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ABSTRACT

Mutual information (MI) estimation plays an important role in representational
learning. However, accurately estimating mutual information is challenging, es-
pecially for high-dimensional variables with limited batch data. In this work, we
approach the mutual information estimation problem via the logdet function of
data covariance. To extend the logdet function for entropy estimation of non-
Gaussian variables, we assume that the data can be approximated well by a Gaus-
sian mixture distribution and introduce a lower and upper bound for the entropy
of such distributions. To deal with high dimensionality, we introduce “ridge” term
in the logdet function to stabilize the estimation. Consequently, the mutual infor-
mation can be estimated by the entropy decomposition. Our method MILE signif-
icant outperforms conventional neural network-based MI estimators in obtaining
low bias and low variance MI estimation. Besides, it well pass the challenging
self-consistency tests. Simulation studies also show that, beyond a better MI es-
timator, MILE can simultaneously gain competitive performance with SOTA MI
based loss in self-supervised learning.

1 INTRODUCTION

Mutual information (MI) estimation and optimization are crucial in various machine learning tasks,
particularly for representation learning (Tishby & Zaslavsky, 2015; Chen et al., 2016; Belghazi
et al., 2018; Hjelm et al., 2019; Oord et al., 2018; Song & Ermon, 2019). Unlike other similar-
ity measures, MI has the advantage of capturing both linear and non-linear dependencies between
different entities such as features. However, estimating MI accurately from limited data samples
with an unknown distribution for many modern machine-learning tasks is especially challenging
(McAllester & Stratos, 2020), often dwarfing traditional parametric and non-parametric approaches
in statistics and machine-learning communities (Nemenman et al., 2004; Gao et al., 2015).

Recently, there has been a growing interest in estimating MI with variational approaches (Barber &
Agakov, 2003; Nguyen et al., 2010), which can be naturally combined with deep learning methods
(Alemi et al., 2016; Oord et al., 2018; Poole et al., 2019). The seminal one, Mutual Information Neu-
ral Estimation (MINE) method (Belghazi et al., 2018), iteratively estimates the variational function
using a neural network and demonstrates successful applications in various learning tasks. How-
ever, MINE and its variants, such as Smoothed Mutual Information Lower-bound Estimator (Song
& Ermon, 2019) and Neural Entropic Estimation (NEE) (Chan et al., 2019) are known to be difficult
to balance the bias and variance, and the convergence rate of this type of estimators is relatively
slow. Alternatively, Information Noise Contrastive Estimation (InfoNCE (Gutmann & Hyvärinen,
2012; Oord et al., 2018) is a lower bound of MI and has been widely used as a contrastive loss
function for self-supervised learning (SSL). It is widely known that InfoNCE outperforms MINE in
representation learning, which leads to a puzzle that a tighter bound of MI may not lead to a better
performance in SSL (Tian et al., 2020; Wang & Isola, 2020). However, InfoNCE is not an effective
estimator for MI, which may result in a large bias, particularly when MI is large (Song & Ermon,
2019).

In this work, we address an alternative estimator to resolve these shortcomings. We propose to
estimate the mutual information base on the logdet function of data covariance. In order to ex-
tend the logdet function for entropy estimation of Gaussian distributed variables to fit for entropy
estimation of non-Gaussian variables, we assume the data is subjected to Gaussian mixture distri-
bution and introduce a lower and upper bound for the entropy of such variable. To deal with high
dimensional variables, we introduce an extra identify matrix in the logdet function to gain stable
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estimation. The mutual information can be consequently estimated by the entropy decomposition.
Unlike conventional neural network based MI estimators, our MILE does not require additional
training. Simulation studies demonstrate that our proposed MILE gains significant improvements
in both the estimation speed and accuracy. Moreover, we find that the MILE can perform well in
the challenging self-consistency test. We also show that being a tighter estimation of MI, MILE can
gain competitive performance with SOTA MI based loss in self-supervised learning.

2 MUTUAL INFORMATION LOGDET ESTIMATOR

2.1 BACKGROUND

Information theory tells us the differential entropy of a variable X is defined by its probability
density function p(X) as follows,

H(X) =

∫
−p(X) log p(X)dX (1)

WhenX subjects to a Gaussian, the integral in Eqn (1) has a closed-form expression. To be specific,
for a multi-variable Gaussian variable X ∼ N (µ,ΣX), its differential entropy can be represented
by the Logarithm Determinant (LogDet for short) of its covariance matrix as:

H(X) =
1

2
log det ΣX +

d

2
(log 2π + 1) (2)

=
1

2

d∑
i

log λi +
d

2
(log 2π + 1) (3)

where d is the dimension of variables and λi denote the ith eigenvalue of its covariance matrix.
Obviously, the second term d

2 (log 2π + 1) in Eqn(2) is constant, which will be denoted as Cd later
on. The entropy measurement is determined by log det Σx. We refer to this entropy estimator as the
LogDet entropy estimator.

