Can BERT Conduct Logical Reasoning?
On the Difficulty of Learning to Reason from Data

Anonymous ACL submission

Abstract

Logical reasoning is needed in a wide range
of NLP tasks. In this work, we seek to an-
swer one research question: can we train a
BERT model to solve logical reasoning prob-
lems written in natural language? We study
this problem on a confined problem space and
train a BERT model on randomly drawn data.
However, we report a rather surprising find-
ing: even if BERT achieves nearly perfect ac-
curacy on the test data, it only learns an in-
correct and partial reasoning function; further
investigation shows that the behaviour of the
model (i.e., the learned partial reasoning func-
tion) is unreasonably sensitive to the training
data. Our work reveals the difficulty of learn-
ing to reason from data and shows that near-
perfect performance on randomly drawn data
is not a sufficient indicator of models’ ability
to conduct logical reasoning.

1 Introduction

Logical reasoning is needed in a wide range
of NLP tasks including natural language infer-
ence (NLI) (Williams et al., 2018; Bowman et al.,
2015), question answering (QA) (Rajpurkar et al.,
2016; Yang et al., 2018) and common-sense reason-
ing (Zellers et al., 2018; Talmor et al., 2019). The
ability to draw conclusions based on given facts and
rules, as shown in Figure 1, is fundamental to solv-
ing these tasks!. Though NLP models, empowered
by the Transformer neural architecture (Vaswani
et al., 2017), can achieve high performance on task-
specific datasets (Devlin et al., 2019), it is unclear
whether they are able to reason logically over the
input as humans do. A research question naturally
arises: can neural networks be trained to conduct
logical reasoning presented in English?

Prior work (Liu et al., 2020; Tian et al., 2021)
answers this question by training and testing NLP

'A k.a., deductive reasoning. In this paper, we do not con-
sider inductive reasoning, where the rules need to be learned.

Facts:

Alice is happy.
Alice is cautious.

Rules:

If Alice is happy and smart, then Alice is productive.
If Alice is cautious, then Alice is smart.

If Alice is cautious and optimistic, then Alice is sad.

[Answer: True]
[Answer: False]

Query 1: Alice is productive.
Query 2: Alice is sad.

Figure 1: A visualization of our problem setting. The
large circle denotes a confined problem space consist-
ing of logical reasoning problems. The dots and the
triangles represent two independently sampled sets of
examples. The lower-half of the figure shows an exam-
ple of a logical reasoning problem sampled from the
problem space.

models on datasets consisting of logical reasoning
problems written in natural language (Figure 1).
Since neural models have limited capacity (e.g. the
computational complexity of neural models is poly-
nomial in input length), it is unreasonable to expect
them to solve arbitrarily complex logical reasoning
problems (e.g. 3-SAT) (Cook, 1971). A common
practice (Johnson et al., 2017; Sinha et al., 2019) is
to train and test the models on a confined problem
space, where we limit the difficulty of the prob-
lems by controlling the number/complexity of the
facts and rules in each example. Besides, since
it is infeasible to enumerate all examples in the
problem space, the models are trained on datasets
of reasonable size by randomly drawing examples
from the problem space. Following this procedure,

Clark et al. (2020) suggests that neural models can
be trained to conduct logical reasoning by show-
ing that they achieve high performance on such
randomly generated datasets.

In this work, we argue that performing well on a
set of examples randomly sampled from the prob-
lem space does not entail that the model is con-
ducting logical reasoning. We first note that, given
a problem space, there can be multiple ways to
sample examples (Sec. 3.1); each sampling method
implicitly defines a probability distribution over the
problem space and can be used to generate different
datasets conforming to this distribution. Thus, if
a model is conducting logical reasoning, it should
perform consistently well on datasets sampled by
different algorithms, i.e., on the whole intended
problem space. This expectation of “reasoning
ability” is reasonable: algorithms such as forward
chaining (Russell and Norvig, 2002) can solve log-
ical reasoning problems regardless of how the test
set is generated, and it is natural to expect the same
from a “reasoning” neural model.

We show that neural models, even when trained
to a nearly perfect accuracy on randomly generated
data, still fail to generalize over the entire reason-
ing problem space and thus do not learn to reason.
We investigate this issue in a controlled problem
space called SimpleLogic (Sec. 2). We first show
that BERT has sufficient capacity to solve SimpleL-
ogic by proving that there exists a parametriza-
tion for BERT that can solve all instances in
SimpleLogic (Sec. 2.2). Then, to test whether
BERT can learn such reasoning ability from data,
we present two sampling approaches to generate
datasets for SimpleLogic: Rule-Priority (RP) and
Label-Priority (LP). In RP we first sample the
facts and rules, which then naturally determines
the True/False labels of the predicates, while in LP
we first determine the predicate labels and then ran-
domly generate rules and facts consistent with the
pre-assigned labels (see Fig. 3 for an illustration).
Both sampling approaches are intuitive and simple,
covering the whole problem space of SimpleLogic.
Therefore, as illustrated in Figure 1, we expect a
model trained on data generated by either RP or
LP (denoted by the dots and triangles, respectively)
to generalize to the whole problem space.

