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Improving GFlowNets for Text-to-Image Diffusion Alignment

Anonymous Authors1

Abstract

Diffusion models have become the de-facto ap-
proach for generating visual data, which are
trained to match the distribution of the training
dataset. In addition, we also want to control gen-
eration to fulfill desired properties such as align-
ment to a text description, which can be spec-
ified with a black-box reward function. Prior
works fine-tune pretrained diffusion models to
achieve this goal through reinforcement learning-
based algorithms. Nonetheless, they suffer from
issues including slow credit assignment as well
as low quality in their generated samples. In this
work, we explore techniques that do not directly
maximize the reward but rather generate high-
reward images with relatively high probability —
a natural scenario for the framework of genera-
tive flow networks (GFlowNets). To this end, we
propose the Diffusion Alignment with GFlowNet
(DAG) algorithm to post-train diffusion models
with black-box property functions. Extensive ex-
periments on Stable Diffusion and various reward
specifications corroborate that our method could
effectively align large-scale text-to-image diffu-
sion models with given reward information.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have drawn significant attention in machine learning
due to their impressive capability to generate high-quality vi-
sual data and applicability across a diverse range of domains,
including text-to-image synthesis (Rombach et al., 2021),
3D generation (Poole et al., 2022), material design (Yang
et al., 2023), protein conformation modeling (Abramson
et al., 2024), and continuous control (Janner et al., 2022).
These models, through a process of gradually denoising a
random distribution, learn to replicate complex data distri-
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Figure 1: Generated samples before (top) and after (bottom)
the proposed training with Aesthetic reward.

butions, showcasing their robustness and flexibility. The
traditional training of diffusion models typically relies on
large datasets, from which the models learn to generate new
samples that mimic and interpolate the observed examples.

However, such a dataset-dependent approach often over-
looks the opportunity to control and direct the generation
process towards outputs that not only resemble the training
data but also possess specific, desirable properties (Lee et al.,
2023). These properties are often defined through explicit
reward functions that assess certain properties, such as the
aesthetic quality of images. Such a requirement is crucial in
fields where adherence to particular characteristics is nec-
essary, such as alignment or drug discovery. The need to
integrate explicit guidance without relying solely on datasets
presents a unique challenge for training methodologies. Pre-
vious works have utilized methods such as reinforcement
learning (RL) (Black et al., 2023; Fan et al., 2023) to tackle
this problem. Nonetheless, these methods still suffer from
issues like low sample efficiency.

In this work, we propose a novel approach, diffusion align-
ment with GFlowNets (DAG), that fine-tunes diffusion mod-
els to optimize black-box reward functions directly. Gen-
erative flow networks (Bengio et al., 2023, GFlowNets),
initially introduced for efficient probabilistic inference with
given densities in structured spaces, provide a unique frame-
work for this task. Though initially proposed for compos-
ite graph-like structures, prior works have extended the
GFlowNet framework to diffusion modeling (Zhang et al.,
2022a; Lahlou et al., 2023). This work further investigates
GFlowNet-inspired algorithms for the task of text-to-image
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diffusion alignment. By aligning the learning process to fo-
cus on generating samples with probability proportional to
reward functions rather than maximizing them, our method
allows the diffusion model to directly target and generate
samples that are not only high in quality but also fulfill spe-
cific predefined criteria. Besides developing a denoising
diffusion probabilistic model-specific GFlowNet algorithm,
we also propose a new KL-based way to optimize our mod-
els. In summary, our contributions are as follows:

• We propose Diffusion Alignment with GFlowNet
(DAG), a GFlowNet-based algorithm using the denois-
ing structure of diffusion models, to improve large-
scale text-to-image alignment with a black-box reward
function.

• We propose a KL-based objective for optimizing
GFlowNets that achieves comparable or better sample
efficiency. We further called the resulting algorithm
for the alignment problem DAG-KL.

• Our methods achieve better sample efficiency than the
reinforcement learning baseline within the same num-
ber of trajectory rollouts across a number of different
learning targets.

