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ABSTRACT

The Dowker complex DR(X,Y ) is a simplicial complex capturing the topological inter-
play between two finite sets X and Y under some relation R ⊆ X × Y . While its def-
inition is asymmetric, the famous Dowker duality states that DR(X,Y ) and DR(Y,X)
have homotopy equivalent geometric realizations. We introduce the Dowker-Rips com-
plex DRR(X,Y ), defined as the flagification of the Dowker complex or, equivalently,
as the maximal simplicial complex whose 1-skeleton coincides with that of DR(X,Y ).
This is motivated by applications in topological data analysis, since as a flag complex, the
Dowker-Rips complex is less expensive to compute than the Dowker complex. While the
Dowker duality does not hold for Dowker-Rips complexes in general, we show that one
still has that Hi(DRR(X,Y )) ∼= Hi(DRR(Y,X)) for i = 0, 1. We further show that this
weakened duality extends to the setting of persistent homology, and quantify the “failure”
of the Dowker duality in homological dimensions higher than 1 by means of interleav-
ings. This makes the Dowker-Rips complex a less expensive, approximate version of the
Dowker complex that is usable in topological data analysis. Indeed, we provide a Python
implementation of the Dowker-Rips complex and, as an application, we show that it can
be used as a drop-in replacement for the Dowker complex in a tumor microenvironment
classification pipeline. In that pipeline, using the Dowker-Rips complex leads to increase
in speed while retaining classification performance.

1 INTRODUCTION

Topological data analysis (TDA) provides a framework for extracting qualitative geometric and topological
features from complex data sets. Central to this approach is the construction of simplicial complexes that
approximate the shape of an data set or, more generally, a metric space. A prominent example of such
a complex is the Čech complex, where a finite set of points is declared to span a simplex precisely if
the balls of some fixed radius ε > 0 around the points have non-empty intersection. While the Čech
complex provably captures the topology of the union of all ε-balls, it is notoriously expensive to compute
because triple and higher order intersections of balls must be checked (see, e.g., Ghrist (2014, Chapter
2.5) and Edelsbrunner & Harer (2010, Chapter III)). As a way around this, one often resorts to working
with a simpler complex known as the Vietoris-Rips complex in practice. By definition, the Vietoris-Rips
complex is obtained by flagifying of the Čech complex, that is, by adding all possible simplices whose
edges are already present in the Čech complex. By construction, the Vietoris-Rips complex is thus entirely
determined by its 1-skeleton, which coincides with that of the Čech complex. This makes the Vietoris-Rips
complex less expensive to describe, compute and store. Indeed, several software packages for computing
persistent homology like GUDHI (Maria, 2023) and ripser (Bauer, 2021) allow for a significant speed-up
in computation time when working with flag complexes. Moreover, even though the Vietoris-Rips complex
does not enjoy the same theoretical guarantees regarding the capturing of the topology of the underlying data
set, it is guaranteed to be “topologically close” to the Čech complex in the sense that the two complexes are
interleaved. Finally, there do exist conditions under which such guarantees for the Vietoris-Rips complex
do exist (Chambers et al., 2010; Attali et al., 2013).

While both the Čech and Vietoris-Rips complexes are used to analyze a single data set, one might be
interested in analyzing the topology of a data set relative to another one living in the same space (or,

1



051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101

equivalently, the topology of a subset of a data set relative to its complement). One tool for doing so is the
Dowker complex, which was introduced by Dowker in 1952 Dowker (1952).
Definition 1.1. Let X,Y be two finite sets and let R ⊆ X × Y be a non-empty relation. The Dowker
complex on X relative to Y is the simplicial complex DR(X,Y ) defined by the rule that a finite subset
σ ⊆ X belongs to DR(X,Y ) iff there exists y ∈ Y such that (x, y) ∈ R for all x ∈ σ.

IfX and Y in Definition 1.1 are subsets of a metric space (Z, d), one may define a relationRε ⊆ X×Y by
declaring (x, y) ∈ Rε iff d(x, y) ≤ ε for ε ≥ 0. In this setting, the Dowker complex may be regarded as a
variant of the Čech complex where one does not simply require the intersection of ε-balls around elements
of X to be non-empty, but indeed to contain an element of Y .

A particularly nice feature of the Dowker complex is given by the Dowker duality, proven by Dowker
in the original paper introducing Dowker complexes (Dowker, 1952). It states that the two complexes
DR(X,Y ) and DR(Y,X) are homotopy equivalent and, as a consequence, have isomorphic homology
groups. This result has been extended to filtrations of Dowker complexes by Chowdhury and Mémoli, who
have shown that these homotopy equivalences commute with the inclusions of the filtrations, thus extending
Dowker duality to the setting of persistent homology (Chowdhury & Mémoli, 2018). In other words, this
more general form of Dowker duality allows one to compute persistent homology for an entire filtration of
Dowker complexes {DR(X,Y )}R∈R for some set R of nested relations, and this persistent homology is
guaranteed to be isomorphic to that of the corresponding filtration {DR(Y,X)}R∈R. In particular, this may
be applied to the relationsRε in the setting of metric spaces. From a practical perspective, this duality allows
one to compute the smaller of the two complexes at each step (which amounts to potentially swapping the
roles of X and Y ). This can be crucial for computation time and memory consumption, in particular if one
of X and Y is significantly smaller than the other. In the context of metric spaces, the persistence diagrams
resulting from filtrations of Dowker complexes provide a way of analyzing whether and how the classes X
and Y are colocalized in the ambient metric space Z (see, e.g., Stolz et al. (2024, Section 5.1.2) for details).
Dowker complexes have seen applications inside math as well as outside of math, in domains as diverse
as computational biology, data science, machine learning and neuroscience (Stolz et al., 2024; Choi et al.,
2024; Brun & Blaser, 2019; Zemene & Pelillo, 2015; Liu et al., 2022; Moshkov et al., 2022; Vaupel et al.,
2023; Freund et al., 2015; Garland et al., 2016). For more details on Dowker complexes, see, e.g., Chazal
et al. (2014); Ghrist (2014); Chowdhury & Mémoli (2018).

