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Abstract

Given just a few glimpses of a scene, can you imagine the movie playing out as
the camera glides through it? That’s the lens we take on sparse-input novel view
synthesis, not only as filling spatial gaps between widely spaced views, but also as
completing a natural video unfolding through space.

We recast the task as fest-time natural video completion, using powerful priors from
pretrained video diffusion models to hallucinate plausible in-between views. Our
zero-shot, generation-guided framework produces pseudo views at novel camera
poses, modulated by an uncertainty-aware mechanism for spatial coherence. These
synthesized frames densify supervision for 3D Gaussian Splatting (3D-GS) for
scene reconstruction, especially in under-observed regions. An iterative feedback
loop lets 3D geometry and 2D view synthesis inform each other, improving both
the scene reconstruction and the generated views.

The result is coherent, high-fidelity renderings from sparse inputs without any scene-
specific training or fine-tuning. On LLFF, DTU, DL3DV, and MipNeRF-360, our
method significantly outperforms strong 3D-GS baselines under extreme sparsity.
Our project page is at https://decayale.github.io/project/SV2CGS.

1 Introduction

Humans can effortlessly imagine how a scene appears from unseen viewpoints by mentally filling
in gaps, by drawing on prior visual experience to infer what’s missing. Inspired by this ability,
we reinterpret novel view synthesis — a long-standing challenge in computer vision and graphics
[8,21,11,42,31, 66, 44, 18, 27] — as the task of completing a natural video from sparse camera views
(Fig. 1). From this perspective, sparse-input novel view synthesis becomes analogous to recovering
missing frames in a video captured along an unconstrained camera trajectory. This framing naturally
invites the use of powerful generative priors learned from large-scale video data. In particular,
pretrained video diffusion models [5, 55], which are trained to synthesize coherent and realistic scene
motions, offer a compelling tool for filling in plausible scene content between widely spaced views.

Recently, NeRF [31, 2, 4, 32] and 3D Gaussian Splatting (3D-GS) [18, 61, 13, 15, 28] have significantly
advanced novel view synthesis. Unlike NeRF, which represents scenes using an implicit function,
3D-GS models scenes explicitly with a set of 3D Gaussian primitives and renders images through
efficient rasterization. 3D-GS achieves photorealistic rendering with substantially faster inference
speed, making it a focal point of recent research interest.

However, synthesis from sparse inputs remains difficult. NeRF or 3D-GS methods typically rely on
dense input views to accurately constrain the optimization process. In sparse-view settings, occlusions
and geometric ambiguities [63] often lead to rendering artifacts and degraded quality. Recent efforts
[22, 67, 10, 16, 50, 52] focus more on constrained camera paths (e.g., object-centric or forward-facing
views). In contrast, real-world image capture from walking with a handheld smartphone often
produces widely spaced, unconstrained views with large occlusions and out-of-view regions (Fig. 1).
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Figure 1: We view sparse-input novel view synthesis as temporal-spatial completion of a natural-
looking video. Left: Our generation-guided reconstruction pipeline. With the initialized 3D-GS from
sparse input views, @ we create on interpolated poses and estimate their uncertainty,
based on the currently optimized 3D-GS. @ Using both guidance images and their uncertainties, we
modulate the diffusion score function to interpolate between sparse input views. @ The interpolated
views are used to constrain 3D-GS optimization. Right: With our generation-guide reconstruction,
the in the inputs are enhanced by the views generated by the diffusion model.

Motivated by the natural video completion perspective and strong priors in pretrained video diffusion
models, we propose a zero-shot, generation-guided reconstruction pipeline integrating video
diffusion with 3D-GS. Our approach defines target camera trajectories between sparse input views and
uses video diffusion priors to synthesize plausible intermediate pseudo-views. These views provide
supervision to better constrain 3D-GS training, especially in the under-observed regions in the inputs.

To recover missing views along a natural video trajectory, we must generate images at specified camera
poses. However, existing video diffusion models [5, 6, 19, 45] are typically conditioned only on the
initial frame and produce uncontrolled camera motions. While recent methods [49, 60] introduce
trajectory conditioning during training, they still lack guarantees of pose alignment at inference and
rely heavily on datasets with camera parameters, limiting generalization and scalability.

We propose a novel uncertainty-aware modulation mechanism that couples video diffusion with 3D
Gaussian Splatting (3D-GS), enabling accurate, controllable frame interpolation under sparse-view
settings. In this setup, 3D-GS provides a consistent 3D representation to guide view synthesis, while
synthesized frames serve as pseudo supervision to further refine the 3D-GS model.