2. Methodology
2.1. Diffusion alignment with GFlowNets

We review the recipe about viewing the denoising process
as a MDP in Section D.1. In this section, we describe our
proposed algorithm, diffusion alignment with GFlowNets
(DAG). Rather than directly optimizing the reward targets
as in RL, we aim to train the generative models so that
in the end they could generate objects with a probability
proportional to the reward function: pθ(x0) ∝ R(x0). To
achieve this, we construct the following DB-based train-
ing objective based on Equation 14, by regressing its one
side to another in the logarithm scale for any diffusion step
transition (xt,xt−1).

ℓDB(xt,xt−1) = (logFϕ(xt, t) + log pθ(xt−1|xt, t) (1)

− logFϕ(xt−1, t− 1)− log q(xt|xt−1))
2 (2)

We additionally force Fϕ(xt, t = 0) = R(x0) to intro-
duce the reward signal. Here θ,ϕ are the parameters of
the diffusion U-Net model and the GFlowNet state flow
function (which is another neural network), respectively.
One can prove that if the optimization is perfect, the result-
ing model will generate a distribution whose density value
is proportional to the reward function R(·) (Bengio et al.,
2023; Zhang et al., 2023a).

One way to parameterize the state flow function F is through
the so-called forward-looking (Pan et al., 2023b, FL) tech-
nique in the way of Fϕ(xt, t) = F̃ϕ(xt, t)R(xt), where F̃ϕ

Algorithm 1 Diffusion alignment with GFlowNets (DAG-
DB & DAG-KL)

Require: Denoising policy pθ(xt−1|xt, t), noising policy
q(xt|xt−1), flow function Fϕ(xt, t), black-box reward
function R(·)

1: repeat
2: Rollout τ = {xt}t with pθ(xt−1|xt, t)
3: For each transition (xt,xt−1) ∈ τ :
4: if algorithm is DAG-DB then
5: # normal DB-based update
6: Update θ and ϕ with Equation 5
7: else if algorithm is DAG-KL then
8: # KL-based update
9: Update ϕ with Equation 5

10: Update θ with Equation 11
11: end if
12: until some convergence condition =0

is the actual neural network to be learned. Intuitively, this
is equivalent to initializing the state flow function to be the
reward function in a functional way; therefore, learning of
the state flow would become an easier task. Note that to en-
sure Fϕ(x0, 0) = R(x0), we need to force F̃ϕ(x0, 0) = 1
for all x0 at the terminal step.

Incorporating denoising diffusion-specific structure
However, the intermediate state xt is noisy under our
context, and thus not appropriate for being evaluated by
the given reward function, which would give noisy result.
What’s more, what we are interested here is to “foresee”
the reward of the terminal state x0 taken from the (partial)
trajectory xt:0 starting from given xt. As a result, we can
do the FL technique utilizing the particular structure of
diffusion model as in Fϕ(xt, t) = F̃ϕ(xt, t)R(x̂θ(xt, t)),
where x̂θ is the data prediction network. We notice that a
similar technique has been used to improve classifier guid-
ance (Bansal et al., 2023). In short, our innovation in FL
technique is

Fϕ(xt, t) = F̃ϕ(xt, t)R(xt) =⇒ (3)

Fϕ(xt, t) = F̃ϕ(xt, t)R(x̂θ(xt, t)). (4)

Then the FL-DB training objective ℓFL(xt,xt−1) becomes(
log

F̃ϕ(xt, t)R(x̂θ(xt, t))pθ(xt−1|xt)

F̃ϕ(xt−1, t− 1)R(x̂θ(xt−1, t− 1))q(xt|xt−1)

)2

.

(5)

Since in this work the reward function is a black-box, the
gradient flow would not go through x̂θ(xt, t) when we take
the gradient of θ. We summarize the algorithm in Algo-
rithm 1 and refer to it as DAG-DB.
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Remark 1 (GPU memory and the choice of GFlowNet ob-
jectives). Similar to the temporal difference-λ in RL (Sut-
ton, 1988), it is possible to use multiple connected transi-
tion steps rather than a single transition step to construct
the learning objective. Other GFlowNet objectives such as
Malkin et al. (2022); Madan et al. (2022) use partial tra-
jectories with a series of transition steps to construct the
training loss and provide a different trade-off between vari-
ance and bias in credit assignment. However, for large-scale
setups, this is not easy to implement, as computing policy
probabilities for multiple transitions would correspondingly
increase the GPU memory and computation multiple times.
For example, in the Stable Diffusion setting, we could only
use a batch size of 8 on each GPU for single transition com-
putation. If we want to use a two transition based training
loss, we would need to decrease the batch size by half to 4.
Similarly, we will have to shorten the trajectory length by
a large margin if we want to use trajectory balance. This
may influence the image generation quality and also make
it tricky to compare with the RL baseline, which can be
implemented with single transitions and does not need to
decrease batch size or increase gradient accumulation. In
practice, we find that single transition algorithms (such as
our RL baseline) perform reasonably well.

