
Can BERT Conduct Logical Reasoning?
On the Difficulty of Learning to Reason from Data

Anonymous ACL submission

Abstract

Logical reasoning is needed in a wide range001
of NLP tasks. In this work, we seek to an-002
swer one research question: can we train a003
BERT model to solve logical reasoning prob-004
lems written in natural language? We study005
this problem on a confined problem space and006
train a BERT model on randomly drawn data.007
However, we report a rather surprising find-008
ing: even if BERT achieves nearly perfect ac-009
curacy on the test data, it only learns an in-010
correct and partial reasoning function; further011
investigation shows that the behaviour of the012
model (i.e., the learned partial reasoning func-013
tion) is unreasonably sensitive to the training014
data. Our work reveals the difficulty of learn-015
ing to reason from data and shows that near-016
perfect performance on randomly drawn data017
is not a sufficient indicator of models’ ability018
to conduct logical reasoning.019

1 Introduction020

Logical reasoning is needed in a wide range021

of NLP tasks including natural language infer-022

ence (NLI) (Williams et al., 2018; Bowman et al.,023

2015), question answering (QA) (Rajpurkar et al.,024

2016; Yang et al., 2018) and common-sense reason-025

ing (Zellers et al., 2018; Talmor et al., 2019). The026

ability to draw conclusions based on given facts and027

rules, as shown in Figure 1, is fundamental to solv-028

ing these tasks1. Though NLP models, empowered029

by the Transformer neural architecture (Vaswani030

et al., 2017), can achieve high performance on task-031

specific datasets (Devlin et al., 2019), it is unclear032

whether they are able to reason logically over the033

input as humans do. A research question naturally034

arises: can neural networks be trained to conduct035

logical reasoning presented in English?036

Prior work (Liu et al., 2020; Tian et al., 2021)037

answers this question by training and testing NLP038

1A.k.a., deductive reasoning. In this paper, we do not con-
sider inductive reasoning, where the rules need to be learned.

Facts:
Alice is happy.
Alice is cautious.

Rules:
If Alice is happy and smart, then Alice is productive.
If Alice is cautious, then Alice is smart.
If Alice is cautious and optimistic, then Alice is sad.

Query 1: Alice is productive. [Answer: True]
Query 2: Alice is sad. [Answer: False]

Figure 1: A visualization of our problem setting. The
large circle denotes a confined problem space consist-
ing of logical reasoning problems. The dots and the
triangles represent two independently sampled sets of
examples. The lower-half of the figure shows an exam-
ple of a logical reasoning problem sampled from the
problem space.

