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ABSTRACT

The Dowker complex D (X, Y) is a simplicial complex capturing the topological inter-
play between two finite sets X and Y under some relation R C X x Y. While its def-
inition is asymmetric, the famous Dowker duality states that Dr(X,Y") and Dg(Y, X)
have homotopy equivalent geometric realizations. We introduce the Dowker-Rips com-
plex DRg(X,Y"), defined as the flagification of the Dowker complex or, equivalently,
as the maximal simplicial complex whose 1-skeleton coincides with that of Dz (X, Y).
This is motivated by applications in topological data analysis, since as a flag complex, the
Dowker-Rips complex is less expensive to compute than the Dowker complex. While the
Dowker duality does not hold for Dowker-Rips complexes in general, we show that one
still has that H;(DR(X,Y)) = H;(DRg(Y, X)) for ¢ = 0, 1. We further show that this
weakened duality extends to the setting of persistent homology, and quantify the “failure”
of the Dowker duality in homological dimensions higher than 1 by means of interleav-
ings. This makes the Dowker-Rips complex a less expensive, approximate version of the
Dowker complex that is usable in topological data analysis. Indeed, we provide a Python
implementation of the Dowker-Rips complex and, as an application, we show that it can
be used as a drop-in replacement for the Dowker complex in a tumor microenvironment
classification pipeline. In that pipeline, using the Dowker-Rips complex leads to increase
in speed while retaining classification performance.

1 INTRODUCTION

Topological data analysis (TDA) provides a framework for extracting qualitative geometric and topological
features from complex data sets. Central to this approach is the construction of simplicial complexes that
approximate the shape of an data set or, more generally, a metric space. A prominent example of such
a complex is the Cech complex, where a finite set of points is declared to span a simplex precisely if
the balls of some fixed radius € > 0 around the points have non-empty intersection. While the Cech
complex provably captures the topology of the union of all e-balls, it is notoriously expensive to compute
because triple and higher order intersections of balls must be checked (see, e.g., |Ghrist| (2014, Chapter
2.5) and [Edelsbrunner & Harer| (2010, Chapter III)). As a way around this, one often resorts to working
with a simpler complex known as the Vietoris-Rips complex in practice. By definition, the Vietoris-Rips
complex is obtained by flagifying of the Cech complex, that is, by adding all possible simplices whose
edges are already present in the Cech complex. By construction, the Vietoris-Rips complex is thus entirely
determined by its 1-skeleton, which coincides with that of the Cech complex. This makes the Vietoris-Rips
complex less expensive to describe, compute and store. Indeed, several software packages for computing
persistent homology like GUDHI (Maria, [2023) and ripser (Bauer, 2021)) allow for a significant speed-up
in computation time when working with flag complexes. Moreover, even though the Vietoris-Rips complex
does not enjoy the same theoretical guarantees regarding the capturing of the topology of the underlying data
set, it is guaranteed to be “topologically close” to the Cech complex in the sense that the two complexes are
interleaved. Finally, there do exist conditions under which such guarantees for the Vietoris-Rips complex
do exist (Chambers et al.l [2010; |Attali et al.l [2013)).

While both the Cech and Vietoris-Rips complexes are used to analyze a single data set, one might be
interested in analyzing the topology of a data set relative to another one living in the same space (or,



equivalently, the topology of a subset of a data set relative to its complement). One tool for doing so is the
Dowker complex, which was introduced by Dowker in 1952 Dowker| (1952).

Definition 1.1. Let X, Y be two finite sets and let R C X X Y be a non-empty relation. The Dowker
complex on X relative to Y is the simplicial complex Dr(X,Y') defined by the rule that a finite subset
o C X belongs to Dr(X,Y) iff there exists y € Y such that (x,y) € R forall x € o.

If XandY in Deﬁnitionare subsets of a metric space (Z, d), one may define a relation R, C X x Y by
declaring (z,y) € R, iff d(z,y) < e for £ > 0. In this setting, the Dowker complex may be regarded as a
variant of the Cech complex where one does not simply require the intersection of e-balls around elements
of X to be non-empty, but indeed to contain an element of Y.

A particularly nice feature of the Dowker complex is given by the Dowker duality, proven by Dowker
in the original paper introducing Dowker complexes (Dowker, [1952). It states that the two complexes
Dr(X,Y) and Dg(Y, X) are homotopy equivalent and, as a consequence, have isomorphic homology
groups. This result has been extended to filtrations of Dowker complexes by Chowdhury and Mémoli, who
have shown that these homotopy equivalences commute with the inclusions of the filtrations, thus extending
Dowker duality to the setting of persistent homology (Chowdhury & Mémoli, |2018)). In other words, this
more general form of Dowker duality allows one to compute persistent homology for an entire filtration of
Dowker complexes {Dg(X,Y)} o for some set R of nested relations, and this persistent homology is
guaranteed to be isomorphic to that of the corresponding filtration {D (Y, X)} .. In particular, this may
be applied to the relations R, in the setting of metric spaces. From a practical perspective, this duality allows
one to compute the smaller of the two complexes at each step (which amounts to potentially swapping the
roles of X and Y'). This can be crucial for computation time and memory consumption, in particular if one
of X and Y is significantly smaller than the other. In the context of metric spaces, the persistence diagrams
resulting from filtrations of Dowker complexes provide a way of analyzing whether and how the classes X
and Y are colocalized in the ambient metric space Z (see, e.g.,|Stolz et al.| (2024} Section 5.1.2) for details).
Dowker complexes have seen applications inside math as well as outside of math, in domains as diverse
as computational biology, data science, machine learning and neuroscience (Stolz et al.,[2024; (Choi et al.,
2024; Brun & Blaser, 2019; Zemene & Pelillo, 2015} [Liu et al., 2022; [Moshkov et al., 2022} [Vaupel et al.,
2023} |[Freund et al., |2015}; |Garland et al., |2016)). For more details on Dowker complexes, see, e.g.,|Chazal
et al.|(2014); |Ghrist/ (2014); |(Chowdhury & Mémolil (2018)).

