Under review as a conference paper at ICLR 2025

TACD-GRU: TIME-AWARE CONTEXT-DEPENDENT AU-
TOREGRESSIVE MODEL FOR IRREGULARLY
SAMPLED TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Multivariate time series data and their models are extremely important for under-
standing the behavior of various natural and man-made systems. Development of
accurate time series models often requires capturing intricate relationships among
the variables and their dynamics. Particularly challenging to model and learn
are time series with irregular and sparse observations, that may arise in domains
as diverse as healthcare, sensor and communication networks. In this work, we
propose and study TACD-GRU, a new Time-Aware Context-Dependent Gated
Recurrent Unit framework for multivariate time series prediction (or forecasting)
that accounts for irregularities in observation times of individual time series vari-
ables and their dependencies. Our framework defines a novel sequential unit that
is triggered by the arrival of a new observation to update its state, and a predic-
tion module that supports time series predictions at any future time. The current
prediction module consists of and combines two novel prediction models: (i) a
context-based model (TACD-GRU-CONTEXT) that relies on a set of tunable latent
decay functions of time and their linear combinations to support the prediction,
and (ii) an attention-based model (TACD-GRU-ATTENTION) that models depen-
dencies among variables and their most recent values using a temporal attention
mechanism. Our model shows highly competitive performance when powered by
both individual and combined prediction functions outperforming existing state-of-
the-art (SOTA) models on both single-step and multi-step prediction tasks across
three real-world datasets.

1 INTRODUCTION

Building predictive (or forecasting) models of multivariate time series data is crucial for understanding
the dynamics of various natural and man-made systems. Typical time series models and their
predictive solutions assume that the variables are observed regularly in time (with some fixed
frequency), and the dependencies among time series values are then defined with respect to these
regularly observed time points. However, not all real-world systems come with regularly sampled
observations. Systems where the observations are spaced irregularly in time arise naturally, for
example, in healthcare where the observations made for a patient are event-driven (for example,
patient’s laboratory tests are performed only when ordered by a physician), or sensor networks
where observations and events may be missing due to failures of the underlying equipment. The
challenge here is to define and learn multivariate time series models that account for interactions and
dependencies among variables and observations made at different times.

Along these lines, our objective in this paper is to develop a time series model that can predict,
as accurately as possible, future values of one or more random variables defining the time series
from their past irregularly sampled observations. A variety of models and methods ranging from
classic statistical and modern deep learning frameworks have been developed to solve this prediction
problem. Early approaches replaced the irregularly observed data with regularly spaced observations
by inferring the values at the regular time points. Classic statistical auto-regressive models (AR,
ARMA, ARIMA) Shumway & Stoffer| (2017) or latent space models, such as, Linear Dynamic
Systems (LDS) |[Kalman| (1963)) models could then be applied to support prediction at future regular
times. To extend the regular predictions to arbitrary future times various smoothing and interpolation

Under review as a conference paper at ICLR 2025

methods were deployed. In recent years, classic statistical models have been gradually replaced with
various neural architectures showing improved time series prediction performance|Siami-Namini et al.
(2018). Existing neural models make different assumptions on how to represent the continuous-time
dynamics and predictions of multivariate time series. For example, Neural ODEs [Chen et al.| (2018)
approximate the latent dynamics with the help of expressive differential equations while, models like
mTAND |Shukla & Marlin|(2021) use attention mechanism to capture and represent these underlying
dynamics. Based on how these irregular time series representation are learned, the existing methods
can be categorized into: RNN approaches |Che et al.| (2018); Mei & Eisner| (2017), Differential
Equations approaches Rubanova et al.|(2019); |De Brouwer et al.[(2019);|Chen et al.|(2018);|Schirmer
et al.|(2022); Becker et al.| (2019)), attention-based approaches |Shukla & Marlin| (2021)); (Chen et al.
(2023) and graph-based approaches |Zhang et al.| (2022)); Zhang et al.; |Yalavarthi et al.| (2024)).

While current research in time series prediction models come with different modeling assumptions
and respective advantages, they also leave a room for further improvements and the development of
new models. More specifically, differential equation models despite being very expressive, require
significantly more training time (due to calls to the numerical solver). Moreover, attention and
graph-based approaches offer greater modeling flexibility and faster training times but, they are not
efficient for online deployment scenarios. Motivated by this, we propose a novel approach that aims
to bridge the gap between expressiveness, computational efficiency, and practical applicability. In
this work, we propose a new Time-Aware Context-Dependent Gated Recurrent Unit (TACD-GRU)
that sequentially updates the state in continuous time whenever observation arrives and generates a
continuous time multivariate prediction function supporting time series predictions at arbitrary future
time. TACD-GRU’s prediction module consists of two components: i) TACD-GRU-CONTEXT:
a new context-based prediction model that relies on a set of latent learnable exponential decay
functions to model long-term temporal dependencies among the time series variables, ii) TACD-
GRU-ATTENTION: a new local temporal attention prediction model that defines a continuous-time
prediction function over most recent observations and elapsed times since these observations were
made to model short-term temporal dependencies. The two prediction models are combined using a
novel Dynamic Meta-Decision Model. It is important to highlight that the two prediction models
were designed with a slightly different objective: the context-based prediction model attempts to
summarize dependencies in the entire history, and hence, may miss some local temporal dependencies
that are important for the prediction task. On the other hand, since attention-based model relies only
on the recent set of observations, it may miss dependencies induced by multiple observations on
each individual time series. As a result, the context-based and attention-based models come with
complementary strengths and intuitively, their combination may better leverage their strengths, and
lead to improved overall predictive performance.

Our research work makes the following key contributions:

* We introduce two new continuous-time prediction models: TACD-GRU-CONTEXT and
TACD-GRU-ATTENTION for irregularly sampled time series built upon efficient Markov
state update mechanism.

* We propose TACD-GRU, a prediction model combining the above two models without
introducing additional hyper-parameters, leveraging their strengths to improve the modeling
of the dependencies in multivariate irregularly sampled time series.

* Comprehensive evaluation of the two new prediction models and the proposed TACD-GRU
model against SOTA prediction models on multiple prediction tasks on diverse real-world
datasets demonstrating that our proposed model outperforms existing prediction models for
irregular time series. Moreover, our empirical evaluation shows that TACD-GRU-CONTEXT
demonstrates competitive performance relative to the SOTA baselines.

* We perform additional experiments to better understand the functionality of newly proposed
dynamic meta-decision model. These experiments reveal two important insights: (1) it
learns the expected behavior of assigning full weight to TACD-GRU-ATTENTION for
the reconstruction task, and (2) it demonstrates robustness by effectively switching to the
unperturbed model if perturbations at varying noise levels are made to the predictions of
one model.

2 RELATED WORK

In the following we review existing approaches for time series prediction for irregularly sampled
time series data and contrast them to our work. Our focus will be on modern neural models. We

Under review as a conference paper at ICLR 2025

divide the existing approaches into four subcategories: RNN-based, ODE-based, attention-based, and
graph-based approaches, based on the main mechanism they rely on when making the prediction.

RNN approaches. RNN methods aim to leverage efficient implementation of the hidden state update
to support prediction. Standard RNN-based methods, however, work on regularly sampled time series
and hence require one to use interpolation schemes to convert between regular and irregular samples.
An alternative approach, Neural Hawkes Process model Mei & Eisner| (2017) uses tunable exponential
decay functions for event time series. GRU-D |Che et al.| (2018)) extends this to general time series
prediction, operating in continuous time and updating its hidden state with each new observation.
The hidden state is adjusted using tunable exponential decay functions to account for elapsed time
effects. Additionally, the missing observations are inferred using decay mechanisms that revert to
some target value, typically determined by the mean of the variable. The GRU-D model is particularly
similar to our TACD-GRU-CONTEXT model which also relies on a set of tunable exponential decay
functions to model the effect of elapsed time on the hidden state. However, most importantly, to avoid
propagating estimation errors for missing observations, TACD-GRU-CONTEXT does not interpolate
missing observations.

Differential Equation approaches. Another widely-used approach to model multivariate time
series and their dependencies in continuous time relies on differential equations models of latent
space dynamics. Neural ODE |Chen et al.|(2018) defines temporal dynamics in continuous in terms of
ordinary differential equations (ODEs) approximated by a learned dynamics model. Rubanova et al.
(2019) proposes to combine this Neural ODE dynamics with VAE-like architectures (referred to as
LatentODE) and RNN architectures (known as ODE-RNN) to model irregularly sampled time series.
One limitation of Neural ODE:s is that its solution is a function of the initial condition, however,
the initial condition cannot be adapted to the observed distribution. Neural Controlled Differential
Equations [Kidger et al.|(2020); De Brouwer et al.|(2019) allows the dynamics to be continuously
modulated by including the input observations. The differential equation methods typically require
an external numerical ODE solver, a component that can significantly prolong model’s training
time. Recently, Schirmer et al.| (2022); Becker et al.| (2019) avoid invoking numerical solvers for
continuous-time dynamics by modeling latent transitions with the help of linear stochastic differential
equations, that can be solved in the closed form. In contrast to these methods, TACD-GRU does
not use differential equations to model the latent state dynamics, instead it relies on (a) a set of
learnable exponential decay functions for modeling temporal dependencies and time series dynamics
for TACD-GRU-CONTEXT component, and (b) temporal attention mechanism for last observed
values for each time series and their timing for TACD-GRU-ATTENTION component. This avoids
the need for deployment of computationally costly external numerical solvers.

