
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHICAL CODE EMBEDDINGS WITH MULTI-
LEVEL ATTENTION
FOR REINFORCEMENT LEARNING STATE REPRESENTA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose novel state representation and reinforcement learning
(RL) system of encoding the semantics of code hierarchically using multiple
attention mechanisms. Traditional approaches regularly address code embeddings
as flat sequences or to be reliant only on graph-based representations, which don’t
capture the complex level of interplay between local and global code features.
The proposed method incorporate token-level, function-level, and module-level
attention using graph-structured dependencies, to allow the RL agent to reason
about code at varying granularities while maintaining structural relationships

1 INTRODUCTION

Traditional RL approaches often rely on handcrafted features (or shallow embeddings [and] fail to
capture the rich semantic and structural information inherent in code (Mousavi et al., 2016).

Recent progress is being made in code representation learning to demonstrate exciting results with
Neural Investigations. Word2Vec-style embeddings (Mikolov et al., 2013) and graph neural networks
(Zhou et al., 2020) have been adapted for code Sequential or Tele-centric analysis yet, usually these
techniques are restricted to either sequential or structural aspects Pepys by itself.

Current methods often generate embeddings that are either without context being aware of the token
of the word embeddings. level or fail to maintain important architectural relationships at higher
abstraction levels (Chandak et al., 2019).

We propose a novel hierarchical attention model which integrates graph-based and sequential attention
mechanisms on several levels of code abstraction.

Our approach differs from previous work in several ways that are important. First, unlike approaches
that learn the representations of codes in isolation from the RL task (Stooke et al., 2021), we optimize
the embeddings end to end on the purpose of policy learning objective. Second, we extend beyond
flat attention mechanism by introducing hierarchical attention that respects the natural organisation
of code. Third, our graph attention component explicitly models both the syntactic (AST based) and
the semantic (dependency-based) relationships, and so making a more complete structural paper than
previous graph-based approaches (Kanade et al., 2020).

How effective our approach is is proven by extensive experiments on code related RL tasks.

2 RELATED WORK

The development of good representations of states for reinforcement learning in code-related tasks is
based on several lines of research: code representation learning attention mechanisms in program
analysis, and RL specific embedding techniques.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2.1 CODE REPRESENTATION LEARNING

The introduction of neural embeddings revolutionized in this field, methods such as code2vec (Alon
et al., 2019) learning distributed representations of code snippets on the basis of their syntactic paths.
Subsequent work expanded on these ideas to graph-based representations, in particular to abstract
syntax trees (ASTs) * control flow graphs (Allamanis et al., 2017).

More modern versions have examined hierarchical representations of code. The SG-Trans model (Gao
et al., 2023) introduced a structure-guided transformer for capturing hierarchical information through
attention mechanisms, giving benefits of code summarization tasks. Similarly, (Zhou et al., 2022)
proposed a hierarchical code representation which independently models tokens and ast structures.

2.2 ATTENTION MECHANISMS IN PROGRAM ANALYSIS

Attention mechanisms have hence become more important in program Some of these include: - To
structure the code: - To locate the relevant parts of the code: - To reuse the code: analysis, which
allows models to concentrate on parts of the code that are relevant. The transformer architecture
(Vaswani et al., 2017) has been especially influential, with adaptations such as CodeBERT (Feng
et al., 2020) applying self-attention to code sequences.

Graph attention networks, GATs (Veličković et al., 2017) have emerged as a powerful alternative
to structural reasoning, propagating information along graph edges in learning attention weights
between connected nodes Some recent efforts have combined these approaches such as (Wang et al.,
2020b), which uses hierarchical attention for code summarization using RL guidance.

2.3 RL-SPECIFIC EMBEDDING TECHNIQUES

In reinforcement learning, state representation learning has been recognized to be important in dealing
with observation spaces involving complexities. Methods like SALE (Fujimoto et al., 2023) learn
joint embeddings of Policy learning - states and actions to better policy learning. Other approaches
focus on learning latent state representations (Du et al., 2019), particularly in partially observable
environments.

