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Abstract

Transformers dominate NLP, yet their core
component, self-attention, remains a heuristic,
lacking a robust theoretical foundation. This pa-
per reinterprets self-attention with rotary posi-
tional embeddings (RoPE) as Nadaraya-Watson
kernel regression, unlocking a novel framework
for enhancing attention through kernel model-
ing. We introduce Gaussian Process Attention
(GPA), which augments RoPE with a bank of
decaying periodic kernels to capture linguis-
tic patterns like periodicity and decay. Tested
on a GPT model with character-level tokeniza-
tion and a 13-million-character corpus, GPA
outperforms baseline RoPE, reducing mean
cross-entropy loss. GPA kernel banks enable
mechanistic interpretability, revealing linguis-
tic structures—such as paragraph lengths—and
identifying redundant attention heads for model
pruning. With only a few additional parame-
ters, GPA enhances efficiency without sacri-
ficing performance. Our work bridges kernel
methods and Transformers, providing a theoret-
ical lens for attention while delivering practical
gains in performance and interpretability. We
pave the way for scalable, interpretable NLP
models, with implications for optimizing large-
scale Transformers and understanding their in-
ner workings.

1 Introduction

The Transformer model (Vaswani et al., 2017) has
revolutionized artificial intelligence, and has be-
come a key foundational architecture across diverse
domains such as NLP (Kalyan et al., 2021), com-
puter vision (Khan et al., 2022; Han et al., 2022),
speech recognition (Gulati et al., 2020), computa-
tional biology (Zhang et al., 2023), and more. Nev-
ertheless, Transformers remain more of a heuristic
than a formal scientific framework. An underlying
theory explaining not just how, but why they work
has remained elusive, but such a theory is, arguably,
essential for predicting safety, reliability, and align-
ment (Bereska and Gavves, 2024). Theoretical

models are useful at several levels. They provide
intuition, but more importantly, they establish a
framework for analyzing errors and are a spring-
board for the invention of new algorithms. The
objective of this work is to present a modified self-
attention model that both improves performance
and provides a basis for interpreting characteristics
seen in results when used in inference.

2 Methodology

2.1 Theory

The methodology used in this work builds on
Nadaraya-Watson (NW) regression (Nadaraya,
1964; Watson, 1964), which uses a set of observed
points, {x;,y;}, i = 1,..., N, and a kernel func-
tion, Kp, to estimate the value of y at any new point,
x. The estimate, ¢, is computed as a normalized-
weighted, shifted sum of the kernel function:
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In this expression, the function, K}, is centered
around each of the x; and weighted by the corre-
sponding y;. This shifted and normalized weighted
sum forms the regression function. The shape of
K, is typically a symmetric, Gaussian-like curve
whose width is controlled by a parameter h. Fig-
ure 1 illustrates a simple 1D example.

When self-attention is implemented using rotary
positional embeddings (RoPE) (Su et al., 2024), its
form is the same as NW regression
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Here the z; are vectors in R% and z,, € R% is
the target vector. The matrices ), K, and V are
learned parameters, and RoPE is a deterministic
sparse matrix © that operates on the query, Qx,,
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Figure 1: Illustrating Nadaraya-Watson regression. The
resulting regression function, shown as a blue curve,
is the weighted sum of shifted kernel functions, each
shown as a black, dashed curve. The data locations, x;,
are represented by the red dots on the horizontal axis,
and their values, y; are represented by the size of the
dots. The regression for a new data point, z, is shown
on the regression curve as .

and key, Kz; vectors. In Equation 2, this man-
ifests as the block ©70. The structure of O is
block diagonal, where each block is a 2D rota-
tion matrix. The angles of rotation increase as a
function of index and position. One of the key
characteristics of RoPE is that ©7'© is a function
of the indicial distance between embeddings (Su
et al., 2024). Attention, and NW regression, both
form normalized weighted sums dependent on rel-
ative distances. Thus, attention can be interpreted
as a proper kernel function centered around each
x; (Tsai et al., 2019). Although attention is not
symmetric, asymmetric kernels have been formal-
ized in both theoretical frameworks and practical
applications, and are useful for modeling condi-
tional probabilities and directed graphs (He et al.,
2023b,a; Wu et al., 2010).