models on datasets consisting of logical reasoning 039

problems written in natural language (Figure 1). 040

Since neural models have limited capacity (e.g. the 041

computational complexity of neural models is poly- 042

nomial in input length), it is unreasonable to expect 043

them to solve arbitrarily complex logical reasoning 044

problems (e.g. 3-SAT) (Cook, 1971). A common 045

practice (Johnson et al., 2017; Sinha et al., 2019) is 046

to train and test the models on a confined problem 047

space, where we limit the difficulty of the prob- 048

lems by controlling the number/complexity of the 049

facts and rules in each example. Besides, since 050

it is infeasible to enumerate all examples in the 051

problem space, the models are trained on datasets 052

of reasonable size by randomly drawing examples 053

from the problem space. Following this procedure, 054

1

Clark et al. (2020) suggests that neural models can055

be trained to conduct logical reasoning by show-056

ing that they achieve high performance on such057

randomly generated datasets.058

In this work, we argue that performing well on a059

set of examples randomly sampled from the prob-060

lem space does not entail that the model is con-061

ducting logical reasoning. We first note that, given062

a problem space, there can be multiple ways to063

sample examples (Sec. 3.1); each sampling method064

implicitly defines a probability distribution over the065

problem space and can be used to generate different066

datasets conforming to this distribution. Thus, if067

a model is conducting logical reasoning, it should068

perform consistently well on datasets sampled by069

different algorithms, i.e., on the whole intended070

problem space. This expectation of “reasoning071

ability” is reasonable: algorithms such as forward072

chaining (Russell and Norvig, 2002) can solve log-073

ical reasoning problems regardless of how the test074

set is generated, and it is natural to expect the same075

from a “reasoning” neural model.076

We show that neural models, even when trained077

to a nearly perfect accuracy on randomly generated078

data, still fail to generalize over the entire reason-079

ing problem space and thus do not learn to reason.080

We investigate this issue in a controlled problem081

space called SimpleLogic (Sec. 2). We first show082

that BERT has sufficient capacity to solve SimpleL-083

ogic by proving that there exists a parametriza-084

tion for BERT that can solve all instances in085

SimpleLogic (Sec. 2.2). Then, to test whether086

BERT can learn such reasoning ability from data,087

we present two sampling approaches to generate088

datasets for SimpleLogic: Rule-Priority (RP) and089

Label-Priority (LP). In RP we first sample the090

facts and rules, which then naturally determines091

the True/False labels of the predicates, while in LP092

we first determine the predicate labels and then ran-093

domly generate rules and facts consistent with the094

pre-assigned labels (see Fig. 3 for an illustration).095

Both sampling approaches are intuitive and simple,096

covering the whole problem space of SimpleLogic.097

Therefore, as illustrated in Figure 1, we expect a098

model trained on data generated by either RP or099

LP (denoted by the dots and triangles, respectively)100

to generalize to the whole problem space.101

However, we observe that even though the102

BERT model has no difficulty reaching near-perfect103

performance on data generated by RP, it fails104

catastrophically when tested on LP (and vice105

versa) (Sec. 3). Furthermore, we find that the BERT 106

model is unreasonably sensitive to the training dis- 107

tribution, in that the model behaviour changes sig- 108

nificantly as the sampling method that generates 109

the training data changes (Sec. 4). 110

The results indicate that BERT learns an incom- 111

plete reasoning function that does not generalize 112

to the whole problem space. The learned function 113

is also specific to its training distribution, which is 114

undesirable as the correct reasoning function is de- 115

fined by the problem space rather than the training 116

distribution. 117

Our study unveils the difficulty of learning to 118

reason from data and we illustrate that such gen- 119

eralization failure is inherently different from the 120

typical generalization errors in NLP tasks (Sec. 5). 121

Our finding leads to one major implication: in con- 122

trast to common practice, showing near-perfect per- 123

formance on a randomly drawn testset is not a suf- 124

ficient indicator of the logic reasoning ability of a 125

model. Source code and data for reproducing the 126

experiments will be released upon acceptance. 127

2 SimpleLogic: A Simple Logical 128

Reasoning Problem Space 129

We define SimpleLogic, a class of logical reason- 130

ing problems based on propositional logic. We 131

use SimpleLogic as a controlled testbed for testing 132

neural models’ ability to conduct logical reasoning. 133

SimpleLogic only contains deductive reasoning 134

examples. To simplify the problem, we remove lan- 135

guage variance by representing the reasoning prob- 136

lems in a templated language and constrain its com- 137

plexity (e.g., examples have limited input lengths, 138

number of predicates, and proof tree depths). 139

Solving SimpleLogic does not require significant 140

computational capacity. We show that a popular 141

pre-trained language model BERT (Devlin et al., 142

2019)2 has more than enough computational capac- 143

ity to solve SimpleLogic. That is, there exists a 144

parameterization of BERT that solves SimpleLogic 145

with 100% accuracy (Sec. 2.2). 146

2.1 Problem Space Definition 147

Before we present the formal definition for Simple- 148

Logic, we introduce some basics for propositional 149

logic. In general, reasoning in propositional logic 150

2BERT is one of the most popular language model back-
bones for NLP downstream models. In this paper, we use
BERT as a running example and our conclusion can be natu-
rally extended to other Transformer-based NLP models.

2

is NP-complete; hence, we only consider proposi-151

tional reasoning with definite clauses. A definite152

clause in propositional logic is a rule of the form153

A1 ∧ A2 ∧ · · · ∧ An → B, where Ais and B are154

predicates that take values in “True” or “False”; we155

refer to the left hand side of a rule as its body and156

the right hand side as its head. In particular, a defi-157

nite clause is called a fact if its body is empty (i.e.158

n = 0). A propositional theory (with only definite159

clauses) T is a set of rules and facts, and we say a160

predicate Q can be proved from T if either (1) Q161

is given in T as a fact or (2) A1 ∧ · · · ∧ An → Q162

is given in T as a rule where Ais can be proved.163

Each example in SimpleLogic is a proposi-164

tional reasoning problem that only involves def-165

inite clauses. In particular, each example is a tuple166

(facts, rules, query, label) where (1) facts is a list167

of predicates that are known to be True, (2) rules168

is a list of rules represented as definite clauses, (3)169

query is a single predicate, and (4) label is either170

True or False, denoting whether the query predicate171

can be proved from facts and rules. Figure 1 shows172

such an example. Additionally, we enforce some173

simple constraints to control the difficulty of the174

problems. For each example in SimpleLogic, we175

require that:176

• the number of predicates (pred_num) that177

appear in facts, rules and query ranges from178

5 to 30, and all predicates are sampled from179

a fixed vocabulary containing 150 adjectives180

such as “happy” and “complicated”;181

• the number of rules (rule_num) ranges from182

0 to 4×pred_num, and the body of each rule183

contains 1 to 3 predicates; i.e. A1∧· · ·∧An →184

B with n > 3 is not allowed;185

• the number of facts (fact_num) ranges from186

0 to pred_num;187

• the reasoning depth3 required to solve an ex-188

ample ranges from 0 to 6.189

We use a simple template to encode examples in190

SimpleLogic as natural language input. For exam-191

ple, we use “Alice is X.” to represent the fact that192

X is True; we use “A and B, C.” to represent the193

rule A ∧ B → C; we use “Query: Alice is Q.” to194

represent the query predicate Q. Then we concate-195

nate facts, rules and query as [CLS] facts. rules196

[SEP] query [SEP] and supplement it to BERT to197

predict the correct label.198

3For a query with label True, its reasoning depth is given
by the depth of the shallowest proof tree; for a query with
label False, its reasoning depth is the maximum depth of the
shallowest failing branch in all possible proof trees.

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. If smart, happy.

Parsing Layer

Reasoning Layer 1

Reasoning Layer 2

Reasoning Layer 11

MLP

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. If smart, happy.

[CLS] Start Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. If smart, happy. [SEP]

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. If smart, happy.

Query: Alice is strong? Alice is smart. If happy, strong.
If smart and cautious, sad. If smart, happy.

Figure 2: A visualization of a BERT-base model that
simulates the forward-chaining algorithm. The first
layer is a parsing layer, converting text input into the
desired format. The underlined predicates are proven
or known as facts. Each reasoning layer performs one
step of forward-chaining. For example, for Reasoning
Layer 2, given that “happy” has been proven, it applies
the rule “If happy, (then) strong” to prove the predicate
strong, which is underlined in the output of this layer.