However, we observe that even though the
BERT model has no difficulty reaching near-perfect
performance on data generated by RP, it fails
catastrophically when tested on LP (and vice

versa) (Sec. 3). Furthermore, we find that the BERT
model is unreasonably sensitive to the training dis-
tribution, in that the model behaviour changes sig-
nificantly as the sampling method that generates
the training data changes (Sec. 4).

The results indicate that BERT learns an incom-
plete reasoning function that does not generalize
to the whole problem space. The learned function
is also specific to its training distribution, which is
undesirable as the correct reasoning function is de-
fined by the problem space rather than the training
distribution.

Our study unveils the difficulty of learning to
reason from data and we illustrate that such gen-
eralization failure is inherently different from the
typical generalization errors in NLP tasks (Sec. 5).
Our finding leads to one major implication: in con-
trast to common practice, showing near-perfect per-
formance on a randomly drawn testset is not a suf-
ficient indicator of the logic reasoning ability of a
model. Source code and data for reproducing the
experiments will be released upon acceptance.

2 SimpleLogic: A Simple Logical
Reasoning Problem Space

We define SimpleLogic, a class of logical reason-
ing problems based on propositional logic. We
use SimpleLogic as a controlled testbed for testing
neural models’ ability to conduct logical reasoning.

SimpleLogic only contains deductive reasoning
examples. To simplify the problem, we remove lan-
guage variance by representing the reasoning prob-
lems in a templated language and constrain its com-
plexity (e.g., examples have limited input lengths,
number of predicates, and proof tree depths).

Solving SimpleLogic does not require significant
computational capacity. We show that a popular
pre-trained language model BERT (Devlin et al.,
2019)? has more than enough computational capac-
ity to solve SimpleLogic. That is, there exists a
parameterization of BERT that solves SimpleLogic
with 100% accuracy (Sec. 2.2).

2.1 Problem Space Definition

Before we present the formal definition for Simple-
Logic, we introduce some basics for propositional
logic. In general, reasoning in propositional logic

ZBERT is one of the most popular language model back-
bones for NLP downstream models. In this paper, we use
BERT as a running example and our conclusion can be natu-
rally extended to other Transformer-based NLP models.

is NP-complete; hence, we only consider proposi-
tional reasoning with definite clauses. A definite
clause in propositional logic is a rule of the form
A1 NAs N ---NA, — B, where A;s and B are
predicates that take values in “True” or “False”; we
refer to the left hand side of a rule as its body and
the right hand side as its head. In particular, a defi-
nite clause is called a fact if its body is empty (i.e.
n = 0). A propositional theory (with only definite
clauses) 7' is a set of rules and facts, and we say a
predicate) can be proved from T if either (1) Q
isgivenin T asafactor (2) Ay A+ NA, = Q
is given in 7" as a rule where A;s can be proved.
Each example in SimpleLogic is a proposi-
tional reasoning problem that only involves def-
inite clauses. In particular, each example is a tuple
(facts, rules, query, label) where (1) facts is a list
of predicates that are known to be True, (2) rules
is a list of rules represented as definite clauses, (3)
query is a single predicate, and (4) label is either
True or False, denoting whether the query predicate
can be proved from facts and rules. Figure 1 shows
such an example. Additionally, we enforce some
simple constraints to control the difficulty of the
problems. For each example in SimpleLogic, we
require that:
 the number of predicates (pred_num) that
appear in facts, rules and query ranges from
5 to 30, and all predicates are sampled from
a fixed vocabulary containing 150 adjectives
such as “happy” and “complicated”;
¢ the number of rules (rule_num) ranges from
0to 4 X pred_num, and the body of each rule
contains 1 to 3 predicates; i.e. A1A---AA, —
B with n > 3 is not allowed,;
¢ the number of facts (fact_num) ranges from
0 to pred_num,;
« the reasoning depth® required to solve an ex-
ample ranges from 0 to 6.
We use a simple template to encode examples in
SimpleLogic as natural language input. For exam-
ple, we use “Alice is X.” to represent the fact that
X is True; we use “A and B, C.” to represent the
rule AN B — C; we use “Query. Alice is Q.” to
represent the query predicate). Then we concate-
nate facts, rules and query as [CLS] facts. rules
[SEP] query [SEP] and supplement it to BERT to
predict the correct label.

3For a query with label True, its reasoning depth is given
by the depth of the shallowest proof tree; for a query with
label False, its reasoning depth is the maximum depth of the
shallowest failing branch in all possible proof trees.

MLP

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. If smart, happy.

Reasoning Layer 11

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. If smart, happy.

Reasoning Layer 2

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. 1f smart, happy.

Reasoning Layer 1

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. 1f smart, happy.

