
Robot Reinforcement Learning on the Constraint
Manifold

Puze Liu1 , Davide Tateo1, Haitham Bou-Ammar2 and Jan Peters1
1 Department of Computer Science, Technische Universität Darmstadt, Germany

2 Huawei R&D London, United Kingdom
{puze, davide}@robot-learning.de,

haitham.ammar@huawei.com, jan.peters@tu-darmstadt.de

Abstract: Reinforcement learning in robotics is extremely challenging due to
many practical issues, including safety, mechanical constraints, and wear and tear.
Typically, these issues are not considered in the machine learning literature. One
crucial problem in applying reinforcement learning in the real world is Safe Ex-
ploration, which requires physical and safety constraints satisfaction throughout
the learning process. To explore in such a safety-critical environment, leveraging
known information such as robot models and constraints is beneficial to provide
more robust safety guarantees. Exploiting this knowledge, we propose a novel
method to learn robotics tasks in simulation efficiently while satisfying the con-
straints during the learning process.

Keywords: Robot Learning, Constrained Reinforcement Learning, Safe Explo-
ration

1 Introduction
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Figure 1: Acting on the Tangent Space
of the Constraint Manifold. The constraint
set c(q) = 0 is a differentiable manifold
Mc embedded in the original state space.
We use a set of basis vectors Nc to rep-
resent the span of tangent space Tc. The
tangent space velocity/acceleration can be
determined by a coordinate based on the
bases, and the control action is deter-
mined based on the tangent space veloc-
ity/acceleration, the resulting trajectory is
maintained on the constraint manifold.

Despite the notable success of Deep Reinforcement Learn-
ing (RL) in solving complex tasks in the discrete world,
video games, as well as continuous control problems in
simulation [1, 2, 3, 4], applying RL in the real world re-
mains a challenging task. One important factor that cannot
be neglected in real-world applications is the necessity of
satisfying constraints. Many practical considerations can
be formulated in the form of constraints, such as safety and
mechanical viability. For example, in the robot manipula-
tion task, the robot should not take actions that damage the
environment and can not take actions that exceed its fea-
sible range. However, typical RL algorithms, which maxi-
mize the cumulative reward by continuous trial and error, do
not take into account the satisfaction of constraints during
the exploration process. Exploring the environment while
meeting the constraints is a challenging problem.

Safe exploration is an significant field of RL which requires
to comply with the constraints during the whole learning
process [5]. There are several safe exploration frameworks
in the literature: a possible direction is proposed in [6, 7]
that relies on prior knowledge (policies, value functions)
to initialize the system in a safe region and gradually in-
crease the area of exploration using new information ob-
tained from the environment. Other approaches rely on the
definition of a safe policy [8, 9], which tries to pull the agent
back to a safe state. However, these choices require excessive work in defining such policy, and safe
policies could conflict against each other when multiple constraints are violated. Finally, other meth-
ods incorporate model information of constraints with model-free RL algorithms and do not require
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the definition of a manual policy [10, 11, 12]. In these approaches, the agent tries to find the feasible
action using constrained optimization techniques at each time step.

In this paper, we propose a novel method, Acting on the TAngent Space of the Constraint Manifold
(ATACOM), which the agent explores in the tangent space of the constraint manifold, as shown in
Figure 1. The proposed method convert the constrained RL problem to a typical unconstrained RL
problem. This method allows us to utilize any model-free RL algorithms while maintaining the
constraints below the tolerance. Furthermore, ATACOM can handle both equality and inequality
constraints. For example, in the task of a robot wiping a table, the end-effector should move on the
surface of the table (equality constraints) while the joint positions and velocities are within its joint
limits (inequality constraints). In addition, for tasks with equality constraints, our method explores
the lower-dimensional manifold embedded in the original action space. To test our method, we
demonstrate three different tasks, CircleMoving, PlanarAirHockey, and IiwaAirHockey[13], with
different combinations of equality and inequality constraints. We test five state-of-the-art model-
free RL algorithms (PPO, TRPO, DDPG, TD3, SAC) in each environment. The result shows that all
algorithms can learn the policy efficiently while maintaining the constraints below the tolerance.