Alternative approaches. Many of the recently proposed irregular time series models rely on graph
neural networks and transformer architectures. mMTAND model [Shukla & Marlin| (2021} embeds time
into fixed-sized learnable vector representation, and learn relationship between irregular observed
times and fixed reference time-points to arrive at a prediction in continuous time. ContiFormer
Chen et al.|(2023)) combines Neural ODEs with the continuous-time attention mechanism to model
irregular observations. T-PatchGNN [Zhang et al.| leverages a patch-based mechanism on univariate
time series to enhance local feature extraction and use graph neural network to learn relationships
among different time series. GraFITi Yalavarthi et al.| (2024) first converts irregular samples to a
special bipartite graph structure and cast the prediction problem as an edge weight prediction. Other
graph-based temporal Zhang et al.[(2022)), spatiotemporal [Marisca et al.|(2022) and diffusion-based
Tashiro et al.| (2021)) models have been proposed to address irregularly spaced observations. Overall,
since these models lack a Markov state representation, deploying these models in an online setting
may become a computational bottleneck. Primarily, because these models require to buffer the past
observations to encode a newly arrived observation and reprocess all the past observations for every
inference step. In contrast, both TACD-GRU-CONTEXT and TACD-GRU-ATTENTION update
its previous state when a new observation arrives thus, significantly reducing the computational
overhead.

3 METHOD

Our goal is to define and learn a model f(xy.;, T1.t, AT) that given a history of ¢ observations of
a D dimensional multivariate time series X;.; made at times 7.4, predicts future values of time
series at time 7 + AT'. Since the dimension of the observation history is growing in time, we
approximate it with a fixed-size state model H; that summarizes what is known about the process

Under review as a conference paper at ICLR 2025

Rear Rer1ar
t
"
X, Xt-1,2 Xt2 AT Prediction AT Prediction
Module Module
. o
X1 X¢q %t hy 8¢ X412 hevs Spaq
Tt
- I .
i Xe—{
At h —
-1
—
AT 81
6
t1
' I 1 | 1]
8y =0 Xy Mg At Xt+1Mes1 AT

Figure 1: (Left) Pictorial representation of the problem setup. Consider two variables x1 and x2 and their
dynamics (indicated by dotted lines); their discrete observations are made at irregular intervals. Arrival of an
observation event prompts the update of the state 7. The prediction problem is to predict future values of
variables at the time of last observation: 7¢. The prediction is made at time 7+ + AT for an arbitrary time horizon
AT. xf 1 is the last observed value of variable x1 as of time 74; d;,1 is the time-elapsed since the last observation.
(Right) TACD-GRU cell: update and prediction. The new observation prompts the update that is followed by
prediction of values AT into the future.

at time-step t. Assuming the state accurately summarizes the history of observations, it becomes
Markov, making the past sequences independent of the future. A benefit of this is that the new state
(after a new observation arrives) can be obtained by a state-update function that is a function of just
the previous state and the new observation, simplifying greatly the application and maintenance of
the models for real-time predictions. Our TACD-GRU state #; consists of three components (1) a
D-dimensional vector of last observed values up until observed time 7,: x; € RI”! comprising of last
value for each variable ¢ denoted by z ;, (2) time elapsed vector since last observation §; € RIDI;
d¢,; indicates the interval between 7; and time when variable i was last observed (3) a latent vector hy
representing dependencies among different time series values. The first two components of the state
were selected to support TACD-GRU-ATTENTION prediction model, and the third component will
support TACD-GRU-CONTEXT prediction model. Thus, H; at time 7; is given by:

He = {ht, 5t,X:}

Using the state model 7,, we can estimate the future values at time 7 + AT using a new prediction

function f/(#H:, AT). We can use the new function efficiently at different time points assuming the
state representation can be updated sequentially every time the new observation arrives. Let H;_1
be the representation of the state at time-step ¢ — 1 and x; represents a new observation at time-step
t. We want to update the state H; to consistently reflect the past and the new information. Briefly,
the components x; and §, of #, are straightforward to update given the new observation made at 7
and the model state calculated at the previous time-step H;_; . We use a sequential update based on
RNN, more specifically GRU architecture |Chung et al.[(2014), to define and calculate the update of
h; component of the state model. Figure[I]shows how our method processes sequential inputs at each
time-step.

In the following subsections, we describe the details of our prediction model, in particular, its three
key components: (i) State update module, and (ii) Prediction module and (iii) Dynamic meta-decision
model that combines two prediction mechanisms we include and define in TACD-GRU model. The
above modules are applied at each time-step that is triggered by the arrival of a new observation.

3.1 STATE UPDATE MODULE

As new observations arrive in time, the state model H; representing the information seen so far, is
updated with new observations. Recall that the state consists of three components: x; - last observed
values for each variable defining the multivariate time series and J;- time elapsed since the last value
has been observed that support TACD-GRU-ATTENTION model, and a latent vector h; representing
interactions among the variables and their time series that support TACD-GRU-CONTEXT model.
Next we describe how each component is updated.

Under review as a conference paper at ICLR 2025

TACD-GRU-ATTENTION: Update of last observed values. The input (new observation) at each
time-step ¢ is defined by an input vector x; and a mask vector m; indicating if an individual variable ¢
is observed at time-step ¢:

Mg =

s

1, if z,; is observed €))]
0, otherwise 2)

Given the input and mask vector, the state component representing last observed values x; is obtained
by simply replacing the old values x;_; from the previous time-step with new values whenever the
variable is observed at the current time-step.

X: =m; ®© Xy + (1 — mt) O) X:_l. (3)

TACD-GRU-ATTENTION: Update of elapsed times since last observation. The elapsed time
component §; of the state keeps track of time since the last observation for each variable was made.
This component is updated as follows:

{ 0, if my; =1 “)

0pi =)
¢ Tt — Te—1 + 0¢—1,4, if my; = 0. (5)

Briefly, the update function simply resets the time to O when variable value is observed in the current
step. Otherwise it adds the time difference between the previous and current timestamps (A7) to the
last elapsed time value.

TACD-GRU-CONTEXT: Update of the hidden state component. To update the hidden state
component h; of TACD-GRU-CONTEXT model representing long interactions among the variables
and their time series with the new observation, we rely on a time-aware RNN architecture, more
specifically time-aware GRU model similar to the one proposed in|Chung et al.| (2014)). Briefly, the
hidden-state update relies on a set of learnable exponential decay functions that take the previous
hidden state vector, and the time difference between the previous and the new observation. The
hidden state update first decays the previous hidden state on the set of trainable decay functions and
then updates the state using the info in new observation. Briefly, the learnable exponential decay
function for the hidden state vector is defined:

~(AT) = exp{—max(0, W, AT +b,)},

where AT is the time elapsed vector indicating time-interval between two consecutive time indices:
(1¢ — T¢—1) - 1; where 1 is a vector containing all 1s. The learnable parameters W.,, b, govern by
how much each component of hidden state needs to be decayed before it is updated by the GRU cell:

g =v(AT)Ohy 1. (6)

Since observations for multivariate times series may arrive at different times, the values missing in
the inputs are masked. That is, at each time-step, the recurrent unit takes two vectors as the input: (1)
a mask vector (m;) and (2) Input vector (x;) where missing values are substituted with zeros:

X, =m; O Xy, @)
where, ® denotes the element-wise product.

Computing the hidden state (h;) at 7, given g,, m; and x; involves a set of updates similar to the
ones found in the standard GRU unit:

2z, =o(W.x; +U.g, +V.m; +b,), r. =o(W,x; +U,g, + V,m; +b,),
h; = tanh(W;x; + Up(r; ©g,) + Vam, +b), hy = (1—2)©g, +2z ©h,.
Note that Ws, Us, Vs and bs are learnable parameters of the model. The parameters let us fit the

hidden state component and observations so that the dependencies among time series most important
for the prediction are captured.

3.2 PREDICTION MODULE

Our main goal is to predict future time series values from past observation sequence. We use the
information represented in the state H; at time-step ¢ to support the predictions. We design our model

Under review as a conference paper at ICLR 2025

to be flexible in terms of where in the future the predictions should be made. More specifically, we
use parameter AT to specify how far ahead in time from time-step ¢ (time 7;) we want to predict
the individual time series values. Our prediction module consists of two components: TACD-GRU-
CONTEXT and TACD-GRU-ATTENTION. The prediction module relies on the state H; where
last observed values x; and time-elapsed since their last observation §; are used by TACD-GRU-
ATTENTION model, and the hidden latent state h; by TACD-GRU-CONTEXT model. Both models
produce an estimate of future values for all variables defining the multivariate time series at time
7+ + AT. Ultimately, TACD-GRU relies on meta-decision model to combine the predictions of these
models to generate its final output. In the following paragraphs, we describe in more depth first the
two prediction models and after that the meta-decision model.

TACD-GRU-CONTEXT. Our context-based prediction model, TACD-GRU-CONTEXT, relies on
the decayed hidden state g, . Briefly, the dynamics of the hidden state component uses a set of
learnable exponential decay functions that change as time progresses. The observations, when they
arrive, are able to change the values of the hidden state, but in their absence, the decay functions drive
the hidden state dynamics. More formally, the time series value prediction can be defined:

§§,AT = Fout(gt,AT)- (®)

Here, Fyy¢ 1s a linear function composed of multi-layer neural network, and g, o is h; decayed
exponentially in AT time. The decay function is trainable, and is shared with the state update model:

g.ar = V(AT) Oh;. (€

TACD-GRU-ATTENTION. Our second prediction model relies on the most recent set of obser-
vations and their timings. It aims to capture predictions and value dependencies the hidden state
component may not be able to model through a fixed set of continuous time exponential decay
functions and their combinations. The prediction signal here is defined by a residual signal that
models a change from last observed value. Since individual time series may interact, we consider a
variant of the scaled dot-product attention mechanism that combines last values of all time series and
times elapsed since their last observation to predict the residual signal, that is, a change from their
last value. More specifically, we predict the future time series value as:

iﬁAT =X, +wy © Attn(x}, 8¢ A1) + bs. (10)

Here, w,, b, € RIPI are learnable weights to scale the output of the attention module, and §; A7 =
d; + AT denotes elapsed times since the last observation projected to the future time where the
prediction is being made. To achieve interactions amongst all last observed values and their deltas, we
embed them into a fixed size vector representation, followed by scaled dot-product attention weighted
summation of last observed values. Given that dot-product attention is agnostic to the pair-wise
feature indices being compared, we concatenate the time-elapsed embedding with the time series
embedding. This enables the dot-product operation to capture similarities across variables coupled
with their respective elapsed-times. The resulting concatenated e%nbedding are dj-dimensional.