In this work, we introduce and examine a flagified version of the Dowker complex, which we call the
Dowker-Rips complex. Just like the Vietoris-Rips complex may be defined as a flagified version of the Čech
complex and can thus be regarded as a less expensive and approximate variant thereof, the Dowker-Rips
complex can be regarded as such a variant of the Dowker complex. To define the Dowker-Rips complex,
we first state a precise definition of flagifications.
Definition 1.2. Given a simplicial complex X , the flagification of X , denoted by F(X), is defined as the
simplicial complex that is obtained from X by including a simplex σ ⊆ X whenever all edges of σ already
belong to X and dim(σ) ≥ 2. More generally, for an integer k ≥ 2, the k-flagification of X , denoted by
F≥k(X), is defined as the complex that is obtained from X by including a simplex σ ⊆ X whenever all
(k − 1)-dimensional faces of σ already belong to X and dim(σ) ≥ k.
Remark 1.3. Note that X ⊆ F≥k(X) ⊆ F(X) for any simplicial complex X and k ≥ 2. Moreover, we
have thatX = F≥k(X) if k > dim(X)+1, and F≥2(X) = F(X) for any simplicial complexX . Finally,
note that F≥k(X) is determined entirely by the (k − 1)-skeleton of X , k ≥ 2.
Example 1.4. Let X ⊆ Rn, and denote by Čε(X) and VRε(X) its Čech and Vietoris-Rips complexes at
some scale ε ≥ 0, respectively. Then we have that F(Čε(X)) = VRε(X).

With the definition of flagification at hand, we are now ready to define the Dowker-Rips complex.
Definition 1.5. Let X,Y be two finite sets and let R ⊆ X × Y be a non-empty relation. The Dowker-Rips
complex on X relative to Y is defined as

DRR(X,Y ) := F(DR(X,Y )).

The motivation behind defining the Dowker-Rips complex is twofold. First, the Dowker complex is a
Čech-like complex in the sense that its construction relies on the pairwise and higher order intersections
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of metric balls around its elements containing a certain element. From a theoretical perspective, it thus
seems natural to define a complex that relates to the Dowker complex in the same way as the Vietoris-Rips
complex relates to the Čech complex, namely through flagification. Second, from a practical perspective,
the Dowker complex (and its persistent homology) is prohibitively expensive to compute for large or high-
dimensional data sets. The Dowker-Rips complex provides an alternative to the Dowker complex that
is applicable in practice, while at the same time retaining the usefulness of the latter. In this work, we
provide a theoretical analysis of the differences between the Dowker and the Dowker-Rips complexes, and
we illustrate the usefulness of the latter by showing that simply replacing the Dowker complex with the
Dowker-Rips complex in an existing tumor microenvironment classification pipeline leads to increase in
speed while retaining classification performance.

Given the definition of the Dowker-Rips complex, there are two natural questions that arise:

(1) How much can the Dowker-Rips complex differ from the Dowker complex?

(2) Does some version of the Dowker duality still hold for Dowker-Rips complexes?

For filtrations of simplicial complexes, questions such as Question (1) are usually answered by showing
that the two filtrations are multiplicatively c-interleaved for some c ≥ 1.1 Informally speaking, the smaller
the value of c ≥ 1, the closer the two filtrations are. A prominent example of this is the chain of inclusions

Čε(X) ⊆ VRε(X) ⊆ Č2ε(X) (1)

for ε ≥ 0, which translates into the fact that the Vietoris-Rips complex and the Čech complex are multiplica-
tively 2-interleaved. We show that a similar argument also works for Dowker-Rips and Dowker complexes
in the case where X and Y are subsets of some metric space (Z, d) with the relation Rε ⊆ X × Y defined
by declaring (x, y) ∈ R iff d(x, y) ≤ ε for ε ≥ 0.

Theorem 1.6. Let X,Y ⊆ Z where (Z, d) is some metric space, and define the relations Rε ⊆ X × Y
by declaring (x, y) ∈ R iff d(x, y) ≤ ε for ε ≥ 0. Denote by D•(X,Y ) the filtration given by
{DRε

(X,Y )}ε∈R+ , and similarly for DR•(X,Y ). Then have that

Dε(X,Y ) ⊆ DRε(X,Y ) ⊆ D3ε(X,Y ) (2)

for all ε ≥ 0, and, in particular, that D•(X,Y ) and DR•(X,Y ) are multiplicatively 3-interleaved.

The above result is sharp in the sense that the inclusion DRε(X,Y ) ⊆ D3ε(X,Y ) does not hold when 3 is
replaced by some value c < 3 (see Proposition 3.1 for such an example).

We use a similar argument to give a partial answer to Question (2). We point out that the multiplicative
interleaving claimed in the following does not stem from a chain of inclusions such as in Equations (1)
and (2), but rather from the more general notion of a multiplicative interleaving defined in Section 3.

Theorem 1.7. Let X,Y ⊆ Z where (Z, d) is some metric space, and define the relations Rε ⊆ X × Y as
in Theorem 1.6, ε ≥ 0. Denote by DR•(X,Y ) the filtration given by {DRRε

(X,Y )}ε∈R+ , and similarly
for DR•(Y,X). Then DR•(X,Y ) and DR•(Y,X) are multiplicatively 3-interleaved.

While this already establishes that DR•(X,Y ) and DR•(Y,X) cannot be “too different”, it is still a sig-
nificantly weaker guarantee than the one we have for Dowker complexes, where we have a homotopy
equivalence and thus an isomorphism at the level of persistent homology. Indeed, as we will see in Sec-
tion 4, an isomorphism at the level of persistent homologies of DR•(X,Y ) and DR•(Y,X) does not exist
in general. Nevertheless, we still obtain an isomorphism at the level of persistent homology when restricted
to homological dimensions 0 and 1. This follows from a slightly more general result on k-flagifications of
Dowker complexes.

Theorem 1.8. Let X and Y be two finite sets and let {Rj}j∈J be a sequence of relations such that Rj ⊆
X × Y for all j ∈ J , and Rj ⊆ Rj′ whenever j ≤ j′, where J is some totally ordered index set. Given an

1For the definition of a multiplicative interleaving, see Definition 2.2.
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integer k ≥ 2, denote by F≥k(D•(X,Y )) the filtration given by
{
F≥k(DRj

(X,Y ))
}
j∈J , and similarly

for F≥k(D•(Y,X)). Then we have that

PHi(F≥k(D•(X,Y ))) ∼= PHi(F≥k(D•(Y,X)))

for i = 0, . . . , k − 1.
Remark 1.9. Recall that for large enough k ≥ 1, we have that F≥k(DR(X,Y )) = DR(X,Y ) and
F≥k(DR(Y,X)) = DR(Y,X). For such choices of k, Theorem 1.8 is essentially a homological (and
hence weaker) restatement of Chowdhury & Mémoli (2018, Theorem 3). Indeed, Theorem 1.8 may be read
as saying that there exists a decreasing sequence of filtrations

DR•(X,Y ) = F≥2(D•(X,Y )) ⊇ · · · ⊇ F≥k(D•(X,Y )) ⊇ F≥k′(D•(X,Y )) ⊇ · · · ⊇ D•(X,Y )

for k < k′, in which the number of dimensions for which Dowker duality holds increases by 1 at each step.