2.2 BERT Has Enough Capacity to Solve 199

SimpleLogic 200

In the following, we show that BERT has enough 201

capacity to solve all examples in SimpleLogic. In 202

particular, we explicitly construct a parameteriza- 203

tion for BERT such that the fixed-parameter model 204

solves all problem instances in SimlpleLogic. Note 205

that we only prove the existence of such a param- 206

eterization, but do not discuss whether such a pa- 207

rameterization can be learned from sampled data 208

until Sec. 3. 209

Theorem 1 For BERT with n layers, there exists a 210

set of parameters such that the model can correctly 211

solve any reasoning problem in SimpleLogic that 212

requires ≤ n− 2 steps of reasoning. 213

We prove this theorem by construction. We con- 214

struct a fixed set of parameters for BERT to simu- 215

late the forward-chaining algorithm. Here we show 216

a sketch of the proof, and refer readers to the Ap- 217

pendix for the full proof. As illustrated in Figure 2, 218

our construction solves a logical reasoning exam- 219

ple in a layer-by-layer fashion. The 1st layer of 220

3

A B C

D E F
A B C

D E F

A B C

D E F

(1) Randomly sample facts & rules.
Facts: B, C
Rules: A, B à D. B à E. B, C à F.

(1) Randomly assign labels to
predicates.
True: B, C, E, F.
False: A, D.

(2) Set B, C (randomly chosen
among B, C, E, F) as facts and
sample rules (randomly)
consistent with the label
assignments.

(2) Compute the correct
labels for all predicates given
the facts and rules.

Rule-Priority

Label-Priority

Figure 3: An illustration of a logical reasoning problem
(right) in SimpleLogic being sampled by Rule-Priority
(RP) and Label-Priority (LP), respectively. Predicates
with label True are denoted by filled circles.

BERT parses the input sequence into the desired221

format. Layer 2 to layer 10 are responsible for222

simulating the forward chaining algorithm: each223

layer performs one step of reasoning, updating the224

True/False label for predicates. The last layer also225

performs one step of reasoning, while implicitly226

checking if the query predicate has been proven227

and propagating the result to the first token. The228

parameters are the same across all layers except for229

the Parsing Layer (1st layer).230

We implemented the construction in PyTorch,231

following the exact architecture of the BERT-base232

model. The “constructed BERT” solves all prob-233

lems in SimpleLogic of reasoning depth ≤ 10 with234

100% accuracy, using only a small proportion of235

the parameters of BERT.236

3 BERT Fails to Learn to Solve237

SimpleLogic238

Next, we study whether it is possible to train a239

neural model (e.g., BERT) to reason on SimpleL-240

ogic. We follow the standard approach (Clark et al.,241

2020): we randomly sample examples from the242

problem space and train BERT on a large amount243

of sampled data. We consider two natural ways244

to sample data from SimpleLogic. We expect if245

a model can learn to reason, the model should be246

able to solve examples generated by any sampling247

methods once it is trained.248

3.1 Sampling Examples from SimpleLogic 249

We consider two intuitive ways of sampling the ex- 250

amples. (1) Rule-Priority (RP): we first randomly 251

generate rules and facts, which then determine the 252

label of each predicate (Algorithm 1). (2) Label- 253

Priority (LP): we first randomly assign a True/False 254

label to each predicate and then randomly sample 255

some rules and facts that are consistent with the 256

pre-assigned labels (Algorithm 2). Figure 3 shows 257

an example illustrating the two sampling methods. 258

RP is fully general and directly follows from the 259

definition of SimpleLogic. However, there is no 260

simple way to control certain properties of the gen- 261

erated examples such as the number of proof trees 262

(see Sec. 4 for more examples). On the other hand, 263

LP makes it easier to control the properties of the 264

generated examples (in Sec. 4, we utilize LP to gen- 265

erate a suite of test sets to probe model behaviours). 266

3.2 BERT Trained on Random Data Cannot 267

Generalize 268

Following the two sampling regimes described 269

above, we randomly sample two sets of examples 270

from SimpleLogic: for each reasoning depth from 271

0 to 6, we sample 80k examples from SimpleL- 272

ogic via Algorithm RP (LP) and aggregate them as 273

dataset RP (LP), which contains 560k examples in 274

total. We then split it as training/validation/test set. 275

We train a BERT-base model (Devlin et al., 2019) 276

on RP and LP, respectively. We train for 20 epochs 277

with a learning rate of 4 × 10−5, a warmup ratio 278

of 0.05, and a batch size of 64. Training takes less 279

than 2 days on 4 GPUs. 280

BERT performs well on the training distribu- 281

tion. The first and last rows of Table 1 show the 282

test accuracy when the test and train examples are 283

sampled by the same algorithm (e.g., for Row 1, 284

the model is trained on the training set of RP and 285

tested on the test set of RP). In such scenarios, the 286

models can achieve near-perfect performance simi- 287

lar to the observations in prior work (Clark et al., 288

2020). Both of our sampling algorithms are gen- 289

eral in the sense that every instance in SimpleLogic 290

has a probability to be sampled in either RP or 291

LP. Thus, the intuition is that models achieving 292

near-perfect performance on such a general dataset 293

should emulate the correct reasoning function. 294

BERT fails to generalize. However, at the same 295

time, we observe a rather counter-intuitive find- 296

ing: the test accuracy drops significantly when the 297

4

Algorithm 1 Rule-Priority (RP)
1: pred_num ∼ U [5, 30]
2: preds← Sample(vocab, pred_num)
3: rule_num ∼ U [0, 4 ∗ pred_num]
4: rules← empty array
5: while size of rules < rule_num do
6: body_num ∼ U [1, 3]
7: body ← Sample(preds, body_num)
8: tail← Sample(preds, 1)
9: add body → tail to rules