QK
Attn(x}, 6 = Softmar(——)X;. 11
(x¢,01,a7) ftmaz(@) : (11)
A query vector for i'" time series (also represents i*" row in Q) is obtained by concatenating
elapsed-time embedding and the time series embedding:

q, = Concatenate([¢(6: ar.i), 7(7)]). (12)

Since the key (K) and query (Q) matrices represent the same quantities and for parameter efficiency,
we share the embedding function for them (i.e. Q = K). Note that the scaling parameters ws and b,
are necessary here because, if we exclude them, assuming x; € [0, 1], then Attn(x},d; ar) € [0,1],
and so, ﬁf Ar 1s a non-decreasing function of x;. With the scaling parameters, the model is more
flexible as it is also able to predict reduction from last observed value.

The elapsed-time embedding function ¢ converts elapsed value into a fixed d,-dimensional repre-
sentation using previously proposed Time2Vec model [Kazemi et al.|(2019). Introduction of sine
non-linearity for all except the first component in ¢ embedding function helps us to encode periodicity
in the elapsed times

) wo - 64, AT, + o, ifj=0 (13)
o)l = { 50

sin(wj - 0p AT + o), if0 < j <d,. (14)

Under review as a conference paper at ICLR 2025

where, w; and «; used to compute the 4t component are learnable parameters. Time series indicator
is embedded in d,-dimensional vector as a function of its index using learnable linear embedding
function 7. The concatenated embedding of size dx(= d, + dp), is used to compute the attention
weights for each variable.

Dynamic Meta-Decision Model. Finally, two prediction models TACD-GRU-CONTEXT and
TACD-GRU-ATTENTION presented above are combined using a dynamic meta-decision model. The
final output is formed by a convex combination of individual predictions, and the meta-decision model
picks the weights. Briefly, a non-linear meta-decision function consisting of multi-layer perceptron
(MLP) network maps the decayed hidden state to a scalar, followed by a sigmoid non-linearity to
ensure [0, 1] output range.

CO(gt,AT) = Fmeta(gt,AT) = U(MLP(gt,AT))>

The final prediction is a convex combination of the two estimates using ¢, (g, Ar) as the coefficient:

Xi AT = Co(8ar) - Xiar + (1= o8 ar)) - Xt AT (15)

We propose a dynamic weighting scheme because one estimator may outperform the other in certain
scenarios. Since hidden state is the most predictive representation of the historical observations, we
hypothesize that it can encode this information. Consequently, the dynamic meta-decision module
serves as a decoder assigning more weight to the estimator that performs better in a given context.

3.3 SUMMARY OF TACD-GRU

TACD-GRU unit process that is triggered by the arrival of the observation works by first updating
of state model H;, and then calling the prediction module. Detailed pseudocode implementation
of TACD-GRU’s step function and its components is presented in the Algorithm [I] Algorithm 2]
and Algorithm [3] Figure [I] depicts how time-steps are processed for TACD-GRU. Briefly, new
observations (x;, m;) along with time-step difference A7, and the previous state model H;_; are
fed as the input at each time-step to enable the state update and prediction based on the information
available up to time-step ¢.

4 EMPIRICAL EVALUATION

We perform empirical evaluation of TACD-GRU and its components TACD-GRU-CONTEXT and
TACD-GRU-ATTENTION on three irregularly sampled multivariate time series datasets on two
prediction tasks: single-step and multi-step predictions (see below). We provide the description
of the datasets in Appendix [B]and present the results in the Section 5] Models. We compare the
proposed TACD-GRU, TACD-GRU-CONTEXT (labeled as *"TACD-GRU-C’) and TACD-GRU-
ATTENTION (labeled as *"TACD-GRU-A’) models with the SOTA baseline models (description
included in Appendix |C)) for irregularly sampled time series. Model Training. The multivariate input
sequence is masked based on the specific task, such as masking the next time-step for single-step
prediction. Models are trained to reconstruct the entire input sequence after observing partially
masked sequence. We use Mean Squared Error (MSE) loss function to optimize the model parameters.
After training, the models are evaluated on how accurately they predict the masked values. It is
important to note that at any given step, the prediction horizon for the next target (AT)) is determined
by the time-elapsed between the current time and the time of occurrence of the subsequent observation
in the data (A7). Evaluation Criteria. We evaluate models on MSE, Mean Absolute Error (MAE)
and Win Rate on the predicted values in the test split.

5 RESULTS AND DISCUSSION

We assess the performance of TACD-GRU on two forecasting tasks: single-step prediction and
multi-step prediction. The evaluation is conducted across three diverse datasets derived from: United
States Historical Climatology Network (USHCN), Physionet, and the Medical Information Mart for
Intensive Care-III (MIMIC-III). We provide the details on these datasets in Appendix B}

Single-step prediction. Single-step prediction task requires the model to predict the observations
made at the next time-step after having observed past sequence of observations. Table|l|summarizes
the predictive performance of all the models on the single-step prediction task across the three
datasets. For the USHCN dataset, ContiFormer and Latent ODE, mTAND and TACD-GRU are
the best performing models in terms of MSE. TACD-GRU achieves the lowest MSE and MAE

Under review as a conference paper at ICLR 2025

on Physionet and MIMIC-III. In the case of USHCN dataset, TACD-GRU-ATTENTION model
outperforms the TACD-GRU-CONTEXT model, suggesting that capturing short-term dependencies
may be crucial for this task. In contrast, for Physionet and MIMIC-III, the relationship is reversed
suggesting that more historical context is needed for accurate predictions on these datasets.

Table 1: Comparison of models on single-step prediction on USHCN, Physionet and MIMIC-III datasets. We
report the mean and standard deviation of MSE (x 10~2) and MAE (x1072) on multiple distinct random seeds.

Model USHCN Physionet MIMIC-IIT
MSE ({) MAE(}) | MSE() MAE(}) | MSEW) MAE (})

f-CRU 0.020+ 0.007 0.455+0.077 1.095+ 0.069 5.2954+ 0.132 1.191+0.043 6.535+0.214
mTAND 0.007+ 0.004 0.194+ 0069 | 0.330+0.015 3.411+0.130 1.260+ 0018 6.885+0.082
GRU-D 0.015+ 0.009 0.386+0.110 0.672+0.026 5.459+ 0.094 0.984+ 0.028 5.853+0.102
Latent ODE 0.007+ 0.004 0.127+ 0.031 0.676+ 0.005 5.302+ 0.001 1.209+ 0.018 6.490+ 0.049
ContiFormer 0.005+ 0.002 0.125+0.016 0.479+ 0.024 4.232+0.001 1.348+0.093 6.941+0.399
ODE-RNN 0.019+0.017 0.220+0.116 0.770+ 0.042 5.5194 0273 1.429+ 0.046 7.2514 0262
CRU 0.030+0.019 0.519+ 0.166 0.807+0.035 5.233+0.242 1.236+0.035 6.735+0.139
RKN-A; 0.015+0.016 0.367+0.178 0.680+ 0.042 4.854+0.197 1.292+0.042 6.820+ 0.081
GRU-A; 0.035+ 0.001 0.717+0.018 0.449+ 0.018 4.160+0.154 1.414+0.051 7.2264 0.086
T-PatchGNN 0.065+0.031 0.909+ 0.405 0.338+0.032 3.259+ 0.168 1.226+0.010 6.689+ 0.151
GraFITi 0.074+ 0015 0.673+0.042 0.233+ 0.009 2.781+ 0.025 1.419+0.032 7.448+0.121
TACD-GRU 0.008+ 0.002 0.248+ 0.036 0.232+ 0.004 2.773+0.033 0.578+ 0.010 4.419+ 0.073
TACD-GRU-C 0.015+0.013 0.377+0.187 0.261+ 0.006 2.957+0.035 0.816+ 0.026 5.278+0.036
TACD-GRU-A 0.009+ 0.001 0.348+0.013 0.355+ 0.007 3.533+0.058 1.019+0.005 5.786+0.015

Table 2: Comparison of models on multi-step prediction task on USHCN, Physionet and MIMIC-III datasets.
We report the mean and standard deviation of MSE (x 10~ 2) and MAE (x 10~ 2) on multiple distinct random
seeds.

