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Abstract

Ramsauer et al. (2021) recently pointed out a connection between modern Hopfield
networks and attention heads in transformers. In this paper, we extend their
framework to a broader family of energy functions which can be written as a
difference of a quadratic regularizer and a Fenchel-Young loss (Blondel et al.,
2020), parametrized by a generalized negentropy function Ω. By working with
Tsallis negentropies, the resulting update rules become end-to-end differentiable
sparse transformations, establishing a new link to adaptively sparse transformers
(Correia et al., 2019) and allowing for exact convergence to single memory patterns.
Experiments on simulated data show a higher tendency to avoid metastable states.

1 Introduction

Hopfield networks are a kind of biologically-plausible neural network exhibiting associative memory
capabilities (Hopfield, 1982). Their attractor dynamics makes them suitable for modeling the retrieval
of episodic memories in humans and animals (Tyulmankov et al., 2021; Whittington et al., 2021).
The limited storage capabilities of classical (quadratic energy) Hopfield networks were recently
overcome through new energy functions and continuous state patterns (Krotov and Hopfield, 2016;
Demircigil et al., 2017; Ramsauer et al., 2021), leading to exponential storage capacities, and sparking
renewed interest in modern Hopfield networks. In particular, Ramsauer et al. (2021) revealed striking
connections to transformer attention, via an update rule linked to the convex-concave procedure
(CCCP; Yuille and Rangarajan 2003). However, this model has the often-undesirable tendency to
converge to large metastable states (mixing many input patterns) instead of retrieving a single pattern.

There is a strong neurobiological motivation to seek new Hopfield energies capable of sparse selection
of patterns. Sparse neural activity patterns are observed in electrophysiological recordings from many
brain areas across a variety of animal species and forms a core principle of cortical computation due
to their efficient coding properties (Simoncelli and Olshausen, 2001; Palm, 2013). With respect to
memory formation circuits, the sparse firing of neurons in the dentate gyrus (DG), a major input
pathway to the CA3 and CA1 subregions in the hippocampus, underpins its theorized role in pattern
separation during memory storage (Yassa and Stark, 2011; Severa et al., 2017). Indeed, evidence
suggests that the sparsified activity profiles of DG neurons aids in minimizing interference between
competing memory patterns just prior to pattern completion via autoassociative dynamics downstream
(Leutgeb et al., 2007; Neunuebel and Knierim, 2014).
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In this paper, inspired by the framework of regularized prediction maps and Fenchel-Young losses
(Blondel et al., 2020), we extend Ramsauer et al.’s (2021) energy function to a wider family induced by
generalized entropies. The minimization of these energy functions leads to update rules which include
as particular cases sparsemax (Martins and Astudillo, 2016) and the α-entmax transformations
used by adaptively sparse transformers (Peters et al., 2019; Correia et al., 2019). Unlike Ramsauer
et al.’s (2021) Hopfield layers, our proposed update rules can lead to sparse convex combinations of
input patterns and can have exact convergence to a fixed point in a small number of steps, maintaining
end-to-end differentiability. Experiments on simulated data show frequent convergence to a single
input pattern or small metastable states.

2 Modern Hopfield Networks

Let X ∈ RN×D be a matrix whose rows hold a set of examples x1, . . . ,xN (“memory patterns”),
where each xi ∈ RD, and let q0 ∈ RD be a query vector (or “state pattern”). The Hopfield network
iteratively updates qt 7→ qt+1 for t ∈ {0, 1, . . .} according to a certain rule and, under certain
conditions, these dynamical trajectories converge to a fixed point attractor state q∗ which either
corresponds to one of the memorized examples, or to a mixture thereof. This update rule correspond
to the minimization of an energy function, which for classic Hopfield networks (Hopfield, 1982) takes
the form E(q) = − 1

2q
⊤Wq, where W = X⊤X ∈ RD×D are the Hopfield network parameters,

which when D ≪ N can be seen as a “compressed memory”. In the classic Hopfield network, the
state vector q is further constrained to be {±1}-valued, and the update rule is qt+1 = sign(Wqt). A
limitation of this classical network is that it has only O(D) memory storage capacity.

Recent work sidestepped this limitation through alternative energy functions (Krotov and Hopfield,
2016; Demircigil et al., 2017), leading to the development of a class of models known as “modern
Hopfield networks” with superlinear (often exponential) memory capacity. In Ramsauer et al. (2021),
the state vector q ∈ RD is continuous and unconstrained and the following energy is used:

E(q) = −lse(β,Xq) +
1

2
q⊤q + β−1 logN +

1

2
M2, (1)

where M = maxi ∥xi∥ and lse(β,θ) = β−1 log
∑N

i=1 exp(βθi).

