
FLAGIFYING THE DOWKER COMPLEX

003 **Anonymous authors**

004 Paper under double-blind review

ABSTRACT

010 The Dowker complex $D_R(X, Y)$ is a simplicial complex capturing the topological inter-
011 play between two finite sets X and Y under some relation $R \subseteq X \times Y$. While its def-
012 inition is asymmetric, the famous Dowker duality states that $D_R(X, Y)$ and $D_R(Y, X)$
013 have homotopy equivalent geometric realizations. We introduce the Dowker-Rips com-
014 plex $DR_R(X, Y)$, defined as the flagification of the Dowker complex or, equivalently,
015 as the maximal simplicial complex whose 1-skeleton coincides with that of $D_R(X, Y)$.
016 This is motivated by applications in topological data analysis, since as a flag complex, the
017 Dowker-Rips complex is less expensive to compute than the Dowker complex. While the
018 Dowker duality does not hold for Dowker-Rips complexes in general, we show that one
019 still has that $H_i(DR_R(X, Y)) \cong H_i(DR_R(Y, X))$ for $i = 0, 1$. We further show that this
020 weakened duality extends to the setting of persistent homology, and quantify the “failure”
021 of the Dowker duality in homological dimensions higher than 1 by means of interleav-
022 ings. This makes the Dowker-Rips complex a less expensive, approximate version of the
023 Dowker complex that is usable in topological data analysis. Indeed, we provide a Python
024 implementation of the Dowker-Rips complex and, as an application, we show that it can
025 be used as a drop-in replacement for the Dowker complex in a tumor microenvironment
026 classification pipeline. In that pipeline, using the Dowker-Rips complex leads to increase
027 in speed while retaining classification performance.

1 INTRODUCTION

031 Topological data analysis (TDA) provides a framework for extracting qualitative geometric and topological
032 features from complex data sets. Central to this approach is the construction of simplicial complexes that
033 approximate the shape of an data set or, more generally, a metric space. A prominent example of such
034 a complex is the Čech complex, where a finite set of points is declared to span a simplex precisely if
035 the balls of some fixed radius $\varepsilon > 0$ around the points have non-empty intersection. While the Čech
036 complex provably captures the topology of the union of all ε -balls, it is notoriously expensive to compute
037 because triple and higher order intersections of balls must be checked (see, e.g., Ghrist (2014, Chapter
038 2.5) and Edelsbrunner & Harer (2010, Chapter III)). As a way around this, one often resorts to working
039 with a simpler complex known as the Vietoris-Rips complex in practice. By definition, the Vietoris-Rips
040 complex is obtained by flagifying of the Čech complex, that is, by adding all possible simplices whose
041 edges are already present in the Čech complex. By construction, the Vietoris-Rips complex is thus entirely
042 determined by its 1-skeleton, which coincides with that of the Čech complex. This makes the Vietoris-Rips
043 complex less expensive to describe, compute and store. Indeed, several software packages for computing
044 persistent homology like GUDHI (Maria, 2023) and ripser (Bauer, 2021) allow for a significant speed-up
045 in computation time when working with flag complexes. Moreover, even though the Vietoris-Rips complex
046 does not enjoy the same theoretical guarantees regarding the capturing of the topology of the underlying data
047 set, it is guaranteed to be “topologically close” to the Čech complex in the sense that the two complexes are
048 interleaved. Finally, there do exist conditions under which such guarantees for the Vietoris-Rips complex
049 do exist (Chambers et al., 2010; Attali et al., 2013).

050 While both the Čech and Vietoris-Rips complexes are used to analyze a single data set, one might be
interested in analyzing the topology of a data set relative to another one living in the same space (or,

equivalently, the topology of a subset of a data set relative to its complement). One tool for doing so is the Dowker complex, which was introduced by Dowker in 1952 Dowker (1952).

Definition 1.1. *Let X, Y be two finite sets and let $R \subseteq X \times Y$ be a non-empty relation. The Dowker complex on X relative to Y is the simplicial complex $D_R(X, Y)$ defined by the rule that a finite subset $\sigma \subseteq X$ belongs to $D_R(X, Y)$ iff there exists $y \in Y$ such that $(x, y) \in R$ for all $x \in \sigma$.*

If X and Y in Definition 1.1 are subsets of a metric space (Z, d) , one may define a relation $R_\varepsilon \subseteq X \times Y$ by declaring $(x, y) \in R_\varepsilon$ iff $d(x, y) \leq \varepsilon$ for $\varepsilon \geq 0$. In this setting, the Dowker complex may be regarded as a variant of the Čech complex where one does not simply require the intersection of ε -balls around elements of X to be non-empty, but indeed to contain an element of Y .

A particularly nice feature of the Dowker complex is given by the *Dowker duality*, proven by Dowker in the original paper introducing Dowker complexes (Dowker, 1952). It states that the two complexes $D_R(X, Y)$ and $D_R(Y, X)$ are homotopy equivalent and, as a consequence, have isomorphic homology groups. This result has been extended to filtrations of Dowker complexes by Chowdhury and Mémoli, who have shown that these homotopy equivalences commute with the inclusions of the filtrations, thus extending Dowker duality to the setting of persistent homology (Chowdhury & Mémoli, 2018). In other words, this more general form of Dowker duality allows one to compute persistent homology for an entire filtration of Dowker complexes $\{D_R(X, Y)\}_{R \in \mathcal{R}}$ for some set \mathcal{R} of nested relations, and this persistent homology is guaranteed to be isomorphic to that of the corresponding filtration $\{D_R(Y, X)\}_{R \in \mathcal{R}}$. In particular, this may be applied to the relations R_ε in the setting of metric spaces. From a practical perspective, this duality allows one to compute the smaller of the two complexes at each step (which amounts to potentially swapping the roles of X and Y). This can be crucial for computation time and memory consumption, in particular if one of X and Y is significantly smaller than the other. In the context of metric spaces, the persistence diagrams resulting from filtrations of Dowker complexes provide a way of analyzing whether and how the classes X and Y are colocalized in the ambient metric space Z (see, e.g., Stolz et al. (2024, Section 5.1.2) for details). Dowker complexes have seen applications inside math as well as outside of math, in domains as diverse as computational biology, data science, machine learning and neuroscience (Stolz et al., 2024; Choi et al., 2024; Brun & Blaser, 2019; Zemene & Pelillo, 2015; Liu et al., 2022; Moshkov et al., 2022; Vaupel et al., 2023; Freund et al., 2015; Garland et al., 2016). For more details on Dowker complexes, see, e.g., Chazal et al. (2014); Ghrist (2014); Chowdhury & Mémoli (2018).

In this work, we introduce and examine a flagified version of the Dowker complex, which we call the *Dowker-Rips complex*. Just like the Vietoris-Rips complex may be defined as a flagified version of the Čech complex and can thus be regarded as a less expensive and approximate variant thereof, the Dowker-Rips complex can be regarded as such a variant of the Dowker complex. To define the Dowker-Rips complex, we first state a precise definition of flagifications.

Definition 1.2. *Given a simplicial complex X , the flagification of X , denoted by $\mathcal{F}(X)$, is defined as the simplicial complex that is obtained from X by including a simplex $\sigma \subseteq X$ whenever all edges of σ already belong to X and $\dim(\sigma) \geq 2$. More generally, for an integer $k \geq 2$, the k -flagification of X , denoted by $\mathcal{F}^{\geq k}(X)$, is defined as the complex that is obtained from X by including a simplex $\sigma \subseteq X$ whenever all $(k-1)$ -dimensional faces of σ already belong to X and $\dim(\sigma) \geq k$.*

Remark 1.3. *Note that $X \subseteq \mathcal{F}^{\geq k}(X) \subseteq \mathcal{F}(X)$ for any simplicial complex X and $k \geq 2$. Moreover, we have that $X = \mathcal{F}^{\geq k}(X)$ if $k > \dim(X) + 1$, and $\mathcal{F}^{\geq 2}(X) = \mathcal{F}(X)$ for any simplicial complex X . Finally, note that $\mathcal{F}^{\geq k}(X)$ is determined entirely by the $(k-1)$ -skeleton of X , $k \geq 2$.*

Example 1.4. *Let $X \subseteq \mathbb{R}^n$, and denote by $\check{C}_\varepsilon(X)$ and $\text{VR}_\varepsilon(X)$ its Čech and Vietoris-Rips complexes at some scale $\varepsilon \geq 0$, respectively. Then we have that $\mathcal{F}(\check{C}_\varepsilon(X)) = \text{VR}_\varepsilon(X)$.*

With the definition of flagification at hand, we are now ready to define the Dowker-Rips complex.

Definition 1.5. *Let X, Y be two finite sets and let $R \subseteq X \times Y$ be a non-empty relation. The Dowker-Rips complex on X relative to Y is defined as*

$$\text{DR}_R(X, Y) := \mathcal{F}(D_R(X, Y)).$$

The motivation behind defining the Dowker-Rips complex is twofold. First, the Dowker complex is a Čech-like complex in the sense that its construction relies on the pairwise and higher order intersections

of metric balls around its elements containing a certain element. From a theoretical perspective, it thus seems natural to define a complex that relates to the Dowker complex in the same way as the Vietoris-Rips complex relates to the Čech complex, namely through flagification. Second, from a practical perspective, the Dowker complex (and its persistent homology) is prohibitively expensive to compute for large or high-dimensional data sets. The Dowker-Rips complex provides an alternative to the Dowker complex that is applicable in practice, while at the same time retaining the usefulness of the latter. In this work, we provide a theoretical analysis of the differences between the Dowker and the Dowker-Rips complexes, and we illustrate the usefulness of the latter by showing that simply replacing the Dowker complex with the Dowker-Rips complex in an existing tumor microenvironment classification pipeline leads to increase in speed while retaining classification performance.