Despite its advantages in computation, we need to pay attention to some special cases when using
the LogDet entropy estimator. For example, when having finite but strongly correlated variables,
the covariance matrix may become singular, leading to zero determinant. For instance, this case
occurs in dealing with image data, where the original image data is always sparse and strongly
correlated. Prior works (Zhouyin & Liu, 2021) on such entropy estimators provide a solution: by
adding independent Gaussian noise z ∼ N(0, β ∗ I) to X as X̂ = X + z, we have a ‘noise’ X̂ to
any given X . In such cases, we can apply logdet operation to covariance matrix Cov(T̂ ) = Σ + βI
to estimate its entropy.

It is worth noting that previous work (Zhouyin & Liu, 2021) has attempted to reduce the influence
of added noise by enlarging the original covariance matrix through an expanding factor, denoted as
β. However, it should be recognized that enlarging the original covariance matrix can introduce a
substantial bias in the estimation of mutual information. So here we scale down noise’s variance to
eliminate artificial bias brought by added noise. We define the entropy estimator more formally as
follows: given n samples X = [x1, x2, . . . , xn] where each sample have d dimensional features that
X ∈ Rn×d, its covariance matrix is calculated by ΣX = XTX

n (we assume X is zero-mean in this
work), the LogDet entropy estimator can be refined as:

HD(X) =
1

2
log det(ΣX + βI) + Cd =

1

2
log det

(
XTX

n
+ βI

)
+ Cd (4)

where β is the scaling parameter. By performing the singular value decomposition to ΣX , Eqn 4 is
equivalent to:

HD(X) =

k∑
i=1

1

2
log (λi + β) + Cd (5)

where k = rank(X) and λi denotes the i th eigenvalue of ΣX . We see the first term of Eqn 5
approximate the dominant term in Eqn 2, which is the differential entropy of multivariate Gaussian
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random variables. Therefore, LogDet can estimate the entropy of multivariate Gaussian variables by
approximating the differential entropy.

To obtain the mutual information, we also need to define the joint LogDet entropy estimator for two
variables. Given samples sets X1 ∈ Rn×d1 , X2 ∈ Rn×d2 , let Z = [X1, X2] ∈ Rn×(d1+d2) denotes
the concatenation of X1 and X2. The covariance matrix of Z is

ΣZ =

(
Σ1 F
FT Σ2

)
,

where Σ1 and Σ2 is covariance matrices ofX1 andX2 respectively, and F equals to XT
1 X2

n , the joint
LogDet entropy of X1 and X2 is:

HD (X1, X2) =
1

2
log det (ΣZ + βI) + Cd′ (6)

=
1

2
log det

(
ZTZ

n
+ βI

)
+ Cd′ (7)

Furthermore, some prior works summarize determinant inequalities from the aspect of information
theory (Cover & Thomas, 1988; Cai et al., 2015). These inequalities give a theoretical background
to define the LogDet based mutual information measurements. Zhouyin & Liu (2021) show that
given random variables X1 and X2, their joint LogDet entropy satisfies the following inequalities:

HD (X1, X2) ≤ HD (X1) + HD (X2) (8)

Given the joint LogDet entropy definition and the inequalities to guarantee the nonnegativity, we
can safely define the LogDet based mutual information estimator as

ID (X1;X2) = HD (X1) + HD (X2)−HD (X1, X2) (9)

2.1.1 LOGDET ENTROPY ESTIMATOR FOR NON-GAUSSIAN VARIABLE

As we discussed in the last section, when X is a Gaussian variable, the entropy H(X) has a LogDet
estimator expressed in Eqn 4. However, whenX is a non-Gaussian variable, it is not straightforward
to obtain the LogDet estimator. Here, we provide a LogDet-based upper bound of the entropy
and also a convincing lower bound. The idea comes from the fact that we can approximate the
distribution of non-Gaussian variables by a Gaussian mixture model, as the GMM is a powerful
statistical tool that could approximate any density defined on Rd with a large enough number of
mixture components. Algorithms for GMM fitting have been studied thoroughly. We can use the
standard EM algorithm (Dempster et al., 1997) or its variants. Without going into the details of the
GMM fitting algorithm, we assume the GMM has been fitted for the non-Gaussian variable. Support
the fitted GMM of X is pθ(X) =

∑K
i=1 πiN (·|µi,Σi). The entropy can be defined as follow,

H(X) =

∫
−pθ(X) log pθ(X)dX. (10)

However, in this case, the entropy generally cannot be calculated in closed-form, due to the logarithm
of a sum of exponential functions. We can use the Monte Carlo approach to numerically approximate
the integration. However, the Monte Carlo approach always takes heavy computation efforts to
obtain an accurate estimation.

Here, we provide a pair of computationally cheap lower and upper bounds to approximate the true
entropy values. Both bounds can be calculated in closed form. The upper and lower bounds are
given as follows; the detailed derivation is present in Appendix A.