For tasks specific to RL by code, there has recently been work on various representation strategies.
(Pritz et al., 2021) proposed jointly learning state and action embeddings, while (Gomez et al., 2025)
used recurrent networks for code generation tasks.

The proposed method differs from the existing approaches in that modelling of code at various
levels of abstraction using custom attention mechanisms. Unlike (Gao et al., 2023) which uses
hierarchical attention on summarization, we optimize the RL: representation for the reinforcement
learning objectives. With respect to graph-based methods (Allamanis et al., 2017), our approach
integrates sequential and structural attention granularities

3 BACKGROUND AND PRELIMINARIES

To set up the gloss structure for our hierarchical attention model, we first review of important ideas in
code unfold attention mechanisms.

3.1 CODE REPRESENTATION PARADIGMS

Sequence-based models consider code as a linear array of tokens, applying techniques from natural
language processing such as recurrent neural networks (Sutskever et al., 2014) or transformers
(Vaswani et al., 2017). While being effective in local pattern recognition, these methods often have
the troubles with long-range dependencies and structure relationships inherent on code.

Tree-based representations make use of the abstract syntax tree (AST) Structure of Programs Captur-
ing syntactic Relationships by recursive neural networks (Allamanis et al., 2016) or tree-structured
transformers (Nguyen et al., 2020). These approaches better retain the coding hierarchy - can neglect
important semantic connections that cut across syntactic boundaries,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Graph-based methods go beyond ASTs to use additional program analysis information like control,
data and call graphs (Cummins et al., 2021). Graph neural networks (GNNs) (Battaglia et al., 2018)
have shown particular promise in this domain, propagating information along the edges of a graph in
order to capture both paragmatics of syntactic and semantic relations.

3.2 ATTENTION MECHANISMS

Attention self attention as introduced for transformer architecture (Vaswani et al., 2017), computes
pairwise interactions among all the elements in a sequence, allowing the elements to interact directly
modeling of long range dependency; This mechanism has been introuduced widely adapted for code
processing tasks (Zhang et al., 2025).

Graph attention networks (GATs) (Veličković et al., 2017) extend this idea to graph structured data,
computing attention weights between connected nodes.

3.3 REINFORCEMENT LEARNING STATE REPRESENTATION

Representation learning for RL has the task to automatically find meaningful state encodings that aid
in both immediate action selection and long-term value estimation (Rumelhart et al., 1986).

Recent work has shown the advantage of the combination of representation learning with RL objec-
tives (Stooke et al., 2021).

4 HIERARCHICAL GRAPH-SEQUENTIAL ATTENTION FOR CODE EMBEDDINGS

The proposed hierarchical attention model works by processing code at three levels of abstraction
which each employ specialized attention mechanisms customized to the structural of that level.

4.1 HIERARCHICAL MULTI-LEVEL ATTENTION MECHANISMS

At the token level, we process raw the tokens of the code using a transformer encoder using relative
positional encoding. For a token sequence {xi}ni=1, the attention weights between positions i and j
Given both content based similarity and the relative position information:

αij = softmax
(
(Wqxi)

⊤(Wkxj +Ri−j)√
dk

)
(1)

where Ri−j represents learnable relative position embeddings that maintain order in code whilst
giving variable-length dependencies. The dimension dk is used to scale the dot product so that we
don’t gradient saturation.

Function level attention is affected on abstract syntax tree (AST) structure, aggregating token’s
representation into function embeddings. For AST nodes u and v, we compute structural attention
weights: .

βuv = softmax
(
LeakyReLU

(
a⊤[Wfhu∥Wfhv∥euv]

))
(2)

where euv encodes edge features (e.g., AST relationship types) and ∥ denotes concatenation.

Module level attention dynamically weights function contributions based on their relevance to the
existing RL task:

γi = softmax
(
v⊤ tanh(Wmfi + ci)

)
(3)

Here ci captures function metadata (e.g., call frequency, complexity metrics) that may contact its
importance in the module context.