Given the definition of the Dowker-Rips complex, there are two natural questions that arise:

- (1) How much can the Dowker-Rips complex differ from the Dowker complex?
- (2) Does some version of the Dowker duality still hold for Dowker-Rips complexes?

For filtrations of simplicial complexes, questions such as Question (1) are usually answered by showing that the two filtrations are *multiplicatively c -interleaved* for some $c \geq 1$.¹ Informally speaking, the smaller the value of $c \geq 1$, the closer the two filtrations are. A prominent example of this is the chain of inclusions

$$\check{C}_\varepsilon(X) \subseteq \text{VR}_\varepsilon(X) \subseteq \check{C}_{2\varepsilon}(X) \quad (1)$$

for $\varepsilon \geq 0$, which translates into the fact that the Vietoris-Rips complex and the Čech complex are multiplicatively 2-interleaved. We show that a similar argument also works for Dowker-Rips and Dowker complexes in the case where X and Y are subsets of some metric space (Z, d) with the relation $R_\varepsilon \subseteq X \times Y$ defined by declaring $(x, y) \in R$ iff $d(x, y) \leq \varepsilon$ for $\varepsilon \geq 0$.

Theorem 1.6. *Let $X, Y \subseteq Z$ where (Z, d) is some metric space, and define the relations $R_\varepsilon \subseteq X \times Y$ by declaring $(x, y) \in R$ iff $d(x, y) \leq \varepsilon$ for $\varepsilon \geq 0$. Denote by $D_\bullet(X, Y)$ the filtration given by $\{D_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly for $DR_\bullet(X, Y)$. Then have that*

$$D_\varepsilon(X, Y) \subseteq DR_\varepsilon(X, Y) \subseteq D_{3\varepsilon}(X, Y) \quad (2)$$

for all $\varepsilon \geq 0$, and, in particular, that $D_\bullet(X, Y)$ and $DR_\bullet(X, Y)$ are multiplicatively 3-interleaved.

The above result is sharp in the sense that the inclusion $DR_\varepsilon(X, Y) \subseteq D_{3\varepsilon}(X, Y)$ does not hold when 3 is replaced by some value $c < 3$ (see Proposition 3.1 for such an example).

We use a similar argument to give a partial answer to Question (2). We point out that the multiplicative interleaving claimed in the following does not stem from a chain of inclusions such as in Equations (1) and (2), but rather from the more general notion of a multiplicative interleaving defined in Section 3.

Theorem 1.7. *Let $X, Y \subseteq Z$ where (Z, d) is some metric space, and define the relations $R_\varepsilon \subseteq X \times Y$ as in Theorem 1.6, $\varepsilon \geq 0$. Denote by $DR_\bullet(X, Y)$ the filtration given by $\{DR_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly for $DR_\bullet(Y, X)$. Then $DR_\bullet(X, Y)$ and $DR_\bullet(Y, X)$ are multiplicatively 3-interleaved.*

While this already establishes that $DR_\bullet(X, Y)$ and $DR_\bullet(Y, X)$ cannot be “too different”, it is still a significantly weaker guarantee than the one we have for Dowker complexes, where we have a homotopy equivalence and thus an isomorphism at the level of persistent homology. Indeed, as we will see in Section 4, an isomorphism at the level of persistent homologies of $DR_\bullet(X, Y)$ and $DR_\bullet(Y, X)$ does not exist in general. Nevertheless, we still obtain an isomorphism at the level of persistent homology when restricted to homological dimensions 0 and 1. This follows from a slightly more general result on k -flagifications of Dowker complexes.

Theorem 1.8. *Let X and Y be two finite sets and let $\{R_j\}_{j \in J}$ be a sequence of relations such that $R_j \subseteq X \times Y$ for all $j \in J$, and $R_j \subseteq R_{j'}$ whenever $j \leq j'$, where J is some totally ordered index set. Given an*

¹For the definition of a multiplicative interleaving, see Definition 2.2.

153 integer $k \geq 2$, denote by $\mathcal{F}^{\geq k}(\mathrm{D}_\bullet(X, Y))$ the filtration given by $\{\mathcal{F}^{\geq k}(\mathrm{D}_{R_j}(X, Y))\}_{j \in J}$, and similarly
 154 for $\mathcal{F}^{\geq k}(\mathrm{D}_\bullet(Y, X))$. Then we have that
 155

$$\mathrm{PH}_i(\mathcal{F}^{\geq k}(\mathrm{D}_\bullet(X, Y))) \cong \mathrm{PH}_i(\mathcal{F}^{\geq k}(\mathrm{D}_\bullet(Y, X)))$$

157 for $i = 0, \dots, k - 1$.

158 **Remark 1.9.** Recall that for large enough $k \geq 1$, we have that $\mathcal{F}^{\geq k}(\mathrm{D}_R(X, Y)) = \mathrm{D}_R(X, Y)$ and
 159 $\mathcal{F}^{\geq k}(\mathrm{D}_R(Y, X)) = \mathrm{D}_R(Y, X)$. For such choices of k , Theorem 1.8 is essentially a homological (and
 160 hence weaker) restatement of Chowdhury & Mémoli (2018, Theorem 3). Indeed, Theorem 1.8 may be read
 161 as saying that there exists a decreasing sequence of filtrations
 162

$$\mathrm{DR}_\bullet(X, Y) = \mathcal{F}^{\geq 2}(\mathrm{D}_\bullet(X, Y)) \supseteq \dots \supseteq \mathcal{F}^{\geq k}(\mathrm{D}_\bullet(X, Y)) \supseteq \mathcal{F}^{\geq k'}(\mathrm{D}_\bullet(X, Y)) \supseteq \dots \supseteq \mathrm{D}_\bullet(X, Y)$$

163 for $k < k'$, in which the number of dimensions for which Dowker duality holds increases by 1 at each step.
 164

165 Using the fact that the Dowker-Rips complex is the 2-flagification of the Dowker complex, we get the
 166 following *Dowker-Rips duality*.

167 **Theorem 1.10.** Let (Z, d) be a metric space and let $X, Y \subseteq Z$ be non-empty and finite disjoint subsets.
 168 For $\varepsilon \geq 0$, define the relation $R_\varepsilon \subseteq X \times Y$ by
 169

$$(x, y) \in R_\varepsilon \quad \text{iff} \quad d(x, y) \leq \varepsilon.$$

170 Denote by $\mathrm{DR}_\bullet(X, Y)$ the filtration given by $\{\mathrm{DR}_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly for $\mathrm{DR}_\bullet(Y, X)$. Then we
 171 have that
 172

$$\mathrm{PH}_i(\mathrm{DR}_\bullet(X, Y)) \cong \mathrm{PH}_i(\mathrm{DR}_\bullet(Y, X))$$

173 for $i = 0, 1$.

174 The above result is sharp in the sense that its conclusion does not hold for homological dimensions higher
 175 than 1 (see Proposition 4.4 for such an example). Nevertheless, the Dowker-Rips duality is a desirable
 176 property of the Dowker-Rips complex, since, in practice, persistent homology is often computed only up
 177 to homological dimension 1 for reasons of computational complexity. In these homological dimensions,
 178 the Dowker-Rips duality may thus be used to accelerate the computation of the persistent homology of the
 179 Dowker-Rips complex: like in the case of the Dowker complex, this duality allows one to potentially swap
 180 the roles of X and Y in order to compute the less expensive variant of the two Dowker-Rips complexes.
 181

182 This paper is organized as follows. In Section 2, we briefly review the necessary mathematical background.
 183 In Section 3, we construct the multiplicative interleavings, proving Theorems 1.6 and 1.7. In Section 4,
 184 which is the main technical section, is devoted to deducing the Dowker-Rips duality (Theorem 1.10). Fi-
 185 nally, in Section 5, we present the application that justifies using the Dowker-Rips complex instead of the
 186 Dowker complex in practice.
 187

188 2 PRELIMINARIES

189 In this section, we briefly review the necessary background on the concepts and tools stemming from topo-
 190 logical data analysis (TDA) used in this paper. We refer the reader to Schnider et al. (2025); Edelsbrunner
 191 & Harer (2010); Ghrist (2014) for details on the following.

192 2.1 SIMPLICIAL COMPLEXES AND FILTRATIONS

193 A *simplicial complex* is a combinatorial structure that can be seen as a higher-dimensional generalization
 194 of a graph. Formally, it is a collection K of finite subsets of some vertex set X such that if $\sigma \in K$ and
 195 $\tau \subseteq \sigma$, then $\tau \in K$. Each subset $\sigma \subseteq X$ belonging to K is called a *simplex*, and usually denoted by
 196 $\sigma = [x_0, \dots, x_n]$, where $x_1, \dots, x_n \in X$. The *dimension* of a simplex σ is defined as $\dim(\sigma) := |\sigma| - 1$.
 197 Simplices of dimension 0 and 1 are also referred to as *vertices* and *edges*, respectively.