10: end while
11: fact_num ∼ U [0, pred_num]
12: facts← Sample(preds, fact_num)
13: query ← Sample(preds, 1)
14: Compute label via forward-chaining.
15: return (facts, rules, query, label)

Algorithm 2 Label-Priority (LP)
1: pred_num ∼ U [5, 30]
2: preds← Sample(vocab, pred_num)
3: rule_num ∼ U [0, 4 ∗ pred_num]
4: set l ∼ U [1, pred_num/2] and group preds
5: into l layers
6: for predicate p in layer 1 ≤ i ≤ l do
7: q ∼ U [0, 1]
8: assign label q to predicate p
9: if i > 1 then

10: k ∼ U [1, 3]
11: cand← nodes in layer i− 1
12: with label = q
13: body ← Sample(cand, k)
14: add body → p to rules
15: end if
16: end for
17: while size of rules < rule_num do
18: body_num ∼ U [1, 3]
19: body ← Sample(preds, body_num)
20: tail← Sample(preds, 1)
21: add body → tail to rules unless tail has label 0 and
22: all predicates in body has label 1.
23: end while
24: facts← predicates in layer 1 with label = 1
25: query ← Sample(preds, 1)
26: label← pre-assigned label for query
27: return (facts, rules, query, label)

Figure 4: Two sampling algorithms Rule-Priority and
Label-Priority. Sample(X, k) returns a random subset
from X of size k. U [X,Y] denotes the uniform distri-
bution over the integers between X and Y .

train and test examples are sampled via different298

algorithms. Specifically, as shown in the second299

and third row of Table 1, the BERT model trained300

on RP fails drastically on LP, and vice versa. As301

illustrated in Figure 1, if a model performs well302

on the dots (RP), it is expected that it performs303

well on the triangles (LP). Such failure to general-304

ize to the whole problem space indicates BERT is305

Train Test 0 1 2 3 4 5 6

RP RP 99.8 99.9 99.5 99.2 98.8 97.5 96.4
LP 99.2 99.9 99.0 91.9 84.5 69.7 52.8

LP RP 100.0 96.0 79.3 71.2 70.1 71.5 74.8
LP 100.0 100.0 99.9 99.9 99.7 99.7 99.0

Table 1: BERT trained on RP achieves almost perfect
accuracy on its test set; however the accuracy drops sig-
nificantly when it’s tested on LP (vice versa).

Test 0 1 2 3 4 5 6

RP&LP 99.9 99.9 99.7 99.5 99.4 99.0 97.1
LP∗ 97.2 97.2 93.6 82.7 71.4 58.4 53.6

Table 2: BERT trained on a mixture over RP and LP
fails on LP∗, a test set that differs from LP only slightly.

