, testing the ability to disambiguate
 261 directional relationships that depend on the visualized entity’s orientation rather than the image’s
 262 literal pixel layout.
- 263 2. **Ordering** evaluates the ability to analyze linearly ordered arrangements of objects (*e.g.*, left-to-
 264 right, front-to-back, or depth-based sequences) and resolve ordinal relationships by integrating
 265 spatial context with discriminative feature recognition, requiring precise localization within
 266 continuous layouts and contextual comparison of positional cues (*e.g.*, adjacency, centrality, or
 267 extremity) to answer questions dependent on sequential alignment and relative placement.
- 268 3. **Contact and Occlusion** measures the ability to analyze physical interactions between multiple
 269 objects (*e.g.*, direct contact, occlusion layers, or shadow-based overlaps) and resolve ambiguities
 270 in object identification by leveraging spatial dependencies, requiring precise parsing of contact

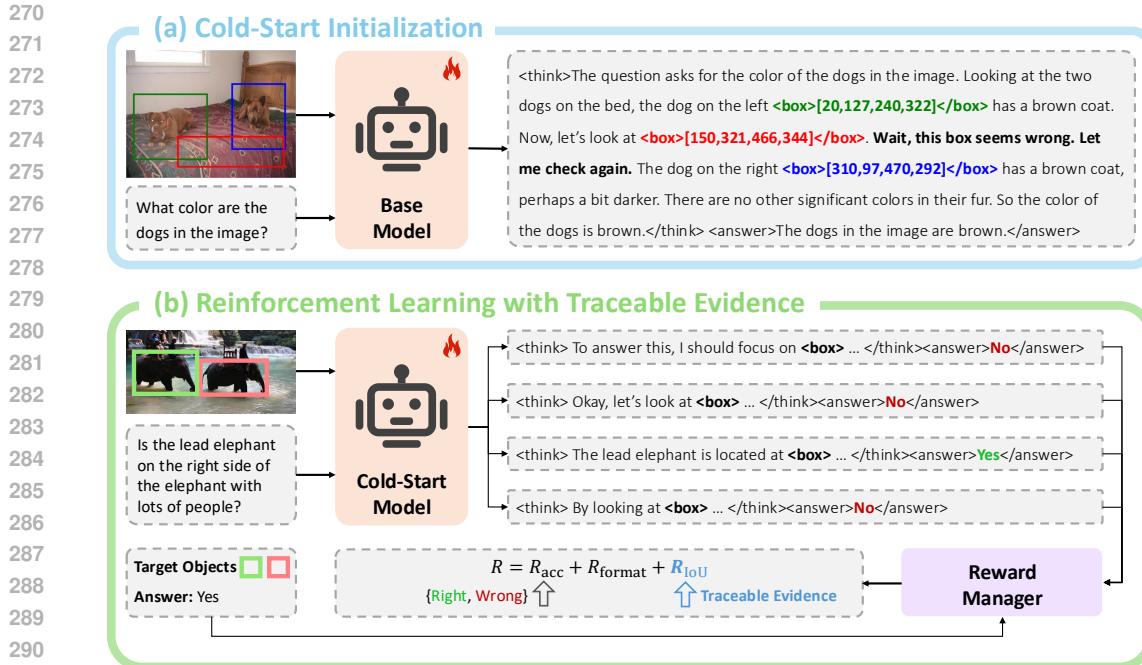


Figure 3: Training pipeline of **TreeVGR**, including (a) a cold-start initialization stage and (b) a reinforcement learning with traceable evidence post-training stage.

cues (*e.g.*, alignment, boundary fusion), occlusion boundaries (*e.g.*, partial/full coverage, layer stacking), and contextual constraints to answer questions that hinge on understanding how objects physically coexist and obscure one another in complex scenes.

4. **Spatial Containment** benchmarks the ability to analyze hierarchical spatial relationships (*e.g.*, containment, surface attachment, or regional boundaries) by parsing visual cues like object boundaries, spatial context, and contextual containment rules, requiring precise interpretation of containment hierarchies, surface dependencies, and regional constraints to resolve questions dependent on explicit spatial membership rather than isolated positional attributes.
5. **Comparison** assesses to compare attributes across multiple objects (*e.g.*, distance, size, color) and resolve spatial or perceptual differences, requiring precise parsing of attribute discrimination and contextual distance estimation to answer questions demanding explicit comparison of visually co-present entities.

4 TREEVGR

In this section, we introduce our **TreeVGR**. Specifically, we leverage the native grounding capabilities of pre-trained LMMs and unlock *visual grounded reasoning* capabilities, *i.e.*, localizing regions-of-interest first and answering the question next, through a two-stage training pipeline shown in Figure 3, *i.e.*, cold initialization introduced in Section 4.1 and reinforcement learning with traceable evidence elaborated in Section 4.2.

Notably, our **TreeVGR** does *not* require actually replaying cropped images as previous approaches (Wang et al., 2025e; Zheng et al., 2025b; Su et al., 2025) do, as *text-space grounding* is already effective. It leads to much more efficient training and inference procedures.

4.1 COLD-START INITIALIZATION

While end-to-end reinforcement learning (RL) has demonstrated validity by (Zheng et al., 2025b) for visual grounded reasoning (VGR) tasks, its practical deployment remains hindered by *extreme computational demands*. Specifically, DeepEyes-7B (Zheng et al., 2025b) requests RL training on 47K samples across 32 episodes, a process requiring 32 H100 (80GB) GPUs operating continuously for 48 hours. Such resource intensity creates barriers to broader accessibility.

To address these limitations, we investigate a computationally efficient alternative. Initial attempts revealed significant training inefficiencies when applying direct RL to VGR: models required extensive iterations to autonomously identify task-relevant visual regions before generating answers. This bottleneck motivates our adoption of a cold initialization strategy as illustrated in Figure 3a. Specifically, we introduce a supervised fine-tuning (SFT) phase using a curated dataset comprising multimodal samples: each sample includes an image, a question, reasoning trajectories with corresponding bounding boxes, and a final answer. This structured initialization ensures VGR capabilities are established prior to RL. Details of data construction and optimization can be found in Appendix E.1.

4.2 REINFORCEMENT LEARNING WITH TRACEABLE EVIDENCE

We proceed to reinforcement learning (RL) to refine reasoning trajectories through *traceable evidence supervision* as demonstrated in Figure 3b. Specifically, the bounding boxes generated are evaluated using a box intersection-over-union (IoU) reward, a precise and interpretable metric that measures the alignment between predicted and ground-truth regions. This reward ensures explicit accountability to human-annotated visual evidence, guiding the policy toward spatially accurate and logically coherent reasoning pathways.

Reward Design. The total reward consists of three parts: an accuracy reward $R_{\text{acc}} \in \{0, 1\}$, a formatting reward $R_{\text{format}} \in \{0, 1\}$, and a *dual* Intersection-over-Union (IoU) reward $R_{\text{IoU}} \in [0, 1]$:

$$R = R_{\text{acc}} + R_{\text{format}} + R_{\text{IoU}}, \quad (1)$$

where the accuracy reward assesses whether the final answer is correct. We utilize exact-matching for multiple-choice questions, and leverage an online reward model, *i.e.*, Qwen2.5-72B-Instruct (Team, 2024), to judge whether the prediction is correct given the question and the ground-truth answer. The formatting reward ensures the reasoning process and the final answer must be enclosed between `<think>` and `</think>`, and `<answer>` and `</answer>`, respectively. The *dual* IoU reward measures the quality of predicted boxes against ground-truths. Specifically, for N predicted bounding boxes $\{\hat{b}_i\}_{i=1}^N$, where $\hat{b}_i = [x_1^i, \hat{y}_1^i, \hat{x}_2^i, \hat{y}_2^i]$ and M ground-truths $\{b_k\}_{k=1}^M$, where $b_k = [x_1^k, y_1^k, x_2^k, y_2^k]$, the *dual* IoU is an average of a *recall* term and a *precision* term.

$$R_{\text{IoU}} = \frac{1}{2}(R_{\text{IoU}}^{\text{R}} + R_{\text{IoU}}^{\text{P}}), \quad (2)$$

where the $R_{\text{IoU}}^{\text{R}}$ indicates the *recall* and $R_{\text{IoU}}^{\text{P}}$ means the *precision*. Specifically, the *recall* term ensures that each ground-truth bounding box b_k is matched with at least one prediction.

$$R_{\text{IoU}}^{\text{R}} = \frac{1}{M} \sum_{k=1}^M \text{IoU} \left[\{\hat{b}_i\}_{i=1}^N, b_k \right], \quad (3)$$

where $\text{IoU} \left[\{\hat{b}_i\}_{i=1}^N, b_k \right] = \max_i \text{IoU}(\hat{b}_i, b_k)$ indicates the maximum IoU between *all* predictions $\{\hat{b}_i\}_{i=1}^N$ and *each* ground-truth b_k . Maximizing this term ensures each ground-truth b_k is matched with *at least* one prediction. However, we empirically find that the policy model tends to *enumerate all possible boxes* to obtain a larger recall. Therefore, we introduce a dual term, *i.e.*, $R_{\text{IoU}}^{\text{P}}$, to ensure the *precision* and discourage “empty” boxes that do not match with any ground-truths:

$$R_{\text{IoU}}^{\text{P}} = \frac{1}{N} \sum_{i=1}^N \text{IoU} \left[\{b_k\}_{k=1}^M, \hat{b}_i \right]. \quad (4)$$

Similarly, $\text{IoU} \left[\{b_k\}_{k=1}^M, \hat{b}_i \right] = \max_k \text{IoU}(b_k, \hat{b}_i)$ indicates the maximum IoU between *all* ground-truths b_k and *each* prediction $\{\hat{b}_i\}_{i=1}^N$. Maximizing this term encourages each prediction \hat{b}_i to be matched with *at least* one ground-truth. Therefore, simultaneous optimization of *both* recall and precision eliminates the need for exhaustive enumeration of bounding boxes, thereby contributing to more accurate reasoning pathways. Details of data and optimization can be found in Appendix E.2.