In this work, we introduce and examine a flagified version of the Dowker complex, which we call the
Dowker-Rips complex. Just like the Vietoris-Rips complex may be defined as a flagified version of the Cech
complex and can thus be regarded as a less expensive and approximate variant thereof, the Dowker-Rips
complex can be regarded as such a variant of the Dowker complex. To define the Dowker-Rips complex,
we first state a precise definition of flagifications.

Definition 1.2. Given a simplicial complex X, the flagification of X, denoted by F(X), is defined as the
simplicial complex that is obtained from X by including a simplex 0 C X whenever all edges of o already
belong to X and dim(o) > 2. More generally, for an integer k > 2, the k-flagification of X, denoted by
FZF(X), is defined as the complex that is obtained from X by including a simplex o C X whenever all
(k — 1)-dimensional faces of o already belong to X and dim(c) > k.

Remark 1.3. Note that X C F2¥(X) C F(X) for any simplicial complex X and k > 2. Moreover, we
have that X = F=*(X) ifk > dim(X) + 1, and F=2(X) = F(X) for any simplicial complex X. Finally,
note that F2*(X) is determined entirely by the (k — 1)-skeleton of X, k > 2.

Example 1.4. Let X C R™, and denote by C.(X) and VR.(X) its Cech and Vietoris-Rips complexes at

some scale ¢ > 0, respectively. Then we have that F(C.(X)) = VR (X).

With the definition of flagification at hand, we are now ready to define the Dowker-Rips complex.
Definition 1.5. Let X, Y be two finite sets and let R C X x Y be a non-empty relation. The Dowker-Rips
complex on X relative to Y is defined as

DRg(X,Y) = F(Dg(X,Y)).

The motivation behind defining the Dowker-Rips complex is twofold. First, the Dowker complex is a
Cech-like complex in the sense that its construction relies on the pairwise and higher order intersections



of metric balls around its elements containing a certain element. From a theoretical perspective, it thus
seems natural to define a complex that relates to the Dowker complex in the same way as the Vietoris-Rips
complex relates to the Cech complex, namely through flagification. Second, from a practical perspective,
the Dowker complex (and its persistent homology) is prohibitively expensive to compute for large or high-
dimensional data sets. The Dowker-Rips complex provides an alternative to the Dowker complex that
is applicable in practice, while at the same time retaining the usefulness of the latter. In this work, we
provide a theoretical analysis of the differences between the Dowker and the Dowker-Rips complexes, and
we illustrate the usefulness of the latter by showing that simply replacing the Dowker complex with the
Dowker-Rips complex in an existing tumor microenvironment classification pipeline leads to increase in
speed while retaining classification performance.

Given the definition of the Dowker-Rips complex, there are two natural questions that arise:

(1) How much can the Dowker-Rips complex differ from the Dowker complex?

(2) Does some version of the Dowker duality still hold for Dowker-Rips complexes?

For filtrations of simplicial complexes, questions such as Question are usually answered by showing
that the two filtrations are multiplicatively c-interleaved for some ¢ > 1/'| Informally speaking, the smaller
the value of ¢ > 1, the closer the two filtrations are. A prominent example of this is the chain of inclusions

Ce(X) € VR(X) C Cac(X) (1)

for ¢ > 0, which translates into the fact that the Vietoris-Rips complex and the Cech complex are multiplica-
tively 2-interleaved. We show that a similar argument also works for Dowker-Rips and Dowker complexes
in the case where X and Y™ are subsets of some metric space (Z, d) with the relation R, C X x Y defined
by declaring (z,y) € Riff d(z,y) < efore > 0.

Theorem 1.6. Let XY C Z where (Z,d) is some metric space, and define the relations R. C X x Y
by declaring (z,y) € R iff d(z,y) < e for e > 0. Denote by Do(X,Y) the filtration given by
{Dr.(X,Y)}.cr+» and similarly for DR¢(X,Y). Then have that

Ds(Xa Y) - DRE(Xa Y) - DSE(X7Y) (2)
forall e > 0, and, in particular, that De(X,Y) and DRe(X,Y') are multiplicatively 3-interleaved.

The above result is sharp in the sense that the inclusion DR.(X,Y") C D3.(X,Y") does not hold when 3 is
replaced by some value ¢ < 3 (see Proposition [3.1|for such an example).

We use a similar argument to give a partial answer to Question We point out that the multiplicative
interleaving claimed in the following does not stem from a chain of inclusions such as in Equations ()
and (), but rather from the more general notion of a multiplicative interleaving defined in Section 3]

Theorem 1.7. Let X,Y C Z where (Z,d) is some metric space, and define the relations R. € X X Y as
in Theorem € > 0. Denote by DRe(X,Y') the filtration given by {DRg_(X,Y)}_cp+, and similarly
Sfor DRe(Y, X). Then DRo(X,Y) and DR (Y, X) are multiplicatively 3-interleaved.

While this already establishes that DR4 (X, Y") and DR, (Y, X) cannot be “too different”, it is still a sig-
nificantly weaker guarantee than the one we have for Dowker complexes, where we have a homotopy
equivalence and thus an isomorphism at the level of persistent homology. Indeed, as we will see in Sec-
tion 4} an isomorphism at the level of persistent homologies of DR (X,Y’) and DR, (Y, X) does not exist
in general. Nevertheless, we still obtain an isomorphism at the level of persistent homology when restricted
to homological dimensions 0 and 1. This follows from a slightly more general result on k-flagifications of
Dowker complexes.