Using the fact that the Dowker-Rips complex is the 2-flagification of the Dowker complex, we get the
following Dowker-Rips duality.
Theorem 1.10. Let (Z, d) be a metric space and let X,Y ⊆ Z be non-empty and finite disjoint subsets.
For ε ≥ 0, define the relation Rε ⊆ X × Y by

(x, y) ∈ Rε iff d(x, y) ≤ ε.

Denote by DR•(X,Y ) the filtration given by {DRRε(X,Y )}ε∈R+ , and similarly for DR•(Y,X). Then we
have that

PHi(DR•(X,Y )) ∼= PHi(DR•(Y,X))

for i = 0, 1.

The above result is sharp in the sense that its conclusion does not hold for homological dimensions higher
than 1 (see Proposition 4.4 for such an example). Nevertheless, the Dowker-Rips duality is a desirable
property of the Dowker-Rips complex, since, in practice, persistent homology is often computed only up
to homological dimension 1 for reasons of computational complexity. In these homological dimensions,
the Dowker-Rips duality may thus be used to accelerate the computation of the persistent homology of the
Dowker-Rips complex: like in the case of the Dowker complex, this duality allows one to potentially swap
the roles of X and Y in order to compute the less expensive variant of the two Dowker-Rips complexes.

This paper is organized as follows. In Section 2, we briefly review the necessary mathematical background.
In Section 3, we construct the multiplicative interleavings, proving Theorems 1.6 and 1.7. In Section 4,
which is the main technical section, is devoted to deducing the Dowker-Rips duality (Theorem 1.10). Fi-
nally, in Section 5, we present the application that justifies using the Dowker-Rips complex instead of the
Dowker complex in practice.

2 PRELIMINARIES

In this section, we briefly review the necessary background on the concepts and tools stemming from topo-
logical data analysis (TDA) used in this paper. We refer the reader to Schnider et al. (2025); Edelsbrunner
& Harer (2010); Ghrist (2014) for details on the following.

2.1 SIMPLICIAL COMPLEXES AND FILTRATIONS

A simplicial complex is a combinatorial structure that can be seen as a higher-dimensional generalization
of a graph. Formally, it is a collection K of finite subsets of some vertex set X such that if σ ∈ K and
τ ⊆ σ, then τ ∈ K. Each subset σ ⊆ X belonging to K is called a simplex, and usually denoted by
σ = [x0, . . . , xn], where x1, . . . , xn ∈ X . The dimension of a simplex σ is defined as dim(σ) := |σ| − 1.
Simplices of dimension 0 and 1 are also referred to as vertices and edges, respectively.

A filtration of a topological space X is a nested sequence of subspaces

Xi0 ⊆ Xi1 ⊆ · · · ⊆ Xin = X,

4
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for some i0 ≤ i1 ≤ · · · ≤ in ∈ I , where I is some totally ordered index set. Such a filtration may be
succinctly written as X• = {Xik}k≥0. In TDA, we typically have that I = R, and that the filtration indices
represent some scale parameter, as is the case in the following example.

Example 2.1. Given a metric space (Z, d) and a subset X ⊆ Z, the Čech complex of X at scale ε ≥ 0,
denoted by Čε(X,Z), is the simplicial complex defined as containing a simplex [x0, . . . , xk] ⊆ X if the
closed ε-balls centered at x0, . . . , xk have a non-empty common intersection in Z. If Z = Rn, one usually
writes Čε(X) instead of Čε(X,Rn). In contrast, the Vietoris-Rips complex of X at scale ε ≥ 0, denoted
by VRε(X), is defined as the simplicial complex containing a simplex [x0, . . . , xk] ⊆ X if d(xi, xj) ≤ 2ε

for all 0 ≤ i ≤ j ≤ k. Both complexes induce filtrations Č•(X,Z) :=
{
Čε(X,Z)

}
ε∈R+ and VR•(X) :=

{VRε(X)}ε∈R+ , obtained by gradually increasing the value of the scale parameter ε.

2.2 PERSISTENT HOMOLOGY AND PERSISTENCE MODULES

Persistent homology (PH) formalizes the study of topological features across a filtration. For each k ≥ 0,
PH keeps track of the k-th homology group across the evolution of a filtration. More formally, given a
filtration X•, this is achieved by applying the k-dimensional homology functor to the sequence of inclusion
maps

Xi0 ↪→ Xi1 ↪→ · · · ↪→ Xin = X.

This yields a collection of vector spaces

Hk(Xi0) → Hk(Xi1) → · · · → Hk(Xin)

with induced maps between them. This data is denoted by PHk(X•) and an example of a persistence
module. In general, the latter is defined as any indexed collection of vector spaces V = {Vi}i∈I (for some
totally ordered set I) with linear maps fi,j : Vi → Vj , i ≤ j, such that fi,i = idVi

and fi,k = fj,k ◦ fi,j for
any i ≤ j ≤ k ∈ I . Two persistence modules {Vi}i∈I and {Wi}i∈I are said to be isomorphic isomorphic
if there exists a collection of isomorphisms φi : Vi →Wi, i ∈ I , such that the diagrams

Vi Vj

Wi Wj

φi φj and

Vi Vj

Wi Wj

φ−1
i φ−1

j

commute.

2.3 MULTIPLICATIVE INTERLEAVINGS

Interleavings are a way to capture similarities of filtrations. While in many cases additive interleavings are
desirable, in some cases multiplicative interleavings are the best that can be done. Following we recall the
definition of a multiplicative interleaving (see, e.g., Dey & Wang (2022); Oudot (2015)).

Definition 2.2. Let F = {Fa}a∈R and G = {Ga}a∈R be filtrations. We say that F and G are multiplica-
tively c-interleaved if there are maps φa : Fa → Gca and ψa : Ga → Fca such that the following diagrams
commute for every a ∈ R and ε > 0:

Ua Ua+ε

Vca Vc(a+ε)

φa φa+ε

Uca Uc(a+ε)

Va Va+ε

ψa ψa+ε

Ua Uc2a

Vca

φa ψca

Uca

Va Vc2a

φcaψa
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Note that the smaller the value of c ≥ 1, the “closer” the two filtrations are to each other. As with additive
interleavings, a multiplicative interleaving of two filtrations implies that the respective persistent homolo-
gies are “close” in a suitable sense. Multiplicative interleavings thus provide a rigorous way of quantifying
how different two filtrations are.