5 EXPERIMENTS

Baselines. We include four state-of-the-art private models, GPT-4o-1120 (OpenAI, 2024a) and o3-0416 (OpenAI, 2025) from OpenAI, and Gemini-2.5-Flash-0520 (DeepMind, 2025a) and Gemini-2.5-Pro-0605 (DeepMind, 2025b) from Google. Additionally, representative open-source general

378
 379 Table 2: Selected results of different models on **TreeBench**. Evaluations of open-source general
 380 models are implemented using VLMEvalKit (Duan et al., 2024), while evaluations of visual grounded
 381 reasoning models are conducted by us. [†]Reasoning pathways of o3 (OpenAI, 2025) are unavailable,
 382 and thus traceable evaluations are *not* valid. Best performances for open-source models are highlighted
 383 in **bold**. *Our TreeVGR-7B achieves comparable performance with InternVL3-78B (Zhu et al., 2025).*

		Overall	mIoU	Attributes	Material	Phy. State	Obj. Relt.	OCR	Per. Trans.	Ordering	Con. & Oc.	Spa. Cont.	Comparison
				Perception				Reasoning					
				Private Models									
Open-source General Models													
Gemini-2.5-Flash-0520	45.9	–	48.3	53.9	69.6	68.8	75.0	15.3	19.3	56.1	72.4	43.2	
GPT-4o-1120	46.9	–	51.7	61.5	65.2	43.8	69.1	18.8	38.6	48.8	72.4	43.2	
Gemini-2.5-Pro-0605	54.1	–	51.7	61.5	56.5	75.0	83.8	20.0	36.8	65.9	86.2	54.6	
o3-0416	54.8	– [†]	69.0	69.2	65.2	68.8	79.4	22.4	38.6	61.0	86.2	50.0	
Open-source Visual Grounded Reasoning Models													
LLaVA-OneVision-7B	37.3	–	55.2	53.8	56.5	50.0	32.4	21.2	22.8	41.5	72.4	36.4	
LLaVA-OneVision-72B	40.5	–	62.1	53.8	65.2	62.3	36.8	12.9	28.1	53.7	65.5	47.7	
Qwen2.5-VL-7B	37.0	–	55.2	53.8	56.5	62.5	27.9	20.0	35.1	39.0	44.8	43.2	
Qwen2.5-VL-72B	42.2	–	65.5	69.2	56.5	56.3	48.5	11.8	33.3	51.2	72.4	38.6	
InternVL3-8B	38.8	–	51.7	69.2	56.5	56.3	33.7	21.2	24.6	39.0	72.4	43.2	
InternVL3-78B	46.4	–	62.1	61.5	52.2	68.8	52.9	16.5	33.3	61.0	86.2	45.5	
DeepEyes-7B	37.5	30.0	62.1	53.8	65.2	68.8	51.5	11.8	24.6	36.6	51.7	47.7	
Pixel-Reasoner-7B	39.0	35.7	58.6	61.5	65.2	50.0	48.5	14.1	31.6	39.0	44.8	40.9	
TreeVGR-7B	50.4	44.0	65.5	53.8	82.6	68.8	63.3	22.4	36.8	61.0	69.0	45.5	
Δ v.s. Qwen2.5-VL-7B	↑ 13.4	–	↑ 11.7	– 0.0	↑ 26.1	↑ 6.3	↑ 35.4	↑ 2.2	↑ 1.7	↑ 22.0	↑ 24.2	↑ 2.3	

403 models are incorporated, including LLaVA-OneVision series (Li et al., 2024), Qwen2.5-VL series (Bai
 404 et al., 2025a), and InternVL3 series (Zhu et al., 2025). Furthermore, two very recent visual grounded
 405 reasoning models are also included, *i.e.*, DeepEyes (Zheng et al., 2025b) and Pixel-Reasoner (Su
 406 et al., 2025), as both of them follow a “grounding then answering” pipeline, with the capability of
 407 “thinking with images”. Evaluations are mainly conducted on **TreeBench**, V* Bench (Wu & Xie,
 408 2024), HR-Bench (Wang et al., 2025f), and MME-RealWorld-Lite (Zhang et al., 2024a).

409 **Results on TreeBench.** Table 2 presents per per-category performance of different models. Overall,
 410 OpenAI’s o3-0416 (OpenAI, 2025), the state-of-the-art visual grounded reasoning model, demon-
 411 strates the strongest perception abilities, as expected. Larger models usually contribute to better
 412 performance. Notably, our **TreeVGR-7B** even achieves comparable performance with InternVL3-
 413 78B (Zhu et al., 2025), demonstrating the effectiveness of the visual grounded reasoning pipeline.
 414 Moreover, compared with visual grounded reasoning models, our **TreeVGR** not only achieves a
 415 higher overall performance, but also obtains a larger mIoU, indicating its effectiveness in precisely
 416 localizing target objects. More in-depth analysis on **TreeBench** can be found in Appendix D.

417 **Results on High-Resolution Benchmarks.** In Table 3, **TreeVGR** achieves open-source state-of-
 418 the-art on V* Bench (Wu & Xie, 2024). On HR-Bench (Wang et al., 2025f) and MME-RealWorld-
 419 Lite (Zhang et al., 2024a) illustrated in Table 3 and Table 4, respectively, our **TreeVGR** brings
 420 significant improvements over our base model, Qwen2.5-VL-7B (Bai et al., 2025a). Results on other
 421 general benchmarks can be found in Appendix F.1.

422 **Ablation Studies.** The core contribution of **TreeVGR** is the *traceable* training pipeline, where R_{IoU} is
 423 incorporated in conventional RL training. The effectiveness of this design is ablated in Appendix F.2.

425 6 CONCLUSION

427 This paper introduces **TreeBench**, a benchmark designed to rigorously evaluate visual grounded
 428 reasoning (VGR) or “thinking with images” in large multimodal models, and **TreeVGR**, a two-stage
 429 training framework that enhances VGR methods through traceable evidence supervision.

431 **TreeBench** addresses critical gaps in existing benchmarks by focusing on three principles: focused
 432 visual perception (identifying subtle targets in cluttered scenes), traceable evidence (quantifiable

432 Table 3: Comparison with state-of-the-art alternatives on V* Bench (Wu & Xie, 2024) and
 433 HRBench (Wang et al., 2025f). All results are self-collected. Best performances of visual grounded
 434 reasoning models are highlighted in **bold**.

	V* Bench			HR-Bench-4K			HR-Bench-8K		
	Overall	Attr.	Spatial	Overall	Single	Cross	Overall	Single	Cross
Private Models									
GPT-4o-1120	66.0	–	–	–	–	–	–	–	–
o3-0416	95.7	–	–	–	–	–	–	–	–
Open-source General Models									
LLaVA-OneVision-7B	70.7	73.0	60.5	64.3	74.8	53.8	59.8	65.3	54.3
LLaVA-OneVision-72B	73.8	80.9	63.2	66.3	76.5	56.0	60.9	68.8	53.0
InternVL3-8B	72.3	73.0	71.1	70.8	79.3	62.3	62.0	64.3	59.8
InternVL3-78B	76.4	75.7	77.6	75.5	84.5	66.5	67.3	71.8	62.8
Qwen2.5-VL-7B	74.3	77.4	69.7	72.1	88.8	55.5	68.8	83.5	54.0
Qwen2.5-VL-72B	84.8	90.8	80.9	79.4	88.8	70.0	76.3	84.3	68.3
Open-source Visual Grounded Reasoning Models									
Pixel-Reasoner-7B	80.6	83.5	76.3	72.9	86.0	60.3	66.9	80.0	54.3
DeepEyes-7B	90.0	92.1	86.8	75.1	91.3	59.0	72.6	86.8	58.5
TreeVGR-7B	91.1	94.0	87.0	77.1	90.3	64.0	73.1	86.5	59.8
Δ v.s. Qwen2.5-VL-7B	↑ 16.8	↑ 16.6	↑ 17.3	↑ 5.0	↑ 1.5	↑ 8.5	↑ 4.3	↑ 3.0	↑ 5.8

454 Table 4: Comparison with state-of-the-art alternatives on MME-RealWorld-Lite (Zhang et al., 2024a).
 455 All results are self-collected. The best performance is highlighted in **bold**.