Fig. 1 illustrates our overall workflow. Our method begins by initializing 3D-GS from sparse views.
After initialization, we interpolate camera poses between sparse inputs and create corresponding
guidance images on the interpolated poses by inversely warping pixels from the nearest input view.
The warping process is based on the depth maps rendered by the currently optimized 3D-GS. These
guidance images are essential to maintaining the content and structural consistency during view
interpolation, but may contain missing parts and artifacts due to imperfect 3D-GS depths and occlusion.
We thus further model the uncertainty of these guidance images by assessing cross-view consistency
in terms of photometry and geometry, and thereby focus the diffusion process more on correcting
high-uncertainty regions, while keeping the reliable parts. Using both the guidance images and their
associated uncertainties, we adaptively modulate the diffusion process to interpolate between the
sparse views. The interpolated pseudo views are then added to the training set of 3D-GS. Furthermore,
to improve the scene completeness for 3D-GS, we propose a Gaussian primitive densification module
to densify the 3D-GS point cloud in under-observed regions using these pseudo views as bridges. The
process above is repeated iteratively to refine the 3D-GS reconstruction.

To summarize, our contributions are threefold: 1) We propose a zero-shot, generation-guided 3D-GS
pipeline that leverages pretrained video diffusion models to improve novel view synthesis under
sparse inputs. 2) We introduce an uncertainty-aware modulation mechanism to integrate 3D-GS
with video diffusion for controllable pseudo-view generation, and a Gaussian primitive densification
module to enhance scene completeness. 3) Our method achieves state-of-the-art performance, with



over 2.5 dB PSNR gain on DL3DV and strong results on LLFF and DTU, demonstrating robust
generalization. While we primarily use Stable Video Diffusion [5], our framework is agnostic to the
diffusion backbone and compatible with alternatives [55, 19].

2 Related Work

Sparse-input Novel View Synthesis. Sparse-input novel view synthesis aims to reconstruct a
representation for generating novel views of a scene using a few input images. Although existing
training-based methods, i.e. NeRF [31] and 3DGS [18], work well with dense inputs, their performance
drops significantly with sparse views due to overfitting [37, 46, 33, 12, 39]. Several recent works
explore robust novel view synthesis under sparse inputs. One group [7, 33, 16, 43, 40, 20, 67, 56]
focuses on imposing additional regularization on views deviating from the training views. For example,
GeoAug [7] randomly samples novel views around input frames and constrains rendering to match
the input after view warping. Niemeyer et al. [33] introduce smooth depth regularization on unseen
views. SPARF [43], GeCoNeRF [20], and FewViewGS [56] integrate multi-view correspondence
and geometry loss into optimization. However, these methods do not address the fundamental issue
of information deficiency in unobserved regions.

Another line of methods explores including priors from pre-trained neural networks [12, 46, 51, 34, 67,
22] for regularization. For example, Jain et al. [16] leverage CLIP [36] features to provide semantic
guidance. DSNeRF [12] and SparseNeRF [46] use depth regularization from pre-trained depth
estimators on known views to guide optimization. More recently, FSGS [67] and DNGaussian [22]
extend the similar sprit to 3D-GS training. However, these priors do not directly provide visual
supervision for sparse-view NVS like the visual diffusion prior.

Novel View Synthesis with Diffusion Priors. To leverage visual priors, several lines of work have
emerged. Liu et al. [26] use diffusion models to generate pseudo-observations at unseen views, while
Wu et al. [50] guide diffusion with a NeRF representation [58] to synthesize novel views.

To reduce the computational burden of fine-tuning diffusion models, Xiong et al. [52] and Wang
et al. [47] adopt Score Distillation Sampling (SDS) [35] to extract external visual priors. However,
these approaches rely on image-based diffusion models and thus fail to fully capture spatiotemporal
correlations across views. More recently, Liu ef al. [25] fine-tuned Stable Video Diffusion [5] to
provide view interpolation capability for guiding 3D-GS reconstruction. While this significantly
improves performance, it requires substantial computational resources, limiting practical efficiency.

Despite progress in view-conditioned generative models [24, 48, 38, 62], existing methods are either
object-centric [24] or struggle to generate photorealistic views [38, 62, 48]. Recent approaches [14,
57,49, 60] enable coarse camera motion control for video generation from a single frame but lack a
consistent 3D representation, which compromises cross-view consistency and reproducibility.