2.2. A KL-based GFlowNet algorithm with
REINFORCE gradient

GFlowNet detailed balance is an off-policy algorithm that
uses training data from arbitrary distributions. In this sec-
tion, we derive a different KL-based on-policy objective,
which has been rarely investigated in GFlowNet literature.
We can reformulate DB (Equation 1) from a square loss
form to a KL divergence form

min
θ

DKL

(
pθ(xt−1|xt)∥

Fϕ(xt−1, t− 1)q(xt|xt−1)

Fϕ(xt, t)

)
.

(6)

In theory, when DB is perfectly satisfied, the right term
Fϕ(xt−1, t− 1)q(xt|xt−1)/Fϕ(xt, t) is a normalized den-
sity; in practice, it could be an unnormalized one but does
not affect the optimization. Next, define b(xt,xt−1) to be

stop-gradient
(
log

Fϕ(xt, t)pθ(xt−1|xt)

Fϕ(xt−1, t− 1)q(xt|xt−1)

)
, (7)

then the KL value of Equation 6 becomes
Epθ(xt−1|xt) [b(xt,xt−1)]. We have the following
result for deriving a practical REINFORCE-style objective.
Proposition 2. The KL term in Equation 6 has the same
expected gradient with b(xt,xt−1) log pθ(xt−1|xt):

∇θDKL

(
pθ(xt−1|xt)∥

Fϕ(xt−1, t− 1)q(xt|xt−1)

Fϕ(xt, t)

)
(8)

= Ext−1∼pθ(·|xt) [b(xt,xt−1)∇θ log pθ(xt−1|xt)] . (9)

We defer its proof to Section C.1 and make the following
remarks:.

Remark 3 (gradient equivalence to detailed balance). Re-
calling Equation 1, since we have ∇θℓDB(xt,xt−1) =
b(xt,xt−1)∇θ log pθ(xt−1|xt), it is clear that this KL-
based objective would lead to the same expected gradient on
θ with Equation 1, if xt−1 ∼ pθ(·|xt) (i.e., samples being
on-policy). Nonetheless, this on-policy property may not be
true in practice since the current model is usually not the
same as the model used for rollout trajectories after a few
optimization steps.

Note that this REINFORCE style objective in Equation 8 is
on-policy; the data has to come from the same distribution
as the current model. In practice, the model would become
not exactly on-policy after a few optimization steps, under
which scenario we need to introduce the probability ratio
pθ(xt−1|xt)/pθold(xt−1|xt) via importance sampling:

Ext−1∼pθold (·|xt)

[
b(xt,xt−1)

∇θpθ(xt−1|xt)

pθold(xt−1|xt)

]
. (10)

Therefore, we can define a new objective ℓKL(xt,xt−1)

b(xt,xt−1) clip
(

pθ(xt−1|xt)

pθold(xt−1|xt)
, 1− ϵ, 1 + ϵ

)
, (11)

where xt−1 ∼ pθold(·|xt). Here we also introduce a clip op-
eration to remove too drastic update, following PPO (Schul-
man et al., 2017). We use this to update the policy pa-
rameter θ and use FL-DB to only update ϕ. We call this
“diffusion alignment with GFlowNet and REINFORCE gra-
dient” method to be DAG-KL. Note that when calculating
b(xt,xt−1), we also adopt the diffusion-specific FL tech-
nique developed in Section 2.1. We also put the algorithmic
pipeline of DAG-KL in Algorithm 1.