The advantage of ATACOM can be summarized as follows: (i) can deal both with equality and
inequality constraints. All of the constraints at each time step are maintained below the tolerance
during the whole learning process. (ii) does not require an initial feasible policy, the agent can
learn from scratch. (iii) requires no manual safe backup policy to move the system back into
the safe region. (iv) can be applied to any model-free RL algorithm, using both deterministic and
stochastic policies. (v) can focus the exploration on the lower-dimensional manifold instead of
exploring in the original action space for equality constrained problem. (vi) have better learning
performance as the inequality constraints restrict to a smaller feasible state-action space. As a
downside, our method requires: (i) differentiable constraint functions. (ii) a sufficient accurate
invertible dynamics model of the robot or a well-performed tracking controller. Videos and code
can be found: https://sites.google.com/view/robot-air-hockey/atacom

Related Work. In the last decades, Constrained Markov Decision Processes (CMDP) [14] has
attracted a lot of interest from RL researchers, to solve constrained control problems. Under this
framework, several different forms of constraints have been studied. One important form of con-
straint is the expected cost below a threshold. Many works maximize the expected return while
maintaining the expected cost below a threshold [11, 15, 16, 17, 18, 19, 20, 21]. Different types of
constrained optimization techniques are applied in the policy update process. Achiam et al. pro-
posed a trust-region method Constrained Policy Optimization (CPO) inspired from Trust Region
Policy Optimization (TRPO) [19]. Liu et al. proposed the interior point method for policy optimiza-
tion [16]. Another type of approach is to adapt the Lagrangian relaxation method for the constrained
RL setting [14, 17, 15, 18]. Lastly, Chow et al. proposed a method to generate the Lyapunov func-
tion that guarantees constraints satisfaction [11, 22]. These approaches focus on the constraint of
the cumulative cost and require an initial feasible policy. However, this cumulative cost criterion
cannot ensure safety for tasks where avoiding catastrophic failures is crucial, e.g., car crashing.

Other approaches focus on the state dependant constraints, which should be fulfilled at every time
step. To meet this requirement, safe exploration methods can be employed. Garcia, et al., proposed
a method based on a risk function and a baseline agent, where the control action is sampled based
on the evaluation of the risk [6]. The shielding [8] and backup policy [9] frameworks interfere with
the control action to pull the system back to the safe states. These approaches require a manual
defined safe policy. Berkenkamp, et al. [7], Wachi, et al. [23], Koller, et al. [24], and Hewing, et
al.[25] proposed model-based approaches to ensure the safety. These approaches start from an initial
feasible policy and progressively increase the safe region based on the learned dynamics model.
Recent methods also try to incorporate the model and the constraint information with the model-
free RL algorithms. Dalal, et al., added a safe layer which analytically finds the closest action w.r.t
the policy derived one [10]. Cheng, et al., proposed a barrier function method to guarantee safety
during the exploration [12]. Finally, other approaches has also address the safety issue from different
perspectives, such as the policy composition [26, 27] and reachability-based approach [28, 29, 30].

Our approach considers the second group of constraints. However, different from other comparable
methods, ATACOM does not require an initial policy, it can learn from scratch. In addition, our
method does not require a backup policy either, as the constraint violations are forecasted and cor-
rected at each step. Furthermore, our method is not specifically restricted to any learning algorithm.
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2 Learning on the Constraint Manifold

In this section, we discuss ATACOM in detail. We first introduce the mathematical notation used in
this paper. Then, to demonstrate the core concept, we start with a simple scenario that the constraint
on the subset of the state variable q and the action can be formulated as a function of the state velocity
a = Λ(q̇). Next, considering the continuity of velocity (sampling over the velocity does not ensure
the continuity), we convert the original state constraint to a viability constraint that incorporates the
velocity of the constraint. The action is chosen as a function of the acceleration a = Λ(q̈). From a
robotics point of view, this a can be the torque applied to each joint, and Λ is the inverse dynamics
model. Then, to cope with the velocity limit, we add the viability condition to the acceleration.
Lastly, we discuss some important practical issues of ATACOM, such as the error correction, the
tangent space convention that determines the null space bases.