Parsing Layer

[CLS] Start Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. 1f smart, happy. [SEP]

Figure 2: A visualization of a BERT-base model that
simulates the forward-chaining algorithm. The first
layer is a parsing layer, converting text input into the
desired format. The underlined predicates are proven
or known as facts. Each reasoning layer performs one
step of forward-chaining. For example, for Reasoning
Layer 2, given that “happy” has been proven, it applies
the rule “If happy, (then) strong” to prove the predicate
strong, which is underlined in the output of this layer.

2.2 BERT Has Enough Capacity to Solve
SimpleLogic

In the following, we show that BERT has enough
capacity to solve all examples in SimpleLogic. In
particular, we explicitly construct a parameteriza-
tion for BERT such that the fixed-parameter model
solves all problem instances in SimlpleLogic. Note
that we only prove the existence of such a param-
eterization, but do not discuss whether such a pa-
rameterization can be learned from sampled data
until Sec. 3.

Theorem 1 For BERT with n layers, there exists a
set of parameters such that the model can correctly
solve any reasoning problem in SimpleLogic that
requires < n — 2 steps of reasoning.

We prove this theorem by construction. We con-
struct a fixed set of parameters for BERT to simu-
late the forward-chaining algorithm. Here we show
a sketch of the proof, and refer readers to the Ap-
pendix for the full proof. As illustrated in Figure 2,
our construction solves a logical reasoning exam-
ple in a layer-by-layer fashion. The 1st layer of

(1) Randomly sample facts & rules.
Facts: B, C
Rules: A, B>D.B>E.B,C>F.

oK X:

Rule-Priority

(2) Compute the correct
labels for all predicates given
the facts and rules.

(2) Set B, C (randomly chosen
among B, C, E, F) as facts and

(1) Randomly assign labels to sample rules (randomly)

predicates. consistent with the label
True: B,C,E, F. assignments.
False: A, D.

Figure 3: An illustration of a logical reasoning problem
(right) in SimpleLogic being sampled by Rule-Priority
(RP) and Label-Priority (LP), respectively. Predicates
with label True are denoted by filled circles.

BERT parses the input sequence into the desired
format. Layer 2 to layer 10 are responsible for
simulating the forward chaining algorithm: each
layer performs one step of reasoning, updating the
True/False label for predicates. The last layer also
performs one step of reasoning, while implicitly
checking if the query predicate has been proven
and propagating the result to the first token. The
parameters are the same across all layers except for
the Parsing Layer (1st layer).

We implemented the construction in PyTorch,
following the exact architecture of the BERT-base
model. The “constructed BERT” solves all prob-
lems in SimpleLogic of reasoning depth < 10 with
100% accuracy, using only a small proportion of
the parameters of BERT.

3 BERT Fails to Learn to Solve
SimpleLogic

Next, we study whether it is possible to train a
neural model (e.g., BERT) to reason on SimpleL-
ogic. We follow the standard approach (Clark et al.,
2020): we randomly sample examples from the
problem space and train BERT on a large amount
of sampled data. We consider two natural ways
to sample data from SimpleLogic. We expect if
a model can learn to reason, the model should be
able to solve examples generated by any sampling
methods once it is trained.

3.1 Sampling Examples from SimpleLogic

We consider two intuitive ways of sampling the ex-
amples. (1) Rule-Priority (RP): we first randomly
generate rules and facts, which then determine the
label of each predicate (Algorithm 1). (2) Label-
Priority (LP): we first randomly assign a True/False
label to each predicate and then randomly sample
some rules and facts that are consistent with the
pre-assigned labels (Algorithm 2). Figure 3 shows
an example illustrating the two sampling methods.
RP is fully general and directly follows from the
definition of SimpleLogic. However, there is no
simple way to control certain properties of the gen-
erated examples such as the number of proof trees
(see Sec. 4 for more examples). On the other hand,
LP makes it easier to control the properties of the
generated examples (in Sec. 4, we utilize LP to gen-
erate a suite of test sets to probe model behaviours).

3.2 BERT Trained on Random Data Cannot
Generalize

Following the two sampling regimes described
above, we randomly sample two sets of examples
from SimpleLogic: for each reasoning depth from
0 to 6, we sample 80k examples from SimpleL-
ogic via Algorithm RP (LP) and aggregate them as
dataset RP (LP), which contains 560k examples in
total. We then split it as training/validation/test set.
We train a BERT-base model (Devlin et al., 2019)
on RP and LP, respectively. We train for 20 epochs
with a learning rate of 4 x 107>, a warmup ratio
of 0.05, and a batch size of 64. Training takes less
than 2 days on 4 GPUs.

BERT performs well on the training distribu-
tion. The first and last rows of Table 1 show the
test accuracy when the test and train examples are
sampled by the same algorithm (e.g., for Row 1,
the model is trained on the training set of RP and
tested on the test set of RP). In such scenarios, the
models can achieve near-perfect performance simi-
lar to the observations in prior work (Clark et al.,
2020). Both of our sampling algorithms are gen-
eral in the sense that every instance in SimpleLogic
has a probability to be sampled in either RP or
LP. Thus, the intuition is that models achieving
near-perfect performance on such a general dataset
should emulate the correct reasoning function.