3. Experiments
Experimental setups We choose Stable Diffusion
v1.5 (Rombach et al., 2021) as our base generative model.
For training, we use low-rank adaptation (Hu et al., 2021,
LoRA) for parameter efficient computation. As for the
reward functions, we do experiments with the LAION Aes-
thetics predictor, a neural aesthetic score trained from hu-
man feedback to give an input image an aesthetic rating. For
text-image alignment rewards, we choose ImageReward (Xu
et al., 2023) and human preference score (HPSv2) (Wu et al.,
2023). They are both CLIP (Radford et al., 2021)-type mod-
els, taking a text-image pair as input and output a scalar
score about to what extent the image follows the text de-
scription. We also test with the (in)compressibility reward,
which computes the file size if the input image is stored in
hardware storage. As for the prompt distribution, we use a
set of 45 simple animal prompts from Black et al. (2023)
for the Aesthetics task; we use the whole imagenet classes
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Figure 2: Sample efficiency results of our proposed methods and our RL baseline (DDPO). The experiments are conducted
on reward functions including aesthetic score, ImageReward, and HPSv2.

for the (in)compressibility task; we use the DrawBench (Sa-
haria et al., 2022) prompt set for the ImageReward task; we
use the photo and painting prompts from the human pref-
erence dataset (HPDv2) (Wu et al., 2023) for the HPSv2
task. We notice that in our experiments, we use prompt set
containing hundreds of prompts which is more than some
previous work such as Black et al. (2023).

Effectiveness of the proposed methods We first demon-
strate that our proposed methods could generated images
that have meaningful improvements corresponding to the
rewards being used. In Figure 1, we compare the images
from the original Stable Diffusion pretrained model and our
proposed method. After our post-training, the generated
images become more vibrant and vivid; we also notice that
these images have slightly higher saturation, which we be-
lieve is aligned with the human preference on good-looking
pictures. We also visualize the experiment results on com-
pressibility and incompressibility tasks in Figure 3. The
second row shows the generated images from the model
trained with the compressibility reward, which have low de-
tails and smooth textures, and also have very limited colors.
On the other hand, the model trained with incompressibility
reward would generate images with high frequency texture,
as shown in the third row. These results indicate that our
method could effectively incorporate the reward characteris-
tics into the generative models. We defer more experimental
details to Section D.2.

Algorithmic comparisons The main baseline we com-
pare with is denoising diffusion policy optimization (Black
et al., 2023, DDPO), an RL algorithm that is specifically
designed for denoising diffusion alignment and has been
shown to outperform other align-from-black-box-reward
methods including (Lee et al., 2023; Fan et al., 2023). We
show the reward curves w.r.t. the training steps of the aes-
thetic, ImageReward, and HPSv2 rewards in Figure 2. Here,
the number of training steps corresponds proportionally to
the number of trajectories collected. Both our proposed
methods, DAG-DB and DAG-KL, achieve faster credit as-
signment than the DDPO baseline by a large margin. We

also put corresponding curve plots for compressibility and
incompressibility rewards in Figure 6, which also demon-
strates the advantage of our methods. We defer related
training details to Section D.2.

Apart from quantitative comparisons, we also visualize the
alignment improvement for models trained in the HPSv2
task. In Figure 4 and Figure 8 in Appendix, we exhibit
generation results for different prompts across the original
Stable Diffusion, DDPO, DAG-DB, and DAG-KL models.
For example, in the first “a counter top with food sitting
on some towels” example, images from the original Sta-
ble Diffusion either do not have food or the food is not on
towels, which is also the case for DDPO generation. This
is improved for both DAG-DB and DAG-KL generation
in that they capture the location relationship correctly. In
the “personal computer desk room with large glass double
doors” example, both the original and DDPO models can-
not generate any double doors in the image, and DAG-DB
model sometimes also fails. In contrast, the DAG-KL model
seems to understand the concept well. Generation with other
prompts also has similar results.

In Figure 5, we visualize the gradual alignment improve-
ment of our DAG-KL method with regard to the train-
ing progress for the HPSv2 task. We show the images
of our methods at 0%, 25%, 50%, 75%, and 100% training
progress. In the example of “a helmet-wearing monkey skat-
ing”, the DDPO baseline could generate a skating monkey
but seems to fail to generate a helmet. For the proposed
method, the model gradually learns to handle the concept of
a helmet over the course of training. In the “anthropomor-
phic Virginia opossum playing guitar” example, the baseline
understands the concept of guitar well, but the generated im-
ages are not anthropomorphic, while our method manages
to generate anthropomorphic opossums decently.
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A. Preliminaries
A.1. Diffusion models

