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ABSTRACT

Spiking Neural Networks (SNNs) enable energy-efficient computation through
event-driven computing and multiplication-free inference, making them well-
suited for processing sparse events. Recently, deep Spiking Convolutional Neural
Networks (CNNs) have shown energy efficiency advantages on event-based ob-
ject detection. However, spiking CNNs have been limited to local and single-scale
features, making it challenging for them to achieve better detection accuracy. To
address this challenge, we propose a hierarchical Spiking Transformer-CNN (i.e.,
Spike-TransCNN) architecture, which is the first attempt to leverage the global
information extraction capabilities of Spiking Transformers and the local infor-
mation capture abilities of Spiking CNNs for event-based object detection. Tech-
nically, we first propose using the Spiking Transformer to extract global features
and employ a multi-scale local feature extraction CNN module to complement the
Spiking Transformers in local feature extraction. Then, we design intra-stage and
inter-stage feature fusion modules to integrate global and multi-scale local fea-
tures within the network architecture. Experimental results demonstrate that our
Spike-TransCNN significantly outperforms existing SNN-based object detectors
on the Gen1 dataset, achieving higher detection accuracy (mAP 0.336 vs. 0.321)
with lower energy consumption (5.49 mJ vs. 7.26 mJ). Our code can be available
in the supplementary materials.

1 INTRODUCTION

Object detection is essential in computer vision and robotics applications. Nevertheless, conven-
tional cameras operating at fixed frame rates struggle in challenging conditions, such as fast motion,
over-exposure, and low light, leading to a significant decline in object detection performance Liu
et al. (2020); Sayed & Brostow (2021). Recently, event cameras like DVS Lichtsteiner et al. (2008)
and ATIS Posch et al. (2010) have surpassed RGB cameras in dynamic range, temporal resolution,
and energy efficiency. These advanced capabilities make them especially well-suited for object de-
tection Peng et al. (2023a;b); Wang et al. (2023a; 2024); Zubic et al. (2024); Yuan et al. (2024);
Hamaguchi et al. (2023); Zubić et al. (2023); Tomy et al. (2022) in these challenging scenarios.

Most current event-based object detectors rely on Artificial Neural Networks (ANNs) Perot et al.
(2020); Li et al. (2022a), which deliver high performance but come with high computational com-
plexity and energy consumption. In contrast, Spiking Neural Networks (SNNs) Maass (1997); Zhu
et al. (2022) present a novel approach inspired by the brain’s temporal information processing dy-
namics. SNNs propagate information through binary spike sequences, allowing for energy-effective
computing with event-driven computation and multiplication-free inference. This makes SNNs a
more efficient and biologically inspired alternative for event-based object detection.

Early SNN-based object detectors are often derived from existing ANNs through conversion, which
introduces several limitations. The most critical problem is that most conversion methods are de-
signed for static images and may not be able to handle sparse temporal event data effectively. This
is because these methods focus on approximating the activation patterns of ANNs, often neglecting
the spatiotemporal information inherent in event data. Furthermore, conversed models like Spiking-
YOLO Kim et al. (2020) require a large number of time steps to match the performance of the
original ANN. Although Spike Calibration Li et al. (2022b) can reduce this to hundreds of time
steps, its effectiveness still hinges on the quality of the original ANN model.

1
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Directly-trained Spiking Convolutional Neural Networks (CNNs) could be trained with much fewer
steps Su et al. (2023), but they primarily focus on local features, which can limit the overall detec-
tion performance. For instance, Spiking-DenseNet Cordone et al. (2022) employs a multi-layered
approach to process features at various local scales, and SFOD Fan et al. (2024) introduces a fusion
mechanism to combine spike features across different local scales. Despite these efforts to opti-
mize spike features across multiple local scales to capture the local features, these Spiking CNNs
still face challenges in incorporating global and high-level semantic information, constraining their
overall performance.

Transformer architectures have increasingly been integrated into SNNs, such as Spikformer Zhou
et al. (2023), Auto-Spikformer Che et al. (2024), and Attention-free Spikformer Wang et al. (2023b).
These models have demonstrated superior performance over spiking CNNs in various tasks, primar-
ily due to the Transformer’s capability for global attention and parallel computation. However, most
current research focuses on classification, with limited exploration of Spiking Transformers in the
regression task of object detection. Additionally, recent ANN studies Fang et al. (2022); Chen et al.
(2023) suggest that combining the global modeling strengths of Transformers with the local fea-
ture extraction capabilities of CNNs can further enhance network performance. Nevertheless, this
potential has yet to be thoroughly investigated within the context of SNNs.