4.2 INTEGRATION OF GRAPH AND SEQUENTIAL ATTENTION

The CodeTransformer-GAT architecture is a combination of these attention mechanisms through a
hybrid design. The transformer part processes token GAT sequences while the one longer the GAT
depends on AST AND code dependency graph (CDG) structures. However, for cdg edges between
modules r and s we compute:

δrs = softmax
(
LeakyReLU

(
b⊤[Umr∥Ums∥ers]

))
(4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where ers encodes inter-module relationship types (e.g., Number of function calls, number of
dependencies in data).

Figure 1: Hierarchical Code Embeddings Architecture

the architecture discussed in Figure 1 How these components interact. Token-level representations
move up through function and module attention layers, while the graph edges propagate information
horizontally in the hierarchy.

4.3 TASK-ADAPTIVE STATE REPRESENTATION FOR RL

The last state representation is a concatenation of embeddings for all levels:

s = [hCLS∥fmain∥mroot∥gCDG] (5)

where hCLS is a task-specific token embedding trained to aggregate relevant contexts, fmain represents
the main function’s embedding, mroot captures module-level information, and gCDG is a graph-readout
vector summarising the structure of the CDG.

This representation is end-to-end fine-tuned using RL objectives through:

∇θJ (θ) = E[∇θ log πθ(a|s)Qπ(s, a)] (6)

where the policy πθ and value function Qπ both operate on the hierarchical state encoding s. The
gradient updates propagate backward through all attention layers (orange boxes), to enable the model
to at-least learn which features of a code are the most predictive of being rewarded.

4.4 STRUCTURAL DEPENDENCY AUGMENTATION VIA CDG

The code dependency graph goes beyond the syntactic dependencies of AST relationships to provide
a model of semantic connections between modules. For each CDG edge type We have a separate
attention head, t:

δtrs = softmax
(
(Wq

tmr)
⊤(Wk

tms)√
dt

)
(7)

where is dt the number of dimensions for edge type t. This multi-head approach that enables the
model specialise attention patterns for different dependency types (e.g. function calls vs. data flow).

4.5 DYNAMIC EDGE FEATURE LEARNING

Edge representations change in traversing the training process through:

e(l+1)
uv = MLP(l)

(
[e(l)uv∥h(l)

u ∥h(l)
v ]

)
(8)

At layer l, the edge features update their previous state by combining it with the or even better read
’connected nodes representations.’

The full model switches back and forth between processing sequences through transformer layers,
propagating info using graph attention layers, and the relative balance between these pathways is
learned; Strictly speaking, they are acquired automatically during the training process.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL SETUP

To test the effectiveness of our hierarchy attention model for RL” state representation, we devised an
entire experimental framework comparing our approach with a number of baseline methods across
multiple code-related tasks.

5.1 DATASETS AND TASKS

We evaluated our approach on three distinct code-related RL tasks that require different levels of
program understanding:

1. Code Completion: An RL agent must predict the next token in a partial program, with
rewards based on prediction accuracy and semantic correctness (Chen et al., 2021). We
used the PY150 dataset (Lu et al., 2021) containing 150,000 Python files from open-source
projects.

2. Program Repair: The agent learns to fix bugs in existing code, receiving rewards for suc-
cessful repairs (Wang et al., 2017). We employed the ManySStuBs4J dataset (Karampatsis
& Sutton, 2020) containing reproducible Java bugs and their fixes.

3. Algorithmic Problem Solving: The agent must generate correct implementations for
programming competition problems (Hendrycks et al., 2021). We used the APPS benchmark
(Cui, 2024) containing 10,000 problems with test cases.

Each task was implemented as a Markov Decision Process (MDP) where states represent the current
program state and actions correspond to valid code modifications or additions.

5.2 BASELINE METHODS

We compared our hierarchical attention model (CodeTransformer-GAT) against five representative
baselines:

1. Sequence Transformer: A standard transformer encoder (Vaswani et al., 2017) processing
code as a flat token sequence, serving as our pure sequential baseline.

2. Tree-LSTM: A tree-structured LSTM (Wang et al., 2020a) operating on the AST, represent-
ing hierarchical but non-attentive approaches.

3. CodeBERT: The pre-trained CodeBERT model (Feng et al., 2020) fine-tuned for RL,
demonstrating transfer learning capabilities.