Definitions We consider the CMDP with continuous state-action space. A CMDP is a tuple
(S,A, P,R, γ, C), where S is a state space, A is an action space, P : S × A × S → [0, 1]is a
transition kernel, γ is a discount factor, and C : {ci : S → R|i ∈ 1, ..., k} is a set of immediate
state-constraint functions.

Assumption In this paper, we decompose the state variable s ∈ S into the directly controllable
state q ∈ Q and uncontrollable state x ∈ X , i.e., s = [q x]T. We assume that the constraints c(q) ≤
0 are known and depend purely on the controllable state. In addition, we assume that the action a can
be determined based on the i-th order time derivative of the controllable state, i.e., a = Λ(q(i)), i ∈
{1, 2, ...}. For example, we can determine the joint torque using an inverse dynamics model or send
the desired positions/velocities obtained via integration to a tracking controller (e.g., PID controller).
The general form of the constrained reinforcement learning problem can be formulated as

max
θ

Est,at

[
T∑

t=0

γtr(st,at)

]
, s.t. c(qt) ≤ 0.

2.1 State Constraints

The state constraints are defined as

f(q) = 0, g(q) ≤ 0, (1)

where f : RQ → RF , g : RQ → RG are two C2 mappings for F equality and G inequality
constraints, and F < Q. We add the slack variables µ ∈ RG in inequality constraints to convert the
original constraints (1) into equality constraints

c(q,µ) =
[
f(q) g(q) + 1

2
µ2
]T

= 0. (2)

The constraint set (2) is a (F +G) dimensional manifold embedded in (Q+G) dimensional space.
We calculate the time derivative of (2)

ċ(q,µ, q̇, µ̇) =

[
Jf (q) 0
Jg(q) diag(µ)

] [
q̇
µ̇

]
= Jc(q,µ)

[
q̇
µ̇

]
, (3)

with the Jacobians Jf ∈ RF×Q and Jg ∈ RG×Q of f(q) and g(q), respectively. Both Jacobians
are combined into the Jacobian Matrix Jc(q,µ) ∈ R(F+G)×(Q+G) of the complete constraint set.

We can find the null space matrix Nc(q,µ) = Null[Jc(q,µ)] ∈ R(Q+G)×(Q−F ) via SVD [31] or
QR [32] decomposition, such that Jc(q,µ)Nc(q,µ) = 0. Each column of the orthogonal matrix
Nc(q,µ) represents a basis vector of the null space of Jc(q,µ). These null space bases can also
be viewed as the tangent space bases of the constraint manifold as illustrated in Figure 1. We can
construct a tangent space velocity of the constraint manifold by a coordinate α as[

q̇T
µ̇T

]
= Nc(q,µ)α, (4)

Substituting [q̇ µ̇]T of (3) by [q̇T µ̇T ]
T of (4) , we have the constraint velocity

ċ(q,µ, q̇, µ̇) = Jc(q,µ)Nc(q,µ)α = 0. (5)

Equation (5) implies that the constraints do not change regardless of the choice of α. Based on
this concept, the ATACOM method can be summarized as follows: Starting from a feasible point
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ġmax

Figure 2: Viability Con-
straints

vmin vmax Velocity

amin

amax

Acceleration

Figure 3: Feasible Ac-
celeration Region

q̈

µ̇

q̈min

q̈max

1

-1

Figure 4: Tangent space
bases

(q(0),µ(0)) ∈ {(q,µ)|c(q,µ) = 0}, we choose the tangent space velocity [q̇T (t), µ̇T (t)]
T =

Nc(q(t),µ(t))α(t) and the corresponding action as a(t) = Λ(q̇T (t)). Thus, the constrained RL
problem is converted into an unconstrained RL problem. The resulting trajectory q(t) satisfies the
constraints c(q(t),µ(t)) = 0.