To address these challenges, we propose a hierarchical Spiking Transformer-CNN (i.e., Spike-
TransCNN), which is a directly-trained deep SNN designed to extract both global and multi-scale
local features for event-based object detection. Our model is the first attempt to leverage the global
information extraction capabilities of Spiking Transformers and the local information capture abil-
ities of Spiking CNNs. We employ spike-driven token selection to selectively capture tokens, and
spike self-attention for holistic perception of spike features. Specifically, we first present a multi-
scale local feature extraction module to compensate for the limitations of Spiking Transformers in
local feature extraction. Furthermore, we design intra-stage and inter-stage feature fusion modules
to integrate global and multi-scale local features within the architecture. The results show that our
Spike-TransCNN reduces energy consumption by 4.7× compared to the same ANN architecture.
Moreover, it significantly outperforms state-of-the-art methods on the Gen1 dataset, achieving a
higher mAP and lower energy consumption.

In summary, the main contributions of this work are:

• We propose Spike-TransCNN, a novel hierarchical Spiking Transformer-CNN, which is the
first hybrid spiking architecture that combines Spiking CNNs and Spiking Transformers to
leverage their complementary strengths, yielding both high-accuracy and energy-efficiency
in event-based object detection.

• We present spike-driven token selection to select tokens and spike self-attention for global
spike feature perception, along with spiking dilated convolution for extracting local multi-
scale features and optimizing them with temporal-channel joint attention.

• We design intra-stage spike feature fusion and inter-stage spike feature fusion modules that
effectively aggregate features extracted from different architectures and multi-scale features
from the event stream to improve object detection performance.

2 RELATED WORK

Event-based Object Detection. Most event-based object detection methods use ANN approaches,
such as RED Perot et al. (2020), ASTMNet Li et al. (2022a), and RVT Gehrig (2023), which demon-
strate impressive detection performance but come with high energy consumption. More recently,
some works have explored achieving energy-efficient object detection for event data using SNNs.
For example, Hybrid-SNN Kugele et al. (2021) combines an SNN backbone for efficient event-
based feature extraction with an ANN head for object detection tasks. Spiking-DenseNet Li et al.
(2022a) is notable for applying SNNs to event-based object detection using the SSD architecture. A
feature pyramid structure Zhang et al. (2023) is introduced to support multi-scale feature extraction.
SFOD Fan et al. (2024) introduces a fusion mechanism to combine spike features across different
scales. Despite these efforts, Spiking CNNs excel at capturing local features but face challenges in
integrating global information, which limits overall detection performance.

2
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Figure 1: The pipeline of our hierarchical Spiking Transformer-CNNs. Initially, the event stream is
processed through a hierarchical hybrid backbone that integrates Spiking Transformer and Spiking
CNN blocks. Then, we apply the patch embedding operation across four stages to extract features
at four different scales and integrate these features using intra-stage and inter-stage feature fusion
modules. Finally, the detection results are predicted on the fused features using the YOLOX head.

Spiking CNNs. Current Spiking CNN-based models for object detection can be broadly categorized
into two types. The first type involves ANN-to-SNN methods, which convert pre-trained ANNs into
SNNs by replacing continuous activation functions with spiking neurons. For example, Spiking-
YOLOv4 Wang et al. (2023c) implements a converted CNN model for fast and accurate object
detection from event streams. However, these methods face several limitations, including the need
for a large number of time steps to match the performance of the original ANN. The second type
refers to directly-trained methods, which use surrogate gradients to train deep and large-scale SNNs
for object detection. For instance, EMS-YOLO Su et al. (2023) is a directly-trained SNN that
surpasses ANN-to-SNN conversion methods, requiring only a few time steps for real-time inference.
Besides, a training scheme for SNNs Caccavella et al. (2023) deployed on the neuromorphic chip
achieves low-power face detection. These directly-trained SNN models can achieve comparable
performance to ANNs with the same architecture while significantly reducing energy consumption.

Spiking Transformers. Transformers have been integrated into SNN models with notable suc-
cess across various tasks. For example, Spikformer Zhou et al. (2023) introduces a pioneering
Spiking Self-Attention (SSA) version of the self-attention mechanism. Meanwhile, Spike-Driven
Self-Attention (SDSA) Yao et al. (2024) employs mask and addition operations to avoid multipli-
cation, significantly reducing computational energy compared to conventional self-attention mech-
anisms. Besides, a spatiotemporal self-attention mechanism Wang et al. (2023d) has been proposed
for SNNs, effectively capturing feature dependencies while preserving the asynchronous transmis-
sion property of SNNs. QKFormer Zhou et al. (2024) utilizes sparse matrices to filter tokens and
channels. Despite these advancements in Transformer-based SNN models, the exploration of object
detection tasks using event data remains relatively limited.

3 METHODS

3.1 OVERVIEW

This work aims at designing a novel hierarchical Spiking Transformer-CNN, termed Spike-
TransCNN, which combines Spiking CNNs and Spiking Transformers to leverage their comple-
mentary strengths for high-accuracy and energy-efficient object detection. As depicted in Fig. 1,
our framework consists of four key parts: Spiking Transformer Block (STB), Spiking CNN Block

3
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(SCB), intra-state spike feature fusion module, and inter-stage spike feature fusion module. More
precisely, our Spike-TransCNN starts by processing the event stream through a hybrid backbone that
combines Spiking Transformers and Spiking CNNs. We then extract features at four different scales
using patch embeddings (PE) across four stages in the hybrid architecture, integrating these features
with both intra-stage and inter-stage fusion modules. Finally, we use the YOLOX head to predict
detection results from the fused features.