BERT fails to generalize. However, at the same
time, we observe a rather counter-intuitive find-
ing: the test accuracy drops significantly when the

Algorithm 1 Rule-Priority (RP)

s pred_num ~ U|[5,30]

. preds < Sample(vocab, pred_num,)
rule_num ~ U|0,4 pred_num)|
rules <— empty array

: while size of rules < rule_num do
body_num ~ U1, 3]

body < Sample(preds, body_num)
tail < Sample(preds, 1)

add body — tail to rules

10: end while

11: fact_num ~ U|0, pred_num)|

12: facts < Sample(preds, fact_num)
13: query < Sample(preds, 1)

14: Compute label via forward-chaining.
15: return (facts, rules, query, label)

Ve nhwh e

Algorithm 2 Label-Priority (LP)

: pred_num ~ UI5, 30]
. preds < Sample(vocab, pred_num,)
rule_num ~ U[0, 4 * pred_num)|
setl ~ U[L, pred_num/2] and group preds
: into [layers
for predicate p in layer 1 < ¢ < [do
q~UI0,1]
assign label ¢ to predicate p
if 2+ > 1 then
10: k~U[L,3]
11: cand < nodes in layer s — 1
12: with label = ¢
13: body < Sample(cand, k)
14: add body — p to rules
15: end if
16: end for
17: while size of rules < rule_num do
18: body_num ~ U|1, 3]
19: body < Sample(preds, body_num)
20: tail < Sample(preds, 1)
21: add body — tail to rules unless tail has label 0 and
22: all predicates in body has label 1.
23: end while
24: facts < predicates in layer 1 with label = 1
25: query < Sample(preds, 1)
26: label < pre-assigned label for query
27: return (facts, rules, query, label)

R R ol bl

Figure 4: Two sampling algorithms Rule-Priority and
Label-Priority. Sample(X, k) returns a random subset
from X of size k. U[X, Y] denotes the uniform distri-
bution over the integers between X and Y.

train and test examples are sampled via different
algorithms. Specifically, as shown in the second
and third row of Table 1, the BERT model trained
on RP fails drastically on LP, and vice versa. As
illustrated in Figure 1, if a model performs well
on the dots (RP), it is expected that it performs
well on the triangles (LP). Such failure to general-
ize to the whole problem space indicates BERT is

Train Test| O 1 2 3 4 5 6

RP RP | 998 999 995 992 988 97.5 964
LP | 992 999 990 919 845 69.7 528
LP RP | 100.0 96.0 793 71.2 70.1 715 7438
LP | 100.0 100.0 99.9 99.9 99.7 99.7 99.0

Table 1: BERT trained on RP achieves almost perfect
accuracy on its test set; however the accuracy drops sig-
nificantly when it’s tested on LP (vice versa).

Test | 0 1 2 3 4 5 6

RP&LP | 999 999 99.7 995 994 99.0 97.1
Lp* 972 972 936 827 714 584 53.6

Table 2: BERT trained on a mixture over RP and LP
fails on LP*, a test set that differs from LP only slightly.

not conducting logical reasoning, even if we train
the model on the data sampled by a general algo-
rithm. A subsequent question naturally arise: is
this simply because the two algorithms are comple-
mentary? If we train the model on data sampled by
both algorithms, can the model learn to reason?

Training on both RP and LP is not enough.
We train BERT on the mixture of RP and LP, and
BERT again achieves nearly perfect test accuracy.
Can we now conclude that BERT is conducting rea-
soning? We slightly tweak the sampling algorithm
of LP by increasing the expected number of alterna-
tive proof trees to generate LP*, which is a special
case of the LP3 test set, to be introduced in Sec. 4.
Unfortunately, we observe that the model perfor-
mance drops significantly on LP* (Table 2). The
accuracy drops to 53.6% for the reasoning depth
of 6 on LP*, even if the model achieves over 96%
in validation. Such a result resembles what we
observed in Table 1, where the model fails to gener-
alize outside of its training distribution, even if we
are enriching the training distributions with differ-
ent sampling methods. In fact, we find no evidence
that consistently enriching the training distribution
will bring a transformative change such that the
model can learn to reason, as we cannot enumerate
all distributions (see a discussion in Sec. 5.1).

Discussion. The experiments above reveal a pat-
tern of failure: if we train the model on one data
distribution, it fails almost inevitably on a differ-
ent distribution. In another word, the model seems
to be emulating an incorrect “reasoning function”
specific to its training distribution. The results im-
ply that for logical reasoning problems, the test

accuracy on a dataset generated by one particular
sampling algorithm should not be used as the sole
indicator of models’ reasoning ability.