Ramsauer et al. (2021) have revealed an interesting relation between the updates in this modern
Hopfield network and the attention layers in transformers. Namely, the minimization of the energy
(1) using the concave-convex procedure (CCCP; Yuille and Rangarajan 2003) leads to the update rule

qt+1 = X⊤softmax(βXqt). (2)

When β = 1√
D

, each update matches the computation performed in the attention layer of a transformer
with a single attention head and with identity projection matrices. This triggered interest in developing
variants of Hopfield layers which can be used as drop-in replacements for multi-head attention layers.

While Ramsauer et al. (2021) have derived useful theoretical properties of these networks (including
their exponential storage capacity under some assumptions), the use of softmax in the update rule
(2) prevents exact convergence and may lead to undesirable metastable states in some situations, as
illustrated in toy experiments in §5. We explore in this paper a more general energy function which
uses sparse transformations as an attempt to overcome these drawbacks.

3 Ω-Regularized Prediction Maps and Fenchel-Young Losses

Our contribution is rooted in the concept of Fenchel-Young losses, which we next review. Let
△N−1 := {p ∈ RN : p ≥ 0, 1⊤p = 1} denote the probability simplex, whose elements are
probability vectors of length N . Given a convex function Ω : △N−1 → R, the Ω-regularized
prediction map (Ω-RPM; Blondel et al. 2020), p̂Ω : RN → △N−1, is:

p̂Ω(θ) = arg max
p∈△N−1

θ⊤p− Ω(p). (3)

One example of an Ω-RPM is the softmax transformation, obtained when Ω(p) =
∑N

i=1 pi log pi is
the Shannon negentropy. Another example is the sparsemax transformation, obtained when Ω(p) =

2



1
2∥p∥

2 (Martins and Astudillo, 2016). The sparsemax corresponds to the Euclidean projection onto the
probability simplex. Softmax and sparsemax are both particular cases of α-entmax transformations
(Peters et al., 2019), parametrized by a scalar α ≥ 0 (called the entropic index), which correspond to
the following choice of regularizer, called the Tsallis α-negentropy (Tsallis, 1988):

Ωα(p) = (−1 + ∥p∥αα) /α(α− 1). (4)

Note that, when α → 1, Ωα becomes Shannon’s negentropy and the corresponding Ω-RPM is the
softmax, and when α = 2, it becomes the ℓ2-norm (up to a constant) and we recover the sparsemax.

Let Ω∗ be the convex conjugate of Ω, Ω∗(θ) = maxp∈△N−1
θ⊤p−Ω(p). The Ω-RPM in (3) equals

the gradient map of Ω∗, p̂Ω(θ) = ∇Ω∗(θ). Note also that we have Ω∗(θ) = θ⊤p̂Ω(θ)− Ω(p̂Ω(θ)).
The Fenchel-Young loss induced by Ω (Blondel et al., 2020) is the function defined as

LΩ(θ,p) = Ω(p) + Ω∗(θ)− θ⊤p. (5)

When Ω is the Shannon negentropy, Ω∗(θ) = lse(1,θ), and LΩ is the cross-entropy loss, up to a
constant (Blondel et al., 2020, §3.2). Intuitively, Fenchel-Young losses quantify how “compatible”
a score vector θ ∈ RN (e.g., logits) is to a desired probability vector p ∈ △N−1. Additionally,
(Blondel et al., 2020, Prop. 2):

1. Fenchel-Young losses are non-negative, LΩ(θ,p) ≥ 0, with equality iff p = p̂Ω(θ).

2. Fenchel-Young losses are convex on θ and their gradient is ∇θLΩ(θ,p) = −p+ p̂Ω(θ).

For Tsallis negentropies Ωα with α > 1, a margin property holds (Blondel et al., 2020, Prop. 7):

∀i ∈ [N ], LΩα(θ, ei) = 0 ⇐⇒ p̂Ωα(θ) = ei ⇐⇒ θi −max
j ̸=i

θj ≥ (α− 1)−1. (6)

We will use these properties in the next section to define and analyze sparse Hopfield networks.

4 Sparse Hopfield Networks

We now use Ω-RPMs and Fenchel-Young losses to define a new class of energy functions associated
to modern Hopfield networks. We assume that the regularizer Ω is a generalized negentropy, i.e.,
null when p is peaked, strictly convex, and permutation-invariant (see Appendix A). These conditions
imply that Ω ≤ 0 and that Ω is minimized when p = 1/N is the uniform distribution (Blondel et al.,
2020, Prop. 4). The Tsallis negentropy (4) satisfies these properties for α ≥ 1.