Denoising diffusion model (Vincent, 2011; Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) is a class of
hierarchical latent variable models. The latent variables are initialized from a white noise xT ∼ N (0, I) and then go through
a sequential denoising (reverse) process pθ(xt−1|xt). Therefore, the resulting generated distribution takes the form of

pθ(x0) =

∫
pθ(x0:T ) dx1:T =

∫
p(xT )

T∏
t=1

pθ(xt−1|xt) dx1:T . (12)

On the other hand, the variational posterior q(x1:T |x0), also called a diffusion or forward process, can be factor-
ized as a Markov chain

∏T
t=1 q(xt|xt−1) composed by a series of conditional Gaussian distributions q(xt|xt−1) =

N (xt;αt/αt−1xt−1, (1− α2
t /α

2
t−1)I), where {αt, σt}t is a set of pre-defined signal-noise schedule. Specifically, in Ho

et al. (2020) we have α2
t + σ2

t = 1. The benefit of such a noising process is that its marginal has a simple close form:
q(xt|x0) =

∫
q(x1:t|x0) dx1:t−1 = N (xt;αtx0, σ

2
t I).

Given a data distribution pdata(·), the variational lower bound of model log likelihood can be written in the following simple
denoising objective:

Ldenoising(θ) = Et,x0∼pdata,ϵ∼N (0,I)

[
∥x0 − x̂θ(αtx0 + σtϵ, t)∥2

]
, (13)

where x̂θ(xt, t) is a deep neural network to predict the original clean data x0 given the noisy in-
put xt = αtx0 + σtϵ, which can be used to parameterize the denoising process pθ(xt−1|xt) =
N (xt−1;

(
σ2
t−1αtxt + (α2

t−1 − α2
t )x̂θ(xt, t)

)
/σ2

tαt−1, (1 − α2
t /α

2
t−1)I). In practice, the network can also be param-

eterized with noise prediction or v-prediction (Salimans & Ho, 2022). The network architecture usually has a U-Net (Ron-
neberger et al., 2015) structure.

In multimodal applications such as text-to-image tasks, the denoising diffusion model would have a conditioning c in the
sense of pθ(x0; c) =

∫
p(xT )

∏T
t=1 pθ(xt−1|xt; c) dx1:T . The data prediction network, x̂θ(xt, t, c) in this case, will also

take c as a conditioning input. We ignore the notation of c without loss of generality.

A.2. GFlowNets

Generative flow network (Bengio et al., 2021, GFlowNet) is a high-level algorithmic framework of amortized inference,
also known as training generative models with a given unnormalized target density function. Let G = (S,A) be a directed
acyclic graph, where S is the set of states and A ⊆ S × S are the set of actions. We assume the environmental transition
is deterministic, i.e., one action would only lead to one next state. There is a unique initial state s0 ∈ S which has no
incoming edges and a set of terminal states sN without outgoing edges. A GFlowNet has a stochastic forward policy
PF (s

′|s) for transition (s → s′) as a conditional distribution over the children of a given state s, which can be used to
induce a distribution over trajectories via P (τ) =

∏N−1
n=0 PF (sn+1|sn), where τ = (s0, s1, . . . , sN ). On the other hand,

the backward policy PB(s|s′) is a distribution over the parents of a given state s′. The terminating distribution defined
by PT (x) =

∑
τ→x PF (τ) is the ultimate terminal state distribution generated by the GFlowNet. The goal of training

GFlowNet is to obtain a forward policy such that PT (·) ∝ R(·), where R(·) is a black-box reward function or unnormalized
density that takes only non-negative values. Notice that we do not know the normalizing factor Z =

∑
x R(x). We can use

the trajectory flow function F (τ) = ZPF (τ) to take in the effect of the normalizing factor, and the corresponding state flow
function F (s) =

∑
τ∋s F (τ) to model the unnormalized probability flow of intermediate state s.

Detailed balance (DB) The GFlowNet detailed balance condition provides a way to learn the above mentioned GFlowNet
modules. For any single transition (s → s′), the following DB criterion holds:

F (s)PF (s
′|s) = F (s′)PB(s|s′), ∀(s → s′) ∈ A. (14)

Furthermore, for any terminating state x, we require F (x) = R(x). In practice, these constraints can be transformed into
tractable training objectives, as will be shown in Section 2. Based on GFlowNet theories in Bengio et al. (2023), if the DB
criterion is satisfied for any transition, then the terminating distribution PT (·) will be the same desired target distribution
whose density is proportional to R(·).