	Perception					Reasoning				
	Overall	OCR	RS	DT	MO	AD	OCR	DT	MO	AD
General Models										
Qwen2.5-VL-7B	42.3	87.6	32.7	83.0	27.3	30.0	72.0	62.0	28.7	23.0
Qwen2.5-VL-72B	43.7	90.8	34.0	87.0	27.9	30.6	74.0	61.0	26.7	25.5
LLaVA-OneVision-7B	43.7	80.0	40.0	56.0	31.7	39.4	65.0	33.0	38.0	32.0
LLaVA-OneVision-72B	48.7	79.2	50.7	67.0	37.9	40.0	76.0	41.0	38.7	39.3
InternVL3-8B	47.9	83.6	49.3	75.0	34.5	36.9	70.0	44.0	40.0	37.0
InternVL3-78B	52.3	87.6	54.7	77.0	42.6	36.6	76.0	56.0	46.0	40.3
Visual Grounded Reasoning Models										
Pixel-Reasoner-7B	49.7	89.6	52.0	86.0	38.9	30.9	71.0	72.0	46.0	32.5
DeepEyes-7B	53.2	90.0	52.7	89.0	43.3	33.4	76.0	69.0	44.0	35.0
TreeVGR-7B	54.9	87.6	50.7	83.0	47.0	43.4	74.0	66.0	51.3	39.0
Δ v.s. Qwen2.5-VL-7B	↑ 12.6	– 0.0	↑ 18.0	– 0.0	↑ 19.7	↑ 13.4	↑ 2.0	↑ 4.0	↑ 22.6	↑ 16.0

472 reasoning chains via bounding box annotations), and vision-centric second-order reasoning. Constructed through expert-driven annotation and multi-stage quality control, **TreeBench** features 405
 473 high-difficulty visual question-answer pairs with precise bounding boxes, emphasizing small objects
 474 in real-world scenarios. It reveals the limitations of state-of-the-art models, *e.g.*, OpenAI-o3 (OpenAI,
 475 2025) scores 54.8%, while setting a new standard for assessing nuanced visual grounding, multi-step
 476 reasoning transparency, and cross-modal interaction.

477 **TreeVGR** advances VGR training through reinforcement learning guided by dual IoU rewards, which
 478 explicitly supervise bounding box generation to ensure both precision and recall. This approach
 479 enables explainable reasoning pathways and achieves significant improvements across benchmarks.

480 **Limitation and future works.** The current implementation of **TreeVGR** is based on a 7B parameter
 481 model, which may limit scalability compared to larger architectures. **TreeBench** contains only 405
 482 rigorously curated question-answer pairs. Expanding the benchmark with additional samples across
 483 broader domains would further challenge model capabilities. Scaling up would be future work.

484

486 ETHICS STATEMENT
487

488 Our research is grounded in ethical practices, with particular attention paid to the responsible use
489 of data. All datasets employed in this study are publicly available and well-established within the
490 computer vision community. Specifically, our benchmarking was conducted on SA-1B (Kirillov
491 et al., 2023). Our use of this data is in accordance with their provided licenses and intended academic
492 purpose.

493
494 REPRODUCIBILITY STATEMENT
495

496 We are committed to ensuring the reproducibility of the research presented in this paper. To this end,
497 comprehensive implementation details for our models and experiments are provided in Appendix E,
498 including the training procedures and all hyperparameters used. Furthermore, upon acceptance of
499 this paper, all source code, datasets, and trained model checkpoints will be made publicly available.

500 REFERENCES
501

502 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
503 Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot
504 learning. *Advances in Neural Information Processing Systems (NeurIPS)*, 35:23716–23736, 2022.

505 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,
506 Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025a.

507 Sule Bai, Mingxing Li, Yong Liu, Jing Tang, Haoji Zhang, Lei Sun, Xiangxiang Chu, and Yansong Tang.
508 Univg-r1: Reasoning guided universal visual grounding with reinforcement learning. *arXiv preprint
509 arXiv:2505.14231*, 2025b.

511 Ali Furkan Biten, Ron Litman, Yusheng Xie, Srikanth Appalaraju, and R Manmatha. Latr: Layout-aware
512 transformer for scene-text vqa. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
513 Recognition (CVPR)*, 2022.

514 Meng Cao, Haoze Zhao, Can Zhang, Xiaojun Chang, Ian Reid, and Xiaodan Liang. Ground-r1: Incentivizing
515 grounded visual reasoning via reinforcement learning. *arXiv preprint arXiv:2505.20272*, 2025.

516 Liang Chen, Lei Li, Haozhe Zhao, and Yifan Song. R1-v: Reinforcing super generalization ability in vision-
517 language models with less than \$3, 2025.

519 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao,
520 Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *arXiv preprint
521 arXiv:2403.20330*, 2024a.

522 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu,
523 Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models
524 with open-source suites. *Science China Information Sciences*, 67(12):220101, 2024b.

525 Google DeepMind. Gemini-2.5-flash. <https://deepmind.google/models/gemini/flash/>,
526 2025a.

527 Google DeepMind. Gemini-2.5-pro. <https://deepmind.google/models/gemini/pro/>, 2025b.

529 Hongyuan Dong, Jiawen Li, Bohong Wu, Jiacong Wang, Yuan Zhang, and Haoyuan Guo. Benchmarking and
530 improving detail image caption. *arXiv preprint arXiv:2405.19092*, 2024.

531 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang,
532 Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models.
533 In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11198–11201, 2024.

535 Yue Fan, Xuehai He, Diji Yang, Kaizhi Zheng, Ching-Chen Kuo, Yuting Zheng, Sravana Jyothi Narayananaraju,
536 Xinze Guan, and Xin Eric Wang. Grit: Teaching mllms to think with images. *arXiv preprint arXiv:2505.15879*,
537 2025.

538 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
539 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
540 *arXiv preprint arXiv:2501.12948*, 2025a.

540 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang, Jianyu Jiang,
 541 Jiawei Wang, et al. Seed1.5-vl technical report. *arXiv preprint arXiv:2505.07062*, 2025b.

542

543 Tuomo Hiippala, Malihe Alikhani, Jonas Haverinen, Timo Kalliokoski, Evanfiya Logacheva, Serafina Orekhova,
 544 Aino Tuomainen, Matthew Stone, and John A Bateman. Ai2d-rst: A multimodal corpus of 1000 primary
 545 school science diagrams. *Language Resources and Evaluation*, 55:661–688, 2021.

546

547 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui
 548 Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. *arXiv preprint
 arXiv:2503.06749*, 2025.

549

550 Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhi Wang, Jianhan Jin, Claire
 551 Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal models for reasoning
 552 quality, robustness, and efficiency. *arXiv preprint arXiv:2502.09621*, 2025.

553

554 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
 555 Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF
 International Conference on Computer Vision (ICCV)*, pp. 4015–4026, 2023.

556

557 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
 558 zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
 559 pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.

560

561 Weixian Lei, Jiacong Wang, Haochen Wang, Xiangtai Li, Jun Hao Liew, Jiashi Feng, and Zilong Huang. The
 562 scalability of simplicity: Empirical analysis of vision-language learning with a single transformer. *arXiv
 preprint arXiv:2504.10462*, 2025.

563

564 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei
 565 Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024.

566

567 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Benchmarking
 568 multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*, 2023a.

569

570 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
 571 with frozen image encoders and large language models. In *International Conference on Machine Learning
 (ICML)*, pp. 19730–19742, 2023b.

571

572 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucina-
 573 tion in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023c.

574

575 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
 576 C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European Conference on Computer
 Vision (ECCV)*, pp. 740–755, 2014.

576

577 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in Neural
 578 Information Processing Systems (NeurIPS)*, 36:34892–34916, 2023a.

578

579 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-
 580 next: Improved reasoning, ocr, and world knowledge. <https://llava-vl.github.io/blog/2024-01-30-llava-next/>, 2024a.

580

581 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang,
 582 Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? *arXiv preprint
 arXiv:2307.06281*, 2023b.

583

584 Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng Yin, Cheng-lin Liu, Lianwen Jin, and Xiang Bai. On
 585 the hidden mystery of ocr in large multimodal models. *arXiv preprint arXiv:2305.07895*, 2023c.

586

587 Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Visionreasoner: Unified
 588 visual perception and reasoning via reinforcement learning. *arXiv preprint arXiv:2505.12081*, 2025a.

589

590 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang.
 591 Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025b.

591

592 Zuyan Liu, Yuhao Dong, Yongming Rao, Jie Zhou, and Jiwen Lu. Chain-of-spot: Interactive reasoning improves
 593 large vision-language models. *arXiv preprint arXiv:2403.12966*, 2024b.

593

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv preprint
 arXiv:1608.03983*, 2016.

594 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*,
 595 2017.

596

597 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang,
 598 Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in
 599 visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

600 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for
 601 question answering about charts with visual and logical reasoning. *arXiv preprint arXiv:2203.10244*, 2022.

602

603 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images. In
 604 *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2021.

605 Debjyoti Mondal, Suraj Modi, Subhadarshi Panda, Rituraj Singh, and Godawari Sudhakar Rao. Kam-cot:
 606 Knowledge augmented multimodal chain-of-thoughts reasoning. In *Proceedings of the AAAI Conference on*
 607 *Artificial Intelligence (AAAI)*, volume 38, pp. 18798–18806, 2024.

608 OpenAI. Openai-gpt-4o. <https://openai.com/index/gpt-4o-system-card/>, 2024a.

609

610 OpenAI. Openai-o1. <https://openai.com/o1/>, 2024b.

611

612 OpenAI. Openai-o3. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025.

613 Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li, Yuxiao
 614 Dong, et al. Cogcom: Train large vision-language models diving into details through chain of manipulations.
 615 *arXiv preprint arXiv:2402.04236*, 2024.

616 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
 617 Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
 618 supervision. In *International Conference on Machine Learning (ICML)*, pp. 8748–8763, 2021.

619

620 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng
 621 Li. Visual-cot: Advancing multi-modal language models with a comprehensive dataset and benchmark for
 622 chain-of-thought reasoning. *Advances in Neural Information Processing Systems*, 37:8612–8642, 2024a.

623 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
 624 YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
 625 *arXiv preprint arXiv:2402.03300*, 2024b.