4. GNN-CDG: A graph neural network (Hamilton, 2020) processing only the code dependency
graph, highlighting structural approaches.

5. Flat-GAT: A graph attention network applying uniform attention across all nodes regardless
of hierarchy, showing the value of our level-specific attention.

All baselines were adapted to output state representations of comparable dimensionality (768-D) and
trained with identical RL algorithms for fair comparison.

5.3 IMPLEMENTATION DETAILS

Our CodeTransformer-GAT implementation used the following architecture:

• Token-level: 6-layer transformer with 8 attention heads (hidden size 768)
• Function-level: 3-layer GAT with edge-type specific attention (4 edge types)
• Module-level: 2-layer GAT with dynamic edge features
• RL Framework: Proximal Policy Optimization (PPO) (Schulman et al., 2017) with gener-

alized advantage estimation

The model was trained end-to-end using AdamW optimizer (Loshchilov & Hutter, 2017) with learning
rate 5e-5 and batch size 32.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.4 EVALUATION METRICS

We assessed performance using both RL-specific and code quality metrics:

1. RL Performance:

• Cumulative reward over training
• Sample efficiency (steps to reach 80% max reward)
• Policy entropy (measure of exploration)

2. Code Quality:

• Compilation/interpretation success rate
• Test case pass rate
• CodeBLEU score (?)
• AST edit distance (for repair tasks)

3. Representation Quality:

• t-SNE visualization of state space
• Nearest neighbor analysis
• Attention head diversity

All metrics were computed on held-out test sets not seen during training, with statistical significance
tested via paired t-tests (p ¡ 0.01).

5.5 TRAINING PROTOCOL

To ensure fair comparison, all methods followed the same training protocol:

1. Warm-up Phase: 10,000 steps of supervised pre-training on demonstration trajectories

2. RL Phase: 90,000 steps of policy optimization with exploration

3. Evaluation: Periodic testing on validation sets with early stopping

The action space included token-level edits (insert/replace/delete) and (complexity raising functions,
name changes of variables) depending on the task.

6 RESULTS AND ANALYSIS

The results of the experimental evaluation show that significant improvements in all all the tasks if
using our hierarchical attention model compared to baseline approaches.

6.1 PERFORMANCE ACROSS TASKS

Table 1 presents the comparative results on the three evaluation tasks, demonstrating the consistent
superiority of our model in terms of both RL performance and code quality metrics.

Our hierarchical attention model achieves a 6.6% absolute improvement in code completion BLeU
score in comparison to the best baseline (CodeBERT), demonstrating its increased capacity for
syntactic and semantically-appropriate tokens.

6.2 TRAINING DYNAMICS AND SAMPLE EFFICIENCY

Figure 2 shows the learning curves studied for all methods on the program related task, displaying
the faster convergence and increase in performance of our model, asymptotic performance.

The policy entropy measurements suggest interesting dynamics in exploration behavior.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across code-related RL tasks

Code Completion Program Repair Algorithmic Avg.
(BLEU) (Success Rate) Solving (Pass Rate) Reward

Sequence Transformer 62.3 41.7% 53.2% 0.58
Tree-LSTM 65.1 45.2% 57.8% 0.62
CodeBERT 68.4 48.6% 61.3% 0.67
GNN-CDG 63.8 43.9% 55.1% 0.60
Flat-GAT 66.7 47.1% 59.4% 0.65
Our Model 72.9 54.3% 67.5% 0.74

Figure 2: Learning curves comparing cumulative reward across training steps

6.3 ATTENTION PATTERN ANALYSIS

Examining the learned attention patterns gives an insight into how our model processes code to
various levels,

The attention at the module level shows that there is a task-dependent specialization. For code
completion, like attention is focused on lexically nearby modules attention distance 2.1 edges points),
while program repair shows greater attention spread (on mean distance 3.8 edges) which would have
to be necessary for Where tracking the propagation paths of bugs

6.4 REPRESENTATION SPACE ANALYSIS

t-SNE visualizations of the learned state representations are shown here: as you can clearly see
clustering based on semantic categories instead of surface syntactic features.