4 BERT is Sensitive to Training
Distribution

As shown in the previous section, though the BERT
model achieves near-perfect test accuracy on the
data distribution it is trained on, it fails catastrophi-
cally on the others. BERT does not learn the algo-
rithm that allows it to solve all problems from Sim-
pleLogic. In this section, we study how sensitive
the model behaviour is to the training distribution
changes. Intuitively, if a model is emulating the
correct reasoning function, an insignificant change
to the training distribution (e.g., slightly increasing
the average fact number) should not incur large
changes in model behaviours.

We first create a suite of similar training distri-
butions by slightly tweaking the parameters of the
sampling algorithm. We train different models on
these training distributions and analyze their be-
haviours. As it is hard to fully characterize the
behaviour of a black-box model, we use the per-
formance on a test suite as a proxy for model be-
haviour; each test set in the suite is created to probe
a particular aspect of model behavior. We show
that even as we slightly change the training dis-
tribution (e.g., the rule number distribution), the
performance of the BERT model on the test suite
changes significantly.

4.1 Experiment Setup

Variants of training sets. We first describe how
we tweak the parameters of Algorithm 1 to obtain
a suite of slightly different training distributions.
Such changes are insignificant as the resulting dis-
tributions still cover the whole problem space. The
sampling algorithm RP is mainly governed by two
parameters, fact_num and rule_num and we in-
troduce shifts in the underlying distribution of RP
by tweaking the distribution of fact_num and
rule_num. We propose to adapt Algorithm 1 in
the following way: in line 3 and 11 of Algorithm 1,
instead of sampling fact_num and rule_num
from uniform distributions, we sample them from
the binomial distributions B(pred_num, fact_p)
and B(4 x pred_num, rule_p), respectively; here
fact_p and rule_p are two hyper-parameters
we use to change the mean of fact_num and
rule_num. For the modified algorithm, we enu-

Dataset | Property
LP1 Label Priority
LP2 Proof trees form disjoint cycles
LP3 Alternative proof trees
LP4 Abundant rules but cycle-free
LP5 Symmetric labels
LP6 Unique proof tree

Table 3: Each dataset focuses on different properties.

merate fact_p from (0.1,0.2,0.3,0.4) to con-
struct training set F-0.1, F-0.2, F-0.3 and F-0.4,
and rule_p from (0.3,0.4,0.5,0.6) to construct
training set R-0.3, R-0.4, R-0.5 and R-0.6. As we
change fact_p and rule_p, the overall nature of
the sampling algorithm stays the same and guar-
antees that all examples in SimpleLogic can be
sampled with a positive probability. Here, training
set F-0.2 and R-0.5 are the same.

A suite of test sets. While it is hard to fully char-
acterize the behavior of a black-box model, we
can detect changes in model behavior by a probing
method: if a model’s performance on some test sets
changes, its behavior changes. We use variants of
Algorithm 2 to generate a suite of test sets, each
with a different focus in probing. For example,
when generating random rules in Algorithm 2 (line
17 - 22), by adding more constraints, we can prior-
itize rules that could create alternative paths thus
increasing the expected number of alternative proof
trees* in the generated examples. Table 3 briefly de-
scribes some high-level properties for each dataset
(e.g., examples from LP3 have more alternative
proof trees). Regarding the specific sampling algo-
rithms that generate the test sets, we refer readers
to the code for further details.

4.2 Results and Analysis

Table 4 and Table 5 shows the performance of mod-
els trained with different rule number distributions
(rule_p) and different fact number distributions
(fact_p), respectively. We report the mean accu-
racy on examples of reasoning depths 4 — 6.

BERT still fails. Our first observation is that for
all models trained on RP variants, their perfor-
mance drops significantly when tested on the LP
variants, echoing our findings in Sec. 3.2. This

*A proof tree is a directed graph consisting of the rules
and facts contributing to the proof of a predicate with label
True (see Fig. 3. There could be multiple proof trees for one
example (i.e., different ways to prove the query) and we call
them alternative proof trees.

Model R-03 R-04 R-0.5 R-0.6
validation 98.4 98.1 98.2 98.2
LP1(0.58) | 72.1 75.4 80.1 80.9
LP2(0.24) | 71.9 74.8 68.2 66.1
LP3(0.58) | 74.4 83.4 85.9 88.1
LP4 (0.71) | 73.9 87.0 84.9 94.3
LP5(0.21) | 755 82.8 74.4 76.8
LP6 (0.21) | 79.1 76.8 78.2 73.6

Table 4: The performance on LP variants when rule_p
changes in training. The value in parentheses following
the test set show the statistics of rule_p in the test set.

again verifies that the failure of BERT to general-
ize is systematic and persistent.