198 A *filtration* of a topological space X is a nested sequence of subspaces
 199

$$X_{i_0} \subseteq X_{i_1} \subseteq \dots \subseteq X_{i_n} = X,$$

204 for some $i_0 \leq i_1 \leq \dots \leq i_n \in I$, where I is some totally ordered index set. Such a filtration may be
 205 succinctly written as $X_\bullet = \{X_{i_k}\}_{k \geq 0}$. In TDA, we typically have that $I = \mathbb{R}$, and that the filtration indices
 206 represent some scale parameter, as is the case in the following example.
 207

208 **Example 2.1.** *Given a metric space (Z, d) and a subset $X \subseteq Z$, the Čech complex of X at scale $\varepsilon \geq 0$,
 209 denoted by $\check{C}_\varepsilon(X, Z)$, is the simplicial complex defined as containing a simplex $[x_0, \dots, x_k] \subseteq X$ if the
 210 closed ε -balls centered at x_0, \dots, x_k have a non-empty common intersection in Z . If $Z = \mathbb{R}^n$, one usually
 211 writes $\check{C}_\varepsilon(X)$ instead of $\check{C}_\varepsilon(X, \mathbb{R}^n)$. In contrast, the Vietoris-Rips complex of X at scale $\varepsilon \geq 0$, denoted
 212 by $\text{VR}_\varepsilon(X)$, is defined as the simplicial complex containing a simplex $[x_0, \dots, x_k] \subseteq X$ if $d(x_i, x_j) \leq 2\varepsilon$
 213 for all $0 \leq i \leq j \leq k$. Both complexes induce filtrations $\check{C}_\bullet(X, Z) := \{\check{C}_\varepsilon(X, Z)\}_{\varepsilon \in \mathbb{R}^+}$ and $\text{VR}_\bullet(X) :=$
 214 $\{\text{VR}_\varepsilon(X)\}_{\varepsilon \in \mathbb{R}^+}$, obtained by gradually increasing the value of the scale parameter ε .*

215 2.2 PERSISTENT HOMOLOGY AND PERSISTENCE MODULES

216 *Persistent homology (PH) formalizes the study of topological features across a filtration. For each $k \geq 0$,
 217 PH keeps track of the k -th homology group across the evolution of a filtration. More formally, given a
 218 filtration X_\bullet , this is achieved by applying the k -dimensional homology functor to the sequence of inclusion
 219 maps*

$$221 \quad X_{i_0} \hookrightarrow X_{i_1} \hookrightarrow \dots \hookrightarrow X_{i_n} = X.$$

222 This yields a collection of vector spaces
 223

$$224 \quad H_k(X_{i_0}) \rightarrow H_k(X_{i_1}) \rightarrow \dots \rightarrow H_k(X_{i_n})$$

225 with induced maps between them. This data is denoted by $\text{PH}_k(X_\bullet)$ and an example of a *persistence
 226 module*. In general, the latter is defined as any indexed collection of vector spaces $\mathbb{V} = \{V_i\}_{i \in I}$ (for some
 227 totally ordered set I) with linear maps $f_{i,j}: V_i \rightarrow V_j$, $i \leq j$, such that $f_{i,i} = \text{id}_{V_i}$ and $f_{i,k} = f_{j,k} \circ f_{i,j}$ for
 228 any $i \leq j \leq k \in I$. Two persistence modules $\{V_i\}_{i \in I}$ and $\{W_i\}_{i \in I}$ are said to be isomorphic *isomorphic*
 229 if there exists a collection of isomorphisms $\varphi_i: V_i \rightarrow W_i$, $i \in I$, such that the diagrams
 230

$$231 \quad \begin{array}{ccc} V_i & \longrightarrow & V_j \\ \varphi_i \downarrow & & \downarrow \varphi_j \\ W_i & \longrightarrow & W_j \end{array} \quad \text{and} \quad \begin{array}{ccc} V_i & \longrightarrow & V_j \\ \varphi_i^{-1} \uparrow & & \uparrow \varphi_j^{-1} \\ W_i & \longrightarrow & W_j \end{array}$$

235 commute.

237 2.3 MULTIPLICATIVE INTERLEAVINGS

238 Interleavings are a way to capture similarities of filtrations. While in many cases additive interleavings are
 239 desirable, in some cases *multiplicative interleavings* are the best that can be done. Following we recall the
 240 definition of a multiplicative interleaving (see, e.g., Dey & Wang (2022); Oudot (2015)).
 241

242 **Definition 2.2.** *Let $\mathcal{F} = \{F_a\}_{a \in \mathbb{R}}$ and $\mathcal{G} = \{G_a\}_{a \in \mathbb{R}}$ be filtrations. We say that \mathcal{F} and \mathcal{G} are multiplicatively
 243 c -interleaved if there are maps $\varphi_a: F_a \rightarrow G_{ca}$ and $\psi_a: G_a \rightarrow F_{ca}$ such that the following diagrams
 244 commute for every $a \in \mathbb{R}$ and $\varepsilon > 0$:*

$$246 \quad \begin{array}{ccc} U_a & \xrightarrow{\quad} & U_{a+\varepsilon} \\ \varphi_a \searrow & & \swarrow \varphi_{a+\varepsilon} \\ V_{ca} & \xrightarrow{\quad} & V_{c(a+\varepsilon)} \end{array} \quad \begin{array}{ccc} U_{ca} & \xleftarrow{\quad} & U_{c(a+\varepsilon)} \\ \psi_a \nearrow & & \nearrow \psi_{a+\varepsilon} \\ V_a & \xrightarrow{\quad} & V_{a+\varepsilon} \end{array}$$

$$251 \quad \begin{array}{ccc} U_a & \xrightarrow{\quad} & U_{c^2 a} \\ \varphi_a \searrow & \nearrow \psi_{ca} & \\ V_{ca} & & \end{array} \quad \begin{array}{ccc} U_{ca} & \xleftarrow{\quad} & U_{c^2 a} \\ \psi_a \nearrow & \swarrow \varphi_{ca} & \\ V_a & \xrightarrow{\quad} & V_{c^2 a} \end{array}$$

255 Note that the smaller the value of $c \geq 1$, the “closer” the two filtrations are to each other. As with additive
 256 interleavings, a multiplicative interleaving of two filtrations implies that the respective persistent homolo-
 257 gies are “close” in a suitable sense. Multiplicative interleavings thus provide a rigorous way of quantifying
 258 how different two filtrations are.

259 One prominent example of a multiplicative interleaving stems from the chain of inclusions
 260

$$\check{C}_\varepsilon(X) \subseteq \text{VR}_\varepsilon(X) \subseteq \check{C}_{2\varepsilon}(X)$$

262 for $\varepsilon \geq 0$, which establishes a multiplicative 2-interleaving of the Čech filtration and the Vietoris-Rips
 263 filtration.

265 3 MULTIPLICATIVE INTERLEAVINGS OF THE DOWKER-RIPS COMPLEX

267 This section pertains to the two multiplicative interleavings whose existence was claimed in Section 1. For
 268 convenience, we restate the relevant theorems, and we refer the reader to Appendix A.1.1 for the proofs of
 269 the technical results of this section.

270 **Theorem 1.6.** *Let $X, Y \subseteq Z$ where (Z, d) is some metric space, and define the relations $R_\varepsilon \subseteq X \times Y$
 271 by declaring $(x, y) \in R$ iff $d(x, y) \leq \varepsilon$ for $\varepsilon \geq 0$. Denote by $D_\bullet(X, Y)$ the filtration given by
 272 $\{D_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly for $DR_\bullet(X, Y)$. Then have that*

$$D_\varepsilon(X, Y) \subseteq DR_\varepsilon(X, Y) \subseteq D_{3\varepsilon}(X, Y) \tag{2}$$

273 for all $\varepsilon \geq 0$, and, in particular, that $D_\bullet(X, Y)$ and $DR_\bullet(X, Y)$ are multiplicatively 3-interleaved.

274 **Theorem 1.7.** *Let $X, Y \subseteq Z$ where (Z, d) is some metric space, and define the relations $R_\varepsilon \subseteq X \times Y$ as
 275 in Theorem 1.6, $\varepsilon \geq 0$. Denote by $DR_\bullet(X, Y)$ the filtration given by $\{DR_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly
 276 for $DR_\bullet(Y, X)$. Then $DR_\bullet(X, Y)$ and $DR_\bullet(Y, X)$ are multiplicatively 3-interleaved.*

277 We conclude this section by providing an example illustrating that the interleaving from Theorem 1.6 is
 278 sharp in the sense that the inclusion $DR_\varepsilon(X, Y) \subseteq D_{3\varepsilon}(X, Y)$ does not hold when 3 is replaced by some
 279 value $c < 3$.

280 **Proposition 3.1.** *There exists a setting for Theorem 1.6 such that*

$$DR_\varepsilon(X, Y) \not\subseteq D_{c\varepsilon}(X, Y)$$

281 for any $c < 3$.

282 *Proof.* Define (Z, d) as the graph pictured in Figure 1 equipped with the shortest-path metric, and let
 283 $X = \{x_0, x_1, x_2\} \subseteq Z$ and $Y = \{y_0, y_1, y_2\} \subseteq Z$ be the set of the crossed and hollow circles, respectively.
 284 It is easy to see that $[x_i, x_j] \in D_1(X, Y)$ for all $0 \leq i < j \leq 2$, and hence that $[x_0, x_1, x_2] \in DR_1(X, Y)$.
 285 In contrast, for $D_c(X, Y)$, $c \geq 1$, to contain $[x_0, x_1, x_2]$, c must be large enough to guarantee the existence
 286 of an element $y \in Y$ such that $d(y, x_i) \leq c$ for all $0 \leq i \leq 2$. Since $d(y_i, x_i) = 3$ for all $0 \leq i \leq 2$, this is
 287 the case only if $c \geq 3$. \square

293 4 DOWKER-RIPS DUALITY

294 In this section, we derive the strengthenings of the interleaving results from Section 3 and, in particular,
 295 the Dowker-Rips duality. We refer the reader to Appendix A.1.2 for the proofs of the technical results of
 296 this section. To begin, we restate and extend the definition of k -flagification to include a notion of partial
 297 flagification that is needed in the proofs.