Theorem 1.8. Let X and Y be two finite sets and let {R; }j ¢y be a sequence of relations such that R; C
X xY forall j € J, and R; C Rj whenever j < j', where J is some totally ordered index set. Given an

'For the definition of a multiplicative interleaving, see Deﬁnition



integer k > 2, denote by F=*(Dq(X,Y)) the filtration given by { F=*(Dg,(X,Y))}
for FZ¥(Do(Y, X)). Then we have that

PH;(F7¥(Da(X,Y))) = PH,(FZ*(D4 (Y, X)))

jer and similarly

fori=0,....k—1

Remark 1.9. Recall that for large enough k > 1, we have that F=*(Dg(X,Y)) = Dr(X,Y) and
FZE(Dgr(Y, X)) = Dgr(Y,X). For such choices of k, Theorem is essentially a homological (and
hence weaker) restatement of Chowdhury & Mémoli (2018, Theorem 3). Indeed, Theorem[I.8 may be read
as saying that there exists a decreasing sequence of filtrations

DR.(X,Y) = FZ2(DW(X,Y)) D --- D FZF(DL(X,Y)) 2 FZ¥ (Do(X,Y)) D --- D Dy(X,Y)

for k < k', in which the number of dimensions for which Dowker duality holds increases by 1 at each step.

Using the fact that the Dowker-Rips complex is the 2-flagification of the Dowker complex, we get the
following Dowker-Rips duality.

Theorem 1.10. Let (Z,d) be a metric space and let X, Y C Z be non-empty and finite disjoint subsets.
For e > 0, define the relation R. C X xY by

(z,y) € R iff d(x,y) <e.

Denote by DR4(X,Y) the filtration given by {DRg_ (X,Y )}, cp+, and similarly for DRo(Y, X). Then we
have that

PH;(DR4(X,Y)) = PH;(DR.(Y, X))
fori=0,1

The above result is sharp in the sense that its conclusion does not hold for homological dimensions higher
than 1 (see Proposition .4] for such an example). Nevertheless, the Dowker-Rips duality is a desirable
property of the Dowker-Rips complex, since, in practice, persistent homology is often computed only up
to homological dimension 1 for reasons of computational complexity. In these homological dimensions,
the Dowker-Rips duality may thus be used to accelerate the computation of the persistent homology of the
Dowker-Rips complex: like in the case of the Dowker complex, this duality allows one to potentially swap
the roles of X and Y in order to compute the less expensive variant of the two Dowker-Rips complexes.

This paper is organized as follows. In Section[2] we briefly review the necessary mathematical background.
In Section [3] we construct the multiplicative interleavings, proving Theorems [I.6] and In Section
which is the main technical section, is devoted to deducing the Dowker-Rips duality (Theorem [T.10). Fi-
nally, in Section [5] we present the application that justifies using the Dowker-Rips complex instead of the
Dowker complex in practice.

2 PRELIMINARIES

In this section, we briefly review the necessary background on the concepts and tools stemming from topo-
logical data analysis (TDA) used in this paper. We refer the reader to|Schnider et al.| (2025)); [Edelsbrunner
& Harer| (2010); (Ghrist| (2014) for details on the following.

2.1 SIMPLICIAL COMPLEXES AND FILTRATIONS

A simplicial complex is a combinatorial structure that can be seen as a higher-dimensional generalization
of a graph. Formally, it is a collection K of finite subsets of some vertex set X such that if ¢ € K and
7 C o, then 7 € K. Each subset 0 C X belonging to K is called a simplex, and usually denoted by
o = [xo,..., %], Where x1,...,2, € X. The dimension of a simplex ¢ is defined as dim(o) = |o| — 1.
Simplices of dimension 0 and 1 are also referred to as vertices and edges, respectively.

A filtration of a topological space X is a nested sequence of subspaces
Xip € X € C X, =X,



for some 1p < 13 < --- < 4, € I, where [ is some totally ordered index set. Such a filtration may be
succinctly written as X, = {Xj, },~o- In TDA, we typically have that I = R, and that the filtration indices
represent some scale parameter, as is the case in the following example.

Example 2.1. Given a metric space (Z,d) and a subset X C Z, the Cech complex of X at scale ¢ > 0,
denoted by CE(X, Z), is the simplicial complex defined as containing a simplex [y, ... ,x;] C X if the
closed e-balls centered at xy, . . . , T have a non-empty common intersection in Z. If Z = R", one usually
writes Cc(X) instead of Cc(X,R™). In contrast, the Vietoris-Rips complex of X at scale ¢ > 0, denoted
by VR.(X), is defined as the simplicial complex containing a simplex [z, ..., x| C X if d(z;, z;) < 2¢
forall 0 < i < j < k. Both complexes induce filtrations Co(X, Z) = {C.(X, Z)}Ee]R+ and VRe(X) =
{VR:(X)}.cr+, obtained by gradually increasing the value of the scale parameter «.

2.2  PERSISTENT HOMOLOGY AND PERSISTENCE MODULES

Persistent homology (PH) formalizes the study of topological features across a filtration. For each & > 0,
PH keeps track of the k-th homology group across the evolution of a filtration. More formally, given a
filtration X, this is achieved by applying the k-dimensional homology functor to the sequence of inclusion
maps

Xio ‘—)Xil (_>;>in = X.

This yields a collection of vector spaces

in

with induced maps between them. This data is denoted by PH(X,) and an example of a persistence
module. In general, the latter is defined as any indexed collection of vector spaces V = {V},_; (for some
totally ordered set 1) with linear maps f; ;: V; = V;, ¢ < j, such that f; ; = idy, and f; , = f; 1 o fi; for
any i < j < k € I. Two persistence modules {V;},.; and {W;},_; are said to be isomorphic isomorphic
if there exists a collection of isomorphisms ¢;: V; — W;, i € I, such that the diagrams

Vi —— Y Vi —— Y

o e

WiHWj W1*>W]

commute.

2.3  MULTIPLICATIVE INTERLEAVINGS

Interleavings are a way to capture similarities of filtrations. While in many cases additive interleavings are
desirable, in some cases multiplicative interleavings are the best that can be done. Following we recall the
definition of a multiplicative interleaving (see, e.g., [Dey & Wang| (2022)); Oudot (2015)).