not conducting logical reasoning, even if we train 306

the model on the data sampled by a general algo- 307

rithm. A subsequent question naturally arise: is 308

this simply because the two algorithms are comple- 309

mentary? If we train the model on data sampled by 310

both algorithms, can the model learn to reason? 311

Training on both RP and LP is not enough. 312

We train BERT on the mixture of RP and LP, and 313

BERT again achieves nearly perfect test accuracy. 314

Can we now conclude that BERT is conducting rea- 315

soning? We slightly tweak the sampling algorithm 316

of LP by increasing the expected number of alterna- 317

tive proof trees to generate LP∗, which is a special 318

case of the LP3 test set, to be introduced in Sec. 4. 319

Unfortunately, we observe that the model perfor- 320

mance drops significantly on LP∗ (Table 2). The 321

accuracy drops to 53.6% for the reasoning depth 322

of 6 on LP∗, even if the model achieves over 96% 323

in validation. Such a result resembles what we 324

observed in Table 1, where the model fails to gener- 325

alize outside of its training distribution, even if we 326

are enriching the training distributions with differ- 327

ent sampling methods. In fact, we find no evidence 328

that consistently enriching the training distribution 329

will bring a transformative change such that the 330

model can learn to reason, as we cannot enumerate 331

all distributions (see a discussion in Sec. 5.1). 332

Discussion. The experiments above reveal a pat- 333

tern of failure: if we train the model on one data 334

distribution, it fails almost inevitably on a differ- 335

ent distribution. In another word, the model seems 336

to be emulating an incorrect “reasoning function” 337

specific to its training distribution. The results im- 338

ply that for logical reasoning problems, the test 339

5

accuracy on a dataset generated by one particular340

sampling algorithm should not be used as the sole341

indicator of models’ reasoning ability.342

4 BERT is Sensitive to Training343

Distribution344

As shown in the previous section, though the BERT345

model achieves near-perfect test accuracy on the346

data distribution it is trained on, it fails catastrophi-347

cally on the others. BERT does not learn the algo-348

rithm that allows it to solve all problems from Sim-349

pleLogic. In this section, we study how sensitive350

the model behaviour is to the training distribution351

changes. Intuitively, if a model is emulating the352

correct reasoning function, an insignificant change353

to the training distribution (e.g., slightly increasing354

the average fact number) should not incur large355

changes in model behaviours.356

We first create a suite of similar training distri-357

butions by slightly tweaking the parameters of the358

sampling algorithm. We train different models on359

these training distributions and analyze their be-360

haviours. As it is hard to fully characterize the361

behaviour of a black-box model, we use the per-362

formance on a test suite as a proxy for model be-363

haviour; each test set in the suite is created to probe364

a particular aspect of model behavior. We show365

that even as we slightly change the training dis-366

tribution (e.g., the rule number distribution), the367

performance of the BERT model on the test suite368

changes significantly.369

4.1 Experiment Setup370

Variants of training sets. We first describe how371

we tweak the parameters of Algorithm 1 to obtain372

a suite of slightly different training distributions.373

Such changes are insignificant as the resulting dis-374

tributions still cover the whole problem space. The375

sampling algorithm RP is mainly governed by two376

parameters, fact_num and rule_num and we in-377

troduce shifts in the underlying distribution of RP378

by tweaking the distribution of fact_num and379

rule_num. We propose to adapt Algorithm 1 in380

the following way: in line 3 and 11 of Algorithm 1,381

instead of sampling fact_num and rule_num382

from uniform distributions, we sample them from383

the binomial distributions B(pred_num, fact_p)384

and B(4 ∗ pred_num, rule_p), respectively; here385

fact_p and rule_p are two hyper-parameters386

we use to change the mean of fact_num and387

rule_num. For the modified algorithm, we enu-388

Dataset Property
LP1 Label Priority
LP2 Proof trees form disjoint cycles
LP3 Alternative proof trees
LP4 Abundant rules but cycle-free
LP5 Symmetric labels
LP6 Unique proof tree

Table 3: Each dataset focuses on different properties.

merate fact_p from (0.1, 0.2, 0.3, 0.4) to con- 389

struct training set F-0.1, F-0.2, F-0.3 and F-0.4, 390

and rule_p from (0.3, 0.4, 0.5, 0.6) to construct 391

training set R-0.3, R-0.4, R-0.5 and R-0.6. As we 392

change fact_p and rule_p, the overall nature of 393

the sampling algorithm stays the same and guar- 394

antees that all examples in SimpleLogic can be 395

sampled with a positive probability. Here, training 396

set F-0.2 and R-0.5 are the same. 397

A suite of test sets. While it is hard to fully char- 398

acterize the behavior of a black-box model, we 399

can detect changes in model behavior by a probing 400

method: if a model’s performance on some test sets 401

changes, its behavior changes. We use variants of 402

Algorithm 2 to generate a suite of test sets, each 403

with a different focus in probing. For example, 404

when generating random rules in Algorithm 2 (line 405

17 - 22), by adding more constraints, we can prior- 406

itize rules that could create alternative paths thus 407

increasing the expected number of alternative proof 408

trees4 in the generated examples. Table 3 briefly de- 409

scribes some high-level properties for each dataset 410

(e.g., examples from LP3 have more alternative 411

proof trees). Regarding the specific sampling algo- 412

rithms that generate the test sets, we refer readers 413

to the code for further details. 414

4.2 Results and Analysis 415

Table 4 and Table 5 shows the performance of mod- 416

els trained with different rule number distributions 417

(rule_p) and different fact number distributions 418

(fact_p), respectively. We report the mean accu- 419

racy on examples of reasoning depths 4− 6. 420

BERT still fails. Our first observation is that for 421

all models trained on RP variants, their perfor- 422

mance drops significantly when tested on the LP 423

variants, echoing our findings in Sec. 3.2. This 424

4A proof tree is a directed graph consisting of the rules
and facts contributing to the proof of a predicate with label
True (see Fig. 3. There could be multiple proof trees for one
example (i.e., different ways to prove the query) and we call
them alternative proof trees.

6

Model R-0.3 R-0.4 R-0.5 R-0.6
validation 98.4 98.1 98.2 98.2
LP1 (0.58) 72.1 75.4 80.1 80.9
LP2 (0.24) 71.9 74.8 68.2 66.1
LP3 (0.58) 74.4 83.4 85.9 88.1
LP4 (0.71) 73.9 87.0 84.9 94.3
LP5 (0.21) 75.5 82.8 74.4 76.8
LP6 (0.21) 79.1 76.8 78.2 73.6

Table 4: The performance on LP variants when rule_p
changes in training. The value in parentheses following
the test set show the statistics of rule_p in the test set.

again verifies that the failure of BERT to general-425

ize is systematic and persistent.426

There is no “optimal” parameters. When we427

change the rule number distribution (rule_p), the428

models’ performance on the test sets fluctuates and429

there is not a single rule_p value that achieves430

the highest performance on all test sets. For ex-431

ample, on LP1, rule_p = 0.6 achieves the best432

performance but on LP3, rule_p = 0.4 does. Such433

observation also holds when we change the fact434

number distribution. The high sensitivity to the435

training distribution is undesirable, as the differ-436

ence between training distribution is small and we437

keep all training distribution general.438

BERT behavior is sensitive to distribution439

shifts. The fluctuations on the test set as the train-440

ing set changes are seemingly bizarre. In some441

cases, the performance changes on the LP variants442

can be intuitively explained. For example, in Table443

4, LP4 has greater rule numbers and intuitively, if444

a training distribution has more rules, the model445

trained on it performs better. Indeed, rule_p = 0.6446

achieves the best performance on LP4. In other447

cases, it is hard to explain the performance changes448

with the intuitive “rule of thumb”. For example,449

in Table 5, larger fact_p implies more alternative450

proof trees; however, in LP3, where examples tend451

to have many alternative proof trees, the best perfor-452

mance is achieved when fact_p = 0.2 rather than453

fact_p = 0.4. In fact, we find that such “bizarre”454

fluctuations are attributed to the inherent issue of455

learning to reason from data, and a deeper analysis456

is provided in Sec. 5.457

5 Discussions458

In this work, we show that even when BERT has459

more than enough capacity to solve SimpleLogic,460

it is difficult for BERT to learn the ability to solve461

SimpleLogic from data. In this section, we discuss462

Model F-0.1 F-0.2 F-0.3 F-0.4
validation 98.2 98.2 98.2 98.3
LP1 (0.12) 73.9 80.1 83.9 83.0
LP2 (0.10) 58.7 68.2 74.5 72.8
LP3 (0.06) 82.5 85.9 77.7 80.0
LP4 (0.08) 83.6 84.9 92.5 92.2
LP5 (0.08) 71.5 74.4 79.8 79.9
LP6 (0.08) 74.2 78.2 70.3 76.5