298 **Definition 4.1.** *Given a simplicial complex X , the flagification of X , denoted by $\mathcal{F}(X)$, is defined as the
 299 simplicial complex that is obtained from X by including a simplex $\sigma \subseteq X$ whenever all edges of σ already
 300 belong to X and $\dim(\sigma) \geq 2$. More generally, for an integer $k \geq 2$, the k -flagification of X , denoted by
 301 $\mathcal{F}^{\geq k}(X)$, is defined as the complex that is obtained from X by including a simplex $\sigma \subseteq X$ whenever all
 302 $(k-1)$ -dimensional faces of σ already belong to X and $\dim(\sigma) \geq k$. Finally, the partial k -flagification of
 303 X , denoted by $\mathcal{F}^k(X)$, is defined as the complex that is obtained from X by including a simplex $\sigma \subseteq X$
 304 whenever all $(k-1)$ -dimensional faces of σ already belong to X and $\dim(\sigma) = k$.*

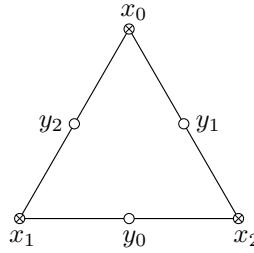


Figure 1: The metric space (Z, d) from the proof of Proposition 3.1, with subsets X and Y consisting of the crossed and hollow circles, respectively.

Recall from Chowdhury & Mémoli (2018, Section 5.1) that there exists a simplicial map $\Gamma: D_R^{(1)}(X, Y) \rightarrow D_R(Y, X)$ that induces a homotopy equivalence $\psi: |D_R^{(1)}(X, Y)| \rightarrow |D_R(Y, X)|$ on the level of geometric realizations. Here and in what follows, $X^{(1)}$ denotes the first barycentric subdivision of a simplicial complex X . The map Γ is defined by mapping any vertex $\sigma = [x_0, \dots, x_n] \in D_R^{(1)}(X, Y)$, $x_0, \dots, x_n \in X$, to an element $y_\sigma \in Y$ such that $(x_k, y_\sigma) \in R$ for all $k = 0, \dots, n$. It is shown in Chowdhury & Mémoli (2018) that the map Γ thus defined is simplicial and, moreover, that different choices of y_σ in its definition result in maps that are contiguous to one another (and hence induce homotopic maps on the level of geometric realizations). At a high level, we prove Theorem 1.10 by first showing in Lemma 4.2 that the map ψ can be extended to a map between the partial k -flagifications. From this we deduce Proposition 4.3, the main technical result that establishes properties of the extensions of ψ pertaining to homology and commutativity. Finally, Theorems 1.8 and 1.10 will be relatively straight forward consequences of that proposition.

To make sense of the setup of Lemma 4.2, observe that $D_R(X, Y)$ is a subcomplex of $\mathcal{F}^k(D_R(X, Y))$, which implies that $D_R^{(1)}(X, Y)$ is a subcomplex of $\mathcal{F}^k(D_R(X, Y))^{(1)}$ for $k \geq 2$.

Lemma 4.2. *The homotopy equivalence $\psi: |D_R^{(1)}(X, Y)| \rightarrow |D_R(Y, X)|$ extends to a continuous map*

$$\varphi: |\mathcal{F}^k(D_R(X, Y))^{(1)}| \rightarrow |\mathcal{F}^k(D_R(Y, X))|$$

for any $k \geq 2$.

With the previous lemma at hand, we can now deduce the required properties of the extensions of the map ψ .

Proposition 4.3. *Let X and Y be two finite sets, let $R \subseteq R' \subseteq X \times Y$ be two non-empty relations, and let $k \geq 2$ an integer. Then there exist continuous maps $\varphi: |\mathcal{F}^k(D_R(X, Y))| \rightarrow |\mathcal{F}^k(D_R(Y, X))|$ and $\varphi': |\mathcal{F}^k(D_{R'}(X, Y))| \rightarrow |\mathcal{F}^k(D_{R'}(Y, X))|$ that induce isomorphisms on the level of i -dimensional homology for $i = 0, \dots, k - 1$, and, moreover, such that the diagram*

$$\begin{array}{ccc} |\mathcal{F}^k(D_R(X, Y))| & \xhookrightarrow{\quad} & |\mathcal{F}^k(D_{R'}(X, Y))| \\ \varphi \downarrow & & \downarrow \varphi' \\ |\mathcal{F}^k(D_R(Y, X))| & \xhookrightarrow{\quad} & |\mathcal{F}^k(D_{R'}(Y, X))| \end{array} \tag{3}$$

commutes up to homotopy. Here, the horizontal maps are given by inclusion.

The proposition above allow us to prove the main theorems, which we restate for convenience.

Theorem 1.8. *Let X and Y be two finite sets and let $\{R_j\}_{j \in J}$ be a sequence of relations such that $R_j \subseteq X \times Y$ for all $j \in J$, and $R_j \subseteq R_{j'}$ whenever $j \leq j'$, where J is some totally ordered index set. Given an integer $k \geq 2$, denote by $\mathcal{F}^{\geq k}(D_\bullet(X, Y))$ the filtration given by $\{\mathcal{F}^{\geq k}(D_{R_j}(X, Y))\}_{j \in J}$, and similarly for $\mathcal{F}^{\geq k}(D_\bullet(Y, X))$. Then we have that*

$$\text{PH}_i(\mathcal{F}^{\geq k}(D_\bullet(X, Y))) \cong \text{PH}_i(\mathcal{F}^{\geq k}(D_\bullet(Y, X)))$$

357 for $i = 0, \dots, k - 1$.

358 **Theorem 1.10.** Let (Z, d) be a metric space and let $X, Y \subseteq Z$ be non-empty and finite disjoint subsets.
359 For $\varepsilon \geq 0$, define the relation $R_\varepsilon \subseteq X \times Y$ by

$$360 \quad (x, y) \in R_\varepsilon \quad \text{iff} \quad d(x, y) \leq \varepsilon.$$

361 Denote by $\text{DR}_\bullet(X, Y)$ the filtration given by $\{\text{DR}_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly for $\text{DR}_\bullet(Y, X)$. Then we
362 have that

$$363 \quad \text{PH}_i(\text{DR}_\bullet(X, Y)) \cong \text{PH}_i(\text{DR}_\bullet(Y, X))$$

364 for $i = 0, 1$.

365 We conclude this section by providing an example illustrating that the Dowker-Rips duality is sharp in the
366 sense that its conclusion does not hold for homological dimensions higher than 1.

367 **Proposition 4.4.** There exists a setting for Theorem 1.10 in which the conclusion fails for $i = 2$.

368 *Proof.* Let $X = \{x_0, \dots, x_3\} \subseteq \mathbb{R}^3$ denote the set of vertices of a regular tetrahedron with edge length
369 1 embedded in \mathbb{R}^3 , and let $Y = \{y_{ij} \mid 0 \leq i < j \leq 3\}$, where y_{ij} is defined to be the midpoint of x_i
370 and x_j , $0 \leq i < j \leq 3$. Denote by $\text{D}_\bullet(X, Y)$ the filtration given by $\{\text{D}_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly
371 for $\text{D}_\bullet(Y, X)$. Then we have that $\text{D}_{1/2}(X, Y)$ is homeomorphic to the geometric realization of K_4 , the
372 complete graph on four vertices. In contrast, the complex $\text{D}_{1/2}(Y, X)$ has vertex set Y , and a set of vertices
373 spans a simplex precisely when their subscripts share a common element. See Figure 2 for an illustration
374 of the complexes $\text{D}_{1/2}(X, Y)$ and $\text{D}_{1/2}(Y, X)$.

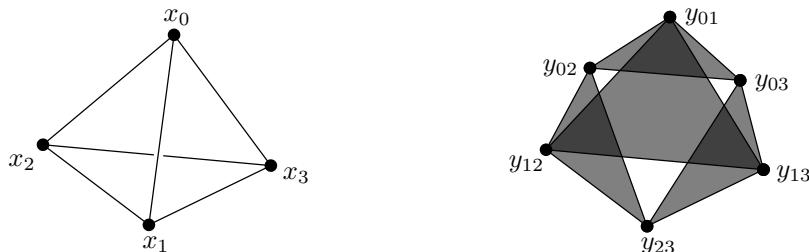
375 It follows that the flagifications of $\text{D}_{1/2}(X, Y)$ and $\text{D}_{1/2}(Y, X)$ equal a 3-simplex and an octahedron,
376 respectively. Hence $\text{DR}_{1/2}(X, Y)$ and $\text{DR}_{1/2}(Y, X)$ are homotopy equivalent to a point and a 2-sphere,
377 respectively. This implies that

$$378 \quad \text{H}_2(\text{DR}_{1/2}(X, Y)) \cong \{0\} \quad \text{and} \quad \text{H}_2(\text{DR}_{1/2}(Y, X)) \cong \mathbb{Z},$$

379 and, in particular, that

$$380 \quad \text{PH}_2(\text{DR}_{1/2}(X, Y)) \not\cong \text{PH}_2(\text{DR}_{1/2}(Y, X)),$$

381 as claimed. □



382 Figure 2: The complexes $\text{D}_{1/2}(X, Y)$ (left) and $\text{D}_{1/2}(Y, X)$ (right) from the proof of Proposition 4.4.

400 5 THE DOWKER-RIPS COMPLEX AS A DROP-IN REPLACEMENT FOR THE DOWKER 401 COMPLEX

402 We now present a machine learning application in which using the Dowker-Rips complex instead of the
403 Dowker complex leads to gains in speed while at the same time not negatively impacting performance.
404 More concretely, it is shown in Stolz et al. (2024) that the Dowker complex may be used in a pipeline
405 classifying tumor microenvironments into anti-tumor and pro-tumor macrophage dominant. We briefly
406 review this pipeline here and refer the reader to Stolz et al. (2024, Section 5.1.1) for details.