2.2 Viability Constraints

For a physical system, it is often required a continuous velocity command. However, directly sam-
pling velocities q̇ does not ensure this continuity. A simple solution is to sample accelerations,
apply force to the system or determine the velocity via integration. Furthermore, when considering
inequality constraints, it is also desirable that ġ(q, q̇) ≤ 0 when g(q) = 0 to avoid overshooting.
We convert the original state constraints (1) to viability constraints inspired by the linear viability
condition [33]

f(q) +Kf ḟ(q, q̇) =f(q) +KfJf (q)q̇ = 0,

g(q) +Kgġ(q, q̇) =g(q) +KgJg(q)q̇ ≤ 0, (6)

with diagonal matricesKf ∈ RF×F ,Kg ∈ RG×G having all positive entries. The matricesKf and
Kg determine the maximum velocities of the constraints ḟ and ġ w.r.t to the value of the constraints.
The viability constraint of the inequality constraint is illustrated in Figure 2. When g(q) < 0, the
upper bound of the constraint velocity is ġmax > 0 which means that it is still possible to get close to
the constraint boundary. However, if g(q) > 0, the upper bound of constraint velocity ġmax should
be smaller than zero to pull the violations back.

Analogous to the derivations from equation (2) and (3), we have

c(q, q̇,µ) =

[
f(q) +KfJf (q)q̇

g(q) +KgJg(q)q̇ + 1
2
µ2

]
= 0, (7)

and
ċ(q, q̇, q̈,µ, µ̇) =

[
KfJf (q) 0
KgJg(q) diag(µ)

]
︸ ︷︷ ︸

Jc(q,µ)

[
q̈
µ̇

]
+

[
Jf (q)q̇ +Kfbf (q, q̇)
Jg(q)q̇ +Kgbg(q, q̇)

]
︸ ︷︷ ︸

ψ(q,q̇)

= 0, (8)

where bf (q, q̇) = q̇THf (q)q̇, bg(q, q̇) = q̇THg(q)q̇ and Hf ∈ RF×Q×Q,Hg(q) ∈ RG×Q×Q

are Hessians of f(q), g(q), respectively. We can construct the joint acceleration as[
q̈
µ̇

]
= −J†c(q,µ)ψ(q, q̇) +Nc(q,µ)α, (9)

with the pseudo-inverse J†c(q,µ) and the null space matrix Nc(q,µ) of the Jacobian Jc(q,µ), re-
spectively. The first term in equation (9) is the necessary acceleration that maintains the curvature of
the constraints manifold (7) and the second term is the tangent space acceleration of the constraints.
When starting from the point [q(0), q̇(0),µ(0)] ∈ {(q, q̇,µ)|c(q, q̇,µ) = 0} and sampling over α,
the joint acceleration q̈ and the corresponding action a satisfy the constraints.

2.3 Viability Acceleration Bound

In robotics as well as other mechanical systems, it is important to consider the velocity constraints
of the actuator. Also, the acceleration should be bounded properly to avoid overshooting. We again
use the concept of viability to determine the upper and lower bound of the acceleration

au = max (min (amax,−Ka(q − vmax)) ,amin) ,

al = min (max (amin,−Ka(q − vmin)) ,amax) ,
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with the minimum and the maximum joint velocity limits vmin,max and the acceleration limits
amin,max, Ka > 0 is a constant. The feasible acceleration region is illustrated in Figure 3. Analo-
gous to the viability constraints, the feasible region of the acceleration is modified depending on the
state of joint velocities. This technique effectively prevents overshooting.