There is no “optimal” parameters. When we
change the rule number distribution (rule_p), the
models’ performance on the test sets fluctuates and
there is not a single rule_p value that achieves
the highest performance on all test sets. For ex-
ample, on LP1, rule_p = 0.6 achieves the best
performance but on LP3, rule_p = 0.4 does. Such
observation also holds when we change the fact
number distribution. The high sensitivity to the
training distribution is undesirable, as the differ-
ence between training distribution is small and we
keep all training distribution general.

BERT behavior is sensitive to distribution
shifts. The fluctuations on the test set as the train-
ing set changes are seemingly bizarre. In some
cases, the performance changes on the LP variants
can be intuitively explained. For example, in Table
4, LP4 has greater rule numbers and intuitively, if
a training distribution has more rules, the model
trained on it performs better. Indeed, rule_p = 0.6
achieves the best performance on LP4. In other
cases, it is hard to explain the performance changes
with the intuitive “rule of thumb”. For example,
in Table 5, larger fact_p implies more alternative
proof trees; however, in LP3, where examples tend
to have many alternative proof trees, the best perfor-
mance is achieved when fact_p = 0.2 rather than
fact_p = 0.4. In fact, we find that such “bizarre’
fluctuations are attributed to the inherent issue of
learning to reason from data, and a deeper analysis
is provided in Sec. 5.

B

5 Discussions

In this work, we show that even when BERT has
more than enough capacity to solve SimpleLogic,
it is difficult for BERT to learn the ability to solve
SimpleLogic from data. In this section, we discuss

Model F-0.1 F-02 F-03 F-04
validation | 982 982 982 983
LP1(0.12) | 739 80.1 839 83.0
LP2(0.10) | 58.7 682 745 728
LP3(0.06) | 825 8.9 77.7 80.0
LP4(0.08) | 83.6 849 925 922
LP5(0.08) | 71.5 744 798 799
LP6(0.08) | 742 782 703 765

Table 5: The performance on LP variants when fact_p
changes in training. The value in parentheses following
the test set show the statistics of fact_p in the test set.

the reason and implication of such phenomena.

5.1 Why BERT Fails to Generalize to the
Whole Problem Space?

It is a common observation that neural models may
not generalize to more difficult examples (Sinha
etal., 2019). In the context of logical reasoning, the
difficulty of an example is conventionally defined
as its reasoning depth, and models do not general-
ize well to examples of reasoning depth larger than
the training examples (Clark et al., 2020). Thus,
to ensure good performance during test time, we
need to sample training examples that are at least as
“difficult” as potential test examples. However, in
our experiments, we observe that even though the
test and train examples are “equally difficult” in the
conventional sense (e.g., they have the same rea-
soning depths), the model still generalizes poorly.

We provide an explanation for this atypical form
of generalization failure: the neural model has a
different notion of difficulty compared to humans.
Specifically, we posit that (1) the difficulty of an
example for a neural model is characterized by
multiple difficulty factors beyond the reasoning
depth; (2) the factors contributing to an example’s
difficulty could be hard to identify, imperceptible,
or go against human intuitions. For example, we
note one such “hard to identify” factor: the number
of alternative proof trees (see a definition in Sec.
4.1). An alternative proof tree with a greater depth
than the optimal tree could mislead the model to
take more steps to arrive at the correct answer. If a
model is trained on examples with few alternative
proof trees, it may generalize poorly to examples
with a large number of proof trees. In Sec. 4, LP3 is
created to test models’ ability to handle alternative
proof trees and all models fail on LP3.

The difficulty factors for the model could also
go against human intuition: examples that appear
easy for a human could be hard for the model. For
example, LP2 is simple extremely simple for hu-

mans (Sec. 4.1): every example contains exactly
one proof tree, which is a simple cycle with no
alternative paths. However, all models struggle to
solve LP2, even though sometimes they can solve
other seemingly more challenging examples with
complex proof trees.

In fact, LP2 - LP6 from Sec. 4 are created based
on our guess about what kind of examples could be
considered “difficult” by the model. Nevertheless,
they are not an exhaustive enumeration of all of
difficulty factors, as many factors could be com-
positional or nonsensical, and thus intractable to
enumerate. Thus, it is almost futile to try to sam-
ple training examples that are “difficult” enough
for the test time, as we do not know the model’s
definition of “difficulty”.

5.2 Beyond Logical Reasoning

In this section, we discuss the implications of our
findings beyond the scope of logical reasoning.

Dataset bias. Prior work finds that neural mod-
els fail to generalize when training data contain
obvious dataset biases or shortcuts from the data
annotation or collection process (Gururangan et al.,
2018).For example, due to shortcuts in the NLI
datasets (McCoy et al., 2019), NLI models may rely
on the fallible lexical overlap heuristic: a premise
entails all hypotheses constructed from words in
the premise. The generalization failure presented in
this paper can be viewed as a novel type of dataset
bias: the training data for logical reasoning contain
no annotation or data collection biases in the tradi-
tional sense; however, the training data distribution
does indeed allow for the existence of an incorrect
function that performs well on the training distribu-
tion but fails on the whole problem space. In other
words, there exist intricate and intractable “short-
cuts” or “biases" in our training data (Sec. 5.1).
We hope our findings deepen the understanding of
dataset bias beyond annotation artifacts.