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

B. Related Works
Diffusion alignment People have been modeling human values to a reward function in areas such as game (Ibarz et al.,
2018) and language modeling (Bai et al., 2022) to make the model more aligned. In diffusion models, early researchers used
various kinds of guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) to achieve the goal of steerable generation
under the reward. This approach is as simple as plug-and-play but requires querying the reward function during inference
time. Another way is to post-train the model to incorporate the information from the reward function, which has a different
setup from guidance methods; there is also work showing that this outperforms guidance methods (Uehara et al., 2024). Lee
et al. (2023); Dong et al. (2023) achieve this through maximum likelihood estimation on model-generated samples, which
are reweighted by the reward function. These works could be thought of as doing RL in one-step MDPs. Black et al. (2023);
Fan et al. (2023) design RL algorithm by taking the diffusion generation process as a MDP (Section D.1). In this work,
we focus on black-box rewards where it is appropriate to use RL or GFlowNet methods. Furthermore, there are methods
developed specifically for differentiable rewards setting (Clark et al., 2023; Wallace et al., 2023b; Prabhudesai et al., 2023;
Wu et al., 2024; Xu et al., 2023; Uehara et al., 2024; Marion et al., 2024). Besides, Chen et al. (2023) study the effect of
finetuning text encoder rather than diffusion U-Net. There is also work that relies on preference data rather than an explicit
reward function (Wallace et al., 2023a; Yang et al., 2024). Kim et al. (2024a) investigate how to obtain a robust reward
based on multiple different reward functions.

GFlowNets GFlowNet is a family of generalized variational inference algorithms that treats the data sampling process
as a sequential decision-making one. It is useful for generating diverse and high-quality samples in structured scientific
domains (Jain et al., 2022; 2023b; Liu et al., 2022; Jain et al., 2023a; Shen et al., 2023; Zhang et al., 2023d; Pan et al., 2023a;
Kim et al., 2023; 2024b). A series of works have studied the connection between GFlowNets and probabilistic modeling
methods (Zhang et al., 2022b; Zimmermann et al., 2022; Malkin et al., 2023; Zhang et al., 2022a; Ma et al.), and between
GFlowNets and control methods (Pan et al., 2023c;d;b; Tiapkin et al., 2024). GFlowNets also have wide application in
causal discovery (Deleu et al., 2022), phylogenetic inference (Zhou et al., 2024), and combinatorial optimization (Zhang
et al., 2023e;c). A concurrent work (Venkatraman* et al., 2024) also studies GFlowNet on diffusion alignment which
is similar to this work but has different scope and different developed algorithm. Specifically, this work is aiming for
posterior approximate inference that the reward function is treated as likelihood information, and develops a trajectory
balance (Malkin et al., 2022) based algorithm on length modified trajectories.

C. Proof
C.1. Proof of Proposition 2

Proof. Recalling that b(xt,xt−1) = stop-gradient
(
log

Fϕ(xt,t)pθ(xt−1|xt)
Fϕ(xt−1,t−1)q(xt|xt−1)

)
,

∇θDKL

(
pθ(xt−1|xt)∥

Fϕ(xt−1, t− 1)q(xt|xt−1)

Fϕ(xt, t)

)
=∇θ

∫
pθ(xt−1|xt) log

Fϕ(xt, t)pθ(xt−1|xt)

Fϕ(xt−1, t− 1)q(xt|xt−1)
dxt−1

=

∫
∇θpθ(xt−1|xt) log

Fϕ(xt, t)pθ(xt−1|xt)

Fϕ(xt−1, t− 1)q(xt|xt−1)
dxt−1 +

∫
pθ(xt−1|xt)∇θ log

Fϕ(xt, t)pθ(xt−1|xt)

Fϕ(xt−1, t− 1)q(xt|xt−1)
dxt−1

=

∫
pθ(xt−1|xt)∇θ log pθ(xt−1|xt)b(xt,xt−1) dxt−1 +

∫
pθ(xt−1|xt)∇θ log pθ(xt−1|xt) dxt−1︸ ︷︷ ︸

=∇θ

∫
pθ(xt−1|xt) dxt−1=∇θ1=0

=Ext−1∼pθ(·|xt) [b(xt,xt−1)∇θ log pθ(xt−1|xt)] .
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Figure 3: Top: samples from the original Stable Diffusion model. Middle: the proposed method trained with compressibility
reward; these images have very smooth texture. Down: the proposed method trained with incompressibility reward; the
texture part of images contains high frequency noise.