We define the Hopfield-Fenchel-Young energy as

E(q) = −β−1LΩ(βXq;1/N)︸ ︷︷ ︸
Econcave(q)

+
1

2
∥q − µX∥2 + 1

2
(M2 − ∥µX∥2)︸ ︷︷ ︸

Econvex(q)

, (7)

where µX := X⊤1/N ∈ RD is the empirical mean of the patterns. This energy extends that of (1),
which is recovered when Ω is Shannon’s negentropy, in which case Econcave(q) = −lse(β,Xq) +
β−1 logN + q⊤µX . The concavity of Econcave holds from the convexity of Fenchel-Young losses
on its first argument and from the fact that composition of a convex function with an affine map is
convex. The convexity of Econvex comes from the fact that it is a quadratic function.1

There are two terms competing when minimizing the energy function (7) with respect to q:

• Minimizing Econcave is equivalent to maximizing LΩ(βXq;1/N), which pushes for state patterns
q as far from possible from a uniform average and close to a single memory pattern.

• Minimizing Econvex serves as a regularization, encouraging the state pattern to stay close to µX .

The next result, proved in Appendix B, establishes bounds and derives the Hopfield update rule for
our energy function, generalizing Ramsauer et al. (2021, Lemma A.1 and Theorem A.1).

1Up to constants, for Ω1 this is the same convex-concave decomposition of Ramsauer et al. (2021)
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α = 1
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Figure 1: Left: contours of the energy function and optimization trajectory of the CCCP iteration
(β = 1). Right: attraction basins associated with each pattern. (White sections do not converge to a
single pattern but to a metastable state; β = 10; for α = 1 we allow a tolerance of ϵ = .01) .

Proposition 1. Let the query q be in the convex hull of the rows of X , i.e., q = X⊤p for some
p ∈ △N−1. Then, the energy (7) satisfies 0 ≤ E(q) ≤ min

{
2M2, −β−1Ω(1/N) + 1

2M
2
}

.
Furthermore, minimizing (7) by CCCP (Yuille and Rangarajan, 2003) leads to the updates:

qt+1 = X⊤p̂Ω(βXqt). (8)

In particular, when Ω = Ωα (the Tsallis α-entropy (4)), the Ω-RPM is the α-entmax transformation,
corresponding to the adaptively sparse transformer of Correia et al. (2019).

We now show that, with Ω = Ωα and for α > 1 (the sparse case), the memory patterns can be
stationary points of the energy (7). This result is stronger than that of Ramsauer et al. (2021) for their
energy (which is ours for α = 1), according to which memory patterns are only ϵ-close to stationary
points, where a small ϵ = O(exp(−β)) requires a low temperature (large β). The proof (Appendix C)
relies on the margin property stated in (6). Following Ramsauer et al. (2021, Def. 2), we define the
separation of pattern xi from data as ∆i = x⊤

i xi −maxj ̸=i x
⊤
i xj .

Proposition 2. Assume Ω = Ωα with α > 1, and let xi be a memory pattern outside the convex
hull of the other memory patterns. Then, xi is a stationary point of the energy (7) iff ∆i ≥ 1

(α−1)β .
In addition, if the initial query q0 satisfies q⊤

0 (xi − xj) ≥ 1
(α−1)β for all j ̸= i, then the update

rule (8) converges to xi exactly in one iteration. Moreover, if the patterns are normalized and
∆i ≥ 1

(α−1)β + 2ϵ, then any q0 ϵ-close to xi (∥q0 − xi∥ ≤ ϵ) will converge to xi in one iteration.

Table 1: Distribution of metastable state
cardinalities (in %), for uniform patterns
on a unit sphere (N = 10, D = 5), and
a uniform query on the unit ball. (Esti-
mated using 1000 random trials; β = 4;
for α = 1 we threshold at 0.01).

∥p∥0 α = 1 α = 1.5 α = 2

1 0.0 23.9 72.3
2 0.0 44.4 26.7
3 0.5 25.0 1.0
4 1.9 5.9 0.0
5 9.6 0.8 0.0
6 20.0 0.0 0.0
7 23.5 0.0 0.0
8 25.7 0.0 0.0
9 15.4 0.0 0.0

10 3.4 0.0 0.0

We next validate these results on simulated data.