408 First, (an image of) a tumor microenvironment is represented as a two-dimensional point cloud, each
 409 point of which is labeled according to whether it represents a blood vessel, necrotic cell, tumor cell or
 410 macrophage. Subsequently, the Dowker complex of one class of points relative to another is constructed;
 411 this is done for each of the label combinations macrophage-tumor, tumor-blood vessel and macrophage-
 412 blood vessel. For each of the complexes, persistent homology is computed, represented as a persistence
 413 diagram and discretized into a persistence image, yielding three persistence images, each of size 20×20
 414 pixels, for each microenvironment. These persistence images are flattened into vectors, concatenated and
 415 passed to a support vector machine (SVM) for classification of the microenvironment into “anti-tumor” and
 416 “pro-tumor”. As shown in Stolz et al. (2024, Section 5.1.3), this pipeline achieves a median classification
 417 accuracy of 86.6% across ten runs (controlling for randomized components in the SVM).

418 We reproduced the above pipeline and its result, and subsequently ran the same pipeline with the Dowker
 419 complex replaced by the Dowker-Rips complex; see Table 1 for the results.² In that table, we report the
 420 average classification accuracy with its standard deviation as well as the median accuracy across the ten
 421 runs.³ We thus find that using the Dowker-Rips complex as a drop-in replacement for the Dowker complex
 422 in the pipeline above results in essentially the same classification performance. Crucially, however, we
 423 found that computation of the relevant complexes and their persistent homologies was sped up by a factor
 424 of over 14 when using the Dowker-Rips complex instead of the Dowker complex.⁴

425
 426 Table 1: Results from microenvironment classification
 427

428 429 COMPLEX USED	428 429 MEAN ACCURACY	428 429 MEDIAN ACCURACY
430 Dowker-Rips	430 86.09 ± 1.39	430 86.05
431 Dowker	431 85.69 ± 1.49	431 85.51

432
 433 For the above experiments, we implemented the Dowker-Rips complex as an open-source Python pack-
 434 age compatible with the scikit-learn API. The reason for the speed gain of the Dowker-Rips complex over
 435 the Dowker complex stems from the fact that the former, unlike the latter, is a flag complex, and hence
 436 entirely determined by its 1-skeleton. This not only means that the Dowker-Rips complex is much less
 437 costly to construct than the Dowker complex, but also that its persistent homology can be computed us-
 438 ing highly optimized state-of-the-art software. Indeed, in our implementation calculation of persistent
 439 homology is performed by ripser_parallel from the giotto-ph library (Pérez et al., 2021), which in turn is
 440 built on ripser (Bauer, 2021) and other software; both of these implementations are specifically adapted to
 441 flag complexes. In order to compute persistent homology of $\text{DR}_\bullet(X, Y)$ (where $X = \{x_1, \dots, x_n\}$ and
 442 $Y = \{y_1, \dots, y_m\}$ are subsets of \mathbb{R}^N endowed with some distance function d), all that is needed is to
 443 create the matrix $M = \{m_{ij}\}_{i,j} \in \mathbb{R}^{n \times n}$ containing the filtration levels at which vertices and edges of
 444 $\text{DR}_\bullet(X, Y)$ appear. Letting $D = \{d(x_i, y_j)\}_{i,j} \in \mathbb{R}^{n \times m}$ denote the matrix of pairwise distances between
 445 X and Y , the matrix M may be obtained from D by setting

446

- 447 • $m_{ii} := \min_k d(x_i, y_k)$, $1 \leq i \leq n$; and
- 448 • $m_{ij} := \min_k \max \{d(x_i, y_k), d(x_j, y_k)\}$, $1 \leq i, j \leq n$.

450
 451 Passing M to ripser_parallel then results in $\text{PH}_*(\text{DR}_\bullet(X, Y))$.

453
 454 ²Python code to run the pipelines is provided in the supplementary material for this submission. Running it requires
 455 our implementations of the Dowker-Rips and the Dowker complex, which are provided in the supplementary material
 456 as well.

457 ³The discrepancy between the median accuracy of the pipeline using the Dowker complex reported in Table 1 and
 458 that found in Stolz et al. (2024) stems from the fact that we ported the original pipeline from Julia to Python.

458 ⁴We ran our experiments on a laptop with a 12th Gen Intel Core i7-1260P processor running at 2.10GHz.

459 REPRODUCIBILITY STATEMENT
460

461 All theoretical results are stated with complete proofs in the appendix. Definitions, assumptions, and inter-
462 mediate lemmas are included to make the arguments self-contained. The supplementary material contains
463 code that implements our method and experiments. The code is written in Python and depends only on
464 standard libraries, or on libraries written by us that we provide in the supplementary material. Instructions
465 for running the code and reproducing the results in the paper are included in the respective README files.
466 Experiments can be reproduced on a standard laptop.

467
468 REFERENCES
469

470 Dominique Attali, André Lieutier, and David Salinas. Vietoris–rips complexes also provide topologically
471 correct reconstructions of sampled shapes. *Computational Geometry*, 46(4):448–465, 2013. ISSN 0925-
472 7721. doi: <https://doi.org/10.1016/j.comgeo.2012.02.009>. URL <https://www.sciencedirect.com/science/article/pii/S0925772112001423>. 27th Annual Symposium on Computational
473 Geometry (SoCG 2011).

475 Ulrich Bauer. Ripser: efficient computation of vietoris–rips persistence barcodes. *Journal of Applied and
476 Computational Topology*, 5(3):391–423, 2021.

477 Morten Brun and Nello Blasera. Sparse dowker nerves. *Journal of Applied and Computational Topology*, 3
478 (1):1–28, Jun 2019. ISSN 2367-1734. doi: 10.1007/s41468-019-00028-9. URL <https://doi.org/10.1007/s41468-019-00028-9>.

480 Erin W. Chambers, Vin de Silva, Jeff Erickson, and Robert Ghrist. Vietoris–rips complexes of planar point
481 sets. *Discrete & Computational Geometry*, 44(1):75–90, Jul 2010. ISSN 1432-0444. doi: 10.1007/s00454-009-9209-8. URL <https://doi.org/10.1007/s00454-009-9209-8>.

484 F. Chazal, V. de Silva, and S. Oudot. Persistence stability for geometric complexes. *Geometriae Dedicata*,
485 173:193–214, 2014. <https://doi.org/10.1007/s10711-013-9937-z>.

487 Jae Won Choi, Yuzhou Chen, José Frías, Joel Castillo, and Yulia Gel. Revisiting link prediction
488 with the dowker complex. In De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang,
489 and Jerry Chun-Wei Lin (eds.), *Advances in Knowledge Discovery and Data Mining*, pp. 418–430, Singa-
490 pore, 2024. Springer Nature Singapore. ISBN 978-981-97-2253-2.

491 Samir Chowdhury and Facundo Mémoli. A functorial Dowker theorem and persistent homology of asym-
492 metric networks. *J. Appl. Comput. Topol.*, 2(1-2):115–175, 2018. ISSN 2367-1726,2367-1734. doi:
493 10.1007/s41468-018-0020-6. URL <https://doi.org/10.1007/s41468-018-0020-6>.

494 Tamal Krishna Dey and Yusu Wang. *Computational topology for data analysis*. Cambridge University
495 Press, 2022.

496 C. H. Dowker. Homology groups of relations. *Ann. of Math.* (2), 56:84–95, 1952. ISSN 0003-486X. doi:
497 10.2307/1969768. URL <https://doi.org/10.2307/1969768>.

499 H. Edelsbrunner and J. Harer. *Computational Topology: An Introduction*. Applied Mathematics. American
500 Mathematical Society, 2010. ISBN 9780821849255. URL <https://books.google.fr/books?id=MDXa6gFRZuIC>.

502 Anton Freund, Moreno Andreatta, and Jean-Louis Giavitto. Lattice-based and topological representations
503 of binary relations with an application to music. *Annals of Mathematics and Artificial Intelligence*, 73
504 (3):311–334, Apr 2015. ISSN 1573-7470. doi: 10.1007/s10472-014-9445-3. URL <https://doi.org/10.1007/s10472-014-9445-3>.

506 Joshua Garland, Elizabeth Bradley, and James D. Meiss. Exploring the topology of dynamical recon-
507 structions. *Physica D: Nonlinear Phenomena*, 334:49–59, 2016. ISSN 0167-2789. doi: <https://doi.org/10.1016/j.physd.2016.03.006>. URL <https://www.sciencedirect.com/science/article/pii/S0167278916000464>. Topology in Dynamics, Differential Equations, and Data.

510 Robert Ghrist. *Elementary Applied Topology*. Createspace, September 2014. ISBN 978-1502880857. URL
 511 <https://www2.math.upenn.edu/~ghrist/notes.html>.

512

513 Allen Hatcher. *Algebraic topology*. Cambridge University Press, 2002.

514

515 Xiang Liu, Huitao Feng, Jie Wu, and Kelin Xia. Dowker complex based machine learning (dcml) models
 516 for protein-ligand binding affinity prediction. *PLOS Computational Biology*, 18(4):1–17, 04 2022. doi:
 517 10.1371/journal.pcbi.1009943. URL <https://doi.org/10.1371/journal.pcbi.1009943>.

518

519 Clément Maria. Filtered complexes. In *GUDHI User and Reference Manual*. GUDHI Editorial Board, 3.8.0
 520 edition, 2023. URL https://gudhi.inria.fr/doc/3.8.0/group_simplex_tree.html.

521

522 Nikita Moshkov, Tim Becker, Kevin Yang, Peter Horvath, Vlado Dancik, Bridget K. Wagner, Paul A.
 523 Clemons, Shantanu Singh, Anne E. Carpenter, and Juan C. Caicedo. Predicting compound activity from
 524 phenotypic profiles and chemical structures. *bioRxiv*, 2022. doi: 10.1101/2020.12.15.422887. URL
 525 <https://www.biorxiv.org/content/early/2022/04/10/2020.12.15.422887>.

526

527 Steve Y Oudot. *Persistence theory: from quiver representations to data analysis*, volume 209. American
 528 Mathematical Society Providence, 2015.