Nearest neighbor analysis shows that our model’s embeddings are better maintain functional similarity
with/from the baselines.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation study results (program repair success rate)

Model Variant Success Rate ∆ vs. Full Model

Full Model 54.3% -
w/o Token-Level Attention 48.1% -6.2%
w/o Function-Level Attention 50.7% -3.6%
w/o Module-Level Attention 51.9% -2.4%
w/o CDG Edges 52.4% -1.9%
Uniform Attention 49.8% -4.5%

6.5 ABLATION STUDY

To understand the role of each of the components in our hierarchical attention model, we performed
an ablation study by systematically eliminating key elements and measuring the performance impact
on the program repair task.

The results show that function of all the components is positive in overall performance with token-level
attention giving the biggest individual contribution (-6.2% when removed).

6.6 SCALABILITY ANALYSIS

For evaluation of the practical applicability, we tested the model’s performance on programs of
varying sizes. Figure 3 presents the relationship between prediction error and complexity of the codes
(as the number of functions).

Figure 3: Prediction error versus code complexity for different embedding methods

Our model keeps lower error rates for increasing code complexity with especially strong performance
on bigger programs (50+ functions).

Memory consumption is linearly proportional to program size with our model, compared to quadratic
growth for sequence transformers, which it makes feasible to process real-life codebases.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.7 ERROR ANALYSIS

Looking at cases of failures, some interesting patterns emerged. Most errors occur as those where
rare language features are needed or complex interprocedural analysis.

The hierarchical attention mechanism appears to have specially value in avoiding some mistakes;

7 DISCUSSION AND FUTURE WORK

7.1 LIMITATIONS OF THE HIERARCHICAL CODE EMBEDDING SYSTEM

While our hierarchical attention model is able to demonstrate strong performance across several tasks.
9 Need to discuss several limitations of this study.

7.2 POTENTIAL APPLICATION SCENARIOS

Studies aside from those of what the hierarchical code embeddings may be useful for a number of
emerging applications. In automated program synthesis, the multi-level representations could lead the
the generation process by keeping the consistency across abstraction levels (Zhong et al., 2023). For
code search and One suggests that ”embeddings could enable more semantic”. matching by taking
both structural and functional similarities (Husain et al., 2019).

Real-time code quality analysis might utilize the next levels of attention patterns to identify any
potential issues at a variety of scopes, from localized anti-patterns to architectural smells (Liu
et al., 2019). In educational settings, the embeddings could have the power for more sophisticated
programming tutors by identifying conceptual misconceptions that are reflected in student code
structure (Haldeman, 2021).

Security applications are another potential direction. The combination of sequential and graph based
attention could do better vulnerability detection by modeling both syntactical vulnerability patterns
and propagation paths of patterns in call graphs (Wu & Zou, 2022). Similarly the embeddings may
boost malware Using Hierarchical Structure Formal analysis Using hierarchical organization of
malicious code components (Guo et al., 2025).

7.3 ETHICAL CONSIDERATIONS

The potential of misuse in automated vulnerability discovery and special safeguards required for
exploiting generation (Vemuri et al., 2023). Model’s Ability to Learn and reproduce code patterns
also introduces copyright issues while training on Open Source repositories with different licenses
(Gao et al., 2024).

For example, the model may inherit and propagate stylistic choices or patterns of architecture that
reflect demographic imbalances in the software development world (Park et al., 2025). models
(potentially reduced accountability in high stakes application) (Das & Rad, 2020).

8 CONCLUSION

The hierarchical cherry-picking of the code embedding system with multi-level attention Research
into mechanisms provides major breakthrough in reinforcement learning state representation for code
related task.

9 THE USE OF LLM

We use LLM polish writing based on our original paper.

REFERENCES

M Allamanis, H Peng, and C Sutton. A convolutional attention network for extreme summarization
of source code. In International Conference On Machine Learning, 2016.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

M Allamanis, M Brockschmidt, and M Khademi. Learning to represent programs with graphs.
Technical report, arXiv preprint arXiv:1711.00740, 2017.