3.2 THE BASICS OF SPIKE NEURAL NETWORKS

Spike Neural Networks (SNNs) are inspired by the brain’s functioning, communicating through
discrete spikes, enabling efficient information processing for event data. Compared to traditional
ANNs, SNNs excel in spatio-temporal processing and energy efficiency. Spiking neurons are the
essential components of SNNs, communicating through discrete spikes that mimic the behavior of
biological brain neurons. The Leaky Integrate-and-Fire (LIF) neuron model Delorme et al. (1999)
is commonly used in SNNs as follows:

Vt = Vt−1 +
1

τ
(−(Vt−1 − Vrest) +Xt), (1)

St = Hea(Vt − Vth), (2)
where Vt denotes the membrane potential after neuronal dynamics at timestep t. Xt represents the
input to neuron. τ is the decay factor for leakage. Hea() is the Heaviside step function, which
satisfies: Hea(x) = 1 when x ≥ 0, otherwise Hea(x) = 0. The generation of output spikes is
controlled by the threshold Vth, and once the neuron emits a spike at time step t + 1, the current
membrane potential will be reset to Vrest. SNNs Wu et al. (2018) based on spike neurons (LIF) can
be developed for network training as:

U t,l = Ht−1,l +Xt,l, St,l = Hea(U t,l − uth), (3)

Ht,l = VrestS
t,l + (βU t,l)⊙ (1− St,l), (4)

where t and l respectively represent timestamps and network layers. V represents the membrane po-
tential generated by integrating spatial dimension input Xt,l and temporal dimension input Ht−1,l.
uth is the threshold that determines whether the output spike tensor St,l should be fired or kept as
zero. Ht,l represents the internal state of neurons propagating over time, where β = e

−dt
τ reflects

the decay factor, and ⊙ denotes element-wise multiplication.

3.3 SPIKING TRANSFORMERS FOR GLOBAL FEATURES
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Figure 2: Spiking Self Attentation (SSA). SSA is employed for global feature extraction in the latter
two stages. The right illustrates the operational processes of ‘Matrix Dot-Product’.

To obtain hierarchical features, the patch embedding operation is implemented for downsampling
before each STB. It specifically includes conv1 ∗ 1, max-pooling, and LIF. We use Spike-driven To-
ken Selection (STS) to select tokens for sparse features in the first two STB modules (see Fig. 3) and
employ Spiking Self-Attention (SSA) to extract global features in the latter two STB modules (see
Fig. 2). SSA utilizes sparse spike-form Q,K, V for computation, without the need for softmax op-
erations and floating-point matrix multiplication. The calculation process of SSA can be formulated
as follows:
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Figure 3: Spike-driven Token Selection (STS). STS is used for token selection in the first two stages.

I = SNI(BN(XWI)), I ∈ (Q,K, V ), (5)

SSA(Q,K, V ) = SN(BN(Linear(SN(QKTV ∗ s)))), (6)

where Q,K, V ∈ RT×N×D, N is the token number, and D is the channel number. The spike-form
Q,K, V are computed by learnable linear layers. s represents a scaling factor, and SN refers to the
LIF layer.

In order to select important regions within shallow features, we designed Spike-driven Token Selec-
tion (STS) in the first two STBs. Firstly, use linear functions to learn the weights Wv and Wk of the
value and key domains for each token. Then, utilize LIF to map the key values to (0 or 1) as the
gating control for tokens. The STS can be formulated as follows:

V = SNV (BN(XWV )),K = SNK(BN(XWK)), (7)

Gt =

D∑
i=0

SN(Ki,j), X
′
= Gt ⊗ V, (8)

where Gt is the N ∗1 token attention vector, which models the binary importance of different tokens.
D is the channel number. ⊗ is the Hadamard product between spike tensors.

In our backbone network, we utilize STS for token filtering in the first two stages, and SSA in
the latter two stages. Experimental results demonstrate that the combination of these two attention
mechanisms may enhance the detection performance of the network.

3.4 SPIKING CNNS FOR MULTI-SCALE LOCAL FEATURES

The STB excels at extracting global information but lacks the ability to capture local details. There-
fore, we designed a local multi-receptive field Spiking CNN Block (SCB) that leverages the local
feature extraction capabilities of CNNs and automatically selects important local multi-scale fea-
tures using time channel attention (see Fig. 4).

Initially, the SCB utilizes dilated convolutions with dilation rates of [1, 3, 5] to capture local multi-
scale information. Subsequently, the multi-scale local spiking features are stacked along the channel
dimension to ensure feature binarization, which can be formulated as follows:

Xi = SNi(BN(DCdr=i(X)), i ∈ (1, 3, 5), (9)

XSDC = Cat(X,X1, X3, X5), (10)

5
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Figure 4: Spiking CNN Block. Extract local multi-receptive field features using dilated convolu-
tions, and select features using temporal channel attention.

where DCdr=i denotes dilated convolution with a dilation rate of i, while Cat represents channel-
wise concatenation.