Table 5: The performance on LP variants when fact_p
changes in training. The value in parentheses following
the test set show the statistics of fact_p in the test set.

the reason and implication of such phenomena. 463

5.1 Why BERT Fails to Generalize to the 464

Whole Problem Space? 465

It is a common observation that neural models may 466

not generalize to more difficult examples (Sinha 467

et al., 2019). In the context of logical reasoning, the 468

difficulty of an example is conventionally defined 469

as its reasoning depth, and models do not general- 470

ize well to examples of reasoning depth larger than 471

the training examples (Clark et al., 2020). Thus, 472

to ensure good performance during test time, we 473

need to sample training examples that are at least as 474

“difficult” as potential test examples. However, in 475

our experiments, we observe that even though the 476

test and train examples are “equally difficult” in the 477

conventional sense (e.g., they have the same rea- 478

soning depths), the model still generalizes poorly. 479

We provide an explanation for this atypical form 480

of generalization failure: the neural model has a 481

different notion of difficulty compared to humans. 482

Specifically, we posit that (1) the difficulty of an 483

example for a neural model is characterized by 484

multiple difficulty factors beyond the reasoning 485

depth; (2) the factors contributing to an example’s 486

difficulty could be hard to identify, imperceptible, 487

or go against human intuitions. For example, we 488

note one such “hard to identify” factor: the number 489

of alternative proof trees (see a definition in Sec. 490

4.1). An alternative proof tree with a greater depth 491

than the optimal tree could mislead the model to 492

take more steps to arrive at the correct answer. If a 493

model is trained on examples with few alternative 494

proof trees, it may generalize poorly to examples 495

with a large number of proof trees. In Sec. 4, LP3 is 496

created to test models’ ability to handle alternative 497

proof trees and all models fail on LP3. 498

The difficulty factors for the model could also 499

go against human intuition: examples that appear 500

easy for a human could be hard for the model. For 501

example, LP2 is simple extremely simple for hu- 502

7

mans (Sec. 4.1): every example contains exactly503

one proof tree, which is a simple cycle with no504

alternative paths. However, all models struggle to505

solve LP2, even though sometimes they can solve506

other seemingly more challenging examples with507

complex proof trees.508

In fact, LP2 - LP6 from Sec. 4 are created based509

on our guess about what kind of examples could be510

considered “difficult” by the model. Nevertheless,511

they are not an exhaustive enumeration of all of512

difficulty factors, as many factors could be com-513

positional or nonsensical, and thus intractable to514

enumerate. Thus, it is almost futile to try to sam-515

ple training examples that are “difficult” enough516

for the test time, as we do not know the model’s517

definition of “difficulty”.518

5.2 Beyond Logical Reasoning519

In this section, we discuss the implications of our520

findings beyond the scope of logical reasoning.521

Dataset bias. Prior work finds that neural mod-522

els fail to generalize when training data contain523

obvious dataset biases or shortcuts from the data524

annotation or collection process (Gururangan et al.,525

2018).For example, due to shortcuts in the NLI526

datasets (McCoy et al., 2019), NLI models may rely527

on the fallible lexical overlap heuristic: a premise528

entails all hypotheses constructed from words in529

the premise. The generalization failure presented in530

this paper can be viewed as a novel type of dataset531

bias: the training data for logical reasoning contain532

no annotation or data collection biases in the tradi-533

tional sense; however, the training data distribution534

does indeed allow for the existence of an incorrect535

function that performs well on the training distribu-536

tion but fails on the whole problem space. In other537

words, there exist intricate and intractable “short-538

cuts” or “biases" in our training data (Sec. 5.1).539

We hope our findings deepen the understanding of540

dataset bias beyond annotation artifacts.541

Using synthetic data. It is a common practice542

to use synthetic data as a proxy for a certain class543

of problems (Johnson et al., 2017; Weston et al.,544

2016). In this case, a random sampling algorithm545

is used to draw examples from the defined problem546

space to form a dataset. A model’s ability to solve547

the class of problems is determined by the its test548

performance on the sampled dataset. However, as549

the random sampling algorithm appears general550

(i.e., every example has a positive probability to551

be sampled by it), it is often neglected whether the552

test performance truly reflects the model’s ability to 553

generalize to the whole problem space. Our results 554

show that caution should be taken and the high test 555

performance could be misleading. 556

6 Related Work 557

A great proportion of NLP tasks require logical 558

reasoning. Prior work contextualizes the prob- 559

lem of logical reasoning by proposing reasoning- 560

dependent datasets and studies solving the tasks 561

with neural models (Johnson et al., 2017; Sinha 562

et al., 2019; Yu et al., 2020; Liu et al., 2020; Tian 563

et al., 2021). However, most studies focus on solv- 564

ing a single task, and the datasets either are de- 565

signed for a specific domain (Johnson et al., 2017; 566

Sinha et al., 2019), or have confounding factors 567

such as language variance (Yu et al., 2020). They 568

can not be used to strictly or comprehensively study 569

the logical reasoning abilities of models. In con- 570

trast, we propose SimpleLogic, a simple yet gen- 571

eral scenario of logical reasoning, to analyze the 572

model reasoning ability. Furthermore, in contrast 573