U Alon, M Zilberstein, O Levy, and E Yahav. code2vec: Learning distributed representations of code.
In Proceedings of the ACM on Programming Languages, 2019.

PW Battaglia, JB Hamrick, V Bapst, et al. Relational inductive biases, deep learning, and graph
networks. Technical report, arXiv preprint arXiv:1806.01261, 2018.

Y Chandak, G Theocharous, J Kostas, et al. Learning action representations for reinforcement
learning. In International Conference On Machine Learning, 2019.

M Chen, J Tworek, H Jun, Q Yuan, HPDO Pinto, et al. Evaluating large language models trained on
code. Technical report, arXiv preprint arXiv:2107.03374, 2021.

Y Cui. Webapp1k: A practical code-generation benchmark for web app development. Technical
report, arXiv preprint arXiv:2408.00019, 2024.

C Cummins, ZV Fisches, T Ben-Nun, et al. Programl: A graph-based program representation for
data flow analysis and compiler optimizations. In International Conference On Machine Learning,
2021.

A Das and P Rad. Opportunities and challenges in explainable artificial intelligence (xai): A survey.
Technical report, arXiv preprint arXiv:2006.11371, 2020.

S Du, A Krishnamurthy, N Jiang, et al. Provably efficient rl with rich observations via latent state
decoding. In International Conference On Machine Learning, 2019.

Z Feng, D Guo, D Tang, N Duan, X Feng, et al. Codebert: A pre-trained model for programming and
natural languages. Technical report, arXiv preprint arXiv:2002.08155, 2020.

S Fujimoto, WD Chang, E Smith, et al. For sale: State-action representation learning for deep
reinforcement learning. In Advances in Neural Information Processing Systems, 2023.

H Gao, M Zahedi, C Treude, S Rosenstock, et al. Documenting ethical considerations in open source
ai models. In Proceedings of the 18th ACM International Conference on Computing Frontiers,
2024.

S Gao, C Gao, Y He, J Zeng, L Nie, X Xia, et al. Code structure–guided transformer for source code
summarization. ACM Transactions On Software Engineering And Methodology, 2023.

M Gomez, N Gruver, M Lam, R Saxena, and L Wang. Imitation learning for code generation via
recurrent state space embeddings. Technical report, ngruver.github.io, 2025.

W Guo, W Du, X Yang, J Xue, Y Wang, W Han, and J Hu. Malhapgnn: An enhanced call graph-based
malware detection framework using hierarchical attention pooling graph neural network. Sensors,
2025.

G Haldeman. Automated feedback generation for programming assignments. Technical report,
search.proquest.com, 2021.

WL Hamilton. Graph representation learning. Technical report, books.google.com, 2020.

D Hendrycks, S Basart, S Kadavath, M Mazeika, et al. Measuring coding challenge competence with
apps. Technical report, arXiv preprint arXiv:2105.09938, 2021.

H Husain, HH Wu, T Gazit, M Allamanis, et al. Codesearchnet challenge: Evaluating the state of
semantic code search. Technical report, arXiv preprint arXiv:1909.09436, 2019.

A Kanade, P Maniatis, et al. Learning and evaluating contextual embedding of source code. In
Proceedings of the 37th International Conference on Machine Learning, 2020.

RM Karampatsis and C Sutton. How often do single-statement bugs occur? the manysstubs4j dataset.
In The 17th International Conference On Software Engineering And Formal Methods, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

H Liu, J Jin, Z Xu, Y Zou, Y Bu, et al. Deep learning based code smell detection. Ieee Transactions
On Software Engineering, 2019.

I Loshchilov and F Hutter. Decoupled weight decay regularization. Technical report, arXiv preprint
arXiv:1711.05101, 2017.

S Lu, D Guo, S Ren, J Huang, A Svyatkovskiy, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. Technical report, arXiv preprint arXiv:2102.04664,
2021.

T Mikolov, K Chen, G Corrado, and J Dean. Efficient estimation of word representations in vector
space. Technical report, arXiv preprint arXiv:1301.3781, 2013.