Consequently, how to effectively leverage zero-shot video diffusion priors for novel view synthesis is
an important open challenge. The concurrent work [65] is closely related to ours, but it depends on a
video diffusion model trained with camera poses [60], and the code was not publicly available at the
time of our submission. In contrast, our method can, in principle, be applied to any video diffusion
model trained on raw videos, making it more broadly generalizable.

3 Preliminaries — More Details in Appendix

3D Gaussian Splatting (3D GS) [18] represents 3D scenes explicitly using Gaussian prlmltlves each
defined by mean p € R? and covariance ¥ € R3*3: G(z) = exp (—1(x — p) T~z — p)).
Each Gaussian also includes spherical harmonics coefficients c for view—dependent color and an opacity
«, enabling expressive appearance modeling. Rendering is performed eﬁiciently via rasterization.
After projecting Gaussmns to the image plane, pixel colors are computed using alpha compositing:

Cpix = Y, City; H (1 «;), where ¢; and «; denote the color and opacity of the i-th Gaussian,
respectively. For depth rendering, c; is replaced by the z-buffer value.

Stable Video Diffusion (SVD) [5] is an image-to-video diffusion model that generates natural video
conditioned on an input image. By default, generation starts from the given image and autonomously
evolves, incorporating random camera movements and scene dynamics.
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Figure 2: Our approach leverages uncertainty-aware diffusion to synthesize pseudo views from
sparse inputs and uses them to refine 3D Gaussian Splatting. © We initialize 3D-GS from sparse
input images. @ We generate guidance images and estimate their uncertainties based on the current
3D-GS renderings. @ These guidance images guide the diffusion process via uncertainty-aware
modulation, enhancing uncertain regions while preserving reliable parts. @ The resulting pseudo-view
images are then used to densify Gaussian primitives and constrain the 3D-GS training.

Given a forward diffusion process expressed by dx = f(¢)xdt + g(t)dw, where x is the noisy latent
state at timestamp ¢, w denotes the standard Wiener process, and f(¢) and g(t) are scalar functions,
its reverse process ODE [41] can be expressed as dx = [f(t)x — $g%(x)Vx log(q(x))] d¢. In the
case of the variance exploding (VE) diffusion [41] adopted by Stable Video Diffusion (SVD) [5], it
can be simplified as: dx = x;j‘" do, where the noise of the diffusion process is parameterized as
Gaussian noise with a variance of o; and X is the currently predicted clean video by the network
based on the latent state at the previous step. In practice, we can obtain the estimated denoised sample
x¢_1 at the previous time step by discretizing the diffusion process above:

X; — X
Xi1=X¢ + tTO(th —0y). (D
t

4 Our Test-Time Optimization Approach to Novel View Synthesis

We recast sparse-input novel view synthesis as a test-time natural video completion problem. To this
end, we propose an iterative optimization framework that integrates 3D Gaussian Splatting with video
diffusion priors to enforce geometric consistency and enhance visual fidelity.

Given a few input views Z'" and their associated camera poses, we propose a zero-shot, generation-
guided reconstruction pipeline that synthesizes novel views by leveraging a pretrained video diffusion
model [5] (Fig. 2). The framework consists of four main steps: 1) 3D-GS initialization from the
sparse input views; 2) Guidance feature creation and their uncertainty estimation via a cross-view
consistency check based on the current 3D-GS; 3) Uncertainty-aware modulation of the video
diffusion model in generating pseudo views, conditioned on the guidance images and uncertainty
masks; 4) Refinement of the 3D-GS by densifying the Gaussian primitives using the generated
pseudo-views. Steps 2)—4) are iteratively performed to progressively improve both the 3D-GS
representation and the quality of the diffusion model outputs.



4.1 Pseudo View Generation via Uncertainty-Aware Modulation

Most off-the-shelf video diffusion models lack precise camera control due to the scarcity of datasets
with known camera poses. To ensure broad applicability, we design our framework to be compatible
with widely available models [5, 55] that are conditioned solely on a single image. Moreover, our
approach is theoretically agnostic to variance-exploding diffusion backbones [41].