Upper Bound. The upper bound consists of a weighted sum of the individual entropies of the
Gaussian components. To be specified,

Hu
D(X) =

K∑
i=1

πi ·
(
− log πi +

1

2
log
(
(2πe)d |Σi|

))
.

=

K∑
i=1

πi ·
(
− log πi +

1

2
log det

(
XTX

n

)
+ Cd

)
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Lower Bound. A lower bound of Eqn(10) can be obtained by employing the Jensen’s inequality: the
logarithm is moved outside the integral and only an integral of a product of two Gaussian densities
remains, which has a well-known closed-form solution. A lower bound of Eqn(10) is given by

Hl
D(X) = −

K∑
i=1

πi · log

 K∑
j=1

πj · ηi,j

 ,

with ηi,j = N (µi;µj ,Σi + Σj).

Furthermore, we can also introduce the identity matrix in the LogDet function and covariance in the
lower bound to obtain a more robust estimator, the resulting bounds become,

Hl
D(X) = −

K∑
i=1

πi · log

 K∑
j=1

πj · N (µi;µj ,Σi + Σj + βI)

 (11)

Hu
D(X) =

K∑
i=1

πi ·
(
− log πi +

1

2
log det

(
XTX

n
+ βI

)
+ Cd

)
(12)

Given these bounds, we can approximate the entropy either by its bounds such as

H?
D(X) , Hu

D(X) or H?
D(X) , Hl

D(X) (13)

or by the means of the upper and lower bound

H?
D(X) ,= Hm

D(X) =
1

2
Hu
D(X) +

1

2
Hl
D(X). (14)

Finally, we obtain the mutual information LogDet based estimator (MILE) as follows,

I?D (X1;X2) = H?
D (X1) + H?

D (X2)−H?
D (X1, X2) (15)

where ? represents {u,m, l}, which indicates the choice of different entropy estimator.

2.2 THE ISSUE OF MODEL SELECTION

When introducing the GMM for entropy estimation, we actually introduce an extra model assump-
tion for the data. From the Bayesian perspective, given the model assumption K (number of mix-
ture components), the probability distribution of X is a marginal distribution by integrating out the
model parameters, p(X|K) =

∫
p(X|θ,K)p(θ|K)dθ, where θ = {πk, µk,Σk}Kk=1 is the model pa-

rameter of the GMM. Theoretically, a parametric entropy estimation should depend on the model
assumption, HK(X) =

∫
−p(X|K) log p(X|K)dX. However, in practice, it is always infeasible

to compute the marginal distribution p(X|K) to evaluate the entropy. Instead, we find a maximum
likelihood point estimation for θ, and use p(X|θ,K) in the LogDet based entropy estimation. Thus,
the proposed entropy estimator depends on the model choice. Here, we use I?K to denote the MILE
with K-components GMM. As shown in the simulation study, different model assumptions, such
as different number of mixture components, will lead to significantly different entropy results. An
improper choice of model assumption may lead to a large bias compared to the estimator with the
known ground true model. Although finding the optimal number of mixture components when fitting
a general dataset with GMM can be challenging, it is fortunate that in the context of self-supervised
learning, which is the target application of the MILE estimator, the number of mixture components
is known. This is because we treat the augmented data from one instance as a cluster, and this data
augmentation strategy automatically clusters the data.

2.3 ISSUE OF SELF-CONSISTENCY FOR MUTUAL INFORMATION ESTIMATORS

In line with previous research (Song & Ermon, 2019), we propose a set of self-consistency tests to
evaluate the performance of the proposed estimator I. These tests include: I. Independence: If X
and Y are independent, then the estimated mutual information I(X;Y ) should be zero. II. Data
processing: For any functions g and h, the estimated mutual information I(X;Y ) should be greater
than or equal to I(g(X);h(Y )). Additionally, the estimated mutual information should approximate
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I([X, g(X)]; [Y, h(Y )]), where [·, ·] represents concatenation. III. Additivity: If X1 and X2 are
independent random variables with the same distribution as X (similarly defined for Y1 and Y2),
then the estimated mutual information I ([X1, X2] ; [Y1, Y2]) should approximate twice the mutual
information I(X,Y ).

While these conditions are necessary, they are insufficient for accurate mutual information estima-
tion. However, satisfying these self-consistency tests is highly desirable for effective representation
learning (Chen et al., 2016). It is important to note that previous studies (Song & Ermon, 2019)
have shown that the MINE estimator and its variants (such as SMILE) struggle to satisfactorily meet
the self-consistency test. Simulation studies demonstrate that our proposed MILE estimator exhibits
favorable performance on these self-consistency tests.