Definition 2.2. Let F = {F,}ocr and G = {Gq }acr be filtrations. We say that F and G are multiplica-
tively c-interleaved if there are maps p, : Fy — Goq and i, : G4 — Fgq such that the following diagrams
commute for every a € R and e > 0:

Uy —m UaJre Uca Uc(a+€)
N N > g
Vea ‘/c(aJra) Vo — Vot

Uy e s U,

Uca
NS >N
Vea

Vo ———— Vizg



Note that the smaller the value of ¢ > 1, the “closer” the two filtrations are to each other. As with additive
interleavings, a multiplicative interleaving of two filtrations implies that the respective persistent homolo-
gies are “close” in a suitable sense. Multiplicative interleavings thus provide a rigorous way of quantifying
how different two filtrations are.

One prominent example of a multiplicative interleaving stems from the chain of inclusions
Co(X) € VR(X) € Cac(X)

for ¢ > 0, which establishes a multiplicative 2-interleaving of the Cech filtration and the Vietoris-Rips
filtration.

3  MULTIPLICATIVE INTERLEAVINGS OF THE DOWKER-RIPS COMPLEX

This section pertains to the two multiplicative interleavings whose existence was claimed in Section[I] For
convenience, we restate the relevant theorems, and we refer the reader to Appendix [A.T.T]|for the proofs of
the technical results of this section.

Theorem 1.6. Let XY C Z where (Z,d) is some metric space, and define the relations R. C X x Y
by declaring (z,y) € R iff d(z,y) < e for ¢ > 0. Denote by Do(X,Y) the filtration given by
{Dr.(X,Y)}.cr+» and similarly for DR4(X,Y). Then have that

Ds(Xv Y) - DRE(X7 Y) C D3€(X7Y) (2)
forall e > 0, and, in particular, that De(X,Y) and DRe(X,Y') are multiplicatively 3-interleaved.
Theorem 1.7. Let X, Y C Z where (Z,d) is some metric space, and define the relations R. € X X Y as
in Theorem € > 0. Denote by DRe(X,Y') the filtration given by {DRpg_(X,Y)}_cp+, and similarly
Sfor DRe(Y, X). Then DRo(X,Y) and DR, (Y, X) are multiplicatively 3-interleaved.

We conclude this section by providing an example illustrating that the interleaving from Theorem [I.6]is
sharp in the sense that the inclusion DR, (X,Y) C D3.(X,Y’) does not hold when 3 is replaced by some
value ¢ < 3.

Proposition 3.1. There exists a setting for Theorem|I.6|such that
DR.(X,Y) € D..(X,Y)
forany c < 3.

Proof. Define (Z,d) as the graph pictured in Figure (1| equipped with the shortest-path metric, and let
X ={zo, 21,22} C ZandY = {yo, y1,y2} C Z be the set of the crossed and hollow circles, respectively.
It is easy to see that [z;, z;] € D1(X,Y) forall 0 < ¢ < j < 2, and hence that [z, 21, 22] € DR1(X,Y).
In contrast, for D.(X,Y"), ¢ > 1, to contain [z, 21, 2], ¢ must be large enough to guarantee the existence
of an element y € Y such that d(y, z;) < cforall 0 < i < 2. Since d(y;,x;) = 3forall 0 < i < 2, this is
the case only if ¢ > 3. O

4 DOWKER-RIPS DUALITY

In this section, we derive the strengthenings of the interleaving results from Section [3| and, in particular,
the Dowker-Rips duality. We refer the reader to Appendix for the proofs of the technical results of
this section. To begin, we restate and extend the definition of k-flagification to include a notion of partial
flagification that is needed in the proofs.

Definition 4.1. Given a simplicial complex X, the flagification of X, denoted by F(X), is defined as the
simplicial complex that is obtained from X by including a simplex 0 C X whenever all edges of o already
belong to X and dim(o) > 2. More generally, for an integer k > 2, the k-flagification of X, denoted by
FZF(X), is defined as the complex that is obtained from X by including a simplex o C X whenever all
(k — 1)-dimensional faces of o already belong to X and dim(o) > k. Finally, the partial k-flagification of
X, denoted by F*(X), is defined as the complex that is obtained from X by including a simplex o C X
whenever all (k — 1)-dimensional faces of o already belong to X and dim(o) = k.
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Figure 1: The metric space (Z, d) from the proof of
Proposition 3.1} with subsets X and Y consisting of
the crossed and hollow circles, respectively.

Recall from Chowdhury & Mémoli (2018, Section 5.1) that there exists a simplicial map I': D) (X, Y) —

Dgr(Y, X) that induces a homotopy equivalence v : |DE,%1) (X,Y)| — |Dr(Y, X)| on the level of geometric
realizations. Here and in what follows, X (1) denotes the first barycentric subdivision of a simplicial com-
plex X. The map T is defined by mapping any vertex o = [zg,...,Ty] € DS;()(X7 Y), zo,...,xn € X,
to an element y, € Y such that (zy,y,) € R forallk = 0,...,n. It is shown in Chowdhury & Mémoli
(2018)) that the map I' thus defined is simplicial and, moreover, that different choices of y, in its definition
result in maps that are contiguous to one another (and hence induce homotopic maps on the level of geomet-
ric realizations). At a high level, we prove Theorem[I.10|by first showing in Lemma.2]that the map ¢ can
be extended to a map between the partial k-flagifications. From this we deduce Proposition [4.3] the main
technical result that establishes properties of the extensions of ¢ pertaining to homology and commutativity.
Finally, Theorems[I.8]and [T.10| will be relatively straight forward consequences of that proposition.