One prominent example of a multiplicative interleaving stems from the chain of inclusions
Čε(X) ⊆ VRε(X) ⊆ Č2ε(X)

for ε ≥ 0, which establishes a multiplicative 2-interleaving of the Čech filtration and the Vietoris-Rips
filtration.

3 MULTIPLICATIVE INTERLEAVINGS OF THE DOWKER-RIPS COMPLEX

This section pertains to the two multiplicative interleavings whose existence was claimed in Section 1. For
convenience, we restate the relevant theorems, and we refer the reader to Appendix A.1.1 for the proofs of
the technical results of this section.
Theorem 1.6. Let X,Y ⊆ Z where (Z, d) is some metric space, and define the relations Rε ⊆ X × Y
by declaring (x, y) ∈ R iff d(x, y) ≤ ε for ε ≥ 0. Denote by D•(X,Y ) the filtration given by
{DRε(X,Y )}ε∈R+ , and similarly for DR•(X,Y ). Then have that

Dε(X,Y ) ⊆ DRε(X,Y ) ⊆ D3ε(X,Y ) (2)
for all ε ≥ 0, and, in particular, that D•(X,Y ) and DR•(X,Y ) are multiplicatively 3-interleaved.
Theorem 1.7. Let X,Y ⊆ Z where (Z, d) is some metric space, and define the relations Rε ⊆ X × Y as
in Theorem 1.6, ε ≥ 0. Denote by DR•(X,Y ) the filtration given by {DRRε

(X,Y )}ε∈R+ , and similarly
for DR•(Y,X). Then DR•(X,Y ) and DR•(Y,X) are multiplicatively 3-interleaved.

We conclude this section by providing an example illustrating that the interleaving from Theorem 1.6 is
sharp in the sense that the inclusion DRε(X,Y ) ⊆ D3ε(X,Y ) does not hold when 3 is replaced by some
value c < 3.
Proposition 3.1. There exists a setting for Theorem 1.6 such that

DRε(X,Y ) ̸⊆ Dcε(X,Y )

for any c < 3.

Proof. Define (Z, d) as the graph pictured in Figure 1 equipped with the shortest-path metric, and let
X = {x0, x1, x2} ⊆ Z and Y = {y0, y1, y2} ⊆ Z be the set of the crossed and hollow circles, respectively.
It is easy to see that [xi, xj ] ∈ D1(X,Y ) for all 0 ≤ i < j ≤ 2, and hence that [x0, x1, x2] ∈ DR1(X,Y ).
In contrast, for Dc(X,Y ), c ≥ 1, to contain [x0, x1, x2], c must be large enough to guarantee the existence
of an element y ∈ Y such that d(y, xi) ≤ c for all 0 ≤ i ≤ 2. Since d(yi, xi) = 3 for all 0 ≤ i ≤ 2, this is
the case only if c ≥ 3.

4 DOWKER-RIPS DUALITY

In this section, we derive the strengthenings of the interleaving results from Section 3 and, in particular,
the Dowker-Rips duality. We refer the reader to Appendix A.1.2 for the proofs of the technical results of
this section. To begin, we restate and extend the definition of k-flagification to include a notion of partial
flagification that is needed in the proofs.
Definition 4.1. Given a simplicial complex X , the flagification of X , denoted by F(X), is defined as the
simplicial complex that is obtained from X by including a simplex σ ⊆ X whenever all edges of σ already
belong to X and dim(σ) ≥ 2. More generally, for an integer k ≥ 2, the k-flagification of X , denoted by
F≥k(X), is defined as the complex that is obtained from X by including a simplex σ ⊆ X whenever all
(k − 1)-dimensional faces of σ already belong to X and dim(σ) ≥ k. Finally, the partial k-flagification of
X , denoted by Fk(X), is defined as the complex that is obtained from X by including a simplex σ ⊆ X
whenever all (k − 1)-dimensional faces of σ already belong to X and dim(σ) = k.
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x0

y2 y1

x1 y0 x2

Figure 1: The metric space (Z, d) from the proof of
Proposition 3.1, with subsets X and Y consisting of

the crossed and hollow circles, respectively.

Recall from Chowdhury & Mémoli (2018, Section 5.1) that there exists a simplicial map Γ: D
(1)
R (X,Y ) →

DR(Y,X) that induces a homotopy equivalence ψ : |D(1)
R (X,Y )| → |DR(Y,X)| on the level of geometric

realizations. Here and in what follows, X(1) denotes the first barycentric subdivision of a simplicial com-
plex X . The map Γ is defined by mapping any vertex σ = [x0, . . . , xn] ∈ D

(1)
R (X,Y ), x0, . . . , xn ∈ X ,

to an element yσ ∈ Y such that (xk, yσ) ∈ R for all k = 0, . . . , n. It is shown in Chowdhury & Mémoli
(2018) that the map Γ thus defined is simplicial and, moreover, that different choices of yσ in its definition
result in maps that are contiguous to one another (and hence induce homotopic maps on the level of geomet-
ric realizations). At a high level, we prove Theorem 1.10 by first showing in Lemma 4.2 that the map ψ can
be extended to a map between the partial k-flagifications. From this we deduce Proposition 4.3, the main
technical result that establishes properties of the extensions of ψ pertaining to homology and commutativity.
Finally, Theorems 1.8 and 1.10 will be relatively straight forward consequences of that proposition.

To make sense of the setup of Lemma 4.2, observe that DR(X,Y ) is a subcomplex of Fk(DR(X,Y )),
which implies that D(1)

R (X,Y ) is a subcomplex of Fk(DR(X,Y ))(1) for k ≥ 2.

Lemma 4.2. The homotopy equivalence ψ : |D(1)
R (X,Y )| → |DR(Y,X)| extends to a continuous map

φ : |Fk(DR(X,Y ))(1)| → |Fk(DR(Y,X))|
for any k ≥ 2.