3 APPLICATION IN SELF-SUPERVISED LEARNING

In self-supervised learning, a set of data X is given without knowing of the label. We aim to
learn a deep neural network (DNN) φ to extract the feature Z from input X: φ : X → Z, which
could perform well in downstream tasks such as classification or clustering. There are two potential
perspectives on using the MI as loss for SSL: 1) maximize the mutual information between different
views of data (Hjelm et al., 2019; Oord et al., 2018; Wang & Isola, 2020), that I(Z,Z ′), where
Z = φ(X) and Z ′ = φ(X ′), X ′ is an augmentation or different view of X; 2) maximize the mutual
information between the extracted feature Z and classification label Yc (categorical variable) (Caron
et al., 2018), here denoted as I(Z, Yc). As the ground true label Yc is unavailable, we can either
generate pseudo labels (Caron et al., 2018) or create instance-based labels by data augmentation
strategy Chen et al. (2020); Tong et al. (2023).

3.1 MAXIMIZE I(Z,Z ′) WITH MILE: ALTERNATIVE OF INFONCE LOSS

The primary perspective of using MI for SSL is to maximize the mutual information between dif-
ferent view of data, that I(Z,Z ′), where Z = φ(X) and Z ′ = φ(X ′), X ′ is an augmentation or
different view of X . Here, we propose to use the MILE estimator for the learning loss,

L(X,φ) = −I?D (Z;Z ′) = −H?
D (Z)−H?

D (Z ′) + H?
D (Z,Z ′) (16)

Notice that when we use the MI as loss function, the term Cd has no contribution to the gradient of
Z, so we drop out this term in the entropy definition and the loss function.

As we discussed in section 2.2, we should pay attention to the model selection when using GMM
based MILE. Generally, the entire set of feature Z or Z ′ should be Gaussian distributed, as Gaussian
variables (have the largest entropy) can carry more information from the input X . So we should use
H?

1(·) that use one component in GMM, reduced to conventional LogDet estimator defined in Eqn
(4), to estimate the entropy for Z and Z ′. However, the paired data (Z,Z ′) has a strong clustering
property: for each of the instances Zc (c = 1, ..., C), we generate a small batch of augmented data
{Zc(i)

′}Ii=1. Thus, the joint data [Zc, Zc
(i)′ ] (i = 1, ..I) formulate an instance-based cluster that

all the data [Zc, Zc
(i)′ ] is close to the centroid [Zc, Ẑ

′
c], where Ẑ ′c is the mean of all augmented

data from instance c. So, we can easily define a GMM by trading each [Zc, Ẑ
′
c] as the clustering

centers. Given the GMM, we can safely apply the entropy estimator defined in Eqn (13) or (14). For
example, if we use the upper bound as the estimator, we have

H?
D (Z,Z ′) , Hu

D(Z,Z ′) =

C∑
c=1

πc ·
(
− log πc +

1

2
log det

(
ξTc ξc
n

+ βI

))
(17)

where ξc = [Zc, Z
(i)′

c ] (c = 1, ..., C and i = 1, ..., I). We also drop out the term Cd in Eqn(17).

3.2 MAXIMIZE I(Z, Yc) WITH ENTROPY DECOMPOSITION I(Z, Yc) = H(Z)−H(Z|Yc)

The mutual information I(Z, Yc) has a decompostion: I(Z, Yc) = H(Z) −H(Z|Yc). To build the
MI loss, we first need to estimate the marginal entropy H(Z) and conditional entropy H(Z|Yc). For
H(Z), we can use the LogDet entropy estimator defined in Eqn 4. As the Gaussian variable has
the largest entropy, maximizing H(Z) will encourage Z to become a Gaussian distributed variable;
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therefore, the H?
1(·) (aka the LogDet entropy estimator) is a proper choice. To estimate the con-

ditional entropy H(Z|Yc), a straightforward way is to augment the instance Zc multiple times and
gain a set ξc = {Z(i)

c }Ii=1, which served as a batch of data with the same label Yc.

HD(Z|Yc) =
1

2
log det(Σc + βI) =

1

2
log det

(
ξTc ξc
nc

+ βI

)
Then, we can define loss function as follow,

L(X,φ) ∝ −H(Z) + λH(Z|Yc)

= −1

2
log det

(
ZTZ

n
+ βI

)
+
λ

2
log det

(
ξTc ξc
nc

+ βI

)
(18)

where we use λ to balance the learning between maximizing the marginal entropy and minimizing
the conditional entropy.

4 RELATED WORKS

The LogDet function has been widely regarded as an excellent matrix-based estimator for many
years. Various applications, such as Jensen-Bregman LogDet Divergence (Cherian et al., 2012),
Alpha-Beta and Gamma Divergences (Cichocki et al., 2015), have shown that it possesses desirable
properties, including robustness to noise, positional bias, and outliers, while maintaining computa-
tional efficiency. Additionally, it has been extensively studied as a universal entropy measurement
for multivariate random Gaussian variables. The LogDet entropy estimator has been utilized to es-
timate mutual information and applied in the analysis of information compression in deep neural
networks (Zhouyin & Liu, 2021). However, previous studies have predominantly focused on mul-
tivariate Gaussian variables. It has been observed through our simulation study, that the LogDet
entropy estimator exhibits substantial bias when applied to non-Gaussian distributed variables. In
this work, we address the challenge of entropy estimation for non-Gaussian variables and identify
suitable applications in both MI estimation and SSL for deep neural networks.