Using synthetic data. It is a common practice
to use synthetic data as a proxy for a certain class
of problems (Johnson et al., 2017; Weston et al.,
2016). In this case, a random sampling algorithm
is used to draw examples from the defined problem
space to form a dataset. A model’s ability to solve
the class of problems is determined by the its test
performance on the sampled dataset. However, as
the random sampling algorithm appears general
(i.e., every example has a positive probability to
be sampled by it), it is often neglected whether the

test performance truly reflects the model’s ability to
generalize to the whole problem space. Our results
show that caution should be taken and the high test
performance could be misleading.

6 Related Work

A great proportion of NLP tasks require logical
reasoning. Prior work contextualizes the prob-
lem of logical reasoning by proposing reasoning-
dependent datasets and studies solving the tasks
with neural models (Johnson et al., 2017; Sinha
et al., 2019; Yu et al., 2020; Liu et al., 2020; Tian
et al., 2021). However, most studies focus on solv-
ing a single task, and the datasets either are de-
signed for a specific domain (Johnson et al., 2017;
Sinha et al., 2019), or have confounding factors
such as language variance (Yu et al., 2020). They
can not be used to strictly or comprehensively study
the logical reasoning abilities of models. In con-
trast, we propose SimpleLogic, a simple yet gen-
eral scenario of logical reasoning, to analyze the
model reasoning ability. Furthermore, in contrast
to the common practice, we show performance on
a randomly drawn testset is not sufficient to be an
indicator of logic reasoning ability of a model.

Another line studies leveraging deep neural mod-
els to solve pure logical problems. For examples,
SAT (Selsam et al., 2019), maxSAT (Wang et al.,
2019), temporal logical problems (Hahn et al.,
2021), DNF counting (Crouse et al., 2019), log-
ical reasoning by learning the embedding of logical
formula (Crouse et al., 2019; Abdelaziz et al., 2020)
and mathematical problems (Saxton et al., 2019;
Lample and Charton, 2020). In this work, we focus
on deductive reasoning, which is a general and fun-
damental reasoning problem. Clark et al. (2020)
conducts a similar study to show that models can be
trained to reason over language, while we observe
the difficulty of learning to reason from data.

7 Conclusion

In this work, we study whether BERT can be
trained to conduct logical reasoning in a confined
problem space called SimpleLogic. Even though
we show that the BERT model has enough capacity
to solve SimpleLogic perfectly, it fails to learn the
correct reasoning function from examples that are
randomly sampled from the problem space. We call
for caution in future work and show that the high
performance on one validation dataset does not
entail generalization to the whole problem space.

References

Ibrahim Abdelaziz, Veronika Thost, Maxwell Crouse,
and Achille Fokoue. 2020. An experimental study of
formula embeddings for automated theorem proving
in first-order logic. CoRR, abs/2002.00423.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP. The Association for Computational Lin-
guistics.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over language.
In IJCAL. ijcai.org.

Stephen A. Cook. 1971. The complexity of theorem-
proving procedures. In STOC, pages 151-158.
ACM.

Maxwell Crouse, Ibrahim Abdelaziz, Cristina Corne-
lio, Veronika Thost, Lingfei Wu, Kenneth D. Forbus,
and Achille Fokoue. 2019. Improving graph neu-
ral network representations of logical formulae with
subgraph pooling. CoRR, abs/1911.06904.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1). Association for Com-
putational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in nat-
ural language inference data. In NAACL-HLT (2).
Association for Computational Linguistics.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber,
Markus Norman Rabe, and Bernd Finkbeiner. 2021.
Teaching temporal logics to neural networks. In
ICLR. OpenReview.net.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross B. Girshick. 2017. CLEVR: A diagnostic
dataset for compositional language and elementary
visual reasoning. In CVPR. IEEE Computer Soci-
ety.

Guillaume Lample and Frangois Charton. 2020. Deep
learning for symbolic mathematics. In /CLR. Open-
Review.net.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In IJCAL. ijcai.org.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428-3448.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, pages
2383-2392. The Association for Computational Lin-
guistics.

Stuart Russell and Peter Norvig. 2002. Artificial intel-
ligence: a modern approach.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. In ICLR (Poster).
OpenReview.net.

Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy
Liang, Leonardo de Moura, and David L. Dill. 2019.
Learning a SAT solver from single-bit supervision.
In ICLR (Poster). OpenReview.net.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning
from text. In EMNLP/IJCNLP (1), pages 4505—
4514. Association for Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. In NAACL-HLT (1), pages 4149—4158.
Association for Computational Linguistics.