With the previous lemma at hand, we can now deduce the required properties of the extensions of the map
ψ.
Proposition 4.3. Let X and Y be two finite sets, let R ⊆ R′ ⊆ X × Y be two non-empty relations,
and let k ≥ 2 an integer. Then there exist continuous maps φ : |Fk(DR(X,Y ))| → |Fk(DR(Y,X))|
and φ′ : |Fk(DR′(X,Y ))| → |Fk(DR′(Y,X))| that induce isomorphisms on the level of i-dimensional
homology for i = 0, . . . , k − 1, and, moreover, such that the diagram

|Fk(DR(X,Y ))| |Fk(DR′(X,Y ))|

|Fk(DR(Y,X))| |Fk(DR′(Y,X))|

φ φ′ (3)

commutes up to homotopy. Here, the horizontal maps are given by inclusion.

The proposition above allow us to prove the main theorems, which we restate for convenience.
Theorem 1.8. Let X and Y be two finite sets and let {Rj}j∈J be a sequence of relations such that Rj ⊆
X × Y for all j ∈ J , and Rj ⊆ Rj′ whenever j ≤ j′, where J is some totally ordered index set. Given an
integer k ≥ 2, denote by F≥k(D•(X,Y )) the filtration given by

{
F≥k(DRj

(X,Y ))
}
j∈J , and similarly

for F≥k(D•(Y,X)). Then we have that

PHi(F≥k(D•(X,Y ))) ∼= PHi(F≥k(D•(Y,X)))

7
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for i = 0, . . . , k − 1.

Theorem 1.10. Let (Z, d) be a metric space and let X,Y ⊆ Z be non-empty and finite disjoint subsets.
For ε ≥ 0, define the relation Rε ⊆ X × Y by

(x, y) ∈ Rε iff d(x, y) ≤ ε.

Denote by DR•(X,Y ) the filtration given by {DRRε(X,Y )}ε∈R+ , and similarly for DR•(Y,X). Then we
have that

PHi(DR•(X,Y )) ∼= PHi(DR•(Y,X))

for i = 0, 1.

We conclude this section by providing an example illustrating that the Dowker-Rips duality is sharp in the
sense that its conclusion does not hold for homological dimensions higher than 1.

Proposition 4.4. There exists a setting for Theorem 1.10 in which the conclusion fails for i = 2.

Proof. Let X = {x0, . . . , x3} ⊆ R3 denote the set of vertices of a regular tetrahedron with edge length
1 embedded in R3, and let Y = {yij | 0 ≤ i < j ≤ 3}, where yij is defined to be the midpoint of xi
and xj , 0 ≤ i < j ≤ 3. Denote by D•(X,Y ) the filtration given by {DRε

(X,Y )}ε∈R+ , and similarly
for D•(Y,X). Then we have that D1/2(X,Y ) is homeomorphic to the geometric realization of K4, the
complete graph on four vertices. In contrast, the complex D1/2(Y,X) has vertex set Y , and a set of vertices
spans a simplex precisely when their subscripts share a common element. See Figure 2 for an illustration
of the complexes D1/2(X,Y ) and D1/2(Y,X).

It follows that the flagifications of D1/2(X,Y ) and D1/2(Y,X) equal a 3-simplex and an octahedron,
respectively. Hence DR1/2(X,Y ) and DR1/2(Y,X) are homotopy equivalent to a point and a 2-sphere,
respectively. This implies that

H2(DR1/2(X,Y )) ∼= {0} and H2(DR1/2(Y,X)) ∼= Z,

and, in particular, that
PH2(DR1/2(X,Y )) ̸∼= PH2(DR1/2(Y,X)),

as claimed.

x2

x0

x3

x1

y03

y13

y02

y12

y23

y01

Figure 2: The complexes D1/2(X,Y ) (left) and D1/2(Y,X) (right) from the proof of Proposition 4.4.

5 THE DOWKER-RIPS COMPLEX AS A DROP-IN REPLACEMENT FOR THE DOWKER
COMPLEX

We now present a machine learning application in which using the Dowker-Rips complex instead of the
Dowker complex leads to gains in speed while at the same time not negatively impacting performance.
More concretely, it is shown in Stolz et al. (2024) that the Dowker complex may be used in a pipeline
classifying tumor microenvironments into anti-tumor and pro-tumor macrophage dominant. We briefly
review this pipeline here and refer the reader to Stolz et al. (2024, Section 5.1.1) for details.
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First, (an image of) a tumor microenvironment is represented as a two-dimensional point cloud, each
point of which is labeled according to whether it represents a blood vessel, necrotic cell, tumor cell or
macrophage. Subsequently, the Dowker complex of one class of points relative to another is constructed;
this is done for each of the label combinations macrophage-tumor, tumor-blood vessel and macrophage-
blood vessel. For each of the complexes, persistent homology is computed, represented as a persistence
diagram and discretized into a persistence image, yielding three persistence images, each of size 20 × 20
pixels, for each microenvironment. These persistence images are flattened into vectors, concatenated and
passed to a support vector machine (SVM) for classification of the microenvironment into “anti-tumor” and
“pro-tumor”. As shown in Stolz et al. (2024, Section 5.1.3), this pipeline achieves a median classification
accuracy of 86.6% across ten runs (controlling for randomized components in the SVM).

We reproduced the above pipeline and its result, and subsequently ran the same pipeline with the Dowker
complex replaced by the Dowker-Rips complex; see Table 1 for the results.2 In that table, we report the
average classification accuracy with its standard deviation as well as the median accuracy across the ten
runs.3 We thus find that using the Dowker-Rips complex as a drop-in replacement for the Dowker complex
in the pipeline above results in essentially the same classification performance. Crucially, however, we
found that computation of the relevant complexes and their persistent homologies was sped up by a factor
of over 14 when using the Dowker-Rips complex instead of the Dowker complex.4

Table 1: Results from microenvironment classification

COMPLEX USED MEAN ACCURACY MEDIAN ACCURACY

Dowker-Rips 86.09±1.39 86.05
Dowker 85.69±1.49 85.51

For the above experiments, we implemented the Dowker-Rips complex as an open-source Python pack-
age compatible with the scikit-learn API. The reason for the speed gain of the Dowker-Rips complex over
the Dowker complex stems from the fact that the former, unlike the latter, is a flag complex, and hence
entirely determined by its 1-skeleton. This not only means that the Dowker-Rips complex is much less
costly to construct than the Dowker complex, but also that its persistent homology can be computed us-
ing highly optimized state-of-the-art software. Indeed, in our implementation calculation of persistent
homology is performed by ripser parallel from the giotto-ph library (Pérez et al., 2021), which in turn is
built on ripser (Bauer, 2021) and other software; both of these implementations are specifically adapted to
flag complexes. In order to compute persistent homology of DR•(X,Y ) (where X = {x1, . . . , xn} and
Y = {y1, . . . , ym} are subsets of RN endowed with some distance function d), all that is needed is to
create the matrix M = {mij}i,j ∈ Rn×n containing the filtration levels at which vertices and edges of
DR•(X,Y ) appear. Letting D = {d(xi, yj)}i,j ∈ Rn×m denote the matrix of pairwise distances between
X and Y , the matrix M may be obtained from D by setting

• mii := mink d(xi, yk), 1 ≤ i ≤ n; and

• mij := minkmax {d(xi, yk), d(xj , yk)}, 1 ≤ i, j ≤ n.