SS Mousavi, M Schukat, and E Howley. Deep reinforcement learning: an overview. In Proceedings
of Sai Intelligent Systems Conference, 2016.

XP Nguyen, S Joty, SCH Hoi, and R Socher. Tree-structured attention with hierarchical accumulation.
Technical report, arXiv preprint arXiv:2002.08046, 2020.

SM Park, M Ho, MPC Lin, and J Ryoo. Evaluating the impact of assistive ai tools on learning
outcomes and ethical considerations in programming education. Unable to determine the complete
publication venue, 2025.

PJ Pritz, L Ma, and KK Leung. Jointly-learned state-action embedding for efficient reinforcement
learning. In Proceedings of the 30th ACM International Conference on Information and Knowledge
Management, 2021.

DE Rumelhart, GE Hinton, and RJ Williams. Learning representations by back-propagating errors.
nature, 1986.

J Schulman, F Wolski, P Dhariwal, A Radford, et al. Proximal policy optimization algorithms.
Technical report, arXiv preprint arXiv:1707.06347, 2017.

A Stooke, K Lee, P Abbeel, et al. Decoupling representation learning from reinforcement learning.
In International Conference on Machine Learning, 2021.

I Sutskever, O Vinyals, and QV Le. Sequence to sequence learning with neural networks. In Advances
in Neural Information Processing Systems, 2014.

A Vaswani, N Shazeer, N Parmar, et al. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

P Veličković, G Cucurull, A Casanova, et al. Graph attention networks. Technical report, arXiv
preprint arXiv:1710.10903, 2017.

N Vemuri, N Thaneeru, and VM Tatikonda. Securing trust: Ethical considerations in ai for cyberse-
curity. Journal of Knowledge Learning and Security Technology, 2023.

K Wang, R Singh, and Z Su. Dynamic neural program embedding for program repair. Technical
report, arXiv preprint arXiv:1711.07163, 2017.

W Wang, G Li, S Shen, X Xia, and Z Jin. Modular tree network for source code representation
learning. ACM Transactions On Software Engineering And Methodology, 2020a.

W Wang, Y Zhang, Y Sui, Y Wan, Z Zhao, et al. Reinforcement-learning-guided source code
summarization using hierarchical attention. IEEE Transactions On Software Engineering, 2020b.

B Wu and F Zou. Code vulnerability detection based on deep sequence and graph models: A survey.
Security and Communication Networks, 2022.

K Zhang, J Li, Z Li, Z Jin, and G Li. Transformer-based code model with compressed hierarchy
representation. Empirical Software Engineering, 2025.

L Zhong, R Lindeborg, J Zhang, JJ Lim, et al. Hierarchical neural program synthesis. Technical
report, arXiv preprint arXiv:2303.06018, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang, et al. Graph neural networks: A review of
methods and applications. AI open, 2020.

Z Zhou, H Yu, G Fan, Z Huang, and X Yang. Summarizing source code with hierarchical code
representation. Information and Software Technology, 2022.

12


	Introduction
	Related Work
	Code Representation Learning
	Attention Mechanisms in Program Analysis
	RL-Specific Embedding Techniques

	Background and Preliminaries
	Code Representation Paradigms
	Attention Mechanisms
	Reinforcement Learning State Representation

	Hierarchical Graph-Sequential Attention for Code Embeddings
	Hierarchical Multi-Level Attention Mechanisms
	Integration of Graph and Sequential Attention
	Task-Adaptive State Representation for RL
	Structural Dependency Augmentation via CDG
	Dynamic Edge Feature Learning

	Experimental Setup
	Datasets and Tasks
	Baseline Methods
	Implementation Details
	Evaluation Metrics
	Training Protocol

	Results and Analysis
	Performance Across Tasks
	Training Dynamics and Sample Efficiency
	Attention Pattern Analysis
	Representation Space Analysis
	Ablation Study
	Scalability Analysis
	Error Analysis

	Discussion and Future Work
	Limitations of the Hierarchical Code Embedding System
	Potential Application Scenarios
	Ethical Considerations

	Conclusion
	The Use of LLM