For the [T,C,H,W] dimensional spiking features XSDC , a time channel attention mechanism is em-
ployed to automatically select the time and channel of the multi-scale local spiking features. Finally,
LIF is used to activate the features, ensuring the binarization of the features input to the next stage
and maintaining the binarized characteristics of the SNN network, which can be formulated as:

XSCB = SN(XSDC ⊙ σ(Conv1d(Ft) · Conv1d(Fc))), (11)
where Ft is the mean of XSDC along dimensions H and W , and Fc is obtained by swapping the
dimensions (T, C) of Ft.

3.5 INTRA-STAGE SPIKE FEATURE FUSION
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Figure 5: Intra-stage Feature Fusion. (a) SEW
Block. (b) Intra-stage spike feature fusion block.

To ensure that the features in each stage used
for object detection contain both global features
and local multi-receptive field features, we use
spike-element-wise (SEW) addition to fuse the
original input features, STB output features,
and SCB output features in the intra-stage spike
feature fusion module. SEW-ResNet Fang et al.
(2021) has demonstrated that spike-element-
wise addition in residual connections can ef-
fectively prevent issues of gradient vanishing
and gradient explosion. Fig. 5 illustrates the (a)
SEW block Fang et al. (2021) and (b) the pro-
posed intra-stage spike feature fusion module.
The specific operations of the intra-stage spike
feature fusion module are as follows:

XIntra = XPE ⊕ (XSTB ⊕XSCB), (12)

where XPE , XSTB , and XSCB denote the spike features output by PE, STB, and SCB, respectively.
⊕ refers to the spike-element-wise addition operation, which ensures that the fusion operation in-
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volves only integer addition. The intra-stage spike feature fusion not only ensures the integration of
global and local features at each stage, but it also prevents the loss of features extracted by distant
STBs when passing input to the next stage.

3.6 INTER-STAGE SPIKE FEATURE FUSION

Conv1*1
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pl
in
g

Conv1*1 Conv1*1 Conv1*1

Conv1*1

Figure 6: Inter-stage Feature Fusion. This module consists
of two main operations: vertical channel modification and
horizontal upsampling, enabling interaction between shal-
low features and deep features over longer distances.

Intra-stage spike feature fusion can
merge features with the same spa-
tial resolution, but it lacks interaction
between features of different stages.
Therefore, we design an inter-stage
spike feature fusion module to fa-
cilitate interaction between different
stages. The specific design of the
inter-layer feature fusion module is
shown in Fig. 6. It utilizes a 1 × 1
convolution to adjust the channel di-
mensions of the features at the cur-
rent stage, applies up-sampling to the
features from the previous stage, and
then adds them element-wise. To en-
sure the binary and sparse nature of the
features, LIF is used for spike activa-
tion after each convolution. The op-
erations between two adjacent stages
can be formulated as follows:

XS−(j) = SN(Conv(XIntra−(j))), (13)

XInter−(j) = XS−(j) ⊕ Up2(XS−(j−1)), (14)

XInter−(j) = SN(Conv(XInter−(j))), (15)

where XIntra−(j) denotes the output spike features of the j-th stage after intra-stage feature fusion,
and Up2 represents 2x up-sampling. This module enables interaction and fusion of features at
different depths and resolutions.

Finally, the top three features obtained from the inter-stage feature fusion are fed into the YOLOX
Ge et al. (2021) detection head for classification and regression predictions.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. We evaluate the effectiveness of our Spike-TransCNN using two publicly available anno-
tated datasets: Gen1 De Tournemire et al. (2020) and 1Mpx Perot et al. (2020). Both datasets were
captured by event cameras in real-world driving scenarios. The Gen1 dataset includes 39 hours of
event data with a resolution of 304 × 240, providing 228k car and 28k pedestrian bounding boxes
labeled at frequencies of 1, 2, or 4 Hz. The 1Mpx dataset offers recordings with a resolution of 720
× 1280, totaling around 15 hours of event data, and includes 25 million bounding box labels at either
30 or 60 Hz for cars, pedestrians, and two-wheelers. For processing these datasets, we follow the
methodology outlined in RVT-B Gehrig (2023).

Implementation Details. Our models are trained for 400k iterations using the ADAM optimizer
Kinga et al. (2015) with a OneCycle learning rate schedule Smith & Topin (2019), which includes
2000 warmup iterations followed by linear decay of the maximum learning rate. This training strat-
egy is consistent across all studies. For the Gen1 dataset, we use a batch size of 4 and a maximum

7
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Table 1: Comparison with state-of-the-art methods and our Spike-TranCNN on the Gen1 dataset
and the 1Mpx dataset. Note that, our Spike-TransCNN significantly outperforms existing SNN-
based object detectors on the Gen1 dataset.