Passing M to ripser parallel then results in PH∗(DR•(X,Y )).

2Python code to run the pipelines is provided in the supplementary material for this submission. Running it requires
our implementations of the Dowker-Rips and the Dowker complex, which are provided in the supplementary material
as well.

3The discrepancy between the median accuracy of the pipeline using the Dowker complex reported in Table 1 and
that found in Stolz et al. (2024) stems from the fact that we ported the original pipeline from Julia to Python.

4We ran our experiments on a laptop with a 12th Gen Intel Core i7-1260P processor running at 2.10GHz.
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REPRODUCIBILITY STATEMENT

All theoretical results are stated with complete proofs in the appendix. Definitions, assumptions, and inter-
mediate lemmas are included to make the arguments self-contained. The supplementary material contains
code that implements our method and experiments. The code is written in Python and depends only on
standard libraries, or on libraries written by us that we provide in the supplementary material. Instructions
for running the code and reproducing the results in the paper are included in the respective README files.
Experiments can be reproduced on a standard laptop.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

In this section, we provide proofs for all theoretical results in the main text, separated according to which
section the appear in the main text in. For convenience, we restate each result for before its proof.

A.1.1 PROOFS OF RESULTS PERTAINING TO MULTIPLICATIVE INTERLEAVINGS

Theorem 1.6. Let X,Y ⊆ Z where (Z, d) is some metric space, and define the relations Rε ⊆ X × Y
by declaring (x, y) ∈ R iff d(x, y) ≤ ε for ε ≥ 0. Denote by D•(X,Y ) the filtration given by
{DRε

(X,Y )}ε∈R+ , and similarly for DR•(X,Y ). Then have that

Dε(X,Y ) ⊆ DRε(X,Y ) ⊆ D3ε(X,Y ) (2)

for all ε ≥ 0, and, in particular, that D•(X,Y ) and DR•(X,Y ) are multiplicatively 3-interleaved.
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Proof. It suffices to show that

Dε(X,Y ) ⊆ DRε(X,Y ) ⊆ D3ε(X,Y )

for all ε ≥ 0; by defining φε and ψε as inclusions, the commutativity of the required diagrams then follows
immediately.

Let ε ≥ 0. The inclusion Dε(X,Y ) ⊆ DRε(X,Y ) is immediate from the definition of DRε(X,Y ) as the
flagification of Dε(X,Y ).

Suppose now that DRε(X,Y ) contains some simplex σ = [x0, . . . , xn], where x0, . . . , xn ∈ X . By
definition, this means that for any xi, xj ∈ σ there exists an element yij ∈ Y such that d(xi, yij) ≤ ε and
d(xj , yij) ≤ ε. Now, given any xi ∈ σ, we have that

d(xi, ykl) ≤ d(xi, xk) + d(xk, ykl)

≤ d(xi, yki) + d(yki, xk) + d(xk, ykl)

≤ 3ε

for any 0 ≤ k < j ≤ n. Hence σ ∈ D3ε(X,Y ), as claimed.

Theorem 1.7. Let X,Y ⊆ Z where (Z, d) is some metric space, and define the relations Rε ⊆ X × Y as
in Theorem 1.6, ε ≥ 0. Denote by DR•(X,Y ) the filtration given by {DRRε

(X,Y )}ε∈R+ , and similarly
for DR•(Y,X). Then DR•(X,Y ) and DR•(Y,X) are multiplicatively 3-interleaved.

Proof. Consider the following chain of maps

DRε(X,Y ) D3ε(X,Y ) D
(1)
3ε (X,Y ) D3ε(Y,X) DR3ε(Y,X),

ιεDR,D ι(1) Γ ι3εD,DR

where ιεDR,D and ι3εD,DR denote the inclusion maps from Theorem 1.6, ι(1) denotes the inclusion of the re-
spective complex into its first barycentric subdivision, and where Γ denotes the simplicial map from Chowd-
hury & Mémoli (2018). We define φε := ι3εD,DR ◦ Γ ◦ ι(1) ◦ ιεDR,D. The functions ψε are defined symmetri-
cally.

Consider first the following diagram:

DRε(X,Y ) DR9ε(X,Y )

D3ε(X,Y ) D9ε(X,Y )

D
(1)
3ε (X,Y ) D

(1)
9ε (X,Y )

D3ε(Y,X) D9ε(Y,X)

DR3ε(Y,X)

ιεDR,D

ι(1)

ι9εD,DR

Γ

Γ

ι3εD,DR

ι(1)

ι3εDR,D

(4)

By definition of φε and ψε, this is exactly the triangular diagram required for multiplicative interleavings.
It follows from functoriality of Γ established in Chowdhury & Mémoli (2018) together with the fact that all
other maps are inclusion maps that this diagram commutes.
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Similarly, the relevant trapezoidal diagram is the following:

DRε(X,Y ) DRε+ε′(X,Y )

D3ε(X,Y ) D3(ε+ε′)(X,Y )

D
(1)
3ε (X,Y ) D

(1)
3(ε+ε′)(X,Y )

D3ε(Y,X) D3(ε+ε′)(Y,X)

DR3ε(X,Y ) DR3(ε+ε′)(X,Y )

ιεDR,D ιε+ε′
DR,D

ι(1) ι(1)

Γ Γ

ι3εD,DR ι
3(ε+ε′)
D,DR

(5)

Again, this diagram commutes by functoriality of Γ and the fact that all other maps are inclusion maps.

A.1.2 PROOFS OF RESULTS PERTAINING TO DOWKER-RIPS DUALITY

Lemma 4.2. The homotopy equivalence ψ : |D(1)
R (X,Y )| → |DR(Y,X)| extends to a continuous map

φ : |Fk(DR(X,Y ))(1)| → |Fk(DR(Y,X))|

for any k ≥ 2.