2.4 Error Correction and Control Action Selection

Constraint

Samples

Null Space

Error Correction

Figure 5: Vector Field of a Circle
Constraint. The constraint q21 + q22 −
1 = 0 is the blue circle. The cyan
arrows show the Ncα with α = 1.
The red arrow demonstrate the error
correction term −J†cKcc. The gray
lines show 100 trajectories from dif-
ferent initial points. All trajectories
converge to the constraint manifold.

For time-continuous systems, the state is obtained at a certain
sampling rate and the action is applied for a certain period. This
time discretization results in constraint violations at each time
step. Therefore, we add an error correction term. We construct
a P-controller with a diagonal matrixKc for the constraints[

q̈E
µ̇E

]
= −J†cKcc(q, q̇,µ). (10)

Combining (9) with (10), we get the joint acceleration applied
to the system[
q̈
µ̇

]
= −J†c(q,µ) [Kcc(q, q̇,µ) +ψ(q, q̇)] +Nc(q,µ)α. (11)

The first term on the RHS is the necessary accelera-
tions/velocities to maintain the constraints and the second term
on the RHS is the tangent acceleration that can be explored
freely. Figure 5 illustrates the vector field of error correction
term and null space term of the circle constraint. The gray
curves show the sampled trajectories converging to the con-
straint manifold due to the error correction.

The control action can be determined by a = Λ(q̈) at different
levels. For example, we can use the inverse dynamics model
to calculate the joint torque when the robot is controlled via
torque command. We can also apply the integration method to
determine the desired positions/velocities, then use a sufficient accurate tracking controller (e.g.,
PID controller + Feedforward Term) to track the desired trajectory. However, the tracking errors
could potentially cause hazardous constraint violations. In this paper, we control the joint torque
calculated by a perfect dynamic model in simulation to simplify the analysis and to exclude the
constraint violations caused by the tracking error of the controller. We present the block diagram of
the controlling framework in Appendix A.

2.5 Null Space Convention

The orthogonal null space matrixNc can be determined through SVD or QR decomposition. How-
ever, the representation of the null space bases is not unique. It is difficult to preserve the consistency

Algorithm 1: ATACOM
Input: Constraint: f , g, Jf ,Jg , bf , bg . Scale parameter: Kc,Kf ,Kg . Time step ∆T .

1 for each episode do
2 Initial feasible state s0, slack variable µ0.
3 for each time step k do
4 Sample policy action αk ∼ π(·|sk).
5 Observe the qk, q̇k from sk.
6 Compute Jc,k = Jc(qk,µk), ψk = ψ(qk, q̇k), ck = c(qk, q̇k,µk).
7 Compute the RCEF of tangent space basis ofNR

c

8 Compute the tangent space acceleration [q̈k µ̇k]T ← −J†c,k [Kcck +ψk] +NR
c αk

9 Clip the joint acceleration q̈k ← clip(q̈k,al,au)
10 Integrate the slack variable µk+1 = µk + µ̇k∆T
11 Apply the control action ak = Λ(q̈k) to the environment.
12 Observe the next state sk+1 and reward rk from the environment.
13 Provide the transition tuple (sk,αk, sk+1, rk) to the RL algorithm
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Figure 6: Experiment Environments

of the null space bases computed by the numerical decomposition method [34, 35]. To solve this
issue, we propose a convention to ensure the uniqueness of the null space bases.