5 Experiments

We repeatedly generate random patterns on a unit sphere
and assess the frequency with which the update rule (8)
leads to metastable states of different sizes (Table 1). Fig-
ure 1 shows optimization trajectories for several queries
and pattern configurations, along with the basins of attrac-
tion for the three methods (a larger β is needed to allow
the α = 1 model to get ϵ-close to a single pattern). We
use α ∈ {1, 1.5, 2} since for those cases the Ωα-RPM ad-
mits an exact algorithm (Peters et al., 2019).2 Additional
plots are shown in Appendix D. Overall, we observe that,
with α = 1 (which corresponds to Ramsauer et al. (2021))
large metastable states abound, whereas for larger α many
updates converge exactly to a single pattern.

2In practice any α > 1 can be used with bisection, but we did not want approximations to affect our results.
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6 Conclusions and Related Work

We proposed new Hopfield energies, linked to Fenchel-Young losses, which generalize the framework
of Ramsauer et al. (2021). For suitable choices of generalized entropy, linked to Tsallis entropies, the
resulting update equations mimic the sparse attention mechanism of adaptively sparse transformers
(Correia et al., 2019). Our proposed models have interesting properties, including exact convergence to
single patterns (not just to a nearby region), while maintaining end-to-end differentiability. We provide
theoretical conditions for convergence in one iteration, along with toy experiments highlighting the
usefulness of the new energies.

Concurrently to our work, Hu et al. (2023) recently proposed a model for sparse modern Hopfield
networks along with a memory retrieval error bound provably tighter than the dense analog of
Ramsauer et al. (2021). Their energy can be seen as a particular case of our Hopfield-Fenchel-Young
energy, specifically the α = 2 case (sparsemax). Our work differs in that we consider the more
general scenario where α > 1 (α-entmax), we make a connection to Fenchel-Young losses, and
we use the margin property of α-entmax to prove exact convergence to single patterns under the
conditions of Proposition 2. Future work will examine the suitability of the proposed approach to
real-world problems, by exploring the use of learnable sparse Hopfield layers in concrete applications.
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A Generalized negentropies

Definition 1. (Blondel et al., 2020, §4.1). A function Ω : △N−1 → R is a generalized negentropy iff
it satisfies the following properties:

1. Zero negentropy: Ω(p) = 0 if p is a one-hot vector (delta distribution), i.e., p = ei for any
i ∈ {1, . . . , N}.

2. Strict convexity: Ω ((1− α)p+ αp′) < (1− α)Ω(p) + αΩ(p′).

3. Permutation invariance: Ω(Pp) = Ω(p) for any permutation matrix P (i.e., square matrices
with a single 1 in each row and each column, zero elsewhere).

B Proof of Proposition 1

We start by proving that E(q) ≥ 0. We show first that for any Ω satisfying conditions 1–3 above, we
have

LΩ(θ;1/N) ≤ max
i

θi − 1⊤θ/N. (9)

From the definition of Ω∗ and the fact that Ω(p) ≥ Ω(1/N) for any p ∈ △N−1, we have that, for
any θ, Ω∗(θ) = maxp∈△N−1

θ⊤p− Ω(p) ≤ maxp∈△N−1
θ⊤p− Ω(1/N) ≤ maxi θi − Ω(1/N),

which leads to (9).

Let now k = argmaxi q
⊤xi, i.e., xk is the pattern most similar to the query q. Therefore, we have

E(q) = −β−1LΩ(βXq;1/N) +
1

2
∥q − µX∥2 + 1

2
(M2 − ∥µX∥2)

≥ −β−1(βmax
i

q⊤xi − β1⊤Xq/N) +
1

2
∥q − µX∥2 + 1

2
(M2 − ∥µX∥2)

= −q⊤xk + q⊤µX +
1

2
∥q − µX∥2 + 1

2
(M2 − ∥µX∥2)

= −q⊤xk +
1

2
∥q∥2 + 1

2
M2

≥ −q⊤xk +
1

2
∥q∥2 + 1

2
∥xk∥2

=
1

2
∥xk − q∥2 ≥ 0.

The zero value of energy is attained when X = 1q⊤ (all patterns are equal to the query), in which
case µX = q, M = ∥q∥ = ∥µX∥, and we get Econvex(q) = Econcave(q) = 0.