Method Type T Params Firing RateEnergy
(mJ)

Gen1 1Mpx

mAP mAP

Inception Iacono et al. (2018) CNN – >60M – – 0.301 0.340
RRC-Events Chen (2018) CNN – >100M – – 0.312 0.343
Matrix Cannici et al. (2019) RNN+CNN – 61.5M – – 0.310 –
YOLOv3E Jiang et al. (2019) CNN – >60M – – 0.312 0.346
RED Perot et al. (2020) CNN+RNN – 24.1M – > 24 0.400 0.430
ASTMNet Li et al. (2022a) CNN+RNN – >100M – – 0.467 0.483
RVT-B Gehrig (2023) Transformer – 18.5M – – 0.472 0.474

VGG-11Li et al. (2022a) SNN 5 12.64M 22.22% 11.06 0.174 –
MobileNetLi et al. (2022a) SNN 5 24.26M 29.44% 5.76 0.147 –
DenseNetLi et al. (2022a) SNN 5 8.2M 37.2% 3.89 0.189 –
FPDAGNet Zhang et al. (2023) SNN 5 22M 19.1% – 0.223 –
SNN-CN Bodden et al. (2024) SNN 5 12.97M 10.8% – 0.223 –
KD-CN Bodden et al. (2024) SNN 5 12.97M 17.4% – 0.229 –
EMS-YOLO Su et al. (2023) SNN 5 6.20M 21.15% – 0.267 –
EMS-YOLO Su et al. (2023) SNN 5 9.34M 20.09% – 0.286 –
EMS-YOLO Su et al. (2023) SNN 5 14.4M 17.80% – 0.310 –
SFOD Fan et al. (2024) SNN 5 11.90M 24.04% 7.26 0.321 –
Spike-TransCNN (ours) SNN 5 24.3M 19.83% 5.49 0.336 0.250

learning rate of 2e− 4, running the training on a single NVIDIA A100 GPU. For the 1Mpx dataset,
we set an effective batch size of 4, a maximum learning rate of 2.45e − 4, and also train the model
using a single NVIDIA A100 GPU.

4.2 MAIN TEST
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Figure 7: Detection performance vs firing rate of our
Spike-TransCNN on the GEN1 dataset. The areas of
the circles correspond to the energy.

Quantitative Evaluation. As shown
in Table 1, we compare state-of-the-art
event-based object detection methods with
our Spike-TransCNN on the Gen1 dataset
and the 1Mpx dataset. While ANN-
based models demonstrate high perfor-
mance, they come with significant en-
ergy consumption. Note that, our Spike-
TransCNN significantly outperforms ten
state-of-the-art methods. More precisely,
our Spike-TransCNN surpasses the best
competitor, namely SFOD, achieving a
higher mAP (0.336 vs. 0.321) and lower
energy consumption (5.49 mJ vs. 7.26
mJ). Additionally, it’s important to note
that most event-based object detectors on
the 1Mpx dataset are ANN-based models,
with very few SNN-based models. How-
ever, our Spike-TransCNN has been tested
on 1Mpx to establish a benchmark for
future comparisons. The limited use of
SNNs on 1Mpx may be attributed to the large dataset size, as SNNs typically require more training
resources and video memory than ANNs. Fig. 7 provides a visual comparison of the accuracy, spike
firing rate, and energy consumption of our approach with other SNN-based methods.
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(b) 1Mpx dataset.

Figure 8: Representative visualization examples of object detection results on the Gen1 dataset and
the 1Mpx dataset.

Table 2: The contribution of each component to our Spike-TransCNN on the Gen1 dataset.

Method STB SCB Intra-stage fusion Inter-stage fusion Params mAPL mAPM mAPS mAP

(a) ✓ 10.8M 0.208 0.254 0.08 0.184
(b) ✓ ✓ 21.9M 0.239 0.324 0.134 0.240
(c) ✓ ✓ ✓ 23.5M 0.213 0.326 0.140 0.245
(d) ✓ ✓ ✓ ✓ 24.1M 0.251 0.378 0.179 0.285

Visualization Evaluation. We further present representative visualization results on the Gen1
dataset and the 1Mpx dataset (Fig. 8). We select challenging scenarios with occlusions and multi-
scale objects. The detection results from our Spike-TransCNN are very close to the ground truth. It
indicates that our method performs well in some specific scenarios with single-modal input, partic-
ularly when deployed on energy-constrained edge devices.

4.3 ABLATION EXPERIMENTS

We conduct ablation studies on the test set of the Gen1 dataset. We evaluate the impact of various
modules and take a deep look at the impact of each design choice as follows.

Contribution of Each Component. To explore the impact of each component on the final per-
formance, we choose Spiking Transformer as the baseline. As shown in Table 2, four methods,
namely (a), (b), (d), and (d), utilize Spiking Transformer Block (STB), Spiking CNN Block (SCB),
Intra-stage feature fusion module, and Inter-stage feature fusion module, consistently achieve higher
performance on the Gen1 dataset than the baseline. Specifically, comparing (b) and (d), the absolute
promotion of mAP is 4.5%, which demonstrates that it is feasible to adopt intra-stage spike fea-
ture fusion between Spiking Transformer block and Spiking CNN block as well as inter-layer spike
feature fusion.