Video diffusion models [5] usually extract CLIP [36] features cj;, from the input frame [ P to inform
the U-Net of the scene’s overall appearance and layout. Simultaneously, the frame is encoded by a
VAE encoder to produce contextual features c,e, Which are injected via classifier-free guidance to
maintain consistency with the reference frame. At each denoising timestep ¢, the model denoises a
latent video representation x; € RYXCXHXW ysing a U-Net Ug (X+; Celip, Cvac: ), Where N, C, H,
W are the number of frames, feature and spatial dimensions of the latent, respectively. The U-Net
predicts a clean latent X from x; to update x; with Eq. (1), which direct x; toward Xy. The final
denoised latent, x, is decoded by the VAE decoder into a video clip.

Our method draws inspiration from diffusion-based image editing techniques [29, 59, 1, 53], particularly
SDEdit [29] for its efficiency. Specifically, we propose to modify the original clean latent prediction
X using the guidance feature g € RVXCXHXW extracted from the guidance images by the VAE
encoder. This modification is formulated as an optimization problem applied to each frame 4:

Xo[i] = arg min ||x — %o[d]13 + ye.llx — glillI3, @
X

where index [i] denotes the i-th frame channel corresponding to the i-th frame of the generated video,
and y; ; > 0 is a weighting term that controls the influence of the guidance feature. Next, we describe
how to obtain the feature map g that guides the diffusion model to generate views at desired poses,
and detail how to control 7, ; to achieve adaptive modulation.

Guidance Feature Creation. The core idea of our approach is to exploit video diffusion priors
to infer occluded or missing content from sparse input views. This requires constructing guidance
features that are geometrically aligned with the desired target view.

To resolve this, instead of using the 3D-GS to render color images, we create guidance images
by inversely warping pixels from their nearest input view, using depth maps rendered by 3D-GS.

Concretely, to construct the guidance image I fuid for the i-th video frame, we first project each
pixel p € I# into the nearest input view I'™ € TI", using the rendered depth map Dfu‘d, camera

intrinsics K, and camera poses P'" € SE(3) (input view) and Pf"id € SE(3) (guidance view), to get
its corresponding pixel q in the input image:

a =KP"(P{™) "' Di" (p)K'p. 3)

We fill pixel p with the color of pixel q to obtain the guidance image Ifmd. The set of guidance

images is denoted as 784 = {T fmd N |, where N is the length of the video clip generated by the
video diffusion model in a single pass. The VAE encoder will encode these guidance images to have
the corresponding guidance feature maps g to guide the diffusion process via Eq. (2).

Uncertainty Evaluation from Cross-View Consistency. The constructed guidance images well
preserve scene content and structure by adhering to strict multi-view geometric constraints imposed
by the 3D-GS representation. However, because 3D-GS is imperfect during training, especially in
under-observed regions, the guidance images may contain missing content or artifacts. To assess the
reliability of guidance images, we introduce a strict cyclic consistency check, as illustrated in Fig. 3a.
Specifically, in the forward pass, we project each pixel p in the guidance image to its corresponding
pixel q in the nearest input image using Eq. (3). We then perform a backward projection from q
to the guidance view using the depth map D™ rendered by 3D-GS from the nearest input view:
p’ = KP(Pim)~1 i (q)K ~'q. The uncertainty at pixel p is then quantified by evaluating both
geometric and photometric consistency:

e —pI3 ) — I™(a)lf3
S1 52 ’

Ui(p) =1 —exp ( 4)

where I¥* is the 3D-GS rendered image from the view of the i-th guidance image, '™ denotes the
nearest input image, and s1, so are bandwidth parameters controlling the sensitivity to geometric and
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Figure 3: Cross-view consistency provides a principled uncertainty estimate for guidance images,
enabling targeted refinement by video diffusion. (a) We evaluate cross-view consistency via
a forward—backward projection cycle between a guidance view and its nearest input view using
depths rendered from the current 3D-GS. (b) Regions exhibiting poor cross-view consistency (boxed
regions in the rendering) are identified as high-uncertainty areas (brighter in uncertainty maps), and
subsequently refined by the video diffusion model.

photometric discrepancies. If the 3D-GS is well constrained at pixel p and no occlusion is present,
the image pixel color ™" (q) should closely match the color of the 3D-GS rendering I (p), and the
back-projected position p’ should lie near the original p. This results in low uncertainty. Otherwise,
discrepancies in color or geometry increase the uncertainty, as captured by Eq. (4).