Model USHCN Physionet MIMIC-IIT
MSE) MAE(l) | MSEW) MAE({) | MSEW) MAEW)

f-CRU 1.585+0.022 6.987+0.064 0.688+0.043 5.113+0.137 1.731+0.050 8.434+0.160
mTAND 1.593+0.017 7.4404+ 0.083 0.553+ 0012 4.567+0.057 1.779+0.018 8.621+0.166
GRU-D 1.568=+0.013 7.295+0.171 0.785+0.025 5.781+0.099 1.542+0.036 7.914+0.136
Latent ODE 1.523+0.017 7.382+ 0215 0.704+0.013 5.503+ 0.024 1.773+0.020 8.495+ 0.088
ContiFormer 1.569+0.006 7.369+0047 | 0.557+0039 4.722+0276 1.471+0.031 7.823+0.133
ODE-RNN 1.724+0.019 7.81740.042 0.893+ 0.021 6.629+0.109 1.645+0.021 8.048+ 0.067
CRU 1.403+0.042 6.586+0.124 0.590+ 0.040 4.689+0.169 1.768+0.042 8.571+0.09
RKN-A; 1.539+0.019 6.814+ 0.063 0.875+0.037 6.299+ 0.170 1.726+0.026 8.466+ 0.089
GRU-A; 1.701+ 0.007 7.7494 0.094 0.4654+ 0.002 4.357+0.051 1.831+0.013 8.736+0.092
T-PatchGNN 1.749+ 0.071 8.754+ 0985 0.455+ 0.007 4.253+0.118 1.318+0.014 7.3424 0.062
GraFITi 1.4324+0.010 7.1994+ 0340 0.432+ 0.010 3.912+ 0.081 1.295-+ 0.027 7.190+ 0.103
TACD-GRU 0.955+ 0.023 5.049+ 0.285 0.436+ 0.009 3.956+ 0.056 1.286-+ 0.028 7.041+0.116
TACD-GRU-C 0.981+0.019 5.179+0.197 0.512+ 0011 4.288+0.020 1.477+0.040 7.688+0.127
TACD-GRU-A 1.728=+0.061 7.960+0.233 0.557+0.025 4.516+0.114 2.27840.001 9.173+ 0015

Multi-step prediction. In the multi-step prediction task, we divide the time series in time into two
segments. The model observes the first segment (representing the past) to predict the observations
in the second segment (representing the future). We report and compare the performance on only
the predicted time-points in the second (future) segment of the sequence. For Physionet prediction
task, out of the total of 48 hours, first 24 hours are observed and models are compared for prediction
performance in the next 24 hours. Similarly, for the USHCN dataset, with daily samples over four
years, we use the first half to predict the latter. For the MIMIC-III prediction task, models observe
values of 506 variables over past 48 hours from a randomly sampled time point (so called anchor
point) in the patient record. The models are compared on predicted values for observations made in
the next 24 hours on 363 variables defining numerical time series defining vital signs and labs. Table 2]
summarizes the predictive performance of all models on the multi-step prediction task. We note that
TACD-GRU achieves the lowest MSE and MAE on USHCN and MIMIC-III while sharing the first
rank with GraFITi on the Physionet. USHCN. We note that USHCN dataset, on average, consists
of longest sequences (refer to Table [3]in the Appendix). The closest competitors to TACD-GRU on
this dataset are TACD-GRU-CONTEXT, CRU and RKN-A; models. This indicates that recurrent
models with an explicit hidden state in general lead to better performance on this dataset. This is
further supported by the fact that TACD-GRU’s CONTEXT outperforms the ATTENTION model.
Physionet. For Physionet dataset, that is inherently irregularly sampled, models GraFITi, TACD-

Under review as a conference paper at ICLR 2025

GRU, T-PatchGNN perform quite well indicating that both the short and the long term temporal
dependencies are important to learn in this setting. Improved performance in TACD-GRU over
individual models can be explained by the fact that it combines the component models with these
inductive biases to formulate the final prediction. MIMIC-III. Among the three datasets examined,
MIMIC-III most closely resembles the real-world scenario. In terms of MSE and MAE, TACD-GRU,
GraFITi and T-patchGNN models are the most competitive. We further investigate two key aspects:
i) whether the improvements are concentrated in a small subset of predicted variables; ii) if the
enhancements are limited to specific time-spans within the predicted time horizon.

Missing data perspective. Prior works Singh|(1997);|[Ramoni & Sebastiani| (1997)) have classified the
observed missingness in the data into three categories: i) Missing Completely at Random (MCAR),
and ii) Missing at Random, and iii) Not Missing at Random (NMAR). In our experiments, USHCN
belongs to MCAR, where the missingness is synthetically introduced by dropping the observations
uniformly at random. In contrast, the Physionet and MIMIC-III datasets are instances of NMAR,
where missingness is contextual, i.e., dependent on observed and unobserved values. For example,
in these datasets, a laboratory test might be missing until an abnormal vital sign value is observed,
making the physician order the test. Our analysis suggests that while TACD-GRU remain competitive
in MCAR, it outperforms all the models on NMAR. These results demonstrates that TACD-GRU is
better able to model the dependencies inherent in the processes generating the missingness.

Single-step vs. Multi-step prediction We evaluate models on the single-step and multi-step prediction
tasks, given a set of historical observations. The multi-step prediction task presents a greater challenge
as it requires forecasting multiple future time points without feeding intermediate observations. The
absence of intervening observations in multi-step prediction increases uncertainty and compounds
model errors over time, leading to reduced accuracy relative to single-step forecasts (evident from
results in Table [T and Table [Z). Notably, in NMAR single-step prediction settings, our model’s
improvement in MSE over the best baseline significantly exceeds that in multi-step prediction. These
empirical evidences suggests that under accurate historical contexts, TACD-GRU is significantly
better at capturing temporal dependencies than any other time series model considered.

Computational cost analysis. To understand how the irregular time series models compare in terms
of training time, inference time and peak memory consumption, we provide a detailed comparison in
the Appendix [[] In terms of train time, as shown in Figure[I0a] methods that can be parallelized over
time dimension (T-PatchGNN, mTAND) are the fastest, RNN methods (TACD-GRU, GRU-D, GRU-
Ay) rank second, models with linear dynamics (RKN-A;, CRU, f-CRU) rank third and lastly, methods
that require invoking numerical solvers (ContiFormer, Latent ODE, ODE-RNN) consume the most
amount of train time. The performance trade-off is clear from Figure time-parallelizable models
offer the best train times at the expense of significantly higher memory consumption. Additionally,
we highlight the importance of having a Markov state representation in efficient online operation of
the time series models in the Figure [10d]

MIMIC-III Qualitative Analysis. Examining a few MIMIC-III qualitative samples suggests that
GRU-D can pick incorrect trends in scenarios when the variable to be predicted is in abnormal ranges
or when variable is observed very sporadically (such as White Blood Count (WBC) lab values in
MIMIC-III in the bottom plot in Figure[2). In both the cases, GRU-D will interpolate towards the
empirical mean of the variable, although the actual behavior of the variable might deviate away from
the mean. We plot and analyze some qualitative samples from MIMIC-III in the Appendix [[|and
visualize learned embeddings for ABPm in the Appendix

.
b
+
H

g
/

{
/
J\
e

\
\
t

ABPm(Iobs=115)

g8
t
H

HR(lobs=120)

8

4
¥

58

WBC(lobs=5)

4

Figur e 2: Qualitative samples on MIMIC-III dataset. Top two plots demonstrates that GRU-D predicts in the normal ranges (typically
approximated by the empirical mean) of the variables ABPm (Mean Arterial Blood Pressure) and Heart Rate (HR), while TACD-GRU is not
limited to normal range. Bottom plot is an instance of WBC prediction which is relatively more sparsely sampled.

Under review as a conference paper at ICLR 2025

Examining TACD-GRU components. Our TACD-GRU models relies on a combination of two
prediction models. Two key questions that arise in this context are: (D How good are the two
models individually? Q) Is the meta-decision model improving the prediction? To investigate these
aspects of our model, we compare the TACD-GRU with TACD-GRU-CONTEXT and TACD-GRU-
ATTENTION models. We report their performance on single-step prediction task in Table [1| and
multi-step prediction task in Table[2] In most cases, among the two prediction models, context
based model outperforms attention based model. This is intuitive because context based model is a
function of all historical observations, while attention based model only uses the last observed values.
Moreover, these results suggests that the exponential decay functions are powerful enough to learn and
represent the continuous temporal dynamics across multiple different datasets and prediction tasks. In
both the single-step and multi-step prediction tasks, considering that TACD-GRU consistently exceeds
the performance of its individual component models, it appears that these models are providing for
complementary predictive value. Furthermore, this demonstrates that the meta-decision model can
contextually learn to weight the two prediction models.

w o—_—

i
{
z
i

Attention-based estimator weight
Attention-based estimator weight
onstruction MSE (log scaled)

Rec

00
o s 10 15 2 2 0 100 200 300 400 500 600 700 800
Extrapolation time steps Extrapolation time steps. 0 2 'y 60 80 100 0 2 40 60 80 100

(a) (b) (© (d)

Figure 3: Robustness. Plots for TACD-GRU’s attention based prediction model weight at different noise levels for Physionet and
USHCN datasets. Both the plots indicate that as context based estimates have more noise, the meta-decision model assigns more weight to
the attention model. Reconstruction. plots the reconstruction MSE over 100 training epochs for three different random seeds. shows
the weight assigned by the meta-decision model to the attention based model in the TACD-GRU model.

Reconstruction. TACD-GRU is a prediction model, and recall that AT specifies the prediction
horizon. The reconstruction task requires the model to reconstruct the current observations, which
is equivalent to setting AT = 0. Theoretically, TACD-GRU should be able to perfectly reconstruct
the current observation x; as it updates x; component of the state #; to include it. Empirically,
for multiple datasets, we conclude that it can achieve perfect reconstruction as demonstrated in the
Figure Moreover, we assess if the meta-decision model learns to focus only on TACD-GRU-
ATTENTION (by assigning weight of 1) since it has sufficient information to reconstruct the current
input. Interestingly, as demonstrated in the Figure[3d] the meta-decision model indeed learns this
behavior quite well.