D. More about methodology
D.1. Denoising Markov decision process

The denoising process for text-to-image diffusion models can be easily reformulated as a multi-step Markov decision process
(MDP) with finite horizon (Fan et al., 2023; Black et al., 2023) as follows:

st = (xT−t, c), p(s0) = N (xT ;0, I)⊗ p(c), πθ(at|st) = pθ(xT−t−1|xT−t, c), (15)
at = xT−t−1, r(st,at) = R(st+1, c) only if t = T − 1, p(st+1|st,at) = δat ⊗ δc. (16)

Here st,at is the state and action at time step t under the context of MDP. The state space is defined to be the product space
(denoted by ⊗) of x in reverse time ordering and conditional prompt c. The RL policy π is just the denoising conditional
distribution. In this MDP, when time t has not reached the terminal step, we define the reward r(st,at) to be 0. δ here
denotes the Dirac distribution.

Remark 4 (RL optimal solutions). Training a standard RL algorithm within this diffusion MDP to perfection means the
model would only generate a single trajectory with the largest reward value. This usually comes with the disadvantage of
mode collapse in generated samples in practice. One direct solution is soft / maximum entropy RL (Ziebart et al., 2008; Fox
et al., 2017; Haarnoja et al., 2017; Zhang et al., 2023b), whose optimal solution is a trajectory-level distribution and the
probability of generating each trajectory is proportional to its trajectory cumulative reward, i.e., pθ(x0:T ) ∝

∑
t Rt(xt) =

R(x0). However, in theory this means pθ(x0) =
∫
pθ(x0:T ) dx1:T ∝

∫
R(x0) dx1:T = R(x0) ·

∫
d1x1:T , which is not a

well-defined finite term for unbounded continuous spaces. In contrast, the optimal solution of GFlowNet is pθ(x0) ∝ R(x0).

Remark 5 (diffusion model as GFlowNet). This formulation has a direct connection to the GFlowNet MDP definition in
Section A.2, which has been pointed out by Zhang et al. (2022a) and developed in Lahlou et al. (2023); Zhang et al. (2023a);
Venkatraman* et al. (2024). To be specific, the action transition (st,at) → st+1 is a Dirac distribution and can be directly
linked with the (st → st+1) edge transition in the GFlowNet language. More importantly, the conditional distribution of
the denoising process pθ(xT−t−1|xT−t) corresponds to the GFlowNet forward policy PF (st+1|st), while the conditional
distribution of the diffusion process q(xT−t|xT−t−1) corresponds to the GFlowNet backward policy PB(st|st+1). Besides,
xt is a GFlowNet terminal state if and only if t = 0.

Denoising diffusion GFlowNet

(xT−t, c) st
p(xT−t−1|xT−t, c) PF (st+1|st)
q(xT−t|xT−t−1) PB(st|st+1)

The above discussion could be summarized in the right table. In the following
text, we use the denoising diffusion notation instead of GFlowNet notation as
it is familiar to more broad audience. What’s more, we ignore conditioning c
for the sake of simplicity.
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A counter top with food sitting
on some towels
Stable Diffusion

DDPO

DAG-DB

DAG-KL

Personal computer desk room
with large glass double doors

A bathroom has a toilet and a
scale

Several cars drive down the
road on a cloudy day

Figure 4: Text-image alignment results. We display four prompts and the corresponding generation visualization from the
original Stable Diffusion (1st row), DDPO (2nd row), DAG-DB (3rd row), and DAG-KL (4th row) models to compare their
alignment abilities. See Figure 8 for more results.

D.2. Experimental details
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Figure 6: Sample efficiency results of our proposed methods and our
RL baseline (DDPO) on learning from compressibility and incom-
pressibility rewards.