529

530 Julian Burella Pérez, Sydney Hauke, Umberto Lupo, Matteo Caorsi, and Alberto Dassatti. Giotto-ph:
 531 A python library for high-performance computation of persistent homology of vietoris-rips filtrations.
 532 *CoRR*, abs/2107.05412, 2021. URL <https://arxiv.org/abs/2107.05412>.

533

534 Patrick Schnider, Lucas Slot, and Simon Weber. Introduction to topological data analysis - Lecture notes FS
 535 2025. <https://ti.inf.ethz.ch/ew/courses/TDA25/Script.pdf>, 2025. Lecture notes.

536

537 Bernadette J. Stoltz, Jagdeep Dhesi, Joshua A. Bull, Heather A. Harrington, Helen M. Byrne, and Iris
 538 H. R. Yoon. Relational persistent homology for multispecies data with application to the tumor mi-
 539 croenvironment. *Bull. Math. Biol.*, 86(11):Paper No. 128, 32, 2024. ISSN 0092-8240,1522-9602. doi:
 540 10.1007/s11538-024-01353-6. URL <https://doi.org/10.1007/s11538-024-01353-6>.

541

542 Melvin Vaupel, Erik Hermansen, and Benjamin A. Dunn. A topological perspective on the dual nature of the
 543 neural state space and the correlation structure. *bioRxiv*, 2023. doi: 10.1101/2023.10.17.562775. URL
 544 <https://www.biorxiv.org/content/early/2023/10/17/2023.10.17.562775>.

545

546 Eyasu Zemene and Marcello Pelillo. Path-based dominant-set clustering. In Vittorio Murino and Enrico
 547 Puppo (eds.), *Image Analysis and Processing — ICIAP 2015*, pp. 150–160, Cham, 2015. Springer International Publishing. ISBN 978-3-319-23231-7.

548

549

A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

In this section, we provide proofs for all theoretical results in the main text, separated according to which section the appear in the main text in. For convenience, we restate each result for before its proof.

A.1.1 PROOFS OF RESULTS PERTAINING TO MULTIPLICATIVE INTERLEAVINGS

Theorem 1.6. *Let $X, Y \subseteq Z$ where (Z, d) is some metric space, and define the relations $R_\varepsilon \subseteq X \times Y$ by declaring $(x, y) \in R$ iff $d(x, y) \leq \varepsilon$ for $\varepsilon \geq 0$. Denote by $D_\bullet(X, Y)$ the filtration given by $\{D_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly for $DR_\bullet(X, Y)$. Then have that*

$$D_\varepsilon(X, Y) \subseteq DR_\varepsilon(X, Y) \subseteq D_{3\varepsilon}(X, Y) \quad (2)$$

for all $\varepsilon \geq 0$, and, in particular, that $D_\bullet(X, Y)$ and $DR_\bullet(X, Y)$ are multiplicatively 3-interleaved.

561 *Proof.* It suffices to show that

$$563 \quad D_\varepsilon(X, Y) \subseteq DR_\varepsilon(X, Y) \subseteq D_{3\varepsilon}(X, Y)$$

565 for all $\varepsilon \geq 0$; by defining φ_ε and ψ_ε as inclusions, the commutativity of the required diagrams then follows
566 immediately.

567 Let $\varepsilon \geq 0$. The inclusion $D_\varepsilon(X, Y) \subseteq DR_\varepsilon(X, Y)$ is immediate from the definition of $DR_\varepsilon(X, Y)$ as the
568 flagification of $D_\varepsilon(X, Y)$.

569 Suppose now that $DR_\varepsilon(X, Y)$ contains some simplex $\sigma = [x_0, \dots, x_n]$, where $x_0, \dots, x_n \in X$. By
570 definition, this means that for any $x_i, x_j \in \sigma$ there exists an element $y_{ij} \in Y$ such that $d(x_i, y_{ij}) \leq \varepsilon$ and
571 $d(x_j, y_{ij}) \leq \varepsilon$. Now, given any $x_i \in \sigma$, we have that

$$\begin{aligned} 573 \quad d(x_i, y_{kl}) &\leq d(x_i, x_k) + d(x_k, y_{kl}) \\ 574 \quad &\leq d(x_i, y_{ki}) + d(y_{ki}, x_k) + d(x_k, y_{kl}) \\ 575 \quad &\leq 3\varepsilon \end{aligned}$$

577 for any $0 \leq k < j \leq n$. Hence $\sigma \in D_{3\varepsilon}(X, Y)$, as claimed. \square

579 **Theorem 1.7.** *Let $X, Y \subseteq Z$ where (Z, d) is some metric space, and define the relations $R_\varepsilon \subseteq X \times Y$ as
580 in Theorem 1.6, $\varepsilon \geq 0$. Denote by $DR_\bullet(X, Y)$ the filtration given by $\{DR_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly
581 for $DR_\bullet(Y, X)$. Then $DR_\bullet(X, Y)$ and $DR_\bullet(Y, X)$ are multiplicatively 3-interleaved.*

584 *Proof.* Consider the following chain of maps

$$586 \quad DR_\varepsilon(X, Y) \xrightarrow{\iota_{DR,D}^\varepsilon} D_{3\varepsilon}(X, Y) \xrightarrow{\iota^{(1)}} D_{3\varepsilon}^{(1)}(X, Y) \xrightarrow{\Gamma} D_{3\varepsilon}(Y, X) \xrightarrow{\iota_{D,DR}^{3\varepsilon}} DR_{3\varepsilon}(Y, X),$$

589 where $\iota_{DR,D}^\varepsilon$ and $\iota_{D,DR}^{3\varepsilon}$ denote the inclusion maps from Theorem 1.6, $\iota^{(1)}$ denotes the inclusion of the re-
590 spective complex into its first barycentric subdivision, and where Γ denotes the simplicial map from Chowd-
591 hury & Mémoli (2018). We define $\varphi_\varepsilon := \iota_{D,DR}^{3\varepsilon} \circ \Gamma \circ \iota^{(1)} \circ \iota_{DR,D}^\varepsilon$. The functions ψ_ε are defined symmetri-
592 cally.

593 Consider first the following diagram:

$$\begin{array}{ccccc} 595 \quad DR_\varepsilon(X, Y) & \xleftarrow{\iota_{DR,D}^\varepsilon} & D_{3\varepsilon}(X, Y) & \xrightarrow{\iota_{D,DR}^{3\varepsilon}} & DR_{3\varepsilon}(Y, X) \\ 596 \quad \downarrow \iota^{(1)} & & \downarrow \Gamma & & \downarrow \iota_{D,DR}^{3\varepsilon} \\ 598 \quad D_{3\varepsilon}(X, Y) & & D_{3\varepsilon}^{(1)}(X, Y) & & D_{3\varepsilon}(Y, X) \\ 599 \quad \downarrow \iota^{(1)} & & \downarrow \Gamma & & \downarrow \iota^{(1)} \\ 601 \quad D_{3\varepsilon}^{(1)}(X, Y) & & D_{9\varepsilon}(X, Y) & & D_{9\varepsilon}^{(1)}(X, Y) \\ 602 \quad \downarrow \Gamma & & \downarrow \iota^{(1)} & & \downarrow \iota^{(1)} \\ 604 \quad D_{3\varepsilon}(Y, X) & \xleftarrow{\iota_{D,DR}^{3\varepsilon}} & D_{9\varepsilon}(Y, X) & \xrightarrow{\iota_{D,DR}^{3\varepsilon}} & DR_{3\varepsilon}(Y, X) \end{array} \quad (4)$$

609 By definition of φ_ε and ψ_ε , this is exactly the triangular diagram required for multiplicative interleavings.
610 It follows from functoriality of Γ established in Chowdhury & Mémoli (2018) together with the fact that all
611 other maps are inclusion maps that this diagram commutes.

612 Similarly, the relevant trapezoidal diagram is the following:
613

$$\begin{array}{ccccc}
\text{DR}_\varepsilon(X, Y) & \xrightarrow{\quad} & \text{DR}_{\varepsilon+\varepsilon'}(X, Y) & \xleftarrow{\quad} & \text{DR}_{3(\varepsilon+\varepsilon')}(X, Y) \\
\downarrow \iota_{\text{DR}, D}^\varepsilon & & \downarrow \iota_{\text{DR}, D}^{\varepsilon+\varepsilon'} & & \downarrow \iota_{\text{DR}, D}^{\varepsilon+\varepsilon'} \\
\text{D}_{3\varepsilon}(X, Y) & & & & \text{D}_{3(\varepsilon+\varepsilon')}(X, Y) \\
\downarrow \iota^{(1)} & & & & \downarrow \iota^{(1)} \\
\text{D}_{3\varepsilon}^{(1)}(X, Y) & & & & \text{D}_{3(\varepsilon+\varepsilon')}^{(1)}(X, Y) \\
\downarrow \Gamma & & & & \downarrow \Gamma \\
\text{D}_{3\varepsilon}(Y, X) & & & & \text{D}_{3(\varepsilon+\varepsilon')}(Y, X) \\
\downarrow \iota_{\text{D}, \text{DR}}^{3\varepsilon} & & & & \downarrow \iota_{\text{D}, \text{DR}}^{3(\varepsilon+\varepsilon')} \\
\text{DR}_{3\varepsilon}(X, Y) & \xrightarrow{\quad} & \text{DR}_{3(\varepsilon+\varepsilon')}(X, Y) & \xleftarrow{\quad} &
\end{array} \tag{5}$$

628 Again, this diagram commutes by functoriality of Γ and the fact that all other maps are inclusion maps. \square
629

630 A.1.2 PROOFS OF RESULTS PERTAINING TO DOWKER-RIPS DUALITY

632 **Lemma 4.2.** *The homotopy equivalence $\psi: |\text{D}_R^{(1)}(X, Y)| \rightarrow |\text{D}_R(Y, X)|$ extends to a continuous map*

$$634 \quad \varphi: |\mathcal{F}^k(\text{D}_R(X, Y))^{(1)}| \rightarrow |\mathcal{F}^k(\text{D}_R(Y, X))|$$

635 for any $k \geq 2$.