The LogDet entropy estimator can also be viewed as an extension of the Coding Length Function
(CLF). The coding length function is raised to estimate Distortion Rate from Rate Distortion Theory
(Cover, 1999). The CLF of n samples from arbitrary distribution, X ∈ Rn×d, is given by: R(X) =
1
2 log det

(
I + d

nε2X
TX
)
, where ε is the allowable distortion. Compared to our proposed LogDet

estimator in Eqn(4), the difference is we put a scaling hyperparameter β on the identity matrix I ,
while the CLF put a controlling hyperparameter on the covariance. As we show in the experiments,
our LogDet estimator can lead to an accurate estimation for both entropy and mutual information.
However, the CLF and also the CLF based principle of Maximal Coding Rate Reduction (Yu et al.,
2020; Tong et al., 2023) performs well in SSL but can not be used as MI estimator.

5 SIMULATION STUDIES

5.1 ABLATION STUDY

As discussed in section 2.2, we should choose a proper number of components in using the GMM
based entropy estimator H?(·) defined in Eqn(13) or (14). Here, we present an experiment to show
that when the ground true data is a mixture of Gaussian, the difference of estimated entropy using
H?
K(·) (K-components GMM based entropy estimator) vs H?

1(·) (single Gaussian based entropy
estimator in Eqn (4)). The data is sampled from 20-dimensional Gaussian mixtures with the number
of components varying from K = 1 to 10. The mean of each component is randomly drawn from
N(·|0, I20) while the covariance is fixed 0.5 ∗ I20. We use the following five estimators: HMC the
Monte Carlo entropy estimation, Hu

K upper bound entropy estimator with known K-component,
Hm
K lower bound estimator with known K-components, Hl

Kthe mean of Hu
K and Hl

K, H1 the
LogDet entropy estimator. As shown in Figure 1(a), the single Gaussian based LogDet estimator H1

highly overestimates the entropy. It also confirms that when the data has intrinsic clustering shaping,
the single Gaussian based LogDet entropy estimator can not provide a reasonable estimation, while
our proposed entropy estimator H?(·) is favorable.
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Here, we instigate the hyperparameter β. We take the MI estimation of correlated Gaussian random
variables. We show that the estimated MI varies over β = [0.0, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1].
As shown in Figure 1(b), the estimated MI is close to the ground true when β is sufficiently small.
So, we recommend β = 1e−3 in the following simulation studies. Besides, we can see the bounds
also well bracket the true MI values when β is small enough.

(a) Entropy estimation (b) MI estimation with different β

Figure 1: Result of ablation study.

5.2 BENCHMARKING ON MULTIVARIATE GAUSSIANS

In this experiment, we evaluate the performance of mutual information (MI) bounds on three toy
tasks described in detail in the works ofBelghazi et al. (2018); Poole et al. (2019); Song & Ermon
(2019). The first task, referred to as ‘Gaussian’ involves drawing samples (Xa, Xb) from a 20-
dimensional Gaussian distribution with correlation. The second and third tasks, known as ‘Sin’ and
‘Cubic’ are similar to the Gaussian task, but apply a specific transformation (Xb ← sin(Xb),Xb ←
X3
b ). We generate multivariate Gaussian random variables, denoted asXa andXb, with component-

wise correlation to conduct the experiment. The correlation between Xi
a and Xj

b is denoted as
corr(Xi

a, X
j
b ) = δijρ, where ρ takes values between -1 and 1, and δij represents Kronecker’s delta.

We consider five approaches for estimating mutual information: CPC: contrastive predictive coding
(Oord et al., 2018), NWJ: NWJ variational approximation based Mutual Information Neural Esti-
mator (Belghazi et al., 2018), SMILE: moothed Mutual Information Lower-bound Estimator with
hyperparameter τ (Song & Ermon, 2019) (τ = 5 and τ = ∞) and our proposed MILE estimator.
The first four models are trained for 20,000 iterations, with the ground truth mutual information
increasing by 2 every 4,000 iterations. The first four models require extra training of the DNN based
critic function, so they need pretty long steps to reach a stable MI estimation. However, our MILE
estimator does not require extra training, so we show only 100 steps for each MI step. Additional
training details can be found in Appendix B.

Figure 2 shows the estimated MI over the number of iterations. In all tasks, CPC has high bias;
NWJ and SMILE (τ = ∞) has high variances. SMILE (τ = 5) has a much smaller variance. All
these four estimators take certain long steps to reach a stable MI estimation. As it is obvious, our
MILE significantly outperforms these previous estimators in obtaining low bias and low variance
estimation. Moreover, it does not require extra training, so it works well since the first step.