Robustness of the meta-decision model. In the Figure 3 and Figure[3b] we illustrate that when the
TACD-GRU-CONTEXT predictions are synthetically perturbed during training for the multi-step
prediction task, the decision model learns to favor the TACD-GRU-ATTENTION model by assigning
it more weight. The figure demonstrates a clear trend: as the noise level increases, the meta-decision
model progressively assigns more weight to the TACD-GRU-ATTENTION model. This ablation
outcome, observed across multiple datasets, demonstrates the robust adaptive behavior of the meta-
decision model in combining the two prediction models. We include a comprehensive description of
these experiments in the Appendix [K]

6 CONCLUSION

In conclusion, we propose and study TACD-GRU, a new recurrent neural network unit for irregularly
sampled time series. Our investigation on multiple prediction tasks confirm TACD-GRU'’s superior
performance over the existing state-of-the-art models on multiple irregularly sampled data settings.
We provide extensive experiments to validate the contributions and robustness of the TACD-GRU
components, further highlighting the benefits of our proposed architecture. Additionally, we introduce
a new MIMIC-III derived dataset that can provide as a realistic benchmark for evaluating prediction
models that handle irregular time series data.

7 LIMITATIONS

Unlike compared baselines such as mTAND, RKN-A,, f-CRU and CRU, our proposed architecture
doesn’t have a built-in notion of uncertainty, and incorporating it in the future model refinements of
TACD-GRU remain an open challenge and our future modeling objective.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C. James Taylor, and Gerhard Neumann.
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp- 544-552. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/
beckerl9a.htmll

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific Reports, 8(1), April
2018. ISSN 2045-2322. doi: 10.1038/s41598-018-24271-9. URL http://dx.doi.org/10,
1038/s41598-018-24271-9.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling, 2014. URL https://arxiv.org/
abs/1412.3555.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous model-
ing of sporadically-observed time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL |https://proceedings.neurips.cc/paper_
files/paper/2019/file/455cb2657aaa59%9e32fad80cb0b65b9dc—Paper.pdf.

Alistair Johnson, Tom Pollard, and Roger Mark. Mimic-iii clinical database, 2023. URL https:
//physionet.org/content/mimiciii/.

Rudolf Emil Kalman. Mathematical description of linear dynamical systems. Journal of the Society
for Industrial and Applied Mathematics, Series A: Control, 1(2):152-192, 1963.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time, 2019.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33:6696-6707,
2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to reconstruct missing data from spatiotem-
poral graphs with sparse observations. Advances in Neural Information Processing Systems, 35:
32069-32082, 2022.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. Advances in neural information processing systems, 30, 2017.

MJ Menne, CN Williams Jr, and RS Vose. Long-term daily and monthly climate records from
stations across the contiguous united states (us historical climatology network). Technical report,
Environmental System Science Data Infrastructure for a Virtual Ecosystem ..., 2016.

Marco Ramoni and Paola Sebastiani. Robust parameter learning in bayesian networks with missing
data. In Sixth International Workshop on Artificial Intelligence and Statistics, pp. 399—406. PMLR,
1997.

11

https://proceedings.mlr.press/v97/becker19a.html
https://proceedings.mlr.press/v97/becker19a.html
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.1038/s41598-018-24271-9
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://proceedings.neurips.cc/paper_files/paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf
https://physionet.org/content/mimiciii/
https://physionet.org/content/mimiciii/

Under review as a conference paper at ICLR 2025

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/fi1le/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
series with continuous recurrent units. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
19388-19405. PMLR, 17-23 Jul 2022. URL |https://proceedings.mlr.press/v162/
schirmer22a.html.

Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irregularly sampled
time series. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=4c0J61wQ4_|

Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications (4th edition).
Springer-Verlag, Berlin, Heidelberg, 2017.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A comparison of arima and Istm in
forecasting time series. In 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 1394-1401, 2018. doi: 10.1109/ICMLA.2018.00227.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012
Computing in Cardiology, pp. 245-248. IEEE, 2012.

Moninder Singh. Learning bayesian networks from incomplete data. AAAI/IAAI, 1001:534-539,
1997.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in Neural Information Processing
Systems, 34:24804-24816, 2021.

Vijaya Krishna Yalavarthi, Kiran Madhusudhanan, Randolf Scholz, Nourhan Ahmed, Johannes
Burchert, Shayan Jawed, Stefan Born, and Lars Schmidt-Thieme. Grafiti: Graphs for forecasting
irregularly sampled time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16255-16263, 2024.

Weijia Zhang, Chenlong Yin, Hao Liu, Xiaofang Zhou, and Hui Xiong. Irregular multivariate
time series forecasting: A transformable patching graph neural networks approach. In Forty-first
International Conference on Machine Learning.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided net-
work for irregularly sampled multivariate time series. In International Conference on Learning
Representations, ICLR, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.mlr.press/v162/schirmer22a.html
https://proceedings.mlr.press/v162/schirmer22a.html
https://openreview.net/forum?id=4c0J6lwQ4_
https://openreview.net/forum?id=4c0J6lwQ4_

Under review as a conference paper at ICLR 2025

APPENDIX

A ALGORITHMS

For more clarity, we include the exact algorithm for TACD-GRU step function in Algorithm [I| which
first calls update state function followed by invoking the the prediction module.

Algorithm 1 TACD-GRU Step function

Input: {Xt, my, AT, AT }, Htfl = {htfl,X*_l, 5,&,1}
H; = Update(xy, my, AT, H;_1) {Call Alg.

X, AT = Predict(Hy, AT) {Call Alg.

Return: H;,X; AT

Algorithm 2 TACD-GRU Model State Update

Input: {x;, m;, A7}, Hiq

g, = v(AT) ©hy_; {decay prev. hidden state}
x; = x; © my {handle missing values}

x; = Update(x;_y,x,) {Using Eq.

d; = Update(d;—1, my, A1) {Using Eq.

h; = GRU(x}, my, g,) {get updated hidden state }
Return: H;

Algorithm 3 TACD-GRU’s Prediction Module (observe 7, predict 74 + AT)

Input: {h,, x}, 6:}, {AT}

;a7 = 0; + AT {add prediction horizon}

g AT = ~v(AT) ® h; {decay hidden state}

ﬁ;sl,AT =X; + W, © Attn(X], d;.a1) + b, {attn. estimate }
X; a1 = Fout(8; A7) {context-based estimate}

Xt AT = Co - X a7 + (1= ¢5) - X[ap {final output}
Return: X; At

B DATASETS

B.0.1 USHCN

United States Historical Climatology Network (USHCN) Menne et al.| (2016)) is a publicly avail-
able dataset (https://data.ess—dive.lbl.gov/view/doi%$3A10.3334%2FCDIACS
2FCLI.NDPO0109) consisting of daily measurements of 5 meteorological variables including min
temperature, max temperature, precipitation, snowfall, and snow depth from 1218 observing stations
across the United States. To be comparable to the results reported by [Schirmer et al.| (2022), we mimic
their data pre-processing pipeline by: i) sub-selecting 1168 stations over a 4-year period ranging
from 1990 to 1993 ii) subsample 50% of time-points to increase irregularities in time dimension; and
setting unobserved rate to 20% to increase sparsity of observations, iii) 20% of the entire dataset is
used for testing; we train and validate on the remaining 80% data; 25% of that is used for validation.

To be able to compare to methods listed in the [Schirmer et al.| (2022) for the prediction task, we
replicate their: (1) pre-processing logic; (2) splitting of dataset into train, validation and test sets by
using the same seed; (3) 20% partial observability in feature dimension and 50% in time dimension
in TACD-GRU run; (4) masking logic for prediction task.

13

https://data.ess-dive.lbl.gov/view/doi%3A10.3334%2FCDIAC%2FCLI.NDP019
https://data.ess-dive.lbl.gov/view/doi%3A10.3334%2FCDIAC%2FCLI.NDP019

Under review as a conference paper at ICLR 2025

B.0.2 PHYSIONET

Predicting Mortality of ICU Patients: The PhysioNet/Computing in Cardiology Challenge
2012 [Silva et al.| (2012) made publicly available (https://physionet.org/files/
challenge-2012/1.0.0/) 8000 ICU patient stays that span 48 hours reporting 37 clinical
real-valued time series variables observed at irregular time-intervals. The dataset includes various
variables, including Non-Invasive Mean Arterial Pressure, Platelets, Sodium, and several others. We
follow the pre-processing of this dataset described by Schirmer et al.[(2022)). Observations in time
are rounded by 6 minutes. Similar to USHCN, test split consists of 20% of the data, the rest is used
for training and validation; validation set consists of 25% of this split.

For fair comparison to methods listed in|Schirmer et al.| (2022), we ensure (1) 6-minute quantization
(as done in [Rubanova et al.| (2019); [Schirmer et al.| (2022))); (2) splits are created using the same
seeds; (3) same masking logic is applied for prediction task.

B.0.3 MIMIC-III

A population cohort of 10,265 hospital admissions (on 8,799 patients) are extracted from MIMIC-III
Johnson et al.| (2023) (https://physionet.org/content/mimiciii/1.4/) based on
the following criteria: i) patient record is recorded in MetaVision critical care information system, ii)
the length of the patient record is between 2 and 20 days, iii) the age of the patient is between 18
and 90. From all EHR tables available in MIMIC-III, we extract (irregularly sampled) time series
that include vital signs (such as Heart Rate and Mean Arterial Pressure), lab results (such as Glucose
and Hemoglobin), administered medications (such as Propofol and Norepinephrine), and procedures
(such as Intubation). The vital signs and lab results are numerical time series, while the rest are
indicator time series, indicating if and when the event occurred.