Uncertainty-Aware Modulation. Using the uncertainty map, we define +y; ; for each pixel in Eq. (2):

. fo U(p) >dort <t
Vt,i(P) = 1/(Us(p) +¢€) otherwise ’

where 0 and 7 are threshold hyperparameters and € is a small constant to avoid division by zero. The
threshold 7 is determined by the overall uncertainty of frame 4, defined by 7 = F (4t > pUi(p))

where 7 (-) can be defined as a function (linearly or quadratically) increasing between 0 and 1 (see
supplementary materials for details). This ensures that in uncertain regions, the optimization in
Eq. (2) leans towards the diffusion prediction X [¢], while reliable areas are guided by the features
from g[i]. For simplicity, we let p denote corresponding positions in both image and latent space. In
practice, U; is downsampled via average pooling to match the latent resolution before computing ¢ ;.
After computing 7, ;, we apply Eq. (2) to obtain the fused latent X, [¢], which is then used in Eq. (1) to
update x; to x;_1. This reverse sampling step is repeated until the final latent x is obtained, which
is then decoded into pseudo-view images via the VAE decoder (see Fig. 2).

&)

Extending to View Interpolation. The above pipeline supports single-view extrapolation but
degrades under large viewpoint changes. We extend it to two-view interpolation by defining camera
paths between inputs and running diffusion forward and backward, conditioned on each view. At
each denoising step, the two latent sequences are merged: x;_1 := Gx°ad + (1 — 3) R(xbackward)
where R(-) is the reverse operation along the frame index dimension to align the latent x}*vard o
xforward jn the frame dimension. 3 € RY is the blending weight, with B[i] = (N —i)/(N — 1) for

1=1,2,..., N, where N is number of interpolated frames between two inputs. See supplementary
material for the detailed algorithm.

4.2 3D-GS Optimization Guided by Generation

To better constrain the 3D-GS representation, we pair adjacent inputs and define camera trajectories

that cover under-observed regions (see supplement). Using the video diffusion model guided by Z&"i¢
pN

. . . . se
(Sec. 4.1), we interpolate between input views to generate pseudo-view images ZP*¢ = {I; s

where p is the number of input pairs.

Gaussian Primitive Densification. Sparse-input 3D-GS often yields poor geometry in under-observed
regions due to limited supervision. We address this by enhancing the geometry using pseudo-views
7P%¢ and a dense stereo model [48]. For efficiency, we select a subset Zden C 7P with low inter-frame
covisibility to maximize coverage with minimal redundancy. These views form a camera graph
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Figure 4: Our generation-guided reconstruction produces more coherent and photorealistic
novel views than prior methods. We compare our results on the DL3DV dataset using 9 input views
with those from FreeNeRF, vanilla 3D Gaussian Splatting, and DNGaussian. By leveraging video
diffusion priors to complete under-observed regions, our method better preserves scene structure and
appearance consistency.

used to reconstruct a point cloud from stereo predictions. We analyze the spatial distribution of
reconstructed points, and filter out outliers that significantly deviate from the global average distance
to neighboring points. We query existing Gaussian primitives within a radius of each remaining point
and only add new Gaussian primitives at positions without nearby primitives to augment the current
set. See appendix for more details.

3D Gaussian Splatting Optimization. After densifying the Gaussian primitive set, we optimize
the 3D-GS model using both the original inputs and the generated pseudo-views. In each training
iteration, one input view and one pseudo-view are sampled for supervision. For the original input
views, we apply an L1 loss and a D-SSIM loss , as well as a depth regularization term L, with
Pearson correlation similar to [47]: £, = w1 L1 (185, I'™) 4 woLp.ssiv (185, ™) + w3 Lyeg, Where
I# is the rendered image from 3D-GS and ™ denotes the corresponding input image. For the
generated pseudo views, we observe that, despite the carefully designed guidance mechanism, some
regions still suffer from temporal inconsistency—particularly distant areas with weak geometry or
those with fine-grained textures, e.g., grass or tree leaves. To mitigate the negative impact of such
inconsistencies on 3D-GS training, we use the LPIPS [64] instead of L1 loss. The resulting loss is:

Ly = wyLypps(I%, 1) + w5 Lp-ssim (15, IP¢) 4+ we Lyeg- (6)

5 Experiments

5.1 Experiment Settings

Datasets and Metrics. We evaluate our method on LLFF [30], DL3DV [23], DTU [17], and MipNeRF-
360 [3] datasets. LLFF consists of 8 forward-facing scenes. Following standard practice [54, 22],
we train our model using only 3 input views on this dataset. DL3DV comprises diverse indoor and
outdoor scenes captured by humans walking through scenes, exhibiting complex and dynamic camera
motions. The Mip-NeRF 360 dataset consists of real-world indoor and outdoor scenes designed for
evaluating novel view synthesis in large, unbounded environments. To verify the generalizability
of our methods and compare with the previous methods, we also test our methods on DTU, an
object-centric dataset captured in controlled conditions. For the DTU dataset, we follow the protocol
from RegNeRF [22], using 3 training views across 15 evaluation scenes. To focus on the object of
interest, we mask out the background during evaluation using the provided object masks, consistent
with [54, 22]. We apply a downsampling factor of 8 for LLFF and 4 for DTU, aligning with prior
work. The rendering quality is assessed using PSNR, SSIM, and LPIPS metrics.