We also compare the bias, variance and mean squared error (MSE) of the five estimators. The result
is shown in Appendix B. For some estimator, such as NWJ, the variance increases exponentially
with mutual information. With the smooth hyperparamter for the critic function controlled by τ ,
SMILE have a significantly smaller variance than while having a similar bias. However, our MILE
estimator produces extremely small variance while keeping a favorable small bias.

5.3 SELF-CONSISTENCY TESTS ON IMAGES

In line with the work of Song & Ermon (2019), we conduct evaluations of self-consistency tests
on high-dimensional images from the MNIST and CIFAR10 datasets. The first setting involves an
image denoted asXa, whereXb is obtained by masking the bottom rows ofXa, leaving only the top
t rows. This choice of Xb serves two purposes: 1) I(Xa;Xb) should exhibit a non-decreasing trend
with increasing t, and 2) it provides a more intuitive understanding of the amount of information
retained in Xb compared to low-dimensional representations. In the second setting, Xa represents
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(a) ‘Gaussian’

(b) ‘Sin’

(c) ‘Cubic’

Figure 2: Performance of mutual information estimation approaches on ‘Gaussian’, ‘Sin’ and ‘Cu-
bic’.

two identical images, while Xb is constructed by taking the top t1 and t2 rows from the two images,
respectively (with t1 ≥ t2). This setting explores the data-processing property of MI. The third
setting considers Xa as two independent images and Xb as the top t rows from both images. This
setting examines the additivity property of MI.

We compare four approaches: CPC, SMILE (τ = 5), SMILE (τ = ∞) and SMILE. The result
is summarised as follows: 1) Baselines. We evaluate the first setting with Xb having varying
number of rows t in Figure 3(a) and 3(d), where the estimations are normalized by the estimated
I(Xa;Xa). Most methods predict zero MI when Xa and Xb are independent, passing the first self-
consistency test. Moreover, the estimated MI is non-decreasing with increasing t, but with different
slopes. Our MILE presents a linear increase with t; 2) Data-processing. In the second setting we
set t2 = t1 − 3. Ideally, the estimator should satisfy I([Xa, Xa]; [Xb, h(Xb)])/I(Xa, Xb) ≈ 1,
as additional processing should not increase information. We show the above ratio in Figure 3(b)
and 3(e) under varying t1 values. All methods perform well in both datasets, while MILE has a
significantly small variance and is much closer to the ground true value 1; 3) Additivity. In the
third setting, the estimator should double its value compared to the baseline with the same t, i.e.
I ([Xa1, Xa2] ; [Xa1, Xa2]) /I(Xa, Xb) ≈ 2. Figure 3(c) and 3(f) show the above ratio under differ-
ent values of t. None of the MINE type estimators worked well in this case except when t is very
small, when t is large this ratio converges to 1. However, our MILE performs perfectly on this test
for all values of t.

5.4 SELF-SUPERVISED LEARNING

We apply the MILE as loss function for self-supervised learning. Following the extreme multi-patch
(EMP) strategy based SSL (EMP-SSL)Tong et al. (2023), we replace the loss function in EMP-SSL
with three mutual information-based loss functions: InfoNCE (Oord et al., 2018), SMILE (Song
& Ermon, 2019) and our MILE (denoted as EMP-SMILE, EMP-InfoNCE, and EMP-MILE). We
provide empirical results on the standard dataset CIFAR-10. For all the experiments, we use a
ResNet-18 (He et al., 2016) as the backbone and train for at most 30 epochs. We use a batch size
of 100, the LARS optimizer You et al. (2017) with η set to 0.005, and a weight decay of 1e−4. The
learning rate is set to 0.3 and follows a cosine decay schedule with a final value 0. In the MILE
based loss, λ is set to [0.01,0.1,1.0,2.0] and β is set to [1e−2, 1e−3]. By validation, λ = 1.0 and
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(a) MNIST Baseline (b) MNIST Data processing (c) MNIST Additivity

(d) CIFAR10 Baseline (e) CIFAR10 Data processing (f) CIFAR10 Additivity

Figure 3: Evaluation of self-consistency.

CIFAR-10

Methods 1 Epoch 10 Epochs 30 Epochs 1000 Epochs

SimCLR 0.282 0.565 0.663 0.910
BYOL 0.249 0.489 0.684 0.926

VICReg 0.406 0.697 0.781 0.921
SwAW 0.245 0.532 0.767 0.923

EMP-SSL(20 patches) 0.806 0.907 0.931 \
EMP-SMILE(20 patches) 0.315 0.242 0.325 \

EMP-InfoNCE(20 patches) 0.753 0.789 0.818 \
EMP-MILE(20 patches) 0.768 0.802 0.859 \

Table 1: Performance of the MI based SSL and standard self-supervised SOTA methods with differ-
ent epochs. Accuracy is measured by training linear classifier on learned representation.