To make sense of the setup of Lemma 4.2} observe that Dg(X,Y) is a subcomplex of F*(Dx(X,Y)),
which implies that Dg)(X, Y)isa subcomplex of F¥(Dr(X,Y))™® for k > 2.
Lemma 4.2. The homotopy equivalence 1 |Dg) (X,Y)| — |Dr(Y, X)| extends to a continuous map

i [FHDA(X,Y)) W] = |FH(DR(Y, X))
forany k > 2.
With the previous lemma at hand, we can now deduce the required properties of the extensions of the map
.
Proposition 4.3. Let X and Y be two finite sets, let R C R’ C X x Y be two non-empty relations,
and let k > 2 an integer. Then there exist continuous maps p: |]-'k(DR(X Y))| — |FFDgr(Y, X))

and ¢’ |.7-'k (Dr/(X,Y))| — |F*(Dgr (Y, X))| that induce isomorphisms on the level of i-dimensional
homology fori =0, ...,k — 1, and, moreover, such that the diagram

[FEDR(X,Y))] — |F*(Dp (X,Y))]

| I

|F*(Dr(Y, X))| —— |F*Dr (Y, X))
commutes up to homotopy. Here, the horizontal maps are given by inclusion.

The proposition above allow us to prove the main theorems, which we restate for convenience.

Theorem 1.8. Let X and Y be two finite sets and let {R; }j ¢y be a sequence of relations such that R; C
X xY forall j € J, and R; C Rj whenever j < j', where J is some totally ordered index set. Given an
integer k > 2, denote by F=*(D4(X,Y)) the filtration given by {]—'Zk(DRj (X, Y))} and similarly
for FZ¥(Do(Y, X)). Then we have that

PH;(F=*(D.(X,Y))) = PH;(F=F(D,(Y, X)))

jer



fori=0,...,k—1.

Theorem 1.10. Let (Z,d) be a metric space and let X, Y C Z be non-empty and finite disjoint subsets.
For € > 0, define the relation R. C X XY by

(1'7y) € R. lff d(x;y) <e.

Denote by DR4(X,Y) the filtration given by {DRr_(X,Y )} cp+, and similarly for DRo (Y, X). Then we
have that
PH;(DRe(X,Y)) = PH;(DR.(Y, X))

fori=0,1.

We conclude this section by providing an example illustrating that the Dowker-Rips duality is sharp in the
sense that its conclusion does not hold for homological dimensions higher than 1.

Proposition 4.4. There exists a setting for Theorem[I.10|in which the conclusion fails for i = 2.

Proof. Let X = {wg,...,23} C R3 denote the set of vertices of a regular tetrahedron with edge length
1 embedded in R?, and let Y = {y;; | 0 <i < j < 3}, where y;; is defined to be the midpoint of z;
and z;, 0 < 4 < j < 3. Denote by Do(X,Y') the filtration given by {Dr_(X,Y)} g+, and similarly
for De(Y, X). Then we have that Dy /5(X,Y’) is homeomorphic to the geometric realization of Ky, the
complete graph on four vertices. In contrast, the complex D /(Y X) has vertex set Y, and a set of vertices
spans a simplex precisely when their subscripts share a common element. See Figure [2] for an illustration
of the complexes Dy /5(X,Y’) and Dy /5(Y, X).

It follows that the flagifications of D /5(X,Y) and D;/5(Y, X) equal a 3-simplex and an octahedron,
respectively. Hence DR, /5(X,Y’) and DR, /5(Y, X') are homotopy equivalent to a point and a 2-sphere,
respectively. This implies that

Hy(DRy/o(X,Y)) 2 {0} and Hy(DRy (Y, X)) 2 Z,

and, in particular, that
PH3(DR;/2(X,Y)) 2 PHa (DR 2(Y, X)),

as claimed. O

Lo

T
2 3

x1 Y23

Figure 2: The complexes D /5 (X,Y") (left) and D, /»(Y, X) (right) from the proof of Proposition

5 THE DOWKER-RIPS COMPLEX AS A DROP-IN REPLACEMENT FOR THE DOWKER
COMPLEX

We now present a machine learning application in which using the Dowker-Rips complex instead of the
Dowker complex leads to gains in speed while at the same time not negatively impacting performance.
More concretely, it is shown in [Stolz et al] (2024) that the Dowker complex may be used in a pipeline
classifying tumor microenvironments into anti-tumor and pro-tumor macrophage dominant. We briefly
review this pipeline here and refer the reader to Section 5.1.1) for details.




First, (an image of) a tumor microenvironment is represented as a two-dimensional point cloud, each
point of which is labeled according to whether it represents a blood vessel, necrotic cell, tumor cell or
macrophage. Subsequently, the Dowker complex of one class of points relative to another is constructed;
this is done for each of the label combinations macrophage-tumor, tumor-blood vessel and macrophage-
blood vessel. For each of the complexes, persistent homology is computed, represented as a persistence
diagram and discretized into a persistence image, yielding three persistence images, each of size 20 x 20
pixels, for each microenvironment. These persistence images are flattened into vectors, concatenated and
passed to a support vector machine (SVM) for classification of the microenvironment into “anti-tumor” and
“pro-tumor”. As shown in [Stolz et al.| (2024} Section 5.1.3), this pipeline achieves a median classification
accuracy of 86.6% across ten runs (controlling for randomized components in the SVM).

We reproduced the above pipeline and its result, and subsequently ran the same pipeline with the Dowker
complex replaced by the Dowker-Rips complex; see Table for the results In that table, we report the
average classification accuracy with its standard deviation as well as the median accuracy across the ten
runs/’| We thus find that using the Dowker-Rips complex as a drop-in replacement for the Dowker complex
in the pipeline above results in essentially the same classification performance. Crucially, however, we
found that computation of the relevant complexes and their persistent homologies was sped up by a factor
of over 14 when using the Dowker-Rips complex instead of the Dowker Complexﬂ

Table 1: Results from microenvironment classification

COMPLEX USED MEAN ACCURACY MEDIAN ACCURACY

Dowker-Rips 86.09+1.39 86.05
Dowker 85.69+1.49 85.51

For the above experiments, we implemented the Dowker-Rips complex as an open-source Python pack-
age compatible with the scikit-learn API. The reason for the speed gain of the Dowker-Rips complex over
the Dowker complex stems from the fact that the former, unlike the latter, is a flag complex, and hence
entirely determined by its 1-skeleton. This not only means that the Dowker-Rips complex is much less
costly to construct than the Dowker complex, but also that its persistent homology can be computed us-
ing highly optimized state-of-the-art software. Indeed, in our implementation calculation of persistent
homology is performed by ripser_parallel from the giotto-ph library (Pérez et al., |2021), which in turn is
built on ripser (Bauer}, [2021) and other software; both of these implementations are specifically adapted to
flag complexes. In order to compute persistent homology of DRe(X,Y") (where X = {z1,...,2,} and
Y = {y1,...,ym} are subsets of R" endowed with some distance function d), all that is needed is to
create the matrix M = {m;; }i_j € R™ " containing the filtration levels at which vertices and edges of

DR4(X,Y) appear. Letting D = {d(z;,y;)}, ; € R"*" denote the matrix of pairwise distances between
X and Y, the matrix M may be obtained from D by setting

o my; = ming d(z;, yx), 1 <i<n;and
* m;; = ming max {d(x;, yr), d(zj,yr)}, 1 < i,j < n.