Implementation details. Our pipeline is designed to operate iteratively. In each cycle, we train the
3D-GS model for 10K iterations, followed by an update of the pseudo-view images using the video
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Figure 5: Our method more faithfully recovers scene geometry and fine-grained appearance
under sparse inputs. We show comparisons on the LLFF (left) and DTU (right) datasets. Diffusion-
generated pseudo views densify supervision in under-observed areas (boxed), enabling better
preservation of structural integrity and high-frequency details.

Table 1: Our method consistently outperforms prior approaches under sparse-view settings
across multiple datasets. We show comparisons on LLFF, DTU, and DL3DV. We compare our
method with standard reconstruction baselines (vanilla NeRF / 3D-GS), sparse-view—optimized NeRF

methods, and sparse-view—optimized 3D-GS methods. We color each cell as best , second best ,
and third best .

LLFF (3 Views) DTU (3 Views) DL3DV (3 Views) DL3DV (6 Views) DL3DV (9 Views)
PSNRT SSIM] LPIPS| | PSNRT SSIMT LPIPS] | PSNR] SSIM] LPIPS| | PSNR] SSIM{ LPIPS] | PSNR] SSIM] LPIPS]
Mip-NeRF | 16.11 0.401 0.460 8.68 0.571 0.353 1092 0.191 0.618 1156  0.199  0.608 1242 0218  0.600
3D-GS | 1743 0522 0321 10.99  0.585  0.313 1097  0.248  0.567 1234 0332 0.598 12.99  0.403 0.546
DietNeRF 14.94 0.370 0.496 11.85 0.633 0.314 - - - - - - - - -
RegNeRF 19.08 0.587 0.336 18.89 0.745 0.190 11.46 0.214 0.600 12.69 0.236 0.579 12.33 0.219 0.598
FreeNeRF 19.63 0.612 0.308 19.92 0.787 0.182 10.91 0.211 0.595 12.13 0.230 0.576 12.85 0.241 0.573
SparseNeRF 19.86 0.624 0.328 19.55 0.769 0.201 - - - - - - - - -
SparseGS 18.89 0.834 0.178

FSGS  20.31 0.652  0.288 - - - 1222 0296  0.535 13.73 0429 0.540 1552 0.468 0.416
DNGaussian | 19.12  0.591 0.294 18.91 0.790  0.176 11.10  0.273 0.579 1267  0.329 0.547 1344 0.365 0.539
IPSM 2044  0.702  0.207 - - - 11.70  0.279 0.534 12.82  0.332 0.521 13.41 0.361 0.529
Ours = 20.61 0.705 0.201 20.51 0840  0.137 14.62 0471 0.491 17.35  0.566  0.396 19.19  0.616 0.335

diffusion model. After each pseudo-view update, we reset the learning rate schedule of 3D-GS before
starting the next optimization cycle to avoid overfitting. For the uncertainty estimation in Eq. (4), we
set the bandwidth parameters to s; = 100 and sy = 0.25. The ¢ in Eq. (5) is fixed at 0.5 across all
experiments. The loss weights are configured as follows: wy; = 0.8, ws = 0.2, wg = 1.0, wy = 1.0,
ws = 0.2, and wg = 1.0. Additional implementation details are provided in supplementary materials.

5.2 Comparison with Other Methods

We compare our method against the state-of-the-art on
four benchmark datasets to demonstrate its effectiveness
and generalizability across diverse scenarios.