626 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang, Kangjia
 627 Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large vision-language model. *arXiv*
 628 *preprint arXiv:2504.07615*, 2025.

629

630 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
 631 and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv: 2409.19256*, 2024.

632 Alex Su, Haozhe Wang, Weimin Ren, Fangzhen Lin, and Wenhui Chen. Pixel reasoner: Incentivizing pixel-space
 633 reasoning with curiosity-driven reinforcement learning. *arXiv preprint arXiv:2505.15966*, 2025.

634

635 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT press
 636 Cambridge, 1998.

637 Qwen Team. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

638

639 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha Akula,
 640 Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully open, vision-
 641 centric exploration of multimodal llms. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:
 642 87310–87356, 2024a.

643 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide shut? exploring
 644 the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 645 and Pattern Recognition (CVPR)*, pp. 9568–9578, 2024b.

646 Fengxiang Wang, Mingshuo Chen, Yueying Li, Di Wang, Haotian Wang, Zonghao Guo, Zefan Wang, Boqi Shan,
 647 Long Lan, Yulin Wang, et al. Geollava-8k: Scaling remote-sensing multimodal large language models to 8k
 648 resolution. *arXiv preprint arXiv:2505.21375*, 2025a.

648 Fengxiang Wang, Hongzhen Wang, Zonghao Guo, Di Wang, Yulin Wang, Mingshuo Chen, Qiang Ma, Long
 649 Lan, Wenjing Yang, Jing Zhang, et al. Xlrs-bench: Could your multimodal llms understand extremely large
 650 ultra-high-resolution remote sensing imagery? In *Proceedings of the IEEE/CVF Conference on Computer
 651 Vision and Pattern Recognition (CVPR)*, pp. 14325–14336, 2025b.

652 Haochen Wang, Yucheng Zhao, Tiancai Wang, Haoqiang Fan, Xiangyu Zhang, and Zhaoxiang Zhang. Ross3d:
 653 Reconstructive visual instruction tuning with 3d-awareness. *Proceedings of the IEEE/CVF International
 654 Conference on Computer Vision (ICCV)*, 2025c.

655 Haochen Wang, Anlin Zheng, Yucheng Zhao, Tiancai Wang, Zheng Ge, Xiangyu Zhang, and Zhaoxiang Zhang.
 656 Reconstructive visual instruction tuning. In *International Conference on Learning Representations (ICLR)*,
 657 2025d.

658 Jiacong Wang, Bohong Wu, Haiyong Jiang, Zhou Xun, Xin Xiao, Haoyuan Guo, and Jun Xiao. World to code:
 659 Multi-modal data generation via self-instructed compositional captioning and filtering. In *Proceedings of the
 660 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 4608–4623, 2024a.

661 Jiacong Wang, Zijiang Kang, Haochen Wang, Haiyong Jiang, Jiawen Li, Bohong Wu, Ya Wang, Jiao Ran, Xiao
 662 Liang, Chao Feng, et al. Vgr: Visual grounded reasoning. *arXiv preprint arXiv:2506.11991*, 2025e.

663 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
 664 Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution.
 665 *arXiv preprint arXiv:2409.12191*, 2024b.

666 Weiyun Wang, Zhe Chen, Wenhui Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu,
 667 Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large language models via mixed
 668 preference optimization. *arXiv preprint arXiv:2411.10442*, 2024c.

669 Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, Wei Yu, and Dacheng Tao. Divide,
 670 conquer and combine: A training-free framework for high-resolution image perception in multimodal large
 671 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, volume 39, pp.
 672 7907–7915, 2025f.

673 Lai Wei, Yuting Li, Chen Wang, Yue Wang, Linghe Kong, Weiran Huang, and Lichao Sun. Unsupervised
 674 post-training for multi-modal llm reasoning via grpo. *arXiv preprint arXiv:2505.22453*, 2025a.

675 Lai Wei, Yuting Li, Kaipeng Zheng, Chen Wang, Yue Wang, Linghe Kong, Lichao Sun, and Weiran Huang.
 676 Advancing multimodal reasoning via reinforcement learning with cold start. *arXiv preprint arXiv:2505.22334*,
 677 2025b.

678 Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms. In *Proceedings
 679 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13084–13094, 2024.

680 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma,
 681 Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language models for
 682 advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

683 Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi Lin,
 684 Shuo Liu, et al. Mmt-bench: A comprehensive multimodal benchmark for evaluating large vision-language
 685 models towards multitask agi. *arXiv preprint arXiv:2404.16006*, 2024.

686 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
 687 Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint
 688 arXiv:2503.14476*, 2025.

689 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
 690 Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 691 benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 692 Recognition (CVPR)*, 2024.

693 Yi-Fan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Junfei Wu, Feng Li, Kun Wang,
 694 Qingsong Wen, Zhang Zhang, et al. Mme-realworld: Could your multimodal llm challenge high-resolution
 695 real-world scenarios that are difficult for humans? *arXiv preprint arXiv:2408.13257*, 2024a.

696 Yuan Zhang, Tao Huang, Chun-Kai Fan, Hongyuan Dong, Jiawen Li, Jiacong Wang, Kuan Cheng, Shanghang
 697 Zhang, Haoyuan Guo, et al. Unveiling the tapestry of consistency in large vision-language models. *Advances
 698 in Neural Information Processing Systems*, 37:118632–118653, 2024b.

702 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyen Luo, Zhangchi Feng, and Yongqiang Ma.
703 Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual*
704 *Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok,
705 Thailand, 2024. Association for Computational Linguistics.

706 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong. Easyrl: An
707 efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>,
708 2025a.

709 Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and Xing Yu.
710 Deepeyes: Incentivizing "thinking with images" via reinforcement learning. *arXiv preprint arXiv:2505.14362*,
711 2025b.

712 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie
713 Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal
714 models. *arXiv preprint arXiv:2504.10479*, 2025.

715 Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling. Detection and
716 tracking meet drones challenge. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,
717 44(11):7380–7399, 2021.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A OVERVIEW

Here, we provide a table of contents:

- First, in Appendix B, we provide the annotation pipeline in detail, which includes three rounds of quality control.
- In Appendix C, we introduce statistics of our **TreeBench**.
- In Appendix D, we perform in-depth analysis on our **TreeBench**.
- In Appendix E, we provide implementation details of our two-stage training pipeline, including cold-start initialization and reinforcement learning with traceable evidence.
- In Appendix F, we provide more experiments of our **TreeVGR**, including results on general multimodal benchmarks and ablation studies.
- In Appendix G, we discuss our limitations in detail.
- Finally, in Appendix H, we provide qualitative examples and failure cases of our **TreeVGR**.

B ANNOTATION PIPELINE

TreeBench was constructed through a systematic pipeline combining automated sampling, LMM-assisted generation, and three rounds of human validation. The annotation team contains eight human experts in LMMs, including six Ph.D candidates and two senior research scientists.

1. Image Selection. A total of 1K images are initially sampled from the SA-1B (Kirillov et al., 2023), with deliberate prioritization of images containing high-density objects (*e.g.*, scenes with overlapping or clustered items), as it offers high-resolution, real-world scenes with a large number of small and varied objects, making it particularly suitable for evaluating visual grounded reasoning. To ensure balanced representation across categories, 100 images are initially allocated per category.

2. First Round Quality Control. The annotation team manually evaluates the relevance and quality of each image for its assigned category. This step is critical for addressing category-specific requirements, *e.g.*, the “Ordering” category necessitates images with visually similar or repetitive objects for practical reasoning tasks. Following this review, 647 images meet the criteria.

3. Automated Question Generation. Question-option-answer trios are then generated using two advanced LMMs, *i.e.*, OpenAI-o3 (OpenAI, 2025) and Gemini-2.5-Pro (DeepMind, 2025b), each tasked with producing three diverse, high-quality questions per image. Prompts are designed to emphasize task-specific complexity and visual-semantic alignment.

4. Second Round Quality Control. Human experts then manually review all six model-generated questions per image. For each image, annotators selected the most semantically coherent and task-relevant question from the pool of six, prioritizing: (1) alignment with the target subtask, (2) avoidance of trivial or ambiguous object referring, and (3) clarity and unambiguous answerability. If none of the six questions met these criteria, annotators manually constructed a new question. This step ensures that only high-quality, human-vetted questions advance to the next stage.

5. Difficulty Filtering. Questions deemed insufficiently challenging are removed through model-based consensus screening. Specifically, any question answered correctly by all four state-of-the-art vision-language models (Qwen2.5-VL-72B (Bai et al., 2025a), InternVL3-78B (Zhu et al., 2025), GPT-4o (OpenAI, 2024a), Gemini-2.5-Flash (DeepMind, 2025a)) was excluded to ensure the benchmark retained meaningful difficulty.

6. Third Round Quality Control. The final cross-verification phase engages independent human annotators to cross-validate the accuracy and relevance of each question-option-answer pair. The final dataset comprised 405 rigorously validated questions.

C BENCHMARK STATISTICS

Distribution of Each Subtask. As demonstrated in Figure 4, **TreeBench** emphasizes advanced reasoning tasks, accounting for 63% of the total subtasks (256 questions), while basic perception-

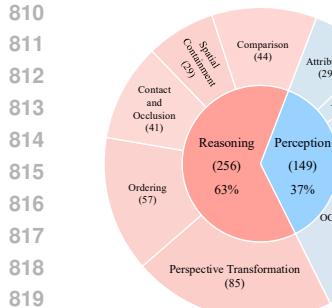


Figure 4: Distribution of each discipline in **TreeBench**, which prioritizes reasoning over perception.