Passing M to ripser_parallel then results in PH,.(DR4(X,Y)).

2Python code to run the pipelines is provided in the supplementary material for this submission. Running it requires
our implementations of the Dowker-Rips and the Dowker complex, which are provided in the supplementary material
as well.

3The discrepancy between the median accuracy of the pipeline using the Dowker complex reported in Table and
that found in [Stolz et al.|(2024)) stems from the fact that we ported the original pipeline from Julia to Python.

*We ran our experiments on a laptop with a 12th Gen Intel Core i7-1260P processor running at 2.10GHz.



REPRODUCIBILITY STATEMENT

All theoretical results are stated with complete proofs in the appendix. Definitions, assumptions, and inter-
mediate lemmas are included to make the arguments self-contained. The supplementary material contains
code that implements our method and experiments. The code is written in Python and depends only on
standard libraries, or on libraries written by us that we provide in the supplementary material. Instructions
for running the code and reproducing the results in the paper are included in the respective README files.
Experiments can be reproduced on a standard laptop.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

In this section, we provide proofs for all theoretical results in the main text, separated according to which
section the appear in the main text in. For convenience, we restate each result for before its proof.

A.1.1 PROOFS OF RESULTS PERTAINING TO MULTIPLICATIVE INTERLEAVINGS

Theorem 1.6. Let XY C Z where (Z,d) is some metric space, and define the relations R. C X x Y
by declaring (z,y) € R iff d(z,y) < e for e > 0. Denote by Do(X,Y) the filtration given by
{Dr.(X,Y)}.cr+» and similarly for DR4(X,Y). Then have that

D.(X,Y) CDR.(X,Y) C Ds.(X,Y) 2
Sorall e > 0, and, in particular, that De(X,Y) and DR4(X,Y) are multiplicatively 3-interleaved.
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Proof. Tt suffices to show that
D.(X,Y) CDR.(X,Y) C D3 (X,Y)

for all ¢ > 0; by defining . and v, as inclusions, the commutativity of the required diagrams then follows
immediately.

Let € > 0. The inclusion D.(X,Y) C DR.(X,Y) is immediate from the definition of DR.(X,Y") as the
flagification of D (X, Y).

Suppose now that DR.(X,Y") contains some simplex o = [zo,..., %], Where zg,...,2, € X. By
definition, this means that for any x;, x; € o there exists an element y;; € Y such that d(x;, yij) < € and
d(zj,y:;) < €. Now, given any z; € o, we have that

d(zi, yr) < d(z, zr) + d(zr, yrr)
< d(xi, Yri) + d(Yri> Tr) + Ak, Yrt)
< 3e

forany 0 < k < j < n. Hence o € D3.(X,Y), as claimed. O

Theorem 1.7. Let X,Y C Z where (Z,d) is some metric space, and define the relations R. C X x Y as
in Theorem € > 0. Denote by DRe(X,Y') the filtration given by {DRpg_(X,Y)}_cp+, and similarly
Jor DRo(Y, X). Then DRo(X,Y') and DR, (Y, X)) are multiplicatively 3-interleaved.

Proof. Consider the following chain of maps

DRD DDR

DR.(X,Y) 2% Dy (X, V) 5 DY(X,Y) — Dac(Y, X) <225 DRy.(Y, X),

where tfyp i, and L%‘iDR denote the inclusion maps from Theorem |1.6| (1) denotes the inclusion of the re-
spective complex into its first barycentric subdivision and where I' denotes the simplicial map from|/Chowd-
hury & Mémoli| (2018). We define o, := (3¢ prolo Mo Lbr,p- The functions ¢, are defined symmetri-
cally.

Consider first the following diagram:

DR.(X,Y) DRy.(X,Y)
\LERT LQDED/
Ds.(X,Y) Dy.(X,Y)
2 T
DY (X,Y) DS (X,Y) @
b o]
D3 (Y, X) Dy (Y, X)
@ ?ﬁ/r
DRS& (Y7 X)

By definition of ¢, and v, this is exactly the triangular diagram required for multiplicative interleavings.
It follows from functoriality of I" established in|Chowdhury & Mémoli|(2018])) together with the fact that all
other maps are inclusion maps that this diagram commutes.
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Similarly, the relevant trapezoidal diagram is the following:

DR, (X, Y) DR.; o (X, Y) ,
\LJEDR,T \L]E)JrRE,D)
D3 (X7 Y) D3(5+6’)(Xa Y)
ij jb(l)
1 1
DIV (X,Y) D, (xy) O
Jr Js
Ds. (Y, X) D3(eqen (Y, X)
\[L%E,DR \[L%(;;f "
DR3. (X, Y) DR3(5+5/) (X, Y)

Again, this diagram commutes by functoriality of I" and the fact that all other maps are inclusion maps. [J

A.1.2 PROOFS OF RESULTS PERTAINING TO DOWKER-RIPS DUALITY

Lemma 4.2. The homotopy equivalence 1 |Dg) (X,Y)| — |Dr(Y, X)| extends to a continuous map
o: |FFDr(X, Y)Y = |FEDr(Y, X))|

Sforany k > 2.