2.2 Kernel Modeling

A useful characteristic of kernel functions is that
they can be combined through summation or mul-
tiplication, and the result remains a valid kernel
(Aronszajn, 1950). This is useful for modeling.
RoPE is thought to implicitly embody the decaying
periodic correlations known to be part of the struc-
ture of language (Barbero et al., 2024), and the goal
of this section is to redesign attention, enriching
RoPE with kernel functions designed to capture
these features more precisely. We begin by defin-
ing two kernel functions. The first, P, models
periodicity, and the second, Dy, exponential decay:
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Each kernel is an explicit function of the indicial
distance between the target and context vectors, x,,
and z;, respectively. Py is a function of two learn-
able parameters, o and 7y, where the former con-
trols amplitude and the latter period. Dj, depends
on the learnable parameters, o and /i, where the
former is the strength of the term and the latter
is a time constant or decay width parameter. The
two kernels can be multiplied to model decaying
periodicity, and a complex kernel function can be
formed as the sum over a bank of M such kernels:
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Finally, the expression in Equation 5 can be com-
bined with that for attention from Equation 2 yield-
ing a new kernel function, GPA(zy ), given by:
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Because kernel functions are often used to repre-
sent Gaussian stochastic processes (Wilson and
Adams, 2013), we call this model Gaussian Pro-
cess Attention (GPA). In comparison with standard
ROPE, it introduces 4M additional learnable pa-
rameters per attention head.
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2.3 Experimental Setup

Our study utilizes a compact GPT Transformer
architecture composed of four layers, each featur-
ing four attention heads. The experimental dataset
comprises the complete works of Charles Dickens,
sourced from Project Gutenberg (Dickens, 2018),
and employs a character-level tokenization method
as described in (Banar et al., 2020). This corpus
includes approximately 13 million characters and
a vocabulary size of 93 tokens. By adopting this
approach, we simplify the language preprocessing
typically involved in training Transformer-based
language models. Additionally, this method avoids
the need to replace infrequent tokens with place-
holders such as <UNK>, resulting in a concise and
well-defined vocabulary.

Our model incorporates the standard compo-
nents found in Transformer blocks, including layer
normalization, linear projection layers, multilayer
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Figure 2: Comparison of validation curves during train-
ing for three experiments, each run for 200k iterations.
The blue curve is the MCE loss for the baseline imple-
mentation of attention with Rotary Positional Embed-
dings (RoPE), orange is for the GPA kernel bank ex-
cluding RoPE, and green is GPA combined with RoPE.

perceptrons, as well as embedding and unembed-
ding layers.! For our experiments, we set the con-
text window length to 256 tokens and use an em-
bedding dimension of 512. Model performance
is evaluated using the mean cross-entropy (MCE)
loss on the validation set.

3 Experimental Results

Three experiments were run to evaluate the kernel
models of the previous sections, and the results
are shown in Figure 2. Each curve in the figure
represents the MCE loss during training as applied
to the validation data. The experiments consist of
200k gradient update iterations, with a batch size of
256 (equivalently 4 epochs). The data split is 90%
for training and 10% for validation. The baseline
experiment, represented by the blue curve, is the
MCE loss for the RoPE implementation, as spec-
ified in Equation 2, of the GPT architecture. The
green curve is the MCE loss for our GPA formu-
lation as described by Equation 6, where the bank
is constructed from M = 64 decaying periodic
kernels. The orange curve is an additional exper-
iment that implements the GPA kernel bank and
does not use RoPE, nor any other positional infor-
mation other than that provided by the formulation
of the kernel bank. The examples show that the
kernel bank works as well as RoPE in modeling
relative positional information, while also captur-
ing additional predictive characteristics of the data.
Of the three, the best performing model is the com-

'See https://transformer-circuits.pub/2021/framework/
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Figure 3: Functional shape of a kernel bank at initializa-
tion.
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Figure 4: Shapes of the 16 trained kernel banks after
200k training iterations.

position of the two techniques. This suggests that
the kernel bank and RoPE capture complementary
characteristics of the data.