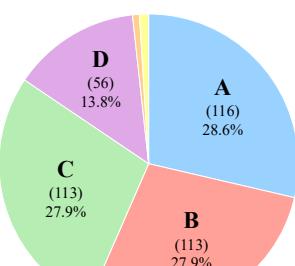


Figure 5: The ground-truth distribution of **TreeBench** with 3 instances of E and 4 instances of F.

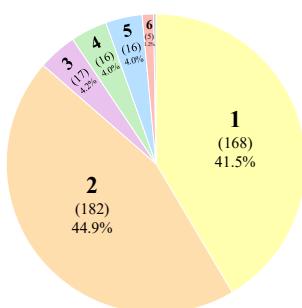


Figure 6: Distribution of the number of instances in **TreeBench**, with one question with 8 target instances.

related tasks constitute 37% (149 questions). Within the reasoning category, key subtasks reflect a focus on complex spatial and relational understanding. This structure underscores a deliberate prioritization of higher-order reasoning over foundational perceptual tasks, aligning with the goal of challenging models to process nuanced relationships and transformations rather than mere object recognition or attribute detection.

Distribution of Answers. As illustrated in Figure 5, the ground-truth distribution of **TreeBench** is dominated by four main categories: A (28.6%, 116 instances), B (27.9%, 113 instances), C (27.9%, 113 instances), and D (13.8%, 56 instances). These account for 98.2% of the total 405 instances. The remaining 1.8% (7 instances) includes E (3 instances) and F (4 instances). This structure highlights a balanced emphasis on categories A, B, and C, with D as a notable secondary group, while E and F represent minor but distinct components.

Distribution of the Number of Target Instances. Figure 6 shows the distribution of the number of target instances per question. The majority of questions in **TreeBench** require identifying 1 or 2 target instances, accounting for 41.5% (168 questions) and 44.9% (182 questions) of the total, respectively. Questions requiring 3, 4, 5, or 6 targets constitute smaller fractions: 4.2% (17 questions), 4.0% (16 questions), 4.0% (16 questions), and 1.2% (5 questions), respectively. Notably, a single question (highlighted in gray) demands 8 target instances, representing an extreme case. Overall, 86.4% of questions focus on 1–2 targets, suggesting a balance between simplicity and complexity in task design while incorporating rare multi-target scenarios for comprehensive evaluation.

Distribution of Target Instance Area. We compute the *relative* area for each target instance using its bounding box, *i.e.*, $\text{area} = \frac{1}{HW}(y_2 - y_1)(x_2 - x_1)$, where H and W are the input resolution. Figure 7 is the histogram of the mean area for each question. It illustrates that the majority of target instances in **TreeBench** are extremely small, with a sharp peak near 0.0 and a long tail extending to larger areas (up to 0.7). The mean area across all questions is 0.0305, confirming that targets are predominantly tiny. Most questions (highest frequency bin) involve target instances with areas clustered around 0.0 to 0.05, while only a small fraction require identifying larger objects. This distribution highlights the importance of addressing challenging scenarios where small-scale object detection and reasoning are crucial, potentially compromising model performance.

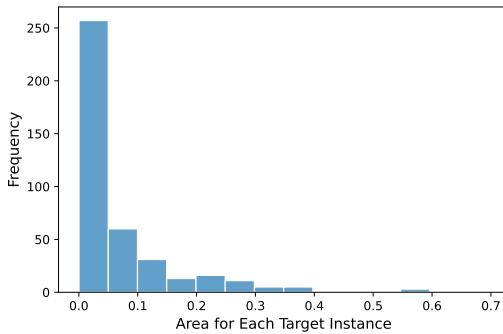


Figure 7: The histogram of mean target instance areas per question with a low average of 0.0305 (indicating small target instances).

D ANALYSIS OF TREEBENCH

Correlation between Localization and Performance. Importantly, for visual grounded reasoning models, our traceable evaluation demonstrates a *positive correlation* between localization preci-

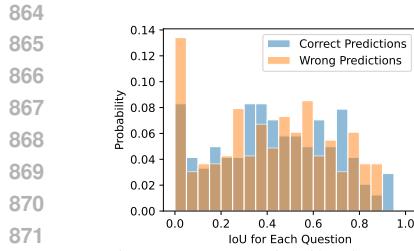


Figure 8: Distribution of IoU for each question in **TreeBench**.

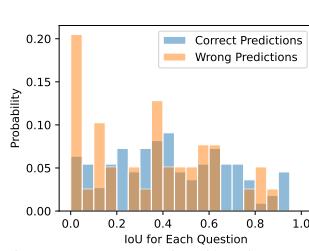


Figure 9: Distribution of IoU for each question in **TreeBench-Perception**.

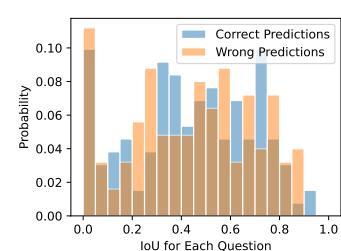


Figure 10: Distribution of IoU for each question in **TreeBench-Reasoning**.

Figure 11: Performance decoupling with AI2D (Hiippala et al., 2021).

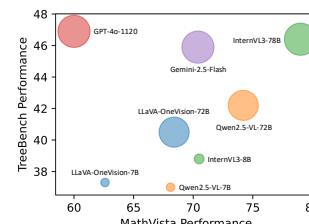


Figure 12: Performance decoupling with MathVista (Lu et al., 2023).

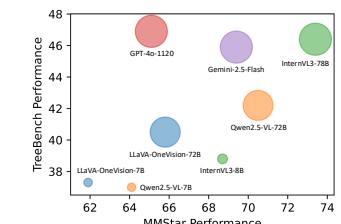


Figure 13: Performance decoupling with MMStar (Chen et al., 2024a).

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
1

918
 919 **Table 5: Performance comparison with *masked* target instances.** When masking out all target
 920 instances on **TreeBench**, we observe a significant performance drop across all models, confirming
 921 that the annotated bounding boxes are not only high-quality but also indispensable for accurate visual
 922 grounded reasoning.

Masking	Qwen2.5-VL-7B	InternVL3-8B	GPT-4o	o3	Gemini-2.5-Flash	Gemini-2.5-Pro
	37.0	38.8	46.9	54.8	45.9	54.1
✓	31.8 \downarrow 5.2	29.6 \downarrow 9.2	29.1 \downarrow 17.8	33.8 \downarrow 21.0	29.9 \downarrow 16.0	33.1 \downarrow 21.0

923
 924 **Table 6: Performance comparison with explicit bounding boxes-based textual hints.** When
 925 we provide ground-truth bounding boxes as explicit evidence hints to models, all models achieve
 926 consistent performance gains.

Textual Boxes	Qwen2.5-VL-7B	InternVL3-8B	GPT-4o	o3	Gemini-2.5-Flash	Gemini-2.5-Pro
	37.0	38.8	46.9	54.8	45.9	54.1
✓	43.7 \uparrow 6.7	43.5 \uparrow 4.7	49.4 \uparrow 2.5	58.3 \uparrow 3.5	51.9 \uparrow 6.0	61.0 \uparrow 6.9

934 E IMPLEMENTATION DETAILS

935 E.1 COLD-START INITIALIZATION

936 **Data Construction.** We base our supervised fine-tuning (SFT) dataset on VGR-158K (Wang et al.,
 937 2025e), which provides pseudo-chain-of-thought annotations paired with bounding boxes for visual
 938 reasoning tasks. However, to align with the grounding capabilities of our base model (Qwen2.5-VL
 939 series (Bai et al., 2025a)), which outputs *absolute* coordinates rather than the normalized coordinates
 940 (ranging from 0 to 1) used by LLaVA-NeXT (Liu et al., 2024a) in (Wang et al., 2025e), we perform
 941 coordinate system conversion. Specifically, for each bounding box, we transform normalized coordinates
 942 $[r_{x_1}, r_{y_1}, r_{x_2}, r_{y_2}]$ into *absolute* coordinates via $[x_1, y_1, x_2, y_2] = [Wr_{x_1}, Hr_{y_1}, Wr_{x_2}, Hr_{y_2}]$,
 943 where $H \times W$ is the resolution of the input image. Next, we filter samples to prioritize complex
 944 reasoning pathways, retaining only entries with multiple bounding boxes (*i.e.*, more than one box
 945 per reasoning trajectory). This yields 35K samples, as multi-box interactions demand stronger
 946 spatial-temporal reasoning compared to single-box tasks. Subsequently, we construct a reflective
 947 subset of 4.7K samples among them by introducing controlled perturbations: for each sample, we (1)
 948 inject a synthetic error by inserting a randomly generated incorrect bounding box into the reasoning
 949 sequence, and (2) append the meta-cognitive prompt “Wait, this box seems to be wrong” immediately
 950 afterward, resulting in our **TreeVGR-SFT-35K**. This design explicitly trains the model to detect and
 951 correct erroneous visual grounding, which is a critical skill for robust real-world deployment.

952 **Optimization.** Initialized from Qwen2.5-VL-7B-Instruct (Bai et al., 2025a), we train **TreeVGR-7B-CI** (“CI” here stands for Cold Initialization) with 8 GPUs using LLaMA-Factory (Zheng et al., 2024),
 953 where the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 5e-6 and a global
 954 batch size of 256 is utilized. The learning rate is decayed following a cosine schedule (Loshchilov &
 955 Hutter, 2016) with a warmup ratio of 0.1.