We filter out any univariate time series that occurs less than 500 times across all patients in the
cohort resulting in total of 506 time series: 393 numerical (vitals and labs), 77 medications and 36
procedures event time series. We define an A-point, abbreviated for Anchor-point, as a temporal
moment at which a decision-making system can formulate a prediction based on the past sequence of
events. We extract A-points from the filtered patient records regularly with frequency of 24 hours
i.e. one sample is extracted every 24 hours from the patient record. We standardize all real-valued
univariate time series (i.e. vital signs and labs) data using min-max scaling; and encode all other
indicator time series as binary value 0/1. Value is 1 if event occurs; 0 otherwise. 80% of the patient
hospital admission are used for training and validation (20% of train split); the rest is used for testing.
Splits are constructed on disjoint patients.

Additional pre-processing is required to remove missing values encoded as 9999999 in the numerical
time series. To remove outliers from univariate time series (for example, very large values of the order
of 1eb), we filter out observations that fall either in < 0.1 or > 99.9 percentile ranges. Subsampling
of A-points is performed as follows:

1. For each split:
a. For each patient admission record, filter out A-points with less than 50 events in history
and prediction window.
b. Next, randomly sample one A-point from the filtered A-points i.e. one sample per

patient admission record.

2. Subsample 1000 A-points from train, 250 from validation and 200 from test set to be used
for experimentation.

B.1 DATASET ATTRIBUTES

Table [3| summarizes the mean, standard deviation, minimum and maximum of all the sequences per
dataset. Importantly, the MIMIC-III dataset does not undergo any time discretization, resulting in
sequence lengths spanning from 105 to 4299. In terms of average length, the order is as follows:
USHCN > MIMIC-III > Physionet.

14

https://physionet.org/files/challenge-2012/1.0.0/
https://physionet.org/files/challenge-2012/1.0.0/
https://physionet.org/content/mimiciii/1.4/

Under review as a conference paper at ICLR 2025

Table 3: Sequence length statistics and number of target variables across datasets

Dataset mean =+ s.d. min max # target variables
USHCN 730.0 £+ 0.00 730 730 5
Physionet 72.16 +20.93 1 185 37
MIMIC-IIT 244.30 £+ 288.85 105 4299 393

C BASELINES

We include the following baseline methods to compare against our proposed model TACD-GRU:

GRU-A;: We consider recurrent models GRU-A; as our baselines in the comparison. Gated
Recurrent Unit/Chung et al.| (2014)) have been proposed to model sequences using a set of parametric
update equations. Since GRU is not time-aware, a variant of GRU that also feeds in time elapsed
(since the last time-step) along with the input GRU-A, is used in the comparison.

RKN-A;: Recurrent Kalman Networks (RKN) Becker et al.| (2019) have been proposed to incorporate
uncertainty in time series modeling. Similar to GRU-A;, we include the baseline RKN-A; that
includes time elapsed as an additional input to the model.

GRU-D: We compare our method to Gated Recurrent Unit-Decay (GRU-D)|Che et al.| (2018]) that
uses a mean-reverting imputation function for missing variables; applies learnable exponential decays
in the input and latent dimension to account for irregular observed times.

mTAND: We evaluate our performance against the Encoder-Decoder generative model, Multi-
Time Attention Network (mTAND-Full) [Shukla & Marlin| (2021)), which defines reference points
and represents continuous time-points with learnable embeddings to encode their relationship and
generate predictions.

CRU and f-CRU: We consider Continuous Recurrent Units (CRU) and fast-Continuous Recurrent
Units (f-CRU) |Schirmer et al.| (2022) as our baselines for prediction tasks. f~-CRU is a fast implemen-
tation of jointly proposed CRU method. CRU consists of an encoder-decoder framework where the
hidden state progression is governed by linear stochastic differential equation that allow incorporating
arbitrary time-intervals between observations.

ODE-RNN and Latent ODE: In our analysis, we consider Latent ODE and ODE-RNN proposed in
Rubanova et al.|(2019) as comparative baselines. ODE-RNN model consist of latent states that adhere
to ODE between observations and are updated at observations using standard RNN update equations.
Latent ODE model adopts variational auto-encoder framework wherein the hidden state posterior
is modeled by an ODE-RNN model. We used the configuration of Latent ODE with ODE-RNN
encoder.

ContiFormer: We incorporate ContiFormer [Chen et al.| (2023)) as one of our baselines for the
prediction tasks. It builds upon the original transformer architecture by first extending the input
irregular data to the continuous-time latent representation by assuming that the underlying dynamics
are governed by the ODEs.

T-PatchGNN: We include T-PatchGNN Zhang et al.| as one of our baselines for the prediction tasks.
T-PatchGNN first segments each time series into patches of uniform temporal resolution followed
by the transformer and time-adaptive GNNs to capture dependencies in the multivariate time series.
We use the official T-PatchGNN code made publicly available here: https://github.com/
usail-hkust/t-PatchGNN in our experiment pipeline.

GraFITi: We add GraFITi [Yalavarthi et al| (2024) as one of our baselines for comparisons on
the single-step and multi-step prediction tasks. GraFITi casts the time series prediction task in
terms of edge weight prediction problem after converting the time series to a sparse graph structure.
To incorporate this method, we make use of the official implementation available here: https:
//github.com/yvalavarthivk/GraFITi.

15

https://github.com/usail-hkust/t-PatchGNN
https://github.com/usail-hkust/t-PatchGNN
https://github.com/yalavarthivk/GraFITi
https://github.com/yalavarthivk/GraFITi

Under review as a conference paper at ICLR 2025

D GENERIC HYPER-PARAMETERS FOR PREDICTION TASKS

The following hyper-parameter are applicable broadly across our prediction experiments:

* For all models, we use Adam optimizer Kingma & Ba|(2015))

* For all models, we apply exponential learning rate decay of 0.99 and perform gradient
clipping using max [?-norm=1.

* For all TACD-GRU configurations, for simplicity, we experiment with the same number
of time and the variable embedding sizes i.e. d, = d; to reduce number of iterations of
hyper-parameter tuning. Results can perhaps be further improved with task-specific different
embedding sizes for event and time.

* For all TACD-GRU configurations, we use the same architecture for meta-decision model
Fieta (gt,AT):

Sequential([Linear(hidden_dim, hidden_dim), ReL.U(), Linear(hidden_dim,1)]).

* For all TACD-GRU configurations, we use the same architecture for the hidden to observa-
tion function Fout(gt’ Ar): Linear(hidden_dim, target_dim).

E HYPER-PARAMETERS FOR PREDICTION TASKS ON USHCN

We keep batch size fixed to 50, the number of training epochs to 100, learning rate decay to 0.99,
with gradient clipping and perform a hyper-parameter search for each model as follows:

E.1 MTAND

For mTAND, we perform a grid search over time embedding dimension = {32, 64,128}, la-
tent state dimension ={8, 10, 16, 20}, number of reference points={32, 64, 128} and learning rate
={0.1,0.05,0.01,0.001}. Of which, latent state dimension=8, number of reference points=32 and
learning rate of 0.01 performs the best on the validation data.

E.2 GRU-D

For GRU-D, we perform a search over latent state dimension = {8, 10, 16,20} and learning rate
={0.1,0.05,0.01,0.001}. We find that configuration with latent state dimension=20 and learning
rate=0.01 performs best on the validation set.

E.3 CRU

Fixed hyper-parameters for CRU are: variance activation for encoder="square’, decoder="exp’,
transition="relu’ encoder variance activation="square’, decoder variance activation="exp’, number
of basis matrices=20, and the same encoder and decoder network architecture as used in|Schirmer
et al|(2022). We perform a search on latent state dimension={8, 10, 16,20} and learning rate
={0.1,0.05,0.01,0.001}. We report that the latent dimension=10 and learning rate=0.05 performs
the best on validation set.

E.4 F-CRU

Fixed hyper-parameters for f-CRU include: variance activation for encoder="square’, decoder="exp’,
transition="relu’ encoder variance activation="square’, decoder variance activation="exp’, number
of basis matrices=20, and the same encoder and decoder network architecture as used in|Schirmer
et al[(2022). We perform a search on latent state dimension = {8, 10, 16,20} and learning rate =
{0.1,0.05,0.01,0.001}. We report that the latent dimension=10 and learning rate=0.05 performs the
best on the validation set.

E.5 LATENT ODE

We use Latent ODE model with ODE-RNN encoder. We perform a grid search on latent
state dimension={8, 10, 16,20}, recognition network dimension={16, 32,64}, number of GRU

16

Under review as a conference paper at ICLR 2025

units={16, 32, 64}, number of generation layers={2, 3}, number of recognition layers={2, 3} and
learning rate= {0.1,0.05,0.01,0.001}. The configuration that performs the best on validation split
with latent state dimension, recognition network dimension, number of GRU units set to 20; learning
rate of 0.01 and generation and recognition network layers set to 3.

E.6 ODE-RNN

For ODE-RNN, we use GRU as the RNN model and use the adjoint solver method implemented
in the library: https://github.com/rtgichen/torchdiffeqlfor solving the ODEs in a
differentiable manner. For ODE-RNN, we search over latent state dimension={8, 10, 16,20} and the
learning rates={0.1, 0.05, 0.01,0.001}. We find that the configuration of latent state dimension=20
and learning rate = 0.01 works the best on the validation set.