β = 1e−2 gives the best performance in the downstream task. The projector network consists of
2 linear layers with respectively 4096 hidden units and 1024 output units. The data augmentations
used are identical to those of VICReg (Bardes et al., 2022).

For evaluation metrics, We train an additional linear classifier to evaluate the performance of the
learned representation. The additional classifier is trained with 100 epochs, optimized by SGD opti-
mizer with a learning rate of 0.03. We also compared our results with several self-supervied SOTA
methods: SimCLR, BYOL, VICReg, SwAW. The result is summarized in Table 1 (more results are
provided in Appendix B). From the comparison, we find that the SMILE can not obtain competitve
results. EMP-SSL gains superior performance. InfoNCE can obtain a favorable performance, while
our MILE can outperform InfoNCE loss. This experiments confirm that as a tighter estimator of MI,
MILE can also gain comparable performance with InfoNCE.

6 DISCUSSION

This work addresses a simple but effective way to estimate mutual information between high-
dimensional variables given samples from them. Unlike conventional variational mutual informa-
tion, which needs the training of neural network based critic function, which is known as the reason
to cause a high variance of variational mutual information estimator, our approach can gain high
accuracy and low variance estimate without this extra training. Besides, the MILE well pass the
self-consistency test. We also show that being a tighter estimation of MI, MILE can gain competi-
tive performance in self-supervised learning.
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A. LOWER AND UPPER BOUND FOR ENTROPY OF GMM

DERIVATION OF UPPER BOUND

By separating the i-th component of pθ(x) =
∑K
i=1 πi · N (x;µi,Σi), the entropy for x can be

written as

H(x) = −
∫
RN

K∑
i=1

πi · N (x;µi,Σi) · log

 K∑
j=1

πj · N (x;µj ,Σj)

 dy

= −
K∑
i=1

πi

∫
RN

N (x;µi,Σi) · log (πi · N (x;µi,Σi) · (1 + εi)) dy

= −
K∑
i=1

πi

∫
RN

N (x;µi,Σi) · (log (πi · N (x;µi,Σi)) + log (1 + εi)) dy,
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where

εi =

∑K
i6=j=1 πj · N (x;µj ,Σj)

πi · N (x;µi,Σi)

Since log (1 + εi) in (9) is always non-negative, neglecting it yields the upper bound,

H(x) ≤ −
K∑
i=1

πi

∫
RN

N (x;µi,Σi) · (log (πi · N (x;µi,Σi))) dx

= −
K∑
i=1

πi ·
(

log πi +
1

2
log
(
(2πe)N |Σi|

))

DERIVATION OF LOWER BOUND

Since − log(x) is concave in x, Jensen’s inequality can be employed. Thus, with − log E[x] ≤
E[− log(x)], we obtain a lower bound of the entropy

H(x) =

∫
RN

K∑
i=1

πi · N (x;µi,Σi) · log pθ(x)dx

according to

H(x) = −
K∑
i=1

πi ·
∫
RN

N (x;µi,Σi) · log pθ(x)dx

≥ −
K∑
i=1

πi · log

(∫
RN

N (x;µi,Σi) · pθ(x)dx

)

= −
K∑
i=1

πi · log

 L∑
j=1

πj · ηi,j


with the constant

ηi,j =

∫
RN

N (x;µi,Σi) · N (x;µj ,Σj) dx

= N (µi;µj ,Σi + Σj)

B. ADDITIONAL EXPERIMENTAL DETAILS

BENCHMARK TASKS

Tasks We sample each dimension of (Xa, Xb) independently from a correlated Gaussian with mean
0 and correlation of ρ, where X = R20. The true mutual information is computed as: I(Xa, Xb) =
−d2 log

(
1− ρ

2

)
. The initial mutual information is 2 , and we increase the mutual information by 2

every 4k iterations, so the total training iterations is 20k.

Architecture and training procedure For CPC, NWJ and SMILE methods, we follows the archi-
tectures detailed in (Song & Ermon, 2019): The joint architecture concatenates the inputs Xa, Xb,
and then passes through a two layer MLP with 256 neurons in each layer with ReLU activations at
each layer. The separable architecture learns two separate neural networks for Xa and Xb, each is a
two layer MLP with 256 neurons in each layer with ReLU activations at each layer; the output are
32 dimensions. For all the cases, we use with the Adam optimizer with learning rate 5 × 10−4 and
β1 = 0.9, β2 = 0.999 and train for 20k iterations with a batch size of 64 , following the setup in
(Poole et al., 2019).