to the common practice, we show performance on 574

a randomly drawn testset is not sufficient to be an 575

indicator of logic reasoning ability of a model. 576

Another line studies leveraging deep neural mod- 577

els to solve pure logical problems. For examples, 578

SAT (Selsam et al., 2019), maxSAT (Wang et al., 579

2019), temporal logical problems (Hahn et al., 580

2021), DNF counting (Crouse et al., 2019), log- 581

ical reasoning by learning the embedding of logical 582

formula (Crouse et al., 2019; Abdelaziz et al., 2020) 583

and mathematical problems (Saxton et al., 2019; 584

Lample and Charton, 2020). In this work, we focus 585

on deductive reasoning, which is a general and fun- 586

damental reasoning problem. Clark et al. (2020) 587

conducts a similar study to show that models can be 588

trained to reason over language, while we observe 589

the difficulty of learning to reason from data. 590

7 Conclusion 591

In this work, we study whether BERT can be 592

trained to conduct logical reasoning in a confined 593

problem space called SimpleLogic. Even though 594

we show that the BERT model has enough capacity 595

to solve SimpleLogic perfectly, it fails to learn the 596

correct reasoning function from examples that are 597

randomly sampled from the problem space. We call 598

for caution in future work and show that the high 599

performance on one validation dataset does not 600

entail generalization to the whole problem space. 601

8

References602

Ibrahim Abdelaziz, Veronika Thost, Maxwell Crouse,603
and Achille Fokoue. 2020. An experimental study of604
formula embeddings for automated theorem proving605
in first-order logic. CoRR, abs/2002.00423.606

Samuel R. Bowman, Gabor Angeli, Christopher Potts,607
and Christopher D. Manning. 2015. A large anno-608
tated corpus for learning natural language inference.609
In EMNLP. The Association for Computational Lin-610
guistics.611

Peter Clark, Oyvind Tafjord, and Kyle Richardson.612
2020. Transformers as soft reasoners over language.613
In IJCAI. ijcai.org.614

Stephen A. Cook. 1971. The complexity of theorem-615
proving procedures. In STOC, pages 151–158.616
ACM.617

Maxwell Crouse, Ibrahim Abdelaziz, Cristina Corne-618
lio, Veronika Thost, Lingfei Wu, Kenneth D. Forbus,619
and Achille Fokoue. 2019. Improving graph neu-620
ral network representations of logical formulae with621
subgraph pooling. CoRR, abs/1911.06904.622

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and623
Kristina Toutanova. 2019. BERT: pre-training of624
deep bidirectional transformers for language under-625
standing. In NAACL-HLT (1). Association for Com-626
putational Linguistics.627

Suchin Gururangan, Swabha Swayamdipta, Omer628
Levy, Roy Schwartz, Samuel R. Bowman, and629
Noah A. Smith. 2018. Annotation artifacts in nat-630
ural language inference data. In NAACL-HLT (2).631
Association for Computational Linguistics.632

Christopher Hahn, Frederik Schmitt, Jens U. Kreber,633
Markus Norman Rabe, and Bernd Finkbeiner. 2021.634
Teaching temporal logics to neural networks. In635
ICLR. OpenReview.net.636

Justin Johnson, Bharath Hariharan, Laurens van der637
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and638
Ross B. Girshick. 2017. CLEVR: A diagnostic639
dataset for compositional language and elementary640
visual reasoning. In CVPR. IEEE Computer Soci-641
ety.642

Guillaume Lample and François Charton. 2020. Deep643
learning for symbolic mathematics. In ICLR. Open-644
Review.net.645

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,646
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-647
lenge dataset for machine reading comprehension648
with logical reasoning. In IJCAI. ijcai.org.649

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.650
Right for the wrong reasons: Diagnosing syntactic651
heuristics in natural language inference. In Proceed-652
ings of the 57th Annual Meeting of the Association653
for Computational Linguistics, pages 3428–3448.654

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 655
Percy Liang. 2016. Squad: 100, 000+ questions for 656
machine comprehension of text. In EMNLP, pages 657
2383–2392. The Association for Computational Lin- 658
guistics. 659

Stuart Russell and Peter Norvig. 2002. Artificial intel- 660
ligence: a modern approach. 661

David Saxton, Edward Grefenstette, Felix Hill, and 662
Pushmeet Kohli. 2019. Analysing mathematical rea- 663
soning abilities of neural models. In ICLR (Poster). 664
OpenReview.net. 665

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy 666
Liang, Leonardo de Moura, and David L. Dill. 2019. 667
Learning a SAT solver from single-bit supervision. 668
In ICLR (Poster). OpenReview.net. 669

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle 670
Pineau, and William L. Hamilton. 2019. CLUTRR: 671
A diagnostic benchmark for inductive reasoning 672
from text. In EMNLP/IJCNLP (1), pages 4505– 673
4514. Association for Computational Linguistics. 674

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 675
Jonathan Berant. 2019. Commonsenseqa: A ques- 676
tion answering challenge targeting commonsense 677
knowledge. In NAACL-HLT (1), pages 4149–4158. 678
Association for Computational Linguistics. 679

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao, 680
Hao He, and Yaohui Jin. 2021. Diagnosing the first- 681
order logical reasoning ability through logicnli. In 682
EMNLP (1). Association for Computational Linguis- 683
tics. 684

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 685
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 686
Kaiser, and Illia Polosukhin. 2017. Attention is all 687
you need. In NIPS, pages 5998–6008. 688

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and 689
J. Zico Kolter. 2019. Satnet: Bridging deep learn- 690
ing and logical reasoning using a differentiable sat- 691
isfiability solver. In ICML, Proceedings of Machine 692
Learning Research. PMLR. 693

Jason Weston, Antoine Bordes, Sumit Chopra, and 694
Tomás Mikolov. 2016. Towards ai-complete ques- 695
tion answering: A set of prerequisite toy tasks. In 696
ICLR (Poster). 697