637 *Proof.* To prove the lemma, we must define φ on the portion of $|\mathcal{F}^k(\text{D}_R(X, Y))^{(1)}|$ that is not present
638 in $|\text{D}_R^{(1)}(X, Y)|$. This portion consists of the geometric realizations of those simplices that belong to
639 $\mathcal{F}^k(\text{D}_R(X, Y))$, but not to $\text{D}_R(X, Y)$. Let $\sigma \in \mathcal{F}^k(\text{D}_R(X, Y)) \setminus \text{D}_R(X, Y)$ be such a simplex. Since
640 σ is k -dimensional, we may write $\sigma = [x_0, \dots, x_k]$ for some $x_0, \dots, x_k \in X$. Moreover, by definition
641 of $\mathcal{F}^k(\text{D}_R(X, Y))$, it must be the case that all proper faces of σ belong to $\text{D}_R(X, Y)$. Letting \mathcal{I}_k denote
642 the set of subsets $I \subseteq \{0, \dots, k\}$ such that $0 < |I| < k + 1$, we thus have that $[x_i]_{i \in I} \in \text{D}_R(X, Y)$ for
643 all $I \in \mathcal{I}_k$. Given $I \in \mathcal{I}_k$, let $x_I \in \text{D}_R^{(1)}(X, Y)$ denote the vertex corresponding to the face $[x_i]_{i \in I}$ of σ ,
644 and define the subcomplex $C_{\partial\sigma}^X \subseteq \text{D}_R^{(1)}(X, Y)$ as the barycentric subdivision of the complex consisting of
645 the proper faces of σ . Similarly, define $C_\sigma^X \subseteq \mathcal{F}^k(\text{D}_R(X, Y))^{(1)}$ as the barycentric subdivision of σ . See
646 Figure 3a for a schematic illustration of $C_{\partial\sigma}^X$ and C_σ^X in the case where $k = 2$.

648 Given any $I \in \mathcal{I}_k$, set $y_I := \Gamma(x_I) \in \text{D}_R(Y, X)$. Note that a collection of these elements spans a simplex
649 $[y_{I_1}, \dots, y_{I_l}] \in \text{D}_R(Y, X)$ whenever $I_1, \dots, I_l \in \mathcal{I}_k$ are such that $I_1 \cap \dots \cap I_l \neq \emptyset$. To see this, let
650 $I_1, \dots, I_l \in \mathcal{I}_k$ be such sets. Then, by definition of Γ , we have that $(x_i, y_{I_1}), \dots, (x_i, y_{I_l}) \in R$ for all
651 $i \in I_1 \cap \dots \cap I_l$, and hence that $[y_{I_1}, \dots, y_{I_l}] \in \text{D}_R(Y, X)$.⁵ In particular, we have that $\text{D}_R(Y, X)$ contains
652 the $k+1$ simplices $[y_I]_{\{I \in \mathcal{I}_k \mid i \in I, |I|=k\}}$, each of dimension $k-1$, for all $i = 0, \dots, k$. Hence $\mathcal{F}^k(\text{D}_R(Y, X))$
653 contains the k -dimensional simplex $[y_I]_{\{I \in \mathcal{I}_k \mid |I|=k\}}$. With this at hand, define the subcomplex $C_{\partial\sigma}^Y \subseteq$
654 $\text{D}_R(Y, X)$ as having vertex set $\{y_I \mid I \in \mathcal{I}_k\}$ and simplices $[y_{I_1}, \dots, y_{I_l}]$, for $I_1, \dots, I_l \in \mathcal{I}_k$ such that
655 $I_1 \cap \dots \cap I_l \neq \emptyset$. Furthermore, define $C_\sigma^Y \subseteq \mathcal{F}^k(\text{D}_R(Y, X))$ to be the complex obtained from $C_{\partial\sigma}^Y$ by
656 adding the simplex $[y_I]_{\{I \in \mathcal{I}_k \mid |I|=k\}}$. See Figure 3b for a schematic illustration of $C_{\partial\sigma}^Y$ and C_σ^Y in the case
657 where $k = 2$.

658 By construction, we have that $\Gamma(C_{\partial\sigma}^X) \subseteq C_{\partial\sigma}^Y$, and hence, by passing to geometric realizations, that
659 $\psi(|C_{\partial\sigma}^X|) \subseteq |C_{\partial\sigma}^Y| \subseteq |C_\sigma^Y|$. It remains to show that ψ extends from $|C_{\partial\sigma}^X|$ to $|C_\sigma^X|$, for which, in turn,

661 5Note that the elements $y_I \in Y$ for $I \in \mathcal{I}_k$ are not necessarily pairwise distinct: if $I, J \in \mathcal{I}_k$ are such that $I \subseteq J$,
662 it can be the case that $y_I = y_J \in Y$, in which case the edge $[y_I, y_J]$ degenerates to a point.

it suffices to show that $|C_\sigma^Y|$ is contractible (see, e.g., Hatcher (2002, Corollary 4.73)). To that end, observe that for any $i = 0, \dots, k$, the simplex $[y_I]_{\{I \in \mathcal{I}_k \mid i \in I\}} \in C_\sigma^Y$, that is, the simplex induced by all y_I whose subscript contains i , is a maximal face of C_σ^Y . Indeed, $[y_I]_{\{I \in \mathcal{I}_k \mid i \in I\}}$ is the only maximal face containing the vertex y_i , and hence the latter vertex is a free face of C_σ^Y . We may thus collapse C_σ^Y with respect to the free faces y_0, \dots, y_k , which results in a complex homotopy equivalent to C_σ^Y . This resulting complex is the subcomplex of C_σ^Y induced by the vertices y_I for $I \in \mathcal{I}_k$ and $|I| > 1$. Similarly to before, all vertices of this new complex that are of the form y_I for $I \in \mathcal{I}_k$ and $|I| = 2$ are free faces. We may thus collapse this complex with respect to these free faces to obtain a complex that is still homotopy equivalent to C_σ^Y . Repeating this process eventually results in the subcomplex of C_σ^Y induced by the vertices y_I for $I \in \mathcal{I}_k$ and $|I| = k$, and demonstrates that this resulting complex is homotopy equivalent to the original complex C_σ^Y . As we have seen in the previous paragraph, we have that $[y_I]_{\{I \in \mathcal{I}_k \mid |I|=k\}} \in \mathcal{F}^k(D_R(Y, X))$. In other words, the complex resulting from iteratively collapsing as above is simply a k -dimensional simplex and hence C_σ^Y , being homotopy equivalent to a simplex, is contractible. \square

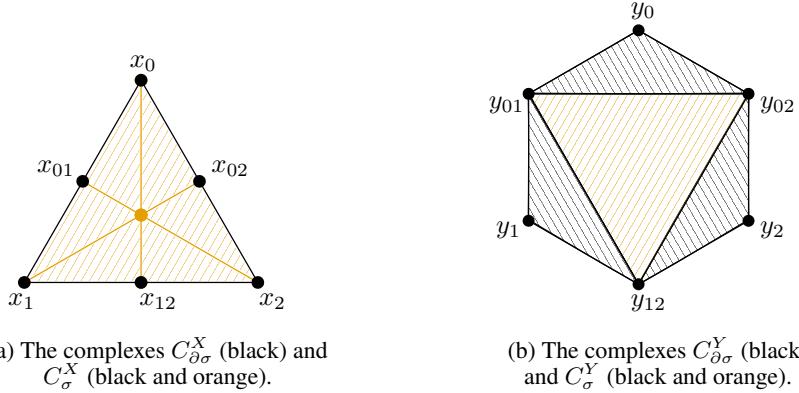


Figure 3: Schematics accompanying the proof of Lemma 4.2 for the case where $k = 2$.

Proposition 4.3. *Let X and Y be two finite sets, let $R \subseteq R' \subseteq X \times Y$ be two non-empty relations, and let $k \geq 2$ an integer. Then there exist continuous maps $\varphi: |\mathcal{F}^k(D_R(X, Y))| \rightarrow |\mathcal{F}^k(D_R(Y, X))|$ and $\varphi': |\mathcal{F}^k(D_{R'}(X, Y))| \rightarrow |\mathcal{F}^k(D_{R'}(Y, X))|$ that induce isomorphisms on the level of i -dimensional homology for $i = 0, \dots, k - 1$, and, moreover, such that the diagram*

$$\begin{array}{ccc} |\mathcal{F}^k(D_R(X, Y))| & \xhookrightarrow{\quad} & |\mathcal{F}^k(D_{R'}(X, Y))| \\ \varphi \downarrow & & \downarrow \varphi' \\ |\mathcal{F}^k(D_R(Y, X))| & \xhookrightarrow{\quad} & |\mathcal{F}^k(D_{R'}(Y, X))| \end{array} \quad (3)$$

commutes up to homotopy. Here, the horizontal maps are given by inclusion.

Proof. Let $\varphi: |\mathcal{F}^k(D_R(X, Y))^{(1)}| \rightarrow |\mathcal{F}^k(D_R(Y, X))|$ be an extension of the homotopy equivalence $\psi: |D_R^{(1)}(X, Y)| \rightarrow |D_R(Y, X)|$, whose existence is guaranteed by Lemma 4.2.