Each column of the null space matrixNc is a unit vector indicating a direction of [q̈ µ̇]T. However,
this unit vector could sometimes contribute majorly to the part of the slack variable and the entries
for the joint accelerations could be very small. As a result, the joint acceleration obtained from
α ∈ [αmin,αmax] can only cover a small region of the acceleration. As illustrated in Figure 4,
the red arrow is a unit basis vector of the tangent space, and the reachable joint acceleration by a
universal scaling factor could only cover part of the feasible joint acceleration, as the red area shown
in Figure 4. To alleviate the previously mentioned issue, we compute the Reduced Column Echlon
Form (RCEF) of the null space matrix NR

c = RCEF(Nc). Given that the RCEF of a matrix is
unique, we obtain unique bases of the null space. In addition, for RCEF, each row containing a
leading 1 has zeros in all its other entries. Generally speaking, there exist N independent joints
whose acceleration can be solely determined by α, where N is the dimensions of the null space.
Also, we can define the feasible range of α as αi ∈ [q̈i,min, q̈i,max]. Through this convention, the
joint acceleration is able to cover the full feasible range. Null space bases and feasible region are
shown as the blue vector and the blue area in Figure 4.

3 Experiments and Evaluation

To illustrate the properties of our approach, we demonstrate three different experiments in this sec-
tion. We first demonstrate a toy task, CircularMotion, shown in Figure 6a. In this task, we consider
state equality, inequality, and velocity constraints. Secondly, we show a robotic environment with
only inequality constraints, PlanarAirHockey shown in Figure 6b. A 3 DoF planar robot playing the
hitting task in the air hockey scenario while keeping the end-effector inside the table boundary and
the robot’s joint positions and velocities within its limits. Finally, we demonstrate, IiwaAirHockey
in Figure 6c, a 7-DoF KUKA IIWA robot learning the hitting task in the simulator. In addition
to the constraints of the 3-dimensional task, we add an equality constraint to ensure that the robot
end-effector stays on the table surface. More details can be found in the Appendix B and D.

CircularMotion. In this task, shown in Figure 6a, the red point tries to move along a unit circle in
2D space while keeping the velocity of each direction below the velocity limits and maintaining the
position above a certain height. The objective is to reach the target point (green square) located in
(1, 0). The control action is the acceleration a = [ẍ ÿ]T.

We compare ATACOM with two other approaches for the task. (i) TerminatedCircularMotion where
the episode terminates when the maximum constraint violations up to a threshold. (ii) ErrorCorrec-
tionCircularMotion, where the error correction term in (10) is added before the action is applied
to the environment. We test five model-free RL algorithms (SAC, DDPG, TD3, TRPO, and PPO
implemented in Mushroom-RL [36]) for each approach.

Figure 7 shows the learning curve and constraint violations of all test RL algorithms for ATACOM.
Every algorithm is able to improve the learning performance and SAC outperforms the others meth-
ods, which matches our expectations. Figure 7b and 7c show the maximum constraint function and
maximum joint velocity constraints at each time step. It can be shown that the maximum constraint
violations during the whole learning process remain small. The velocity limit violations are zero
after 30 epochs which means the learned policies try to fully exploit the constraints.
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Figure 7: ATACOM for the CircularMotion. 7a shows the discounted return at each epochs. 7b and
7c shows the maximum constraint violations and maximum joint velocity limits violations.
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Figure 8: Comparison between ATACOM, Terminated-, and ErrorCorrectionCircularMotion.

In Figure 8 we compare ATACOM, TerminatedCircularMotion, and ErrorCorrectionCircularMotion.
We select the best learning algorithms for each approach (SAC for all cases). Compared to the
baselines, our method focus on a lower-dimensional exploration space that avoid the constraint
violations while the others do not. We can conclude from the Figures that ATACOM has not only
lower constraint violations but also better learning performance among the three approaches.

PlanarAirHockey. In this experiment, we apply a 3-joints planar robot for the air-hockey hitting
task, as illustrated in Figure 6b. The end-effector of the robot is kept on the table surface and the
objective is to hit the puck to the opponent’s goal. In this environment, we only consider inequality
constraints, i.e., the robot end-effector should stay inside the table’s region, and the joint positions
and velocities should not exceed its limits. The control action is the joint torque obtained by the
inverse dynamics model. In this experiment, we assume the dynamics model is perfectly known to
eliminate the constraint violation due to the tracking error or the model mismatch.