Adina Williams, Nikita Nangia, and Samuel R. Bow- 698
man. 2018. A broad-coverage challenge corpus 699
for sentence understanding through inference. In 700
NAACL-HLT. Association for Computational Lin- 701
guistics. 702

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 703
gio, William W. Cohen, Ruslan Salakhutdinov, and 704
Christopher D. Manning. 2018. Hotpotqa: A dataset 705
for diverse, explainable multi-hop question answer- 706
ing. In EMNLP, pages 2369–2380. Association for 707
Computational Linguistics. 708

9

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi709
Feng. 2020. Reclor: A reading comprehension710
dataset requiring logical reasoning. In ICLR. Open-711
Review.net.712

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and713
Yejin Choi. 2018. SWAG: A large-scale adversar-714
ial dataset for grounded commonsense inference. In715
EMNLP. Association for Computational Linguistics.716

A Construction Proof of Theorem 1717

We prove theorem 1 by construction: in N-layer718

BERT model, we take the first layer as parsing719

layer, the last layer as output layer and the rest720

layers as forward chaining reasoning layer. Basi-721

cally, in the parsing layer we preprocess the natural722

language input. In forward chaining reasoning lay-723

ers, the model iteratively broadcast the RHSs to all724

LHSs, and check the left hand side (LHS) of each725

rule and update the status of the right hand side726

(RHS). Here we introduce the general idea of the727

construction, and we will release the source code728

for the detailed parameters assignments.729

A.1 Pre-processing Parameters Construction730

Predicate Signature For each predicate P , we731

generate its signature SignP , which is a 60-732

dimensional unit vector, satisfying that for two dif-733

ferent predicates P1, P2, SignP1 · SignP2 < 0.5.734

We can randomly generate those vectors and check735

until the constraints are satisfied. Empirically it736

takes no more than 200 trials.737

Meaningful Vector In parsing layer, we process738

the natural language inputs as multiple “meaningful739

vectors". The meaningful vectors are stored in form740

of LA||LB||LC ||R||0512, representing a rule LA ∧741

LB ∧ LC → R. Each segment LA, LB, LC , R has742

64 dimensions, representing a predicate or a always743

True/False dummy predicate. For each predicate P ,744

the first 63 dimensions, denoted as P sign, form the745

signature of the predicate, and the last dimension is746

a boolean variable, denoted as P v. The following747

information is converted into meaningful vectors:748

• Rule LHS → RHS : if the LHS has less749

than 3 predicates, we make it up by adding750

always True dummy predicate(s), and then en-751

code it into meaningful vector, stored in the752

separating token follows the rule. In addition,753

for each predicate P in LHS, we encode a754

dummy meaningful vector as False → P755

and store it in the encoding of P . This oper-756

ation makes sure that every predicate in the757

input sentence occurs at least once in RHS 758

among all meaningful vectors. We will see 759

the purpose later. 760

• Fact P : we represent it by a rule True→ P , 761

and then encode it into meaningful vector and 762

store it in the embedding of the separating 763

token follows the fact. 764

• Query Q: we represent it by a rule Q → Q, 765

encode and store it in the [CLS] token at be- 766

ginning. 767

Hence, in the embedding, some positions are en- 768

coded by meaningful vectors. For the rest positions, 769

we use zero vectors as their embeddings. 770

A.2 Forward Chaining Parameters 771

Construction 772

Generally, to simulate the forward chaining algo- 773

rithm, we use the attention process to globally 774

broadcast the true value in RHSs to LHSs, and 775

use the MLP layers to do local inference for each 776

rule from the LHS to the RHS. 777

In attention process, for each meaningful vector, 778

the predicates in LHS look to the RHS of others (in- 779

cluding itself). If a RHS has the same signature as 780

the current predicate, the boolean value of the RHS 781

is added to the boolean value of the current pred- 782

icate. Specifically, we construct three heads. We 783

denote Q(k)
i to stand for the query vector of the i-th 784

token of the k-th attention head. For a meaningful 785

vector written as LA||LB||LC ||R||0512, 786

Q
(1)
i = Lsign

A ||1
4
, Q

(2)
i = Lsign

B ||1
4
, Q

(1)
i = Lsign

C ||1
4

K
(1)
i = βR,K

(2)
i = βR,K

(3)
i = βR

V
(1)
i = 063||Rv, V

(2)
i = 063||Rv, V

(3)
i = 063||Rv.

787

Here β is a pre-defined constant. The attention
weight to a different predicate is at most 3β

4 , while
the attention weight to the same predicate is at least
β, and the predicate with positive boolean value
has even larger (5β4) attention weight. Thus, with a
large enough constant β, we are able to make the
attention distribution peaky. Theoretically, when
β > 300 ln 10, we can guarantee that the attention
result

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

satisfies that the value is in the range of [0.8, 1.0] 788

if the predicate on LHS is boardcasted by some 789

10

RHS with true value, otherwise it is in the range of790

[0, 0.2].791

This attention results are added to the original792

vectors by the skipped connection. After that, we793

use the two-layer MLP to do the local inference in794

each meaningful vector. Specifically, we set795

10[ReLU(LvA + LvB + LvC − 2.3)

−ReLU(LvA + LvB + LvC − 2.4)]
796

as the updated Rv. Thus, Rv = 1 if and only if797

all the boolean values in LHS are true, otherwise798

Rv = 0. We also set LvA, L
v
B, L

v
C as 0 for the next799

round of inference.800

A.3 Output Layer Parameters Construction801

In output layer, we take out the boolean value of802

the RHS of the meaningful vector in [CLS] token.803

11