E.7 CONTIFORMER

We use the ContiFormer implementation released by the authors https://github.com/
microsoft/SegML/tree/main/ContiFormer|in our implementation. Note that since
USHCN has highest average sequence length, and ContiFormer is memory intensive, we can only fit
a batch size of 4 samples in our GPU memory. Keeping other parameters fixed, we vary the latent
state dimension = {8, 10, 16, 20} and learning rate = {0.1, 0.05,0.01,0.001}. Our experiments show
that latent state dimension=16 and learning rate=0.001 achieves the best performance on validation
set.

E.8 GRU-A;

For GRU-A,, we search over latent state dimensions of the GRU ={8, 10, 16,20} and learning
rates={0.1,0.05,0.01,0.005,0.001}. We find latent state dimension=16 and learning rate=0.005 to
be the best performing configuration.

E.9 RKN-A,

We use the RKN-A; implementation made available by the authors https://github.com/
ALRhub/rkn_share.gitl Our RKN-A; implementation uses the same encoders and decoders
architecture as the CRU model. Keeping other parameters fixed, we search over latent state dimensions
={8, 10, 16,20} and learning rates = {0.1, 0.05,0.01, 0.005,0.001}. Latent state dimension=20 and
learning rate=0.001 results in the best performing model.

E.10 T-PATCHGNN

We perform a grid search over learning rates = {0.1, 0.05, 0.01, 0.005, 0.001}, time and node embed-
ding dimensions = {4, 8,16}, number of patches={2,4} (more number of patches results in GPU
OOM issue), and latent state dimension = {4, 8,10, 12, 16}, while fixing the number of heads in one
transformer layer = number of transformer layers = 1. We find that the configuration with learning
rate=0.001, time and node embedding dimension=8, number of patches=2, latent state dimension=16
results in the best validation MSE.

E.11 GRAFITI

We perform a grid search over learning rates = {0.1,0.05, 0.01, 0.005, 0.001}, latent state dimension
={4,8,16, 20}, number of layers = {1, 2,4} and number of attention heads = {1, 2,4}. We report
that the configuration with 1r=0.01, latent state dimension=8, number of layer=2 and number of
attention heads=1 results in the best validation MSE.

E.12 TACD-GRU
We perform a grid search over latent state dimensions={8, 10, 16,20} (to be comparable to other

baselines considered), and embedding sizes {2, 4,8} (smaller embedding sizes as USHCN has only
5 variables) with learning rates {0.1,0.05,0.01,0.005,0.001}. The best model configuration that

17

https://github.com/rtqichen/torchdiffeq
https://github.com/microsoft/SeqML/tree/main/ContiFormer
https://github.com/microsoft/SeqML/tree/main/ContiFormer
https://github.com/ALRhub/rkn_share.git
https://github.com/ALRhub/rkn_share.git

Under review as a conference paper at ICLR 2025

maximizes validation prediction MSE uses embedding dimensions=2, learning rate=0.1 and hidden
state dimension=20.

E.13 TACD-GRU-ATTENTION

For the prediction tasks, we report the results for attention-only (X“-only) model by using the same
TACD-GRU configuration but, without the context based prediction model and meta-decision model
components. So for USHCN, we use learning rate=0.1 and embedding size=2.

E.14 TACD-GRU-CONTEXT

For the prediction tasks, we report the results for context-only (x°-only) model by using the same
TACD-GRU configuration but, without the attention based prediction model and meta-decision model
components. For USHCN, we use learning rate=0.1 and latent state dimension=20.

F HYPER-PARAMETERS FOR PREDICTION TASKS ON PHYSIONET

We keep the following hyper-parameters constant across all methods: batch size=100, number of
training epochs=100, learning rate decay=0.99 and gradient clipping enabled. Below are the model
specific experiments we carried out.

F.1 MTAND

For mTAND, we perform a grid search over time embedding dimension = {32, 64, 128}, latent
state dimension ={8, 10, 16, 20, 22, 24}, number of reference points={32, 64, 128} and learning rate
= {0.1,0.05,0.01,0.001}. Of which, time embedding dim=32, latent state dimension=22, number
of reference points=64 and learning rate=0.01 performs the best on the validation data.

F.2 GRU-D

For GRU-D, we perform a search over latent state dimension = {8, 10, 16, 20, 22, 24} and learning
rate = {0.1,0.05,0.01,0.001}. We find that configuration with latent state dimension=16 and
learning rate=0.01 performs best on the validation set.

F.3 F-CRU

Fixed hyper-parameters for f-CRU include: variance activation for encoder="square’, decoder="exp’,
transition="relu’ encoder variance activation="square’, decoder variance activation="exp’, number
of basis matrices=20, and the same encoder and decoder network architecture as used in|Schirmer
et al| (2022)). We perform a search on latent state dimension = {8, 10, 16,20} and learning rate =
{0.1,0.05,0.01,0.001}. We report that the latent dimension=16 and learning rate=0.001 performs
the best on the validation set.

F.4 CRU

Fixed hyper-parameters for CRU are: variance activation for encoder="square’, decoder="exp’,
transition="relu’ encoder variance activation="square’, decoder variance activation="exp’, number
of basis matrices=20, and the same encoder and decoder network architecture as used in|Schirmer
et al[(2022). We perform a search on latent state dimension={8, 10, 16, 20, 32} and learning rate
= {0.1,0.05,0.01,0.005,0.001}. We report that the latent dimension=32 and learning rate=0.005
performs the best on validation set.

F.5 LATENT ODE
We use Latent ODE model with ODE-RNN encoder. We perform a grid search on latent

state dimension={8, 10, 16, 20, 32}, recognition network dimension={16, 32, 64}, number of GRU
units={16, 32, 64}, number of generation layers={2, 3}, number of recognition layers={2, 3} and

18

Under review as a conference paper at ICLR 2025

learning rate= {0.1,0.05,0.01,0.005,0.001}. The configuration that performs the best on validation
split with latent state dimension, recognition network dimension, number of GRU units set to 32;
learning rate=0.005 and generation and recognition network layers set to 3.

F.6 ODE-RNN

For ODE-RNN, we search over latent state dimension={8,10,16,20} and the learning
rates={0.1, 0.05,0.01, 0.005, 0.001}. We find that the configuration of latent state dimension=16 and
learning rate = 0.001 works the best on the validation set.

F.7 CONTIFORMER

For ContiFormer, we perform a search over the latent state dimension = {8, 16, 20, 32} and learning
rate = {0.1,0.05,0.01,0.001}. Our experiments show that latent state dimension=16 and learning
rate=0.001 achieves the best performance on the validation set.

F.8 GRU-A;

For GRU-A,, we search over latent state dimensions of the GRU ={8, 10, 16, 20, 24, 32} and learning
rates={0.1,0.05,0.01,0.005, 0.001}. We find latent state dimension=32 and learning rate=0.005 to
be the best performing configuration.

F.9 RKN-A;

Our RKN-A; implementation uses the same encoders and decoders architecture as the CRU model.
Keeping other parameters fixed, we search over latent state dimensions = {8, 10, 16, 20, 24, 32} and
learning rates = {0.1, 0.05, 0.01, 0.005, 0.001}. Latent state dimension=32 and learning rate=0.001
results in the best performing model.

F.10 T-PATCHGNN

We perform a grid search over learning rates = {0.1, 0.05, 0.01, 0.005, 0.001}, time and node embed-
ding dimensions = {4, 8, 16}, number of patches={5, 10, 20}, and latent state dimension = {4, 8,16},
while fixing the number of heads in one transformer layer = number of transformer layers = 1. We
find that the configuration with learning rate=0.001, time and node embedding dimension=8, number
of patches=10, latent state dimension=8 results in the best validation MSE.

F.11 GRAFITI

We perform a grid search over learning rates = {0.1, 0.05, 0.01, 0.005, 0.001}, latent state dimension
={4,8,10, 16,20}, number of layers = {1, 2,4} and number of attention heads = {1, 2, 4}. We report
that the configuration with 1r=0.005, latent state dimension=16, number of layer=2 and number of
attention heads=1 results in the best validation MSE.

F.12 TACD-GRU

We perform a search over learning rate={0.1, 0.025, 0.05, 0.01, 0.005}, the hidden state dimensions=
{10, 16, 20, 24, 32} (to be comparable to other models) and embedding dimensions = {32, 64, 128}.
We find that hidden state dimension=20, learning rate=0.025, and embedding size=64 results in best
validation MSE.

F.13 TACD-GRU-ATTENTION

For the prediction tasks, we report the results for attention-only (X“-only) model by using the same
TACD-GRU configuration but, without the context based prediction model and meta-decision model
components. So for Physionet, we use learning rate=0.025 and embedding size=64.

19

Under review as a conference paper at ICLR 2025

F.14 TACD-GRU-CONTEXT

For the prediction tasks, we report the results for context-only (x°-only) model by using the same
TACD-GRU configuration but, without the attention based prediction model and meta-decision model
components. For Physionet, we use learning rate=0.025 and latent state dimension=20.

G HYPER-PARAMETERS FOR PREDICTION TASKS ON MIMIC-III

We keep the following hyper-parameters constant across all methods: batch size=1 (to be able to
handle the longer sequences in the MIMIC-III dataset within GPU memory constraints), number of
training epochs=20, learning rate decay=0.99 and gradient clipping enabled. Below are the model
specific experiments we carried out.

G.1 MTAND

Based on MIMIC-III experiments in/Shukla & Marlin| (2021)), we keep the following hyper-parameters
fixed: time embedding dimension=128. We perform grid search on the hidden state dimension =
{16, 32,64}, encoder hidden dimension = {16, 32, 64}, the number of reference points = {64, 95}
and the learning rates={0.01, 0.005, 0.001}. Note that for both hidden state dimensions as 64 and
number of reference points as 95, we hit the memory limit on our GPU for batch size=1. Nonetheless,
the resulting number of parameters (=174K) for this configuration is higher than that of our proposed
model. Our validation results show that latent state dimension=64, number of reference points=95
and learning rate=0.001 performs the best across all combinations.