9
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Table 3: The influence of Spike-driven Token Selection (STS)
on the Gen1 dataset.

Operation Params mAPL mAPM mAPS mAP

SSA 24.1M 0.251 0.378 0.179 0.285
STS+SSA 24.3M 0.292 0.426 0.237 0.336

Influence of Spike-driven Token
Selection. As shown in Table 3,
we explore the influence of the
multi-head self-attention operation
in our Spike-TransCNN on the
Gen1 dataset. We can find that
replacing SSA with STS in the
first two stages and combining STS
with SSA enhanced the overall per-
formance of the model.

4.4 ENERGY CONSUMPTION

Table 4: Energy consumption analysis on the Gen1 dataset.

Model #OPAC #OPMAC Energy Efficiency

TransCNN (ANN) / 5.59G 25.70mJ 1×
Spike-TransCNN 5.45G 0.14G 5.49mJ 4.7×

The energy consumption of SNNs
in neuromorphic hardware are
usually assessed based on the
number of computational opera-
tions Su et al. (2023). In ANNs,
each operation involves floating-
point multiplications and addi-
tions (MAC), and the computa-
tion cost is estimated using the
number of floating-point opera-
tions (FLOPs). SNNs exhibit high energy efficiency in neuromorphic hardware because only neu-
rons involved in spike generation contribute to accumulation calculations (AC), and computations
can be performed with roughly the same number of synaptic operations (SyOPs). Hence, we quan-
tify the energy consumption of the original SNN as ESNN =

∑
El, where the energy of the l-th

layer can be calculated as:
El = T × (Sfr × EAC ×OPAC) + EMAC ×OPMAC , (16)

where T represents the time step, Sfr denotes the firing rate, and OPAC and OPMAC represent
the numbers of AC and MAC operations, respectively. Table 4 presents the energy consumption
of our method compared to the theoretical energy consumption of the ANN with the same network
architecture. We assume a 32-bit floating-point implementation using 45nm technology, with energy
values of EMAC = 4.6 pJ and EAC = 0.9 pJ Horowitz (2014). Our Spike-TransCNN has an energy
consumption of only 5.84 mJ, achieving a 4.4× improvement in energy efficiency compared to the
same ANN architecture.

4.5 DISCUSSION

Indeed, our Spike-TransCNN achieves higher detection accuracy and lower power consumption
compared to existing pure SNN-based object detection methods, making it suitable for energy-
constrained edge devices. Nevertheless, pure SNN models may still exhibit a slight performance
gap compared to equivalent ANN architectures or hybrid SNN-ANN models Yu et al. (2024). To
further match ANN-level accuracy, we could increase the simulation time steps Luo et al. (2024)or
extend the model to handle multiple modalities, such as combining RGB frames with event data.

5 CONCLUSION

This paper proposes a novel hybrid network that takes advantage of both Spiking Transformers and
Spiking CNNs for event-based object detection. To the best of our knowledge, this is the first use
of a hierarchical hybrid network that includes intra-stage and inter-stage spike feature fusion mod-
ules to ensure comprehensive integration of global and multi-scale local information. Experimental
results demonstrate that our Spike-TransCNN significantly outperforms existing SNN-based object
detectors on the Gen1 dataset, achieving higher mAP and lower energy consumption. We believe
our work presents a conceptual hybrid framework that integrates Spiking Transformers and Spiking
CNNs, offering potential for various event-based vision applications and feasibility for deployment
on neuromorphic hardware.
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A APPENDIX

A.1 EVENT DATA PREPROCESSING

The output of an event camera with a resolution of H ×W can be represented as an event sequence,
denoted as E = ei1

N , where ei = (xi, yi, ti, pi). Here, pi ∈ −1, 1 represents the polarity of a
brightness change that occurs at time ti and pixel position (xi, yi). The change is triggered for the
pixel (xn, yn) at timestamp tn when the log-intensity lnL changes beyond the pre-defined threshold
θ. This dynamic visual sensing mechanism is depicted by the inequality:

lnL(xn, yn, tn)− lnL(xn, yn, tn −∆tn)pnθ, (17)

Here, the polarity pn∈{1,−1} indicates whether the brightness is increasing or decreasing, and ∆tn
represents the temporal sampling interval of DVS at a pixel.

In our investigation, we have implemented the technique presented in Gehrig (2023) for preprocess-
ing event data. Our preprocessing generates a 4-dimensional tensor E from discrete event data. The
first dimension consists of T components associated with T discretization steps of time. The second
dimension includes two components signifying polarity. The third and fourth dimensions represent
the height and width of the event camera. We process a set of events ε within the time duration
[ta, tb) in the following manner:

E(τ, p, x, y) =
∑
ε

δ(p− pn)δ(x− xn)δ(τ − τn),

τn =

⌊
tn − ta
tb − ta

· T
⌋ (18)

The provided equation describes the handling of a set of events ε over a time interval [ta, tb), with
each tn falling between ta and tb. Here, δ(·) represents the Dirac delta function, where δ(t) is 0 for
all t ̸= 0, and

∫
δ(t)dt equals 1. The value of T is determined by the selected number of discrete

time steps. Following this procedure, a four-dimensional tensor E ∈ [T, 2, H,W ] is obtained, where
T , H , and W denote the aggregation time, preprocessed height, and width, respectively.