3.1 Kernel Bank Shapes

As detailed in Section 2.3, our model implements
four layers with four attention heads per layer.
Each of the 16 kernel banks consists of a sum of
64 learned decaying periodic functions. Figure 3
shows the shape of the initialized kernel banks,
where o, = 1, 0. = 1, and [, = 150 for all k,
and the 71 take 64 evenly space values in the in-
terval [4,192]. Figure 4 shows the functional form
of each of the 16 kernel banks after 200k training
iterations. The figure has a number of interesting
features. The shapes of the four kernel banks in
the first layer (shown in the upper left) are almost
identical, and each has a prominent bump at lag
70. The second layer (upper right) is similar to the
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Figure 5: (a) Shapes of the trained kernel banks for
the first layer of the model, and (b) Histogram of the
separation between newlines in the data

first, showing only small differences between the
four heads. The third and fourth layers, however,
more clearly differentiate the shapes between the
heads. Notably, the strengths of the banks begin
to vary, and in the fourth layer, one of the kernel
banks is effectively zero. This suggests that the
final layer of this model could discard one of the
attention heads and its associated MLP without any
loss of performance in inference. This would result
in savings in both compute and memory.

3.2 Analyzing the Bump

An examination of the corpus data suggests an ex-
planation for the location of the kernel bump seen
in the first layer of Figure 4. Our conjecture is
that the bump corresponds to the average length of
paragraphs, represented as a double newline. To
test this, we computed the histogram of separations
between newlines in the corpus, and the result is
illustrated in Figure 5. The histogram of newline
separations (part (b) of the figure) shows a peak
at lag 1 and another at lag 69. The first peak is
due to the fact that new paragraphs in the corpus
are the result of two successive newlines, having
a lag of 1. The peak at lag 69 seems to confirm

the conjecture that the bump in the kernel shapes at
lag 70 (shown in part (a) of the figure) is capturing
this characteristic. An additional histogram (not
shown), computed from 50,000 characters gener-
ated by the trained model, puts the peak at precisely
lag 70, further supporting the conjecture.

4 Discussion and Future Work

This paper demonstrates the potential of kernel
functions to better model language, improve per-
formance, and to serve as a foundation for exper-
iments in interpretability. Our results show that
kernel functions capture important predictive char-
acteristics in the data, improving the performance
of RoPE. The computational cost of this additional
predictive power is nominal, adding just 4,096
parameters to a GPT model consisting of 13.8m
weights.

In addition to improved performance, the kernel
banks provide new opportunities for mechanistic in-
terpretability. We studied a notable characteristic of
a kernel function that correlates to an interpretable
feature in the data. We also observed that one of
the trained kernel functions was uniformly zero,
suggesting that its attention head was redundant.
This is a valuable insight because it means that this
head and its MLP can be removed for both training
and inference, and in so doing, reduce associated
computational and memory costs.

5 Limitations

The results presented in this paper seem promising,
but are for a small corpus and a small GPT model.
Experiments with a larger corpus (for example,
Wikipedia or Fineweb (Penedo et al., 2024)) would
validate the kernel bank efficacy for a more conse-
quential dataset. The character-based tokenization
strategy used for this paper was useful, as it allowed
us to circumvent the many design and engineering
questions related to vocabulary size that come with
more sophisticated tokenization schemes such as
WordPiece (Schuster and Nakajima, 2012) or byte-
pair encoding (Sennrich et al., 2016). The tradeoff
is that character-based tokenization loses much of
the semantic information derived from words. Fi-
nally, the kernel bank models need to be tested in
downstream applications. Doing so would provide
additional insight into their strengths, weaknesses,
and capabilities.
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