Table 2: Our method outperforms recent
diffusion-based feed-forward approaches.
Results are reported on MipNeRF-360 using
Comparison on LLFF. We evaluate our method on the 9 input views. Our approach surpasses feed-
LLFF dataset captured by a swaying face-forward cam- forward approaches (e.g. MVSplat 360)
era. Table 1 shows that our method consistently outper-  without expensive diffusion finetuning.

forms NeRF-based approaches across all evaluation met-

rics. When compared to 3D-Gaussian Splatting—based MipNeRF-360 | PSNRT  SSIMt  LPIPS|
baselines such as FSGS [67] and DNGaussian [22], our I{};ggggg Eﬂ ggg ggg g-ggg
method remains competitive, particularly in LPIPS and DNGaussian [22] | 1251 0228  0.683
SSIM scores. This improvement is largely attributed MVSplat360 [0] | 1486 0321 0528
to the additional supervisory signal provided by the G‘Q?ﬁ;‘:}fg {22} 112:265 v MR
pseudo views generated through the video diffusion Ours | 1791 0495 0435

model. Notably, the LPIPS metric, which correlates
more closely with human perceptual similarity than
traditional metrics like PSNR, highlights our method’s ability to produce visually realistic novel views.
Qualitative comparisons are presented in Fig. 5.

Comparison on DTU. To further assess the generalizability of our approach, we evaluate and
compare its performance on the DTU dataset. DTU is an object-centric dataset in which each scene



Table 3: Ablation experiments on the DL3DYV test set. (a) Experiments to show the effectiveness of
the proposed components in pseudo-view generation step. (b) Experiments to show the effectiveness
of the proposed strategies for 3D-GS optimization.

(a) Pseudo-view generation  |PSNRT SSIM{ LPIPS|

(b) 3D-GS optimization \ PSNR{ SSIM1T LPIPS|

Baseline 3D-GS 16.590.5020.405 w/o point filtering 1901 0.615 0343
w/ GS interpolation 18.59 0.591 0.369 p -
Lk . w/o GS densification 18.23 0.567 0.386
w/ warping interpolation (full)| 19.19 0.616 0.335
. w/o LPIPS loss 18.81 0.597 0.351
w/o geometric 18.21 0.583 0.378 Full model 1919 0616 0.335
w/o photometric 18.93 0.612 0.352 . . '

MVSplat 360

Figure 6: Our test-time optimization better preserves visual and geometric consistency than
the feed-forward approach, MVSplat360. 9 views are taken as the input. While feed-forward
methods can produce plausible novel views, they often struggle to maintain fidelity to the original
scene, whereas our method achieves higher consistency.

contains a centered object against a monotone background. The evaluation results are presented in
Table 1 (middle). In this setting, our method still performs well and outperforms other NeRF-based
and 3D-GS-based methods. Specifically, our method outperforms the second-best approach by a
significant margin in terms of PSNR, SSIM, and LPIPS. While NeRF-based methods also exhibit
competitive accuracy in this scenario, they suffer from slow rendering speeds (approximately 0.21
FPS), whereas our 3D-GS-based approach supports real-time rendering at around 430 FPS.

Comparison on DL3DV. We compare with other cutting-edge counterparts on the DL3DV dataset
under 3, 6, and 9 view settings. Table 1 (right) shows the quantitative comparison results. Apart
from the sparse-input 3D-GS methods, we also compare with the non-sparse view methods and
NeRF-based methods in Table 1 (right). We outperform previous state-of-the-art methods [22, 67, 47]
by a significant margin in this challenging setting. We observe that although DNGaussian [22] works
well in environments with limited scope or with limited camera motions, e.g., object-centric scenarios,
it has difficulties in reliably reconstructing the open environment due to the lack of constraints in
under-observed regions (qualitative results shown in Fig. 4). Similarly, FSGS [67] also struggles in
this challenging setting, though it achieves slightly better performance compared with DNGaussian
because it uses a sparse point cloud for initialization. The recent work IPSM [47] uses an image
diffusion model to constrain the 3D-GS by enhancing Score Distillation Sampling (SDS). As shown
in Table 1 (right), this method struggles with extremely sparse inputs. This limitation arises because
the image diffusion model lacks access to a global scene context, whereas the video diffusion model
is able to infer such context from the input reference frame.

Comparison on MipNeRF-360. To evaluate our method on unbounded scenes and ensure a fair
comparison with recent feed-forward approaches [9, 60, 25], we further conduct experiments on the
Mip-NeRF 360 dataset [3]. As shown in Table 2, our method consistently outperforms reconstruction-
based methods [33, 54, 22] and surpasses state-of-the-art feed-forward approaches [9, 60, 25] by a
notable margin. As shown in Fig. 6, although feed-forward methods can hallucinate novel views from
sparse inputs through large-scale data training, they often struggle to maintain geometric consistency,
fine details, and color fidelity compared to our approach.