Proof. To prove the lemma, we must define φ on the portion of |Fk(DR(X,Y ))(1)| that is not present
in |D(1)

R (X,Y )|. This portion consists of the geometric realizations of those simplices that belong to
Fk(DR(X,Y )), but not to DR(X,Y ). Let σ ∈ Fk(DR(X,Y )) \ DR(X,Y ) be such a simplex. Since
σ is k-dimensional, we may write σ = [x0, . . . , xk] for some x0, . . . , xk ∈ X . Moreover, by definition
of Fk(DR(X,Y )), it must be the case that all proper faces of σ belong to DR(X,Y ). Letting Ik denote
the set of subsets I ⊆ {0, . . . , k} such that 0 < |I| < k + 1, we thus have that [xi]i∈I ∈ DR(X,Y ) for
all I ∈ Ik. Given I ∈ Ik, let xI ∈ D

(1)
R (X,Y ) denote the vertex corresponding to the face [xi]i∈I of σ,

and define the subcomplex CX∂σ ⊆ D
(1)
R (X,Y ) as the barycentric subdivision of the complex consisting of

the proper faces of σ. Similarly, define CXσ ⊆ Fk(DR(X,Y ))(1) as the barycentric subdivision of σ. See
Figure 3a for a schematic illustration of CX∂σ and CXσ in the case where k = 2.

Given any I ∈ Ik, set yI := Γ(xI) ∈ DR(Y,X). Note that a collection of these elements spans a simplex
[yI1 , . . . , yIl ] ∈ DR(Y,X) whenever I1, . . . , Il ∈ Ik are such that I1 ∩ · · · ∩ Il ̸= ∅. To see this, let
I1, . . . , Il ∈ Ik be such sets. Then, by definition of Γ, we have that (xi, yI1), . . . , (xi, yIl) ∈ R for all
i ∈ I1∩ · · ·∩ Il, and hence that [yI1 , . . . , yIl ] ∈ DR(Y,X).5 In particular, we have that DR(Y,X) contains
the k+1 simplices [yI ]{I∈Ik|i∈I,|I|=k}, each of dimension k−1, for all i = 0, . . . , k. Hence Fk(DR(Y,X))

contains the k-dimensional simplex [yI ]{I∈Ik||I|=k}. With this at hand, define the subcomplex CY∂σ ⊆
DR(Y,X) as having vertex set {yI | I ∈ Ik} and simplices [yI1 , . . . , yIl ], for I1, . . . , Il ∈ Ik such that
I1 ∩ · · · ∩ Il ̸= ∅. Furthermore, define CYσ ⊆ Fk(DR(Y,X)) to be the complex obtained from CY∂σ by
adding the simplex [yI ]{I∈Ik||I|=k}. See Figure 3b for a schematic illustration of CY∂σ and CYσ in the case
where k = 2.

By construction, we have that Γ(CX∂σ) ⊆ CY∂σ , and hence, by passing to geometric realizations, that
ψ(|CX∂σ|) ⊆ |CY∂σ| ⊆ |CYσ |. It remains to show that ψ extends from |CX∂σ| to |CXσ |, for which, in turn,

5Note that the elements yI ∈ Y for I ∈ Ik are not necessarily pairwise distinct: if I, J ∈ Ik are such that I ⊆ J ,
it can be the case that yI = yJ ∈ Y , in which case the edge [yI , yJ ] degenerates to a point.

13



663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

it suffices to show that |CYσ | is contractible (see, e.g., Hatcher (2002, Corollary 4.73)). To that end, observe
that for any i = 0, . . . , k, the simplex [yI ]{I∈Ik|i∈I} ∈ CYσ , that is, the simplex induced by all yI whose
subscript contains i, is a maximal face of CYσ . Indeed, [yI ]{I∈Ik|i∈I} is the only maximal face containing
the vertex yi, and hence the latter vertex is a free face of CYσ . We may thus collapse CYσ with respect to the
free faces y0, . . . , yk, which results in a complex homotopy equivalent to CYσ . This resulting complex is
the subcomplex of CYσ induced by the vertices yI for I ∈ Ik and |I| > 1. Similarly to before, all vertices
of this new complex that are of the form yI for I ∈ Ik and |I| = 2 are free faces. We may thus collapse
this complex with respect to these free faces to obtain a complex that is still homotopy equivalent to CYσ .
Repeating this process eventually results in the subcomplex of CYσ induced by the vertices yI for I ∈ Ik
and |I| = k, and demonstrates that this resulting complex is homotopy equivalent to the original complex
CYσ . As we have seen in the previous paragraph, we have that [yI ]{I∈Ik||I|=k} ∈ Fk(DR(Y,X)). In other
words, the complex resulting from iteratively collapsing as above is simply a k-dimensional simplex and
hence CYσ , being homotopy equivalent to a simplex, is contractible.

x0

x2x1 x12

x01 x02

(a) The complexes CX
∂σ (black) and

CX
σ (black and orange).

y0

y12

y1

y01

y2

y02

(b) The complexes CY
∂σ (black)

and CY
σ (black and orange).

Figure 3: Schematics accompanying the proof of Lemma 4.2 for the case where k = 2.

Proposition 4.3. Let X and Y be two finite sets, let R ⊆ R′ ⊆ X × Y be two non-empty relations,
and let k ≥ 2 an integer. Then there exist continuous maps φ : |Fk(DR(X,Y ))| → |Fk(DR(Y,X))|
and φ′ : |Fk(DR′(X,Y ))| → |Fk(DR′(Y,X))| that induce isomorphisms on the level of i-dimensional
homology for i = 0, . . . , k − 1, and, moreover, such that the diagram

|Fk(DR(X,Y ))| |Fk(DR′(X,Y ))|

|Fk(DR(Y,X))| |Fk(DR′(Y,X))|

φ φ′ (3)

commutes up to homotopy. Here, the horizontal maps are given by inclusion.

Proof. Let φ : |Fk(DR(X,Y ))(1)| → |Fk(DR(Y,X))| be an extension of the homotopy equivalence
ψ : |D(1)

R (X,Y )| → |DR(Y,X)|, whose existence is guaranteed by Lemma 4.2.