Additional results We show the bias, variance and mean squared error in Table 2-4.
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MI 2 4 6 8 10

Bias

CPC 0.20 0.99 2.31 4.00 5.89
NWJ 0.10 0.21 0.34 2.37 5.80

SMILE (τ =∞) 0.11 0.27 0.17 0.14 0.04
SMILE (τ = 5.0) 0.16 0.12 0.002 0.56 1.05

MILE 0.0111 0.0025 0.0072 0.0152 0.022

Var

CPC 0.03 0.05 0.01 0.004 0.003
NWJ 0.06 0.16 0.63 0.55 3.36

SMILE (τ =∞) 0.08 0.12 0.26 0.66 1.51
SMILE (τ = 5.0) 0.05 0.10 0.15 0.24 0.36

MILE 0.0002 0.0003 0.0006 0.0007 0.0008

MSE

CPC 0.07 1.03 5.34 16.01 34.74
NWJ 0.07 0.21 0.74 6.18 36.96

SMILE (τ =∞) 0.09 0.19 0.29 0.68 1.51
SMILE (τ = 5.0) 0.07 0.12 0.15 0.55 1.46

MILE 0.0003 0.0003 0.0007 0.001 0.0013

Table 2: Bias, Variance and MSE of the MI estimators for ’Gaussian’ data

MI 2 4 6 8 10

Bias

CPC 0.51 1.29 2.57 4.17 5.99
NWJ 0.44 0.94 1.39 2.36 3.09

SMILE (τ =∞) 0.40 0.94 1.25 1.88 2.33
SMILE (τ = 5.0) 0.42 0.81 1.22 1.21 1.87

MILE 0.3177 0.7078 1.1646 1.6941 2.3088

Var

CPC 0.03 0.04 0.03 0.01 0.004
NWJ 0.04 0.12 0.23 1.74 3.10

SMILE (τ =∞) 0.04 0.09 0.23 0.34 1.46
SMILE (τ = 5.0) 0.03 0.10 0.10 0.21 0.15

MILE 0.0002 0.0003 0.0005 0.0005 0.0006

MSE

CPC 0.29 1.70 6.62 17.41 35.88
NWJ 0.23 1.01 2.15 7.30 12.64

SMILE (τ =∞) 0.20 0.97 1.80 3.88 6.90
SMILE (τ = 5.0) 0.20 0.75 1.59 1.68 3.65

MILE 0.1011 0.5013 1.3568 2.8703 5.331

Table 3: Bias, Variance and MSE of the MI estimators for ’Sin’ data
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MI 2 4 6 8 10

Bias

CPC 0.69 1.47 2.59 4.20 5.99
NWJ 0.64 1.13 2.39 2.72 4.23

SMILE (τ =∞) 0.69 1.26 1.83 2.55 2.65
SMILE (τ = 5.0) 0.68 1.08 1.60 1.47 3.33

MILE 0.1325 0.7117 1.3899 2.1509 2.9758

Var

CPC 0.03 0.04 0.02 0.01 0.01
NWJ 0.04 0.09 0.22 0.27 0.38

SMILE (τ =∞) 0.03 0.10 0.17 0.60 0.93
SMILE (τ = 5.0) 0.03 0.07 0.10 0.14 0.34

MILE 0.0127 0.0117 0.0161 0.0215 0.0161

MSE

CPC 0.52 2.19 6.74 17.63 35.91
NWJ 0.45 1.36 5.93 7.67 18.26

SMILE (τ =∞) 0.50 1.69 3.54 7.12 7.94
SMILE (τ = 5.0) 0.49 1.25 2.67 2.29 11.41

MILE 0.0303 0.5182 1.948 4.6478 8.8718

Table 4: Bias, Variance and MSE of the MI estimators for ’Cubic’ data

SELF-CONSISTENCY EXPERIMENTS

Tasks We consider three tasks with the MI estimator I : 1. I(Xa;Xb) where Xa is an image from
MNIST or CIFAR10 and Xb is the top t rows of Xa. To simplify architecture designs, we simply
mask out the bottom rows to be zero, see Figure 3 . 2. I([Xa, Xa]; [Xb;h(Xb)]) where Xa is an
image,Xb is the top t rows ofXa, h(Xb) is the top (t−3) rows ofXb and [·, ·] denotes concatenation.
The prediction should be close to I(Xa;Xb). 3. I ([Xa1 , Xa2 ] , [Xb1 , Xb2 ]) where Xa1 and Xa2 are
independent images from MNIST or CIFAR10, Xb1 and Xb2 are the top t rows of Xa1 and Xa2
respectively. Ideally, this prediction should be close to 2 · I(Xa;Xb).

Architecture and training procedure For CPC, NWJ and SMILE methods, we follows the archi-
tectures detailed in (Song & Ermon, 2019): The first layer is a convolutional layer with 64 output
channels, kernel size of 5 , stride of 2 and padding of 2 ; the second layer is a convolutional layer
with 128 output channels, kernel size of 5 , stride of 2 and padding of 2 . This is followed another
fully connected layer with 1024 neurons and finally a linear layer that produces an output of 1 . All
the layers (except the last one) use ReLU activations. We stack variables over the channel dimension
to perform concatenation. For all the cases, we use with the Adam optimizer with learning rate 10−4

and β1 = 0.9, β2 = 0.999.
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