The datasets used are Gen1 1 and 1Mpx 2.

A.2 EVALUATION CRITERIA

Table 5: Summary of common metrics for event-based object detection.

Metric Unit Description
mAP - mAP averaged over ten IoUs: {0.5:0.05:0.95}.
mAP0.5 - mAP at a fixed IoU=0.50.
mAP0.75 - mAP at a fixed IoU=0.75.
mAPS - mAP for small objects of area smaller than 322.
mAPM - mAP for objects of area between 322 and 962.
mAPL - mAP for large objects of area bigger than 962.
Model size MB The number of parameters for the learning-based model.

Power consum. mJ
The energy consumption of the SNN model through AC and
MAC operations in a neuromorphic chip.

The evaluation metrics for object detection based on event data are summarized in Table 5. For both
datasets, the primary metric we use is mean average precision (mAP) Lin et al. (2014). Addition-
ally, to demonstrate the capability of our method for detecting objects at multiple scales, we also
use mAPL, mAPM , and mAPS. The AP is derived from precision and recall using the following
formulas:

AP =

∫ 1

0

max{p(r
′
|r

′
≥ r)}dr, (19)

1https://www.prophesee.ai/2020/01/24/prophesee-gen1-automotive-detection-dataset
2https://www.prophesee.ai/2020/11/24/automotive-megapixel-event-based-dataset/
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where r denotes the recall, p(r) is the precision-recall curve.

Thus, the mAP is calculated as the average of AP values across all object categories as follows:

mAP =

∑Cb

i=1 AP (i)

Cb
, (20)

where Cb represents the number of object classes. At present, MS COCO3 is the most widely used
benchmark for evaluating event-based object detection methods. Instead of using a fixed IoU thresh-
old, MS COCO Perot et al. (2020) provides a few metrics with various IoUs (i.e., mAP, mAP0.5,
and mAP0.75) and AP across different scales (i.e., mAPS , mAPM , and mAPL). As neuromorphic
cameras offer continuous visual streams, object detection labels are annotated on the RGB image
or reconstructed image at a fixed frame rate. Thus, many existing methods assess the detection ac-
curacy at the timestamp when the label is provided, lacking the ability to evaluate the entire event
stream continuously.

We calculate the spike Firing Rate by counting the number of spikes and the number of neurons in
each layer of the network, which can be computed using the following formula:

Firing Rate =
Numbers of spikes

Numbers of neurons
. (21)

A.3 THE IMPLEMENTATION OF LIF NEURONS

The firing and membrane potential updates are two main modules in the LIF neuron Delorme et al.
(1999), for which we provided the implementation functions in Algorithm 1 and Algorithm 2. In
Algorithm 1, the forward propagation function during the firing process is presented, and a gradient
substitution function is defined in the backward propagation function. We use the functions defined
in Algorithm 2 as the LIF neuron for this paper, where the input x has dimensions of [T, 2, H, W].
Table 6 provides specific numerical values of the hyperparameters used in the LIF model in this
work.

Table 6: Values of LIF parameters.

Parameter thresh lens decay time window
Value 0.5 0.5 0.25 5

A.4 PATCH EMBEDDING

In order to obtain hierarchical features, we implement the patch embedding operation for downsam-
pling before each STB. This operation consists of conv1 ∗ 1, max-pooling, and LIF. We downsample
the spatial resolution using max pooling, which helps preserve the binary nature of the elements.

A.5 SPIKE TRANSFORMER BLOCK

As shown in Fig. 10, detailed design details of the Spike Transformer Block(STB) are provided.
The main difference between the first two stages and the last two stages is the multi-head attention.
In the first two stages, we used Spike-driven token selection (STS) in the multi-head attention, and
Spike self-attention (SSA) mechanism in the last two stages.

A.6 THE ORDER OF STB AND SCB

Spiking Transformer Block (STB) and Spiking CNN Block (SCB) serve as the core modules for
feature extraction in the backbone. While STB focuses on extracting global features, SCB special-
izes in capturing local multi-scale features. In each stage of our proposed method, we first employ
STB to extract global features, followed by utilizing SCB to capture local multi-scale features. Our
analysis of the sequential order of these two modules in each stage, illustrated in Fig. 11, revealed

3https://github.com/cocodataset/cocoapi
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Algorithm 1: Approximate Firing Function
Input: input
Output: output

1 Function ActFun(ctx, input):
Data: input
Result: output

2 Function forward(ctx, input):
Save input for backward pass in ctx;
return float(input > thresh);

3 Function backward(ctx, grad output):
Data: grad output
Result: grad input

input← Retrieve saved tensors from ctx;
grad input← grad output.clone();
temp← abs(input− thresh) < lens;
temp← temp/(2× lens);
return grad input× float(temp);