Regarding training hyperparameters, we follow
the DDPO github repository implementation and
describe them below for completeness. We use
classifier-free guidance (Ho & Salimans, 2022,
CFG) with guidance weight being 5. We use a
50-step DDIM schedule. We use NVIDIA 8×A100
80GB GPUs for each task, and use a batch size of
8 per single GPU. We do 4 step gradient accumu-
lation, which makes the essential batch size to be
256. For each “epoch”, we sample 512 trajectories during the rollout phase and perform 8 optimization steps during the
training phase. We train for 100 epochs. We use a 3× 10−4 learning rate for both the diffusion model and the flow function
model without further tuning. We use the AdamW optimizer and gradient clip with the norm being 1. We set ϵ = 1× 10−4

in Equation 11. We use bfloat16 precision.

The GFlowNet framework requires the reward function to be always non-negative, so we just take the exponential of the
reward to be used as the GFlowNet reward. We also set the reward exponential to β = 100 (i.e., setting the distribution
temperature to be 1/100). Therefore, logR(·) = βRoriginal(·). Note that in GFlowNet training practice, we only need
to use the logarithm of the reward rather than the original reward value. We linearly anneal β from 0 to its maximal
value in the first half of the training. We found that this almost does not change the final result but is helpful for training
stability.For DAG-KL, we put the final β coefficient on the KL gradient term. We also find using a KL regularization
DKL (pθ(xt−1|xt)∥pθold(xt−1|xt)) to be helpful for stability (this is also mentioned in Fan et al. (2023)). In practice, it is
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— “A helmet-wearing monkey skating” −→ DDPO samples

— “Anthropomorphic Virginia opossum playing guitar” −→ DDPO samples

Figure 5: Visualization of alignment with regard to training progress. Left: the generated images from the proposed method
become more aligned to the text prompt over the course of training. Right: samples from the DDPO baseline.

DDPO DAG

Figure 7: Samples on CIFAR-10 diffusion alignment experiments. The reward function is the probability of the generated
image falling into the categories of car, truck, ship, and plane calculated by a pretrained classifier. The RL baseline shows
mode collapse behaviors while the target distribution is actually multimodal.

essentially adding a ℓ2 regularization term on the output of the U-Net after CFG between the current model and previous
rollout model. We simply use a coefficient 1 on this term without further tuning.

We use Stable Diffusion v1.5 as base model and use LoRA for post-training following Black et al. (2023). For the
architecture of the state flow function, we take a similar structure to the downsample part of the U-Net. The implementation
is based on the hugging face diffusers package. We use 3 “CrossAttnDownBlock2D” blocks and 1 “DownBlock2D” and do
downsampling on all of them. We set the layers per block to be 1, and set their block out channels to be 64, 128, 256, 256.
We use a final average pooling layer with kernel and stride size 4 to output a scalar given inputs including latent image, time
step, and prompt embedding. We do not report diversity metric as in previous GFlowNet literature, as the average pairwise
Euclidean distance in high dimensional space (64× 64× 4 > 10, 000 dim.) is not a meaningful metric.

D.3. CIFAR-10 toy example

We also include a toy experiment on a CIFAR-10 pretrained DDPM1. We train a ResNet18 classifier and set the reward
function to be the probability of the generated image falling into the categories of car, truck, ship, and plane. We use same
hyperparameters with the Stable Diffusion setting, except we only use 1 GPU with 256 batch size for each run without
gradient accumulation. We illustrate the generation results in Figure 7. We use DAG-DB here, and the DAG-KL generation
is similar and non-distinguishable with it. We can see that in this relative toy task, the RL baseline easily optimizes the

1https://huggingface.co/google/ddpm-cifar10-32
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The clock on the side of the
metal building is gold and black

Kitchen with a wooden kitchen
island and checkered floor A pink bicycle leaning against a

fence near a river
An empty kitchen with lots of
tile blue counter top space

Figure 8: More text-image alignment results. We display four different prompts and the corresponding generation
visualization from the original Stable Diffusion (1st row), DDPO (2nd row), DAG-DB (3rd row), and DAG-KL (4th row)
models to compare their alignment ability.

problem to extreme and behaves mode collapse to some extent (only generating samples of a particular plane). While for
our methods, the generation results are diverse and cover different classes of vehicles. Both methods achieve average log
probability larger than −0.01, which means the probability of falling into target categories are very close to 1.
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