Jidong Tian, Yitian Li, Wenqing Chen, Ligiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through logicnli. In
EMNLP (1). Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998—-6008.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and
J. Zico Kolter. 2019. Satnet: Bridging deep learn-
ing and logical reasoning using a differentiable sat-
isfiability solver. In /ICML, Proceedings of Machine
Learning Research. PMLR.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomdés Mikolov. 2016. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. In
ICLR (Poster).

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT. Association for Computational Lin-
guistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP, pages 2369-2380. Association for
Computational Linguistics.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi
Feng. 2020. Reclor: A reading comprehension
dataset requiring logical reasoning. In ICLR. Open-
Review.net.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. SWAG: A large-scale adversar-
ial dataset for grounded commonsense inference. In
EMNLP. Association for Computational Linguistics.

A Construction Proof of Theorem 1

We prove theorem 1 by construction: in N-layer
BERT model, we take the first layer as parsing
layer, the last layer as output layer and the rest
layers as forward chaining reasoning layer. Basi-
cally, in the parsing layer we preprocess the natural
language input. In forward chaining reasoning lay-
ers, the model iteratively broadcast the RHSs to all
LHSs, and check the left hand side (LHS) of each
rule and update the status of the right hand side
(RHS). Here we introduce the general idea of the
construction, and we will release the source code
for the detailed parameters assignments.

A.1 Pre-processing Parameters Construction

Predicate Signature For each predicate P, we
generate its signature Signp, which is a 60-
dimensional unit vector, satisfying that for two dif-
ferent predicates Py, P, Signp, - Signp, < 0.5.
We can randomly generate those vectors and check
until the constraints are satisfied. Empirically it
takes no more than 200 trials.

Meaningful Vector In parsing layer, we process
the natural language inputs as multiple “meaningful
vectors". The meaningful vectors are stored in form
of La||Lg||Lc||R||05*2, representing a rule L4 A
Lp N Lc — R. Each segment L 4, Lp, Lc, R has
64 dimensions, representing a predicate or a always
True/False dummy predicate. For each predicate P,
the first 63 dimensions, denoted as P*%9™, form the
signature of the predicate, and the last dimension is
a boolean variable, denoted as P. The following
information is converted into meaningful vectors:

* Rule LHS — RHS : if the LHS has less
than 3 predicates, we make it up by adding
always True dummy predicate(s), and then en-
code it into meaningful vector, stored in the
separating token follows the rule. In addition,
for each predicate P in LHS, we encode a
dummy meaningful vector as False — P
and store it in the encoding of P. This oper-
ation makes sure that every predicate in the

10

input sentence occurs at least once in RHS
among all meaningful vectors. We will see
the purpose later.

* Fact P: we represent it by a rule True — P,
and then encode it into meaningful vector and
store it in the embedding of the separating
token follows the fact.

* Query Q): we represent it by a rule Q — Q,
encode and store it in the [CLS] token at be-
ginning.

Hence, in the embedding, some positions are en-
coded by meaningful vectors. For the rest positions,
we use zero vectors as their embeddings.

A.2 Forward Chaining Parameters
Construction

Generally, to simulate the forward chaining algo-
rithm, we use the attention process to globally
broadcast the true value in RHSs to LHSs, and
use the MLP layers to do local inference for each
rule from the LHS to the RHS.

In attention process, for each meaningful vector,
the predicates in LHS look to the RHS of others (in-
cluding itself). If a RHS has the same signature as
the current predicate, the boolean value of the RHS
is added to the boolean value of the current pred-
icate. Specifically, we construct three heads. We
denote QZ(-k) to stand for the query vector of the i-th
token of the k-th attention head. For a meaningful
vector written as L 4||Lg||Lc||R||0%2,

(1) _ ysign 1 (2) _ rsign 1 (1) _ 7sign 1
Qi =Li"3, @7 = L™, Qi = L™l
KM =B8R K® = BR, K® = BR
Vi = 0%R",V,E = 0%|R", V= 0% R

Here [is a pre-defined constant. The attention
weight to a different predicate is at most 38 while
the attention weight to the same predicate is at least
B, and the predicate with positive boolean value
has even larger (%) attention weight. Thus, with a
large enough constant /3, we are able to make the
attention distribution peaky. Theoretically, when
B > 3001n 10, we can guarantee that the attention
QK

result
v
Vi >

satisfies that the value is in the range of [0.8, 1.0]
if the predicate on LHS is boardcasted by some

T

Attention(Q, K, V') = softmax (

RHS with true value, otherwise it is in the range of
[0,0.2].

This attention results are added to the original
vectors by the skipped connection. After that, we
use the two-layer MLP to do the local inference in
each meaningful vector. Specifically, we set

10[ReLU (LY + LY + LY — 2.3)
—ReLU(LY + L% + LY — 2.4)]

as the updated R". Thus, R = 1 if and only if
all the boolean values in LHS are true, otherwise
R = 0. We also set LY, L, L¢, as 0 for the next
round of inference.

A.3 Output Layer Parameters Construction

In output layer, we take out the boolean value of
the RHS of the meaningful vector in [CLS] token.

11