Invoke forward and backward functions as needed;
return forward(ctx, input);

Algorithm 2: Membrane Potential Update
Input: x
Output: output

1 Function mem update(x):
Data: x
Result: output

2 mem← torch.zeros like(x[0]).to(device);
3 spike← torch.zeros like(x[0]).to(device);
4 output← torch.zeros like(x);
5 mem old← 0;
6 for i = 0 to time window − 1 do
7 if i ≥ 1 then
8 mem← mem old× decay × (1− spike.detach()) + x[i];
9 else

10 mem← x[i];
11 spike← ActFun(mem);
12 mem old← mem.clone();
13 output[i]← spike;
14 return output;

that the model is minimally impacted by the order in which they are applied. As depicted in Table 7,
regardless of whether SCB is used before STB (as in A) or vice versa (as in B), the overall effect
on the model is negligible. We attribute this to the fusion module proposed in this paper, which
comprehensively integrates global and local features. Notably, the information from the preceding
module is retained, irrespective of the order in which STB and SCB are employed.

A.7 SPIKE-ELEMENT-WISE ADDITION

In this study,⊕ operations are employed in both intra-stage and inter-stage contexts. Herein, we aim
to demonstrate how this operation effectively mitigates issues such as gradient vanishing or gradient
explosion.

Taking the SEW Block Fang et al. (2021) as an example, upon the application of ⊕:
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Figure 9: Patch Embedding.
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Figure 10: Spike Transformer Block. Spike-driven Token Selecion (STS) is used for token selection
in the first two stages, and Spiking Self Attentation (SSA) is employed for global feature extraction
in the latter two stages. (a) and (b) present the specific details of SSA and QKA. The bottom right
corner illustrates the operational processes of ‘Matrix Dot-Product’ and ‘Token Selection’ in SSA
and QKA, respectively.

Ol[t] = Al[t]⊕ Sl[t], (22)

the gradient from the output of the (l+k-1)-th SEW block to the input of the l-th SEW block can be
computed in a layer-by-layer manner:

∂Ol+k−1
j [t]

∂Sl
j [t]

=

k−1∏
i=0

∂
(
Al+i

j [t]⊕ Sl+i
j [t]

)
∂Sl+i

j

=

k−1∏
i=0

∂
(
0 + Sl+i

j [t]
)

∂Sl+i
j

. (23)
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Figure 11: The order of Spiking Transformer Block (STB) and Spiking CNN Block (SCB) in the
backbone.

Table 7: Performance comparison based on the order of Spiking Transformer Block (STB) and
Spiking CNN Block (SCB) in the backbone.

Backbone mAPL mAPM mAPS mAP mAP50

A 0.329 0.420 0.177 0.328 0.587
B 0.336 0.426 0.267 0.336 0.604

The equality holds as identity mapping is achieved by setting Al+i[t] ≡ 0. Since the gradient is a
constant ( = 1), the SEWA (⊕) can overcome gradient vanishing or gradient explosion.

A.8 TRAINING DETAILS

In this research, we present an in-depth exploration of the specific training process values for the
Gen1 and 1Mpx datasets depicted in Fig. 12 and Fig. 13. These figures not only offer a compre-
hensive overview of the learning rates and loss values at each iteration but also provide valuable
insights into the stability and evolution of the training procedure. Furthermore, the visual represen-
tations encapsulate the mAP50, mAP , mAPlarge, mAPmiddle, and mAPsmall metrics, affording
a holistic comprehension of the network’s performance across diverse evaluation criteria through-
out the duration of the training process. It is noteworthy that the evaluation metrics consistently
demonstrate a gradual enhancement in performance on the training set, underscoring the efficacy
and robustness of the training approach adopted in this study. This detailed analysis serves to enrich
our understanding of the intricate dynamics and progressive refinement observed during the training
phase, thus contributing to a more nuanced interpretation of the network’s learning process.

A.9 MORE VISUALIZATION RESULTS

In addition to the visualization results previously presented, we offer further insights into the char-
acteristics of the Gen1 and 1Mpx datasets in Fig. 14 and Fig. 15, respectively. These visualizations
provide a deeper understanding of the dataset attributes and distribution, shedding light on the di-
verse features and patterns captured within the data.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 12: Training Details on the Gen1. (a) Learning rate, (b) loss reduction, (c) mAP50, (d)mAP ,
(e) mAPlarge, (f) mAPmiddle, (g) mAPsmall.

(a) (b)

(c) (d)

(e) (f) (g)

Figure 13: Training Details on the 1Mpx. (a) Learning rate, (b) loss reduction, (c) mAP50, (d)mAP ,
(e) mAPlarge, (f) mAPmiddle, (g) mAPsmall.
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Figure 14: More visualization results on the Gen1 dataset.
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Figure 15: More visualization results on the 1Mpx dataset.
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