Proof. To prove the lemma, we must define ¢ on the portion of |F*(Dx(X,Y))(®)| that is not present

in |Dg)(X ,Y)|. This portion consists of the geometric realizations of those simplices that belong to
FFDgr(X,Y)), but not to Dr(X,Y). Let 0 € F¥(Dg(X,Y)) \ Dr(X,Y) be such a simplex. Since
o is k-dimensional, we may write 0 = [z, ..., 2] for some xq, ...,z € X. Moreover, by definition
of F¥(Dg(X,Y)), it must be the case that all proper faces of o belong to Dz (X,Y). Letting Z;, denote
the set of subsets I C {0,...,k} such that 0 < |I| < k + 1, we thus have that [z;];c; € Dr(X,Y") for
all I € Z;.. Given I € I, letz; € Dg)(X ,Y") denote the vertex corresponding to the face [z;];cr of o,
and define the subcomplex Cz C Dg) (X,Y) as the barycentric subdivision of the complex consisting of

the proper faces of ¢. Similarly, define CX C F*(Dg(X,Y))(") as the barycentric subdivision of . See
Figurefor a schematic illustration of 3 and CX in the case where k = 2.

Given any I € 7y, set y; := I'(x;) € Dr(Y, X). Note that a collection of these elements spans a simplex
vr,s---,yn] € Dr(Y,X) whenever In,...,I; € I are such that [; N --- N I; # &. To see this, let
Ii,...,I; € I} be such sets. Then, by definition of I', we have that (z;,yr,),..., (zi,yr,) € R for all
i€ I;N---N1,and hence that [yy, , ...,y ] € Dr(Y, X)E]In particular, we have that D (Y, X) contains
the k+1 simplices [y7]{1ez, |ic1,|1]=k}» €ach of dimension k—1, forall i = 0,...., k. Hence F*(Dg(Y, X))
contains the k-dimensional simplex [y;](rez,|j7j=k}. With this at hand, define the subcomplex cy c
Dr(Y, X) as having vertex set {y; | I € Z);} and simplices [y, , ...,y ], for I1,...,I; € T such that
IiN---N1I, # @. Furthermore, define CY C F*(Dg(Y, X)) to be the complex obtained from C} by

adding the simplex [y]{rez, | /1j=k}- See Figure 3b|for a schematic illustration of CY and CY in the case
where k = 2.

By construction, we have that F(Cg‘;) C C’ga, and hence, by passing to geometric realizations, that
P(|CX ) C |CY | C |CY]|. It remains to show that ¢ extends from |C7 | to |CZ|, for which, in turn,

>Note that the elements y; € Y for I € T, are not necessarily pairwise distinct: if I,.J € Ty are such that I C J,
it can be the case that y; = ys € Y, in which case the edge [yr, y.s] degenerates to a point.
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it suffices to show that \C},/ | is contractible (see, e.g., Hatcher| (2002, Corollary 4.73)). To that end, observe
that for any ¢ = 0, ..., k, the simplex [yf]{fezk\iez} € Cr, that is, the simplex induced by all y; whose
subscript contains i, is a maximal face of C'Y . Indeed, [y 1l¢rez,jiery is the only maximal face containing

the vertex y;, and hence the latter vertex is a free face of C'Y'. We may thus collapse C'¥" with respect to the
free faces o, - . . , yx, which results in a complex homotopy equivalent to CY'. This resulting complex is
the subcomplex of CY induced by the vertices y; for I € Z;, and |I| > 1. Similarly to before, all vertices
of this new complex that are of the form y; for I € Zj, and |I| = 2 are free faces. We may thus collapse
this complex with respect to these free faces to obtain a complex that is still homotopy equivalent to CY.
Repeating this process eventually results in the subcomplex of C'¥ induced by the vertices yr for I € T,
and |I| = k, and demonstrates that this resulting complex is homotopy equivalent to the original complex
CY. As we have seen in the previous paragraph, we have that [y;]rez, |j11=} € F*(Dr(Y, X)). In other
words, the complex resulting from iteratively collapsing as above is simply a k-dimensional simplex and
hence CY', being homotopy equivalent to a simplex, is contractible. O

o
Zo1 Z02
Z1 T12 T2
(a) The complexes C% (black) and (b) The complexes C3 (black)
CX (black and orange). and CY (black and orange).

Figure 3: Schematics accompanying the proof of Lemmafor the case where k = 2.

Proposition 4.3. Let X and Y be two finite sets, let R C R’ C X X Y be two non-empty relations,
and let k > 2 an integer. Then there exist continuous maps ¢: |F*(Dr(X,Y))| — |F*(Dr(Y, X))
and ¢': |F*(Dp/(X,Y))| — |F¥(Dgr(Y,X))| that induce isomorphisms on the level of i-dimensional
homology fori =0, ...,k — 1, and, moreover, such that the diagram

[FEDr(X,Y)] —— |[F*(Dp (X, Y))]

| I

[FEDRY, X))| —— [FHDr (Y, X))

commutes up to homotopy. Here, the horizontal maps are given by inclusion.

Proof. Let : |FF(Dg(X,Y))M)| — |F¥(Dgr(Y,X))| be an extension of the homotopy equivalence
R |Dg)(X, Y)| = |Dgr(Y, X)|, whose existence is guaranteed by Lemma

We first show that ¢ induces isomorphisms on the level of i-dimensional homology for: = 0,...,k — 1.
To that end, consider the commutative diagram

IDR(X,Y)| < |FH(DR(X,Y))|

! !