Now we prove the two upper bounds. For that, note that, for any p ∈ △N−1, we have 0 ≤ LΩ(θ,p) =
LΩ(θ,1/N)−Ω(1/N)+Ω(p)−(p−1/N)⊤θ ≤ LΩ(θ,1/N)−Ω(1/N)−(p−1/N)⊤θ, due to the
assumptions 1–3 which ensure Ω is non-positive. That is, LΩ(θ,1/N) ≥ Ω(1/N) + (p− 1/N)⊤θ.
Therefore, with q = X⊤p, we get

Econcave(q) ≤ −β−1Ω(1/N)− p⊤Xq + q⊤µX = −β−1Ω(1/N)− ∥q∥2 + q⊤µX ,

and E(q) = Econcave(q)+Econvex(q) ≤ −β−1Ω(1/N)−∥q∥2+q⊤µX+ 1
2∥q−µX∥2+ 1

2 (M
2−

∥µX∥2) = −β−1Ω(1/N)− 1
2∥q∥

2 + 1
2M

2 ≤ −β−1Ω(1/N) + 1
2M

2.

To show the second upper bound, use the fact that Econcave(q) ≤ 0, which leads to E(q) ≤
Econvex(q) = 1

2∥q − µX∥2 + 1
2 (M

2 − ∥µX∥2) = 1
2∥q∥

2 − q⊤µX + 1
2M

2. Note that ∥q∥ =

∥X⊤p∥ ≤
∑

i pi∥xi∥ ≤ M and that, from the Cauchy-Schwarz inequality, we have −q⊤µX ≤
∥µX∥∥q∥ ≤ M2. Therefore, we obtain E(q) ≤ 1

2∥q∥
2 − q⊤µX + 1

2M
2 ≤ 1

2M
2 +M2 + 1

2M
2 =

2M2.

We now turn to the update rule. The CCCP algorithm works as follows: at the tth iteration, it linearizes
the concave function Econcave by using a first-order Taylor approximation around qt,

Econcave(q) ≈ Ẽconcave(q) := Econcave(qt) +

(
∂Econcave(qt)

∂q

)⊤

(q − qt).
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Then, it computes a new iterate by solving the convex optimization problem qt+1 :=

argminq Econvex(q) + Ẽconcave(q), which leads to the equation ∇Econvex(qt+1) =
−∇Econcave(qt). Using the fact that ∇LΩ(θ,p) = p̂Ω(θ)− p and the chain rule leads to

∇Econcave(q) = −β−1∇qLΩ(βXq;1/N) = X⊤(1/N − p̂Ω(βXq))

= µX −X⊤p̂Ω(βXq)

∇Econvex(q) = q − µX , (10)

giving the update equation (8).

C Proof of Proposition 2

A stationary point is a solution of the equation −∇Econcave(q) = ∇Econvex(q). Using the expres-
sion for gradients (10), this is equivalent to q = X⊤p̂Ω(βXq). If xi = X⊤ei is not a convex
combination of the other memory patterns, xi is a stationary point iff p̂Ω(βXxi) = ei. We now use
the margin property of α-entmax transformations (6), according to which the latter is equivalent to
βx⊤

i xi −maxj ̸=i βx
⊤
i xj ≥ 1

α−1 . Noting that the left hand side equals β∆i leads to the desired
result.

If the initial query satisfies q⊤
0 (xi − xj) ≥ 1

(α−1)β for all j ̸= i, we have again from the margin
property that p̂Ω(βXq0) = ei, which combined to the previous claim ensures convergence in one
step to xi.

Finally, note that, if q0 is ϵ-close to xi, we have q0 = xi + ϵr for some vector r with ∥r∥ = 1.
Therefore, we have

q⊤
0 (xi − xj) = (xi + ϵr)⊤(xi − xj)

≥ ∆i + ϵr⊤(xi − xj)

≥ ∆i − ϵ ∥r∥︸︷︷︸
=1

∥xi − xj∥, (11)

where we invoked the Cauchy-Schwarz inequality in the last step. Since the patterns are normalized,
we have from the triangle inequality that ∥xi − xj∥ ≤ ∥xi∥ + ∥xj∥ = 2; using the assumption
that ∆i ≥ 1

(α−1)β + 2ϵ, we obtain q⊤
0 (xi − xj) ≥ 1

(α−i)β , which from the previous points ensures
convergence to xi in one iteration.

D Additional Plots
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α = 1

qt
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(a) β = 1

α = 1
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q0

xi

α = 1.5 α = 2

(b) β = 4

Figure 2: Additional energy contour and CCCP optimization trajectory plots.
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(a) β = 10, normalized patterns (b) β = 4, non-normalized patterns

Figure 3: Additional attraction basin plots. A tolerance of ϵ = 0.01 is allowed when α = 1.
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