956 E.2 REINFORCEMENT LEARNING

957 **Data Construction.** **TreeVGR** incorporates a novel dual IoU reward, which means each sample
 958 should contain ground-truth bounding boxes during the RL phase. To this end, we filter *hard* samples
 959 from the original 191K training set of V* (Wu & Xie, 2024) using Qwen2.5-VL-7B-Instruct (Bai
 960 et al., 2025a), resulting in 30K samples. Additionally, we incorporate the VisDrone dataset (Zhu
 961 et al., 2021), which is originally designed for detection and tracking under UAV images, which offers
 962 extremely high-resolution, real-world scenes with a large number of small and varied objects and
 963 their corresponding bounding box annotations. We reformulate the training set and the validation set
 964 into 38K multiple-choice counting problems, and only retain samples with the ground-truth number
 965 ranging from 5 to 10, contributing to the final 7K samples. Finally, our **TreeVGR-RL-37K** consists
 966 of 30K open-ended question-answering samples from V* (Wu & Xie, 2024) and 7K multiple-choice
 967 problems from VisDrone (Zhu et al., 2021).

968 **Optimization.** Initialized from **TreeVGR-7B-CI**, we train our final **TreeVGR-7B** with 8 GPUs,
 969 with another 8 GPUs serving the reward model, *i.e.*, Qwen2.5-72B-Instruct (Team, 2024), using
 970 vLLM (Kwon et al., 2023). We adopt Group Relative Policy Optimization (GRPO) (Shao et al.,

972
 973 Table 7: Comparison with state-of-the-art alternatives on other multimodal benchmarks, including
 974 CV-Bench (Tong et al., 2024a), MMVP (Tong et al., 2024b), MMBench (Liu et al., 2023b), POPE (Li
 975 et al., 2023c), AI2D (Hiippala et al., 2021), and ChartQA (Masry et al., 2022). \dagger Results are obtained
 from (Guo et al., 2025b), otherwise are self-collected.

976 977 978 979 980 981 982 983 984	Capability	Benchmark	Qwen2.5-VL-7B	TreeVGR-7B	Qwen2.5-VL-72B
question answering	Vision-centric	CV-Bench-2D	74.1	76.9 \uparrow 2.8	77.7
	CV-Bench-3D	72.6	77.6 \uparrow 5.0	87.0	
	MMVP	66.7	75.3 \uparrow 8.6	66.7 \dagger	
General VQA	MMBench ^{en} _{dev}	83.1	84.4 \uparrow 1.3	88.6 \dagger	
	POPE	86.7	87.2 \uparrow 0.5	84.9	
Document and chart	AI2D _{test}	84.9	84.8 \downarrow 0.1	88.7 \dagger	
	ChartQA _{test}	85.6	85.8 \uparrow 0.2	89.5 \dagger	

985
 986 Table 8: Ablations of each component of our **TreeVGR**. “MME-RW” stands for MME-RealWorld-
 987 Lite (Zhang et al., 2024a), and “Acc” represents the multiple-choice accuracy. \dagger This improvement
 988 mainly comes from the training set, as many training samples from V* (Wu & Xie, 2024) are included
 989 in RL. \ddagger The model *enumerates* boxes to obtain larger IoU recall, and fails to produce final answers.

990 991 992		Rewards			TreeBench		V*	MME-RW	
		Cold-Start	$R_{\text{acc}} + R_{\text{format}}$	$R_{\text{IoU}}^{\text{R}}$	$R_{\text{IoU}}^{\text{P}}$	Acc	mIoU	Acc	
①	Qwen2.5-VL-7B					37.0	–	71.2	42.3
②	Cold-Start	✓				39.0	23.4	76.4	48.4
③	TreeVGR	✓	✓	✓	✓	50.4	44.0	91.1	54.9
④	w/o Traceable Evidence	✓	✓			38.0	27.2	87.9 \dagger	51.6
⑤	w/o Precision \ddagger	✓	✓		✓	0.0	78.3	0.0	0.0
⑥	w/o Recall	✓	✓		✓	45.4	20.6	89.5	52.6
⑦	Text-Only RL		✓			39.0	–	86.9 \dagger	46.3

1000 2024b), which has been proved to be effective and efficient for diverse tasks. We have also tried
 1001 DAPO (Yu et al., 2025), but we find it unstable compared with GRPO. Therefore, we simply utilize
 1002 the original GRPO (Shao et al., 2024b). We implement using EasyR1 (Zheng et al., 2025a), which is
 1003 a clean fork of veRL (Sheng et al., 2024). We train our **TreeVGR-7B** with 5 epochs on **TreeVGR-
 1004 RL-37K**, which is significantly less than DeepEyes-7B (Zheng et al., 2025b) (which is trained on
 1005 47K samples with 32 epochs).

1007 F MORE EXPERIMENTS

1008 F.1 RESULTS ON OTHER MULTIMODAL BENCHMARKS

1010 In Table 7, we compare our **TreeVGR** with its base model Qwen2.5-VL-7B (Bai et al., 2025a) on
 1011 a variety of conventional multimodal benchmarks. Specifically, we select CV-Bench (Tong et al.,
 1012 2024a) and MMVP (Tong et al., 2024b) to evaluate vision-centric question-answering capabilities.
 1013 MMBench (Liu et al., 2023b) and POPE (Li et al., 2023c) are selected for evaluating general VQA
 1014 capabilities, and AI2D (Hiippala et al., 2021) and ChartQA (Masry et al., 2022) for comprehension
 1015 with document and chart. We observe significant improvements in most cases, especially for vision-
 1016 centric benchmarks. Notably, **TreeVGR-7B** achieves 75.3 on MMVP (Tong et al., 2024b), even
 1017 surpasses Qwen2.5-VL-72B (Bai et al., 2025a) by a significant margin.

1018 F.2 ABLATION STUDIES

1019 The core contribution of **TreeVGR** is the *traceable* training pipeline, where the dual IoU reward
 1020 R_{IoU} is incorporated in conventional RL training. Therefore, we aim to evaluate the effectiveness
 1021 of including this traceable term. As demonstrated in Table 8, we ablate each component of our
 1022 **TreeVGR**, including the cost-start initialization and reward functions.

1024 The cold-start stage is quite beneficial for visual grounded reasoning, when compared with ①
 1025 and ②. This means the formatting of outputting bounding boxes of target instances is useful for
 conventional visual grounded reasoning benchmarks like V* Bench (Wu & Xie, 2024) and MME-

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
RealWorld-Lite (Zhang et al., 2024a). Note that these benchmarks can be regarded as Out-of-Domain (OOD) samples for the SFT dataset.

Traceable visual grounded reasoning is more effective than untraceable one, when compared with ③ and ④. Starting from the *same* cold-start checkpoint, integrating dual IoU rewards into the RL framework yields substantial performance gains, particularly on our **TreeBench** and MME-RealWorld-Lite (Zhang et al., 2024a), which represent out-of-distribution (OOD) scenarios relative to the RL training data. Notably, on **TreeBench**, our **TreeVGR** demonstrates significant enhancements in both overall accuracy and mIoU. This dual improvement suggests that precise and interpretable reasoning pathways are critical for achieving optimal performance, underscoring the value of structured reward design in complex, real-world tasks.

The precision term is crucial for alleviating the repetition problem, when compared with ③ and ⑤. As illustrated in Figure 14, without precision, the mean response length grows rapidly. When evaluating this model, we find that it tends to *enumerate* candidate bounding boxes to obtain larger IoU recall and thus always fails to produce final answers.

The recall term is crucial for precise and complete localization, when compared with ③ and ⑥. On **TreeBench**, without the recall term, the model achieves significant accuracy improvements, but the localization accuracy (mIoU) remains limited, usually grounding *incomplete* target instances.

Vanilla text-only RL is not so effective as visual grounded reasoning, when compared with ③ and ⑦. Vanilla RL in text-based tasks demonstrates value through its text-space reasoning capabilities. However, when integrating visual grounded reasoning with traceable evidence, the performance gains become more significant. This highlights the critical role of two factors: (1) pre-answer contextual grounding to anchor responses in multimodal evidence, and (2) accurate spatial localization to refine decision-making precision.

G LIMITATIONS AND FUTURE WORKS

One possible limitation of **TreeVGR** is the model scale and architecture, which is limited to Qwen2.5-VL-7B (Bai et al., 2025a). Experiments with other base models and larger model scales could be future work. Furthermore, **TreeVGR** is *not* a general multimodal reasoner, as it is not designed to perform ultra-long reasoning processes in math, sciences, and coding. How to effectively unify vision-centric reasoning models with standard text-centric models could be a future work.

As for **TreeBench**, we find that the “perspective transform” protocol becomes one of the major bottlenecks, which means current state-of-the-art multimodal models, even including visual grounded reasoning models, have *not* effectively modeled the ego-view 3D awareness. Moreover, basic perception capabilities *under complex scenes* are also limited, leading to relatively low scores on “attributes” and “material”. How to effectively let LMMs perceive *any* details of the dense visual world becomes a critical challenge.

H QUALITATIVE EXAMPLES OF TREEVGR

We first provide qualitative examples of the correlation between the predicted bounding boxes and the model’s internal attention maps in Figure 15, where the attention values are the *mean* attention of generated tokens related to bounding boxes (highlighted in red). Strong correlations are observed across examples, indicating that the model’s focus is truly guided by those textual bounding boxes-based hints. This explains why visual grounded reasoning pipelines could be such effective. Note that sometimes the visual attention is still *being overwhelmed by textual domain knowledge* even if the grounding is accurate (see the failure case in Figure 15). Explicitly enforcing the model’s focus beyond attention may be one potential solution.