IDR(Y, X)| = |FH(DR(Y, X))
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where X and (¥ denote inclusion maps, and where we identified |D§%1)(X ,Y) and |[Dg(X,Y)| via the
canonical homeomorphism between them. Now, since |F*(Dg(Y, X))| is obtained from [Dr(Y, X)| by
attaching k-dimensional cells, it follows that +¥ induces an isomorphism on the level of i-dimensional
homology for i = 0,...,k — 2, and a surjection on the level of (k — 1)-dimensional homology. Hence,
using the fact that 1) is a homotopy equivalence, we have that the map ¢* o 1) induces a surjection on the
level of i-dimensional homology for i = 0, ...,k — 1. By commutativity of the above diagram, the same is
true about the map ¢ o ¢, and hence the map that ¢ alone induces on the level of i-dimensional homology
must be a surjection, too, for 7 = 0,...,k — 1. Swapping the roles of X and Y in the above, it follows that
H;(|F*(Dr(X,Y))|) surjects onto H;(|F*(Dx(Y, X))|) and vice versa fori = 0,...,k — 1. Since all
simplicial complexes involved are finite, we thus have that H; (|F*(Dr(X,Y))|) = H;(|F*(Dr(Y, X))|),
and hence that ¢ induces isomorphisms on the level of i-dimensional homology for i = 0,...,k — 1, as
claimed.

To prove commutativity of Diagram 3]in the statement of Proposition consider the following diagram

x
‘R,R’

[7*(Dr(X,Y))|

T

IDr(X,Y)| —— [Dr/(X,Y)

: ] |

IDR(Y, X)| —— Dr/(Y, X)|

75 (D (X, Y))|

o ©)

|/
\

[F*(Dr (Y, X))

Bl
&l

|75 (DR(Y, X))|

where ¢ and ¢’ are extensions of the homotopy equivalences v and ©)’, respectively, as before; where
hooked arrows denote inclusion maps; and where we identified [Dg(X,Y)| and [Dg(X,Y)™®)| as before.
Observe that the upper and lower trapezoids are commutative because the respective maps are inclusion
maps, while commutativity of the left and right trapezoids follows from the fact that  and ¢’ are extensions
of 1 and v, respectively. Moreover, the inner rectangle commutes up to homotopy by [Chowdhury &
Mémoli| (2018, Theorem 3) and we may thus assume its precise commutativity.

Now, letz € |[F*(Dr(X,Y))|. Ifz € [Dg(X,Y)| C |F*(Dr(X,Y))|, then the fact that (L§7R/ op)(x) =
(¢' o L§7 r)(z) is an immediate consequence of commutativity of the trapezoids and the inner rectangle

in Diagram [6] Suppose now that z € |F*(Dp(X,Y))| \ |Dr(X,Y)|, so that = belongs to the geometric
realization of some simplex o, that is present in F*(Dr(X,Y)) but not in Dp(X,Y). Note that the
extensions ¢ and ¢’ are constructed from v and 1)’, respectively, on a per simplex basis. We may thus
assume that ¢’ agrees with ¢ on the geometric realizations of simplices stemming that are already present
in F¥(Dr(X,Y')), which establishes the equality (¢}, g/ © @) () = (¢’ © 135 p/)(x) in this case. O

Theorem 1.8. Let X and Y be two finite sets and let { R; }j <7 be a sequence of relations such that R; C
X XY forall j € J, and Rj C Rj whenever j < j', where J is some totally ordered index set. Given an
integer k > 2, denote by F=*(D4(X,Y)) the filtration given by { F=*(Dg,(X,Y))} and similarly
for FZ¥(D4(Y, X)). Then we have that

jeJ’

PH;(F=¥(D.(X,Y))) & PH;(F="(D. (Y, X)))

fori=0,....k—1

SPrecise commutativity of this rectangle is achieved by making the choices of y, in the definition of the maps 1)
and v’ in a consistent manner.
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Proof of Theorem[1.8] Let j, j' € J be such that j < j’, and consider the following diagram of maps

[72*(Dr, (X, Y))] —— [F=*(Dg,, (X,Y))]

J ]

[F¥(Dr, (X, V)] — |F*(Dg,, (X,Y))|

% | (7)

[F# (D, (Y, X))| —— [F*(Dg,, (¥, X))|

/ [

[F=*(Dg, (Y, X))| —— |F=*(Dr,, (Y, X))

where  and ¢’ are maps as in the statement of Propositionand where hooked arrows denote inclusion
maps. The top and bottom rectangles are commutative since the maps involved are inclusion maps, and
commutativity of the middle rectangle follows Proposition

Since, for instance, F=*(Dg,(X,Y)) and F*(Dg, (X,Y")) share the same k-skeleton, it follows that the
top left inclusion map induces an isomorphism on the level of i-dimensional homology fori = 0, ...,k —1.
Similarly, it follows that the same is true for the other vertical inclusion maps, and hence, by Proposition[4.3]
for all vertical maps. Applying the homology functor to Diagram |7} and suppressing the two middle rows,
we obtain the commutative diagram

H;(|F=*(Dg, (X, Y))]) — Hi(|F="(Dr, (X,Y))])

z@ ] ®)

H;(|F=*(Dg, (Y, X)) — Hi(|F="(Dr,, (Y, X))
for ¢+ = 0,...,k — 1. Diagram thus establishes an isomorphism of persistence modules
PH;(F=*(De(X,Y))) = PH;(F=*(D,(Y, X))) fori = 0, ...,k — 1, as claimed. O

Theorem 1.10. Let (Z,d) be a metric space and let X,Y C Z be non-empty and finite disjoint subsets.
For € > 0, define the relation R. C X XY by

(z,y) € Re iff d(z,y) <e.

Denote by DR4(X,Y) the filtration given by {DRg_(X,Y)}, g+, and similarly for DRo(Y, X). Then we
have that
PH;(DR.(X,Y)) 2 PH;(DR.(Y, X))

fori=0,1.

Proof. This is an immediate consequence of setting k& = 2 in Theorem|[I.8] O

16



	Introduction
	Preliminaries
	Simplicial complexes and filtrations
	Persistent homology and persistence modules
	Multiplicative interleavings

	Multiplicative interleavings of the Dowker-Rips complex
	Dowker-Rips duality
	The Dowker-Rips complex as a drop-in replacement for the Dowker complex
	Appendix
	Proofs of theoretical results
	Proofs of results pertaining to multiplicative interleavings
	Proofs of results pertaining to Dowker-Rips duality