In this task, we compared ATACOM with the SafeLayer method proposed by Dalal et al.,[10] and
the Unconstrained air-hockey environments. Since the SafeLayer method at the beginning requires a
free exploration process to learn the constraint function, we only compare the learning performance
and the constraint violations after this process. For the unconstrained environment, the robot is com-
pletely free to explore, and the episodes only terminate when the maximum episode step is reached.
In this experiment, we only compare the best DDPG result after the parameter sweep, as the avail-
able implementation of SafeLayer only supports DDPG. Additional experiment of PlanarDefend
can be found in Appendix C.2

The result is shown in Figure 9. We can see that ATACOM have the best learning performance and
the minimum constraint violations among the three methods. SafeLayer did not learn the constraint
function of joint velocities properly. Furthermore, the learned constraints appear to be too restrictive
to learn a good policy. Compared to the method of Unconstrained approach, although ATACOM
has the same dimension as the Unconstrained, ATACOM explores only in the feasible region while
the Unconstrained approach explores the whole state-action space. This consideration explains why
ATACOM outperforms the baselines in terms of learning performances.
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Figure 9: Comparison between ATACOM, SafeLayer [10], Unconstrained AirHockey in DDPG.
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Figure 10: Box Plot of IiwaAirHockey with dif-
ferent choice of time step size.

IiwaAirHockey. In the third experiment, we
demonstrate the same air-hockey hitting task with a
KUKA LBR IIWA14 Robot in the Pybullet simula-
tor. In this task, we add an equality constraint to en-
sure the end-effector stays on the table surface. We
also add inequality constraints to avoid collision of
the end-effector and joint limit constraints as men-
tion in the PlanarAirHockey task. In addition, we
also add inequality constraints to avoid the collision
between the 4/6-th link and the table. We enforce
the joint velocity limits in the simulation as the real-
world’s KUKA controller does. We compare the im-
pact of different simulation step sizes. The step size
refers to the sampling frequency in the real world.
At each simulation step, the torque is computed by the previous agent’s action until the new control
action is received. The error correction term is added at each time step. We choose the simulation
step size as 0.02s, 0.004s, 0.002s, and 0.001s and keep agent control frequency to be 50Hz.

Figure 10 demonstrates the discounted return at the final epoch, the maximum constraint violation
cmax, and the average constraint violations cavg throughout the learning process. For a sufficiently
small step size, such as 0.004s, 0.002s, 0.001s, the learning agent is able to learn the hitting policy.
When the step size is too big, e.g., 0.02s, the error correction term dominates the control action
and the agent has a poor learning performance. From the result in this experiment, we demonstrate
that ATACOM is able to solve high dimensional tasks. The simulation result also provides us the
guidance for the real-world application: The higher frequency of sampling and error correction,
the smaller constraint violations will occur. In addition, we compare ATACOM with Riemannian
Motion Policies [37] in Appendix C.4

4 Conclusion

In this article, we present ATACOM, a safe exploration method for Constrained RL based on the
knowledge of the model and the mathematical formulations of constraints. ATACOM explores the
tangent space of the constraint manifold. This exploration technique allows us to utilize any type of
model-free RL method while maintaining the constraint violations below a small threshold. From
the experiments, we have shown that ATACOM not only has small constraints violations but also
better learning performance w.r.t. the other baselines. These performance gains occur because
ATACOM only focuses on the safe region (from inequality constraint) and subspace (from equality
constraint) of the whole state-action space.

However, our method still has some limitations. Our method requires a sufficiently accurate model
or a good tracking controller. This assumption does not hold in most real-world applications since
model errors, disturbances, and sensor noise could potentially cause unexpected constraint viola-
tions. To deploy this method in real-world robots, we will focus on the model mismatch problem
and may require a backup policy to avoid too stringent constraint design. Furthermore, our current
approach only focuses on the constraint with only controllable state c(q) = 0, even if preliminary
results (Appendix E) suggests an extension into constraints with the uncontrollable state.
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