Next, we provide qualitative examples and failure cases of our **TreeVGR** on each category of **TreeBench** in Figures 16 to 25.

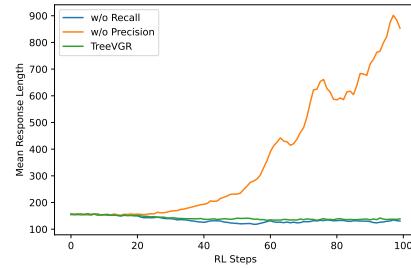


Figure 14: Mean response length with different IoU rewards. The precision term is crucial for alleviating the repetition problem.

Figure 15: Qualitative examples (first three rows) and failure cases (the last row) on V* Bench (Wu & Xie, 2024) with attention maps.

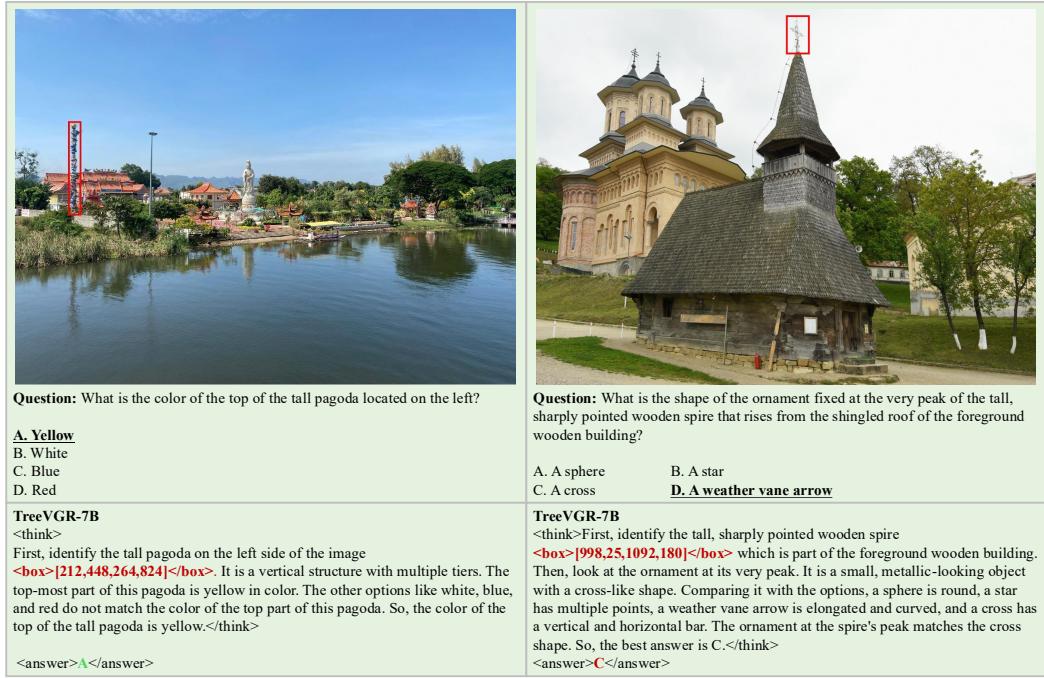


Figure 16: Qualitative examples (left) and failure cases (right) on the “Attributes” protocol of TreeBench.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

Question: Based on the reflections and sheen, what is the most likely primary material and finish combination of the tall, gooseneck kitchen faucet prominently positioned in the center foreground, above the stainless steel sink?

A. Polished brass
C. Matte black coated alloy

B. Brushed stainless steel
D. Oil-rubbed bronze

Question: The white plate in the foreground, adorned with a light brown geometric pattern and holding the falafel, most likely has which type of surface finish?

A. High-gloss.
C. Textured, non-slip silicone

B. Matte.

D. Glass-like.

Target Instances:

TreeVGR-7B

<think>

First, identify the tall, gooseneck kitchen faucet **<box>[1804,704,1128,1507]</box>** in the center-foreground above the stainless-steel sink. The faucet has a shiny, reflective surface. The stainless-steel sink also has a reflective surface. The lighting in the image is bright, which enhances the reflective quality. Considering the options: Polished brass would have a warm, golden color and a different sheen. Brushed stainless steel has a light, metallic sheen which matches the faucet's appearance. Matte black coated alloy would have a dark, non-reflective finish, which doesn't match. Oil-rubbed bronze has a dark, matte finish, also not matching. The faucet's finish is consistent with brushed stainless steel, which is a common and durable material for kitchen faucets. </think>

<answer>**B**</answer>

<answer>**B**</answer>

Figure 17: Qualitative examples (left) and failure cases (right) on the “Material” protocol of **TreeBench**.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

Question: What is the physical posture of the boy in the red shirt on the grassy hill at the far top left?

A. He is standing and watching the performance.
B. He is lying down flat on the grass.
C. He is in the middle of running down the hill.
D. He is sitting with his knees bent.

TreeVGR-7B

<think>

First, identify the boy in the red shirt on the grassy hill at the far top left. **<box>[120,492,175,571]</box>** He is sitting on the grass with his legs folded under him, which is a typical sitting posture with knees bent. There is no indication that he is standing, lying down, or running. So, the physical posture that matches the description is sitting with his knees bent. </think>

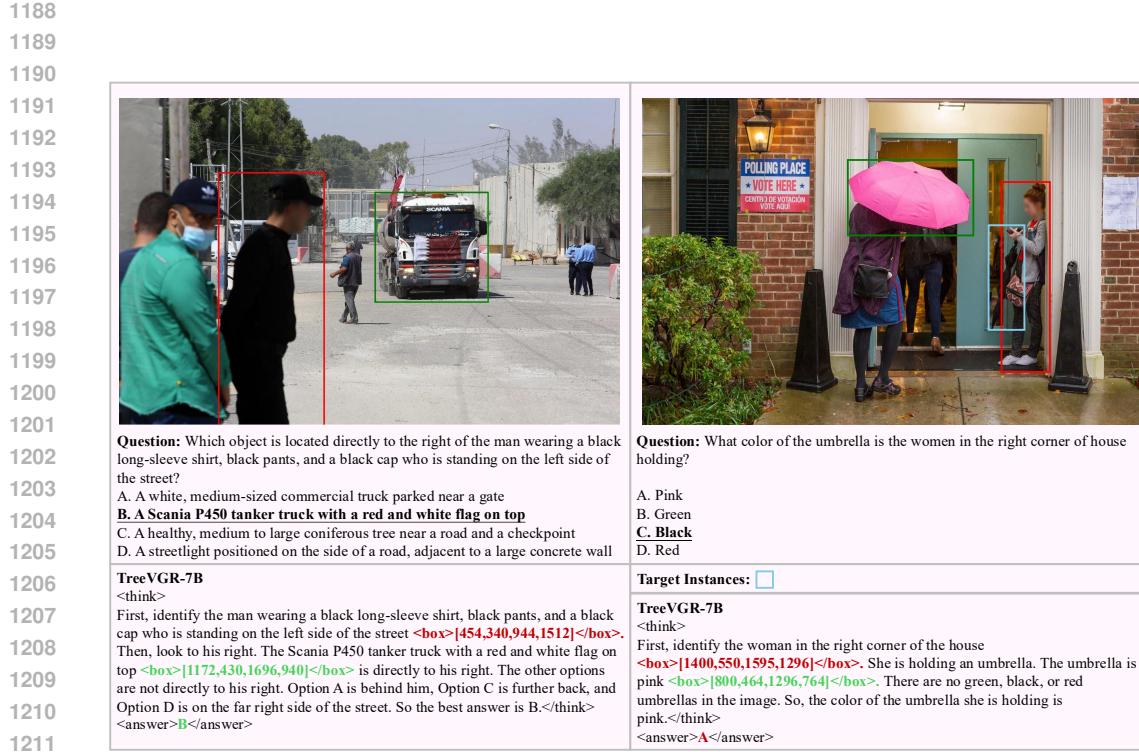
<answer>**D**</answer>

Question: What is the current state of the soccer ball located near the lower-right portion of the field?