5.3 Ablation Study

To validate the effectiveness of our proposed components in the pseudo-view generation (Sec. 4.1)
and the 3D-GS optimization (Sec. 4.2), we conduct an extensive ablation study on DL3DV.
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Figure 7: The proposed pseudo-view supervision and primitive densification effectively enhance
novel view synthesis. We show two scenes with under-observed regions highlighted in boxes, com-
paring results with and without these components. Both strategies improve geometric reconstruction
and visual fidelity in under-observed regions.

Uncertainty Estimation

Nearest Input Image Created Guidance Image Generation Output (w/o uncertainty) Generation Output (w/ uncertainty)

Figure 8: Uncertainty-aware modulation is critical for reliable pseudo-view generation. We
compare diffusion outputs with and without uncertainty modulation, especially in unreliable regions
(boxed). Uncertainty modeling effectively prevents artifacts.

Effectiveness of uncertainty-aware modulation mechanism. Table 3a compares the baseline 3D-GS
trained on sparse views using £, with two variants: one using 3D-GS renderings as guidance (“w/ GS
interpolation”) and one using our warping-based guidance (“w/ warping interpolation”). While GS
interpolation improves over the baseline, it underperforms compared to our method due to inaccurate
color rendering at novel poses during training.

Fig. 8 shows the effect of uncertainty-aware modulation by comparing diffusion results with and
without it, using identical guidance images. We further ablate the geometric and photometric terms in
the uncertainty formulation (Eq. (4)), denoted as “w/o geometric” and “w/o photometric.” As shown
in Table 3a, removing either term noticeably degrades performance.

Effectiveness of Gaussian primitive densification. We ablate the densification step (“w/o GS
densification” in Table 3b), observing a significant performance drop, highlighting its role in improving
synthesis quality. Fig. 7 shows that densification enhances reconstruction in under-observed regions.
Removing the point filtering step (“w/o point filtering”) also degrades performance due to depth
outliers from the stereo model.

Effectiveness of LPIPS for pseudo view supervision. We replace LPIPS with L1 loss (“w/o LPIPS
loss”) in Eq. (6), observing a notable performance drop (Table 3b). Despite our guidance strategy,
cross-view inconsistencies — especially in distant or textured regions — remain challenging. L1 loss
used in vanilla 3D-GS [18] is less robust to such inconsistencies in diffusion-generated pseudo views.

6 Conclusion and Limitations

We present a zero-shot, generation-guided pipeline that leverages a pretrained video diffusion model
to improve 3D-GS reconstruction from sparse inputs. The method synthesizes intermediate views
guided by warped depth-based images and uncertainty-aware modulation, while a densification
module further improves scene completeness. Our approach enhances photorealism and coverage in
sparse settings while preserving the real-time efficiency of 3D-GS.

Despite these gains, the framework has limitations. Its performance depends on the quality of the
pretrained video diffusion model, which may introduce artifacts under extreme viewpoints or in
complex scenes. The iterative training procedure adds overhead relative to vanilla 3D-GS pipelines,
and early-stage 3D-GS depth errors can affect the guidance despite uncertainty modeling, although
this impact typically diminishes over time.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately define the scope and assumptions of
the problem the paper addresses, and the main claims match the proposed method described
in the Method Sec. 4 as well as results presented in Experiment Sec. 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
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NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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. Experimental result reproducibility
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of the paper (regardless of whether the code and data are provided or not)?
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Justification: The details of the proposed method are thoroughly discussed in Sec. 4 and the
implementation details are included in Sec. 5.1 and supplementary material. Furthermore,
we will release the code upon acceptance.

Guidelines:
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper will provide open access to the data and code with instructions to
reproduce all experimental results, in the camera ready version upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and evaluation details, data selection, and hyperparameters are
disclosed in Sec. 5.1 for readers to understand and reproduce the experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experimental results in the paper are not accompanied by any statistical
significance tests, as prior work in this area typically only reports aggregate results without
such analysis. To ensure comparability and clarity, we follow the reporting conventions in
the related literature.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We disclose the the computation resources and computation time we use in
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics. The subject of this paper, the
proposed method and experiments do not have ethical concerns.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the societal impact at the end of our paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and model backbones we used are cited in the paper. For the code we
adopted, we conform with their licenses of use and also properly give credits to them in the
corresponding script headers.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets in the work.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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