We first show that φ induces isomorphisms on the level of i -dimensional homology for $i = 0, \dots, k - 1$. To that end, consider the commutative diagram

$$\begin{array}{ccc} |D_R(X, Y)| & \xhookrightarrow{\iota^X} & |\mathcal{F}^k(D_R(X, Y))| \\ \psi \downarrow & & \downarrow \varphi \\ |D_R(Y, X)| & \xhookrightarrow{\iota^Y} & |\mathcal{F}^k(D_R(Y, X))| \end{array}$$

714 where ι^X and ι^Y denote inclusion maps, and where we identified $|D_R^{(1)}(X, Y)|$ and $|D_R(X, Y)|$ via the
715 canonical homeomorphism between them. Now, since $|\mathcal{F}^k(D_R(Y, X))|$ is obtained from $|D_R(Y, X)|$ by
716 attaching k -dimensional cells, it follows that ι^Y induces an isomorphism on the level of i -dimensional
717 homology for $i = 0, \dots, k-2$, and a surjection on the level of $(k-1)$ -dimensional homology. Hence,
718 using the fact that ψ is a homotopy equivalence, we have that the map $\iota^Y \circ \psi$ induces a surjection on the
719 level of i -dimensional homology for $i = 0, \dots, k-1$. By commutativity of the above diagram, the same is
720 true about the map $\varphi \circ \iota^X$, and hence the map that φ alone induces on the level of i -dimensional homology
721 must be a surjection, too, for $i = 0, \dots, k-1$. Swapping the roles of X and Y in the above, it follows that
722 $H_i(|\mathcal{F}^k(D_R(X, Y))|)$ surjects onto $H_i(|\mathcal{F}^k(D_R(Y, X))|)$ and vice versa for $i = 0, \dots, k-1$. Since all
723 simplicial complexes involved are finite, we thus have that $H_i(|\mathcal{F}^k(D_R(X, Y))|) \cong H_i(|\mathcal{F}^k(D_R(Y, X))|)$,
724 and hence that φ induces isomorphisms on the level of i -dimensional homology for $i = 0, \dots, k-1$, as
725 claimed.

726 To prove commutativity of Diagram 3 in the statement of Proposition 4.3, consider the following diagram
727

$$\begin{array}{ccccc}
|\mathcal{F}^k(D_R(X, Y))| & \xrightarrow{\iota_{R, R'}^X} & |\mathcal{F}^k(D_{R'}(X, Y))| & & \\
\downarrow \varphi & \swarrow & \downarrow \varphi' & & \\
|D_R(X, Y)| & \xhookrightarrow{\psi} & |D_{R'}(X, Y)| & \xhookrightarrow{\psi'} & \\
\downarrow \psi & & \downarrow \psi' & & \\
|D_R(Y, X)| & \xhookrightarrow{\iota_{R, R'}^Y} & D_{R'}(Y, X) & & \\
\downarrow \iota_{R, R'}^Y & \swarrow & \downarrow & \searrow & \\
|\mathcal{F}^k(D_R(Y, X))| & \xrightarrow{\iota_{R, R'}^Y} & |\mathcal{F}^k(D_{R'}(Y, X))| & &
\end{array} \tag{6}$$

738 where φ and φ' are extensions of the homotopy equivalences ψ and ψ' , respectively, as before; where
739 hooked arrows denote inclusion maps; and where we identified $|D_R(X, Y)|$ and $|D_R(X, Y)^{(1)}|$ as before.
740 Observe that the upper and lower trapezoids are commutative because the respective maps are inclusion
741 maps, while commutativity of the left and right trapezoids follows from the fact that φ and φ' are extensions
742 of ψ and ψ' , respectively. Moreover, the inner rectangle commutes up to homotopy by Chowdhury &
743 Mémoli (2018, Theorem 3) and we may thus assume its precise commutativity.⁶

744 Now, let $x \in |\mathcal{F}^k(D_R(X, Y))|$. If $x \in |D_R(X, Y)| \subseteq |\mathcal{F}^k(D_R(X, Y))|$, then the fact that $(\iota_{R, R'}^Y \circ \varphi)(x) =$
745 $(\varphi' \circ \iota_{R, R'}^X)(x)$ is an immediate consequence of commutativity of the trapezoids and the inner rectangle
746 in Diagram 6. Suppose now that $x \in |\mathcal{F}^k(D_R(X, Y))| \setminus |D_R(X, Y)|$, so that x belongs to the geometric
747 realization of some simplex σ_x that is present in $\mathcal{F}^k(D_R(X, Y))$ but not in $D_R(X, Y)$. Note that the
748 extensions φ and φ' are constructed from ψ and ψ' , respectively, on a per simplex basis. We may thus
749 assume that φ' agrees with φ on the geometric realizations of simplices stemming that are already present
750 in $\mathcal{F}^k(D_R(X, Y))$, which establishes the equality $(\iota_{R, R'}^Y \circ \varphi)(x) = (\varphi' \circ \iota_{R, R'}^X)(x)$ in this case. \square

751 **Theorem 1.8.** *Let X and Y be two finite sets and let $\{R_j\}_{j \in J}$ be a sequence of relations such that $R_j \subseteq$
752 $X \times Y$ for all $j \in J$, and $R_j \subseteq R_{j'}$ whenever $j \leq j'$, where J is some totally ordered index set. Given an
753 integer $k \geq 2$, denote by $\mathcal{F}^{\geq k}(D_{\bullet}(X, Y))$ the filtration given by $\{\mathcal{F}^{\geq k}(D_{R_j}(X, Y))\}_{j \in J}$, and similarly
754 for $\mathcal{F}^{\geq k}(D_{\bullet}(Y, X))$. Then we have that*

$$755 \text{PH}_i(\mathcal{F}^{\geq k}(D_{\bullet}(X, Y))) \cong \text{PH}_i(\mathcal{F}^{\geq k}(D_{\bullet}(Y, X)))$$

756 for $i = 0, \dots, k-1$.

757 ⁶Precise commutativity of this rectangle is achieved by making the choices of y_{σ} in the definition of the maps ψ
758 and ψ' in a consistent manner.

765 *Proof of Theorem 1.8.* Let $j, j' \in J$ be such that $j < j'$, and consider the following diagram of maps

$$\begin{array}{ccc}
 |\mathcal{F}^{\geq k}(\mathcal{D}_{R_j}(X, Y))| & \longrightarrow & |\mathcal{F}^{\geq k}(\mathcal{D}_{R_{j'}}(X, Y))| \\
 \uparrow & & \uparrow \\
 |\mathcal{F}^k(\mathcal{D}_{R_j}(X, Y))| & \longrightarrow & |\mathcal{F}^k(\mathcal{D}_{R_{j'}}(X, Y))| \\
 \varphi \downarrow & & \downarrow \varphi' \\
 |\mathcal{F}^k(\mathcal{D}_{R_j}(Y, X))| & \longrightarrow & |\mathcal{F}^k(\mathcal{D}_{R_{j'}}(Y, X))| \\
 \downarrow & & \downarrow \\
 |\mathcal{F}^{\geq k}(\mathcal{D}_{R_j}(Y, X))| & \longrightarrow & |\mathcal{F}^{\geq k}(\mathcal{D}_{R_{j'}}(Y, X))|
 \end{array} \tag{7}$$

779 where φ and φ' are maps as in the statement of Proposition 4.3 and where hooked arrows denote inclusion
780 maps. The top and bottom rectangles are commutative since the maps involved are inclusion maps, and
781 commutativity of the middle rectangle follows Proposition 4.3.

782 Since, for instance, $\mathcal{F}^{\geq k}(\mathcal{D}_{R_j}(X, Y))$ and $\mathcal{F}^k(\mathcal{D}_{R_j}(X, Y))$ share the same k -skeleton, it follows that the
783 top left inclusion map induces an isomorphism on the level of i -dimensional homology for $i = 0, \dots, k-1$.
784 Similarly, it follows that the same is true for the other vertical inclusion maps, and hence, by Proposition 4.3,
785 for all vertical maps. Applying the homology functor to Diagram 7, and suppressing the two middle rows,
786 we obtain the commutative diagram

$$\begin{array}{ccc}
 H_i(|\mathcal{F}^{\geq k}(\mathcal{D}_{R_j}(X, Y))|) & \longrightarrow & H_i(|\mathcal{F}^{\geq k}(\mathcal{D}_{R_{j'}}(X, Y))|) \\
 \uparrow \Downarrow & & \uparrow \Downarrow \\
 H_i(|\mathcal{F}^{\geq k}(\mathcal{D}_{R_j}(Y, X))|) & \longrightarrow & H_i(|\mathcal{F}^{\geq k}(\mathcal{D}_{R_{j'}}(Y, X))|) \\
 \end{array} \tag{8}$$

793 for $i = 0, \dots, k-1$. Diagram 8 thus establishes an isomorphism of persistence modules
794 $\text{PH}_i(\mathcal{F}^{\geq k}(\mathcal{D}_\bullet(X, Y))) \cong \text{PH}_i(\mathcal{F}^{\geq k}(\mathcal{D}_\bullet(Y, X)))$ for $i = 0, \dots, k-1$, as claimed. \square

795 **Theorem 1.10.** Let (Z, d) be a metric space and let $X, Y \subseteq Z$ be non-empty and finite disjoint subsets.
796 For $\varepsilon \geq 0$, define the relation $R_\varepsilon \subseteq X \times Y$ by

$$797 \quad (x, y) \in R_\varepsilon \quad \text{iff} \quad d(x, y) \leq \varepsilon.$$

799 Denote by $\text{DR}_\bullet(X, Y)$ the filtration given by $\{\text{DR}_{R_\varepsilon}(X, Y)\}_{\varepsilon \in \mathbb{R}^+}$, and similarly for $\text{DR}_\bullet(Y, X)$. Then we
800 have that

$$801 \quad \text{PH}_i(\text{DR}_\bullet(X, Y)) \cong \text{PH}_i(\text{DR}_\bullet(Y, X))$$

802 for $i = 0, 1$.

804 *Proof.* This is an immediate consequence of setting $k = 2$ in Theorem 1.8. \square