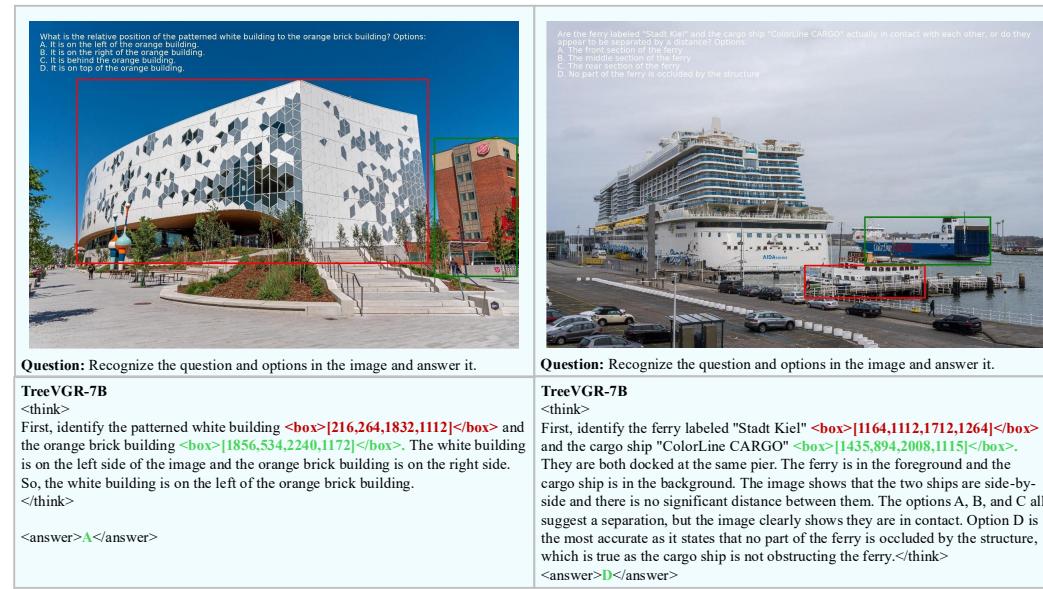
A. Rolling along the grass B. Resting motionless on the ground
C. Suspended in mid-air D. Trapped under the white-uniformed player's boot

TreeVGR-7B

<think>


First, identify the soccer ball near the lower-right portion of the field **<box>[1520,1008,1620,1112]</box>**. It is a white ball with blue patterns. Then, observe its position relative to the players. The player in the white uniform (number 89) is in the process of kicking it. The ball is clearly on the ground and in motion as it is being kicked. There is no indication that it is suspended in mid-air, resting, or trapped under the player's boot. So, the ball is rolling along the grass. </think>

<answer>**A**</answer>


1186

1187

Figure 18: Qualitative examples on the “Physical State” protocol of **TreeBench**.

1212 Figure 19: Qualitative examples (left) and failure cases (right) on the “Object Retrieval” protocol of
1213 **TreeBench**.

1238 Figure 20: Qualitative examples on the “OCR-Integrated Question-Answering” protocol of
1239 **TreeBench**.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Question: From the perspective of the man wearing a mask and a brown-and-white striped shirt, in which direction is the woman, wearing a white long-sleeve top, dark brown trousers, and carrying a bag on her left shoulder, located?

A. Front left
 B. Front right
C. Left rear
 D. Right rear

TreeVGR-7B

<think>

First, identify the man wearing a mask and a brown-and-white striped shirt `<box>[584,1014,656,1140]</box>`. Then, find the woman in a white long-sleeve top, dark brown trousers, and carrying a bag on her left shoulder `<box>[724,884,784,1020]</box>`. The woman is positioned behind and to the left of the man. So, from the man's perspective, she is in the rear and to his left. Thus, the woman is in the left-rear direction relative to the man.</think>

<answer>**C**</answer>

Question: From the perspective of the third person riding an electric scooter from left to right, in which direction is the red compact SUV located?

A. Front right
B. Front left
 C. Left rear
 D. Right rear

Target Instances:

TreeVGR-7B

<think>

First, identify the red compact SUV `<box>[1084,1054,1164,1096]</box>` which is parked near the building on the right side of the image. Then, consider the perspective of a third-person riding an electric scooter from left to right. The SUV is positioned behind and to the right of the scooter rider. So, relative to the scooter rider, the SUV is in the rear and to the right. Thus, the SUV is in the right-rear direction.</think>

<answer>**D**</answer>

Figure 21: Qualitative examples (left) and failure cases (right) on the “Perspective Transform” protocol of **TreeBench**.

Question: Counting from right to left, which person has a black watch on his/her left hand?

A. The first one
 B. The second one
C. The third one
 D. The fourth one

TreeVGR-7B

<think>

First, identify the person on the far right in the image `<box>[1640,584,2027,1224]</box>`. This person is wearing a black watch on their left hand. Then, check the person to their left `<box>[1432,480,1752,1371]</box>`, who also has a black watch on their left hand. Since the question asks for the first one, the person on the far right is the first one in the sequence from right to left. So the answer is C.</think>

<answer>**C**</answer>

Question: Among the trees behind the pink sign, which one is the shortest when counted from left to right?

A. The first one
 B. The second one
 C. The third one
D. The fourth one

Target Instances:

TreeVGR-7B

<think>

First, identify the pink sign `<box>[844,832,1104,912]</box>` in the image. Then, look at the trees behind it. The first tree on the left is a tall, narrow evergreen tree. The second tree is also tall and narrow. The third tree is shorter than the first two and has a more rounded shape. The fourth tree is taller than the third one. So, the third tree is the shortest among them when counted from left to right.</think>

<answer>**C**</answer>

Figure 22: Qualitative examples (left) and failure cases (right) on the “Ordering” protocol of **TreeBench**.

1293

1294

1295

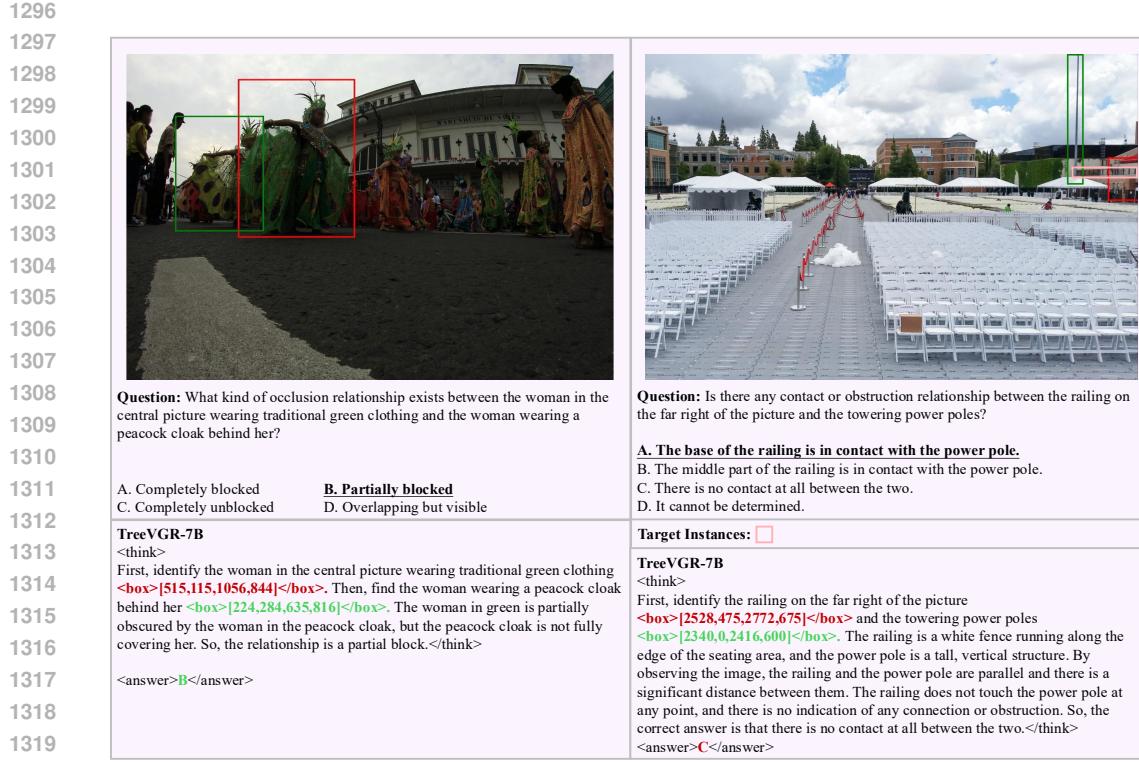


Figure 23: Qualitative examples (left) and failure cases (right) on the “Contact and Occlusion” protocol of **TreeBench**.

Figure 24: Qualitative examples (left) and failure cases (right) on the “Spatial Containment” protocol of **TreeBench**.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

Question: In the distant skyline, the actual height of the slender, blue-glass, cone-shaped skyscraper towering in the center of the frame, the narrow, dark gray chimney not far to its right, and the milky white building to the left of the frame. Which object in the photo is actually taller?

A. The smokestack appears tallest among the 3 buildings
B. The milky white building appears tallest among the 3 buildings
C. The blue-glass skyscraper appears tallest among the 3 buildings
D. All objects are not visible clearly enough to judge height.

TreeVGR-7B

<think>

First, identify the three key buildings in the image. The slender, blue-glass, cone-shaped skyscraper `<box>[1144,534,1283,1224]</box>` is the tallest among the three. The narrow, dark gray chimney `<box>[1688,592,1752,816]</box>` is the shortest. The milky white building `<box>[0,0,731,1512]</box>` is in the left-hand side of the frame and is shorter than the skyscraper. So, the skyscraper is the tallest among the three. </think>

<answer>**C**</answer>

Question: In the picture, the left side of the bus extends from the back of the car to the front of the car, a total of 10 hand straps, counting from 1 to 10, which is the actual distance and the little girl's head is the closest?

A. 2
C. 4
D. 8

TreeVGR-7B

<think>

First, identify the left-side hand straps in the image.
`<box>[192,75,288,450]</box> <box>[400,160,475,475]</box>`
`<box>[550,220,611,490]</box> <box>[772,285,824,525]</box>`
`<box>[904,360,965,550]</box> <box>[965,385,1032,570]</box>`
`<box>[1024,410,1075,575]</box> <box>[1352,335,1432,515]</box>`
`<box>[1424,355,1500,570]</box>` Counting these, there are 10 hand straps. The little girl's head is the closest among them. So, the left-side of the bus from the back of the car to the front of the car is 10 units long, and the little girl's head is the closest. The question asks for the option that matched this distance and the position of the little girl's head. The option 6 is the closest match as it is the closest among the given options. </think>

<answer>**B**</answer>

Figure 25: Qualitative examples (left) and failure cases (right) on the “Comparison” protocol of **TreeBench**.

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403