We first show that φ induces isomorphisms on the level of i-dimensional homology for i = 0, . . . , k − 1.
To that end, consider the commutative diagram

|DR(X,Y )| |Fk(DR(X,Y ))|

|DR(Y,X)| |Fk(DR(Y,X))|

ιX

ψ φ

ιY
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where ιX and ιY denote inclusion maps, and where we identified |D(1)
R (X,Y ) and |DR(X,Y )| via the

canonical homeomorphism between them. Now, since |Fk(DR(Y,X))| is obtained from |DR(Y,X)| by
attaching k-dimensional cells, it follows that ιY induces an isomorphism on the level of i-dimensional
homology for i = 0, . . . , k − 2, and a surjection on the level of (k − 1)-dimensional homology. Hence,
using the fact that ψ is a homotopy equivalence, we have that the map ιY ◦ ψ induces a surjection on the
level of i-dimensional homology for i = 0, . . . , k− 1. By commutativity of the above diagram, the same is
true about the map φ ◦ ιX , and hence the map that φ alone induces on the level of i-dimensional homology
must be a surjection, too, for i = 0, . . . , k − 1. Swapping the roles of X and Y in the above, it follows that
Hi(|Fk(DR(X,Y ))|) surjects onto Hi(|Fk(DR(Y,X))|) and vice versa for i = 0, . . . , k − 1. Since all
simplicial complexes involved are finite, we thus have that Hi(|Fk(DR(X,Y ))|) ∼= Hi(|Fk(DR(Y,X))|),
and hence that φ induces isomorphisms on the level of i-dimensional homology for i = 0, . . . , k − 1, as
claimed.

To prove commutativity of Diagram 3 in the statement of Proposition 4.3, consider the following diagram

|Fk(DR(X,Y ))| |Fk(DR′(X,Y ))|

|DR(X,Y )| |DR′(X,Y )|

|DR(Y,X)| DR′(Y,X)|

|Fk(DR(Y,X))| |Fk(DR′(Y,X))|

ιX
R,R′

φ φ′ψ ψ′

ιY
R,R′

(6)

where φ and φ′ are extensions of the homotopy equivalences ψ and ψ′, respectively, as before; where
hooked arrows denote inclusion maps; and where we identified |DR(X,Y )| and |DR(X,Y )(1)| as before.
Observe that the upper and lower trapezoids are commutative because the respective maps are inclusion
maps, while commutativity of the left and right trapezoids follows from the fact that φ and φ′ are extensions
of ψ and ψ′, respectively. Moreover, the inner rectangle commutes up to homotopy by Chowdhury &
Mémoli (2018, Theorem 3) and we may thus assume its precise commutativity.6

Now, let x ∈ |Fk(DR(X,Y ))|. If x ∈ |DR(X,Y )| ⊆ |Fk(DR(X,Y ))|, then the fact that (ιYR,R′ ◦φ)(x) =
(φ′ ◦ ιXR,R′)(x) is an immediate consequence of commutativity of the trapezoids and the inner rectangle
in Diagram 6. Suppose now that x ∈ |Fk(DR(X,Y ))| \ |DR(X,Y )|, so that x belongs to the geometric
realization of some simplex σx that is present in Fk(DR(X,Y )) but not in DR(X,Y ). Note that the
extensions φ and φ′ are constructed from ψ and ψ′, respectively, on a per simplex basis. We may thus
assume that φ′ agrees with φ on the geometric realizations of simplices stemming that are already present
in Fk(DR(X,Y )), which establishes the equality (ιYR,R′ ◦ φ)(x) = (φ′ ◦ ιXR,R′)(x) in this case.

Theorem 1.8. Let X and Y be two finite sets and let {Rj}j∈J be a sequence of relations such that Rj ⊆
X × Y for all j ∈ J , and Rj ⊆ Rj′ whenever j ≤ j′, where J is some totally ordered index set. Given an
integer k ≥ 2, denote by F≥k(D•(X,Y )) the filtration given by

{
F≥k(DRj (X,Y ))

}
j∈J , and similarly

for F≥k(D•(Y,X)). Then we have that

PHi(F≥k(D•(X,Y ))) ∼= PHi(F≥k(D•(Y,X)))

for i = 0, . . . , k − 1.

6Precise commutativity of this rectangle is achieved by making the choices of yσ in the definition of the maps ψ
and ψ′ in a consistent manner.
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Proof of Theorem 1.8. Let j, j′ ∈ J be such that j < j′, and consider the following diagram of maps

|F≥k(DRj (X,Y ))| |F≥k(DRj′ (X,Y ))|

|Fk(DRj
(X,Y ))| |Fk(DRj′ (X,Y ))|

|Fk(DRj
(Y,X))| |Fk(DRj′ (Y,X))|

|F≥k(DRj
(Y,X))| |F≥k(DRj′ (Y,X))|

φ φ′ (7)

where φ and φ′ are maps as in the statement of Proposition 4.3 and where hooked arrows denote inclusion
maps. The top and bottom rectangles are commutative since the maps involved are inclusion maps, and
commutativity of the middle rectangle follows Proposition 4.3.

Since, for instance, F≥k(DRj
(X,Y )) and Fk(DRj

(X,Y )) share the same k-skeleton, it follows that the
top left inclusion map induces an isomorphism on the level of i-dimensional homology for i = 0, . . . , k−1.
Similarly, it follows that the same is true for the other vertical inclusion maps, and hence, by Proposition 4.3,
for all vertical maps. Applying the homology functor to Diagram 7, and suppressing the two middle rows,
we obtain the commutative diagram

Hi(|F≥k(DRj (X,Y ))|) Hi(|F≥k(DRj′ (X,Y ))|)

Hi(|F≥k(DRj
(Y,X))|) Hi(|F≥k(DRj′ (Y,X))|)

∼ = ∼ = (8)

for i = 0, . . . , k − 1. Diagram 8 thus establishes an isomorphism of persistence modules
PHi(F≥k(D•(X,Y ))) ∼= PHi(F≥k(D•(Y,X))) for i = 0, . . . , k − 1, as claimed.

Theorem 1.10. Let (Z, d) be a metric space and let X,Y ⊆ Z be non-empty and finite disjoint subsets.
For ε ≥ 0, define the relation Rε ⊆ X × Y by

(x, y) ∈ Rε iff d(x, y) ≤ ε.

Denote by DR•(X,Y ) the filtration given by {DRRε(X,Y )}ε∈R+ , and similarly for DR•(Y,X). Then we
have that

PHi(DR•(X,Y )) ∼= PHi(DR•(Y,X))

for i = 0, 1.

Proof. This is an immediate consequence of setting k = 2 in Theorem 1.8.
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