G.2 GRU-D

We perform grid search over hidden state dimension={16,32,64} and learning
rates={0.01, 0.005, 0.001}. We report that hidden state=32 and learning rate=0.001 performs the
best on validation set and use it to report the final results.

G.3 LATENT ODE

We use Latent ODE model with ODE-RNN encoder. We perform a grid search on latent
state dimension={16, 32,64}, recognition network dimension={16,32,64}, number of GRU
units={16, 32, 64}, number of generation layers={2, 3}, number of recognition layers={2, 3} and
learning rate= {0.01, 0.005,0.001}. The configuration that performs the best on validation split with
latent state dimension, recognition network dimension, number of GRU units set to 32; learning rate
of 0.001 and generation and recognition network layers set to 3. Other hyper-parameters that were
kept fixed are: batch size=1, learning rate decay=0.99 with gradient clipping.

G.4 F-CRU

We perform a grid search over the latent state dimensions= {16,32,64} and learning
rates={0.01,0.005,0.001}. We set latent observation dimension as half the size of latent state
dimension. Number of basis matrices = 20, and Gradient clipping enabled. Encoder consists of 3 x(
FullyConnected(50) + ReLU + Layer normalization) followed by linear output for latent observation
and output; square activation for latent observation variance. Decoder consists of 3 x (FullyCon-
nected(50) + ReLU + Layer normalization) followed by a linear output. Decoder output variance
consists of (FullyConnected(50) + ReLU + Layer normalization) followed by linear output and square
activation. Activation function for transition function is ReLU. After performing the grid search, the
best configuration of hyper-parameters are: latent state dimension=64, and learning rate=0.001.

G.5 CRU
Fixed hyper-parameters for CRU are: variance activation for encoder="square’, decoder="square’,

transition="relu’, number of basis matrices=20, and the same encoder and decoder network architec-
ture used in f-CRU (above). We perform a search on latent state dimension={16, 32, 64} and learning

20

Under review as a conference paper at ICLR 2025

rate = {0.1,0.01,0.001, 0.0001}. We report that the latent dimension=32 and learning rate=0.0001
performs the best on validation set.

G.6 ODE-RNN

For ODE-RNN, we search over latent state dimension={16,32,64} and the learning
rates={0.1, 0.05,0.01, 0.005, 0.001}. We find that the configuration of latent state dimension=32 and
learning rate = 0.005 works the best on the validation set.

G.7 CONTIFORMER

For ContiFormer, we perform a search over the latent state dimension = {16, 32, 64} and learning
rate = {0.1,0.05,0.01,0.001}. Our experiments show that latent state dimension=64 and learning
rate=0.001 achieves the best performance on the validation set.

G.8 GRU-A,

For GRU-A;, we search over latent state dimensions of the GRU ={16,32,64} and learning
rates={0.1, 0.05, 0.01, 0.005,0.001}. We find latent state dimension=16 and learning rate=0.001
to be the best performing configuration.

G.9 RKN-A;

Our RKN-A,; implementation uses the same encoders and decoders architecture as the CRU model.
Keeping other parameters fixed, we search over latent state dimensions = {16, 32,64} and learning
rates = {0.001, 0.0005, 0.0001, 0.00005}. Note that we search over smaller values of the learning
rate because, the model would not converge for higher ones (we get "NaN” during optimization for
higher rate). Latent state dimension=32 and learning rate=0.00005 results in the best performing
model.

G.10 T-PATCHGNN

We perform a grid search over learning rates = {0.1, 0.05,0.01, 0.005, 0.001}, time and node embed-
ding dimensions = {4, 8,16}, number of patches={2,4} (more number of patches results in GPU
OOM issue), and latent state dimension = {4, 8, 10,12}, while fixing the number of heads in one
transformer layer = number of transformer layers = 1. We find that the configuration with learning
rate=0.001, time and node embedding dimension=20, number of patches=2, latent state dimension=12
results in the best validation MSE.

G.11 GRAFITI

We perform a grid search over learning rates = {0.1,0.05, 0.01, 0.005, 0.001}, latent state dimension
= {16, 32, 64}, number of layers = {1} (more number of layers on MIMIC-III causes OOM) and
number of attention heads = {1}. We report that the configuration with Ir=0.005, latent state
dimension=64, number of layer=1 and number of attention heads=1 results in the best validation
MSE.

G.12 TACD-GRU
After searching over hidden state={10, 16, 20}, learning rates={0.1, 0.05,0.01, 0.005, 0.001} and

embedding dimension={32, 64, 128}, we find the combination of 16 and 64 perform the best. We set
number of hidden units=16, learning rate=0.001, embedding size=64 and training for 20 epochs.

G.13 TACD-GRU-ATTENTION
For the prediction tasks, we report the results for attention-only (X“-only) model by using the same

TACD-GRU configuration but, without the context based prediction model and meta-decision model
components. So for MIMIC-III, we use learning rate=0.001 and embedding size=64.

21

Under review as a conference paper at ICLR 2025

G.14 TACD-GRU-CONTEXT
For the prediction tasks, we report the results for context-only (X°-only) model by using the same

TACD-GRU configuration but, without the attention based prediction model and meta-decision model
components. For MIMIC-III, we use learning rate=0.001 and latent state dimension=16.

H EFFECTS OF TIME NORMALIZATION

Table 4: Comparison of TACD-GRU and its variants when time is normalized to [0, 1] range.

Multi-step prediction MSE (x1072)

Model USHCN Physionet MIMIC-III

TACD-GRU 0.955 +£0.023 0.440 +0.011 1.291 £ 0.037
TACD-GRU-C 0.981 £0.019 0.5124+0.011 1.463 £ 0.046
TACD-GRU-A 1.918 £0.207 0.557 £0.025 2.278 + 0.001
TACD-GRU-NT 0.944 £ 0.019 0.4554+0.014 1.175+0.015
TACD-GRU-C-NT 0.968 £ 0.030 0.515£0.017 1.456 4+ 0.016
TACD-GRU-A-NT 1.872+0.210 0.581 £0.038 1.230 4 0.004

As an extension to the proposed TACD-GRU model, we compare the performance of TACD-GRU
and its components for the normalized and un-normalized time values. Briefly, the time is normalized
using min-max scaling so that the resulting range of time is in [0, 1]. In terms of implementation,
this requires one to compute the min and max time values in a retrospective dataset and normalizing
time values before calling the TACD-GRU'’s forward method. In Table §] we report and compare
the TACD-GRU’s performance for un-normalized and normalized time values (normalized time
version with suffix ”-NT”’). We ensure that the hyper-parameter configuration of normalized and
un-normalized times are the same including the random seeds for each experiment.

For MIMIC-III, the time granularity is in seconds, and so the time values are of the order of 106
(since 1 day= 24 x 60 x 60 seconds); for Physionet the time unit is in hours and so of the order
of 10'; USHCN is daily over several years so of the order of 103. It is interesting to note that
the attention-based predictions see significant improvements with time normalization on MIMIC-
IIT; small benefits on USHCN and a minor decline on Physionet. The context-based predictions
show small-to-no improvements across all datasets. Overall conclusion is that the normalized-time
TACD-GRU outperforms the un-normalized on datasets with higher magnitude of time values.

By restricting the time values to be in [0, 1] range, we enforce that the time-elapsed value be bounded
by 1. Even though the embedding function can re-scale the time-elapsed because of linear mapping
in Equation (T3) (using a multiplicative weight and an additive bias term), these results suggests that
re-scaling time-elapsed values before embedding them, results in learning a better predictive model,
espeically as the magnitude of time-elapses increase. Our hypothesis is that the learning of improved
time embedding representations is due to the decreased variability in time-elapses with the help of
min-max re-scaling.

I MIMIC-III QUALITATIVE EXAMPLES

We include qualitative examples for the MIMIC-III multi-step prediction task in the Figure A Fig-
ure 5] Figure [6]and Figure[7] Recall that for MIMIC-III, the prediction horizon is the future 24-hours.
Given that it is difficult to display all 393 predicted numerical variables in a compact manner, we
have selectively chosen to display commonly recognized univariate time series from vital signs and
lab values. From top to bottom, we consider vital signs: Heart Rate (HR), Respiration Rate (RR),
Arterial Blood Pressure Mean (ABPm), Non-Invasive Blood Pressure Mean (NBPm). Followed by
lab values: White Blood Cell (WBC), Creatinine, Platelets, Sodium (Na), Haemoglobin (Hgb). For
reference, we also provide the last observed value (labeled as ’lobs” on the y-axis label) of the time
series that is observed by the model. If the last value for that time series is not observed, we use “nan”
to represent it. All models that we report in Table[2]are plotted along with the ground truth time series
labeled as “Target”.

22

Under review as a conference paper at ICLR 2025

The plots reveal that the models learn to predict approximately constant predictions in the 24 hour
window for mTAND, f-CRU and Latent ODE models. We hypothesize that this could be due to
limited number of training samples, limited number of training epochs. TACD-GRU and GRU-D
models do produce trends in the predictions. From the figures, it appears that the TACD-GRU fit tends
to result in a lower MSE compared to the rest. In general, we note that GRU-D and TACD-GRU have
similar prediction profiles. However, as seen in Figure[d] there is a noticeable difference between
GRU-D and TACD-GRU for ABPm. This discrepancy can be attributed to the fact that GRU-D tends
to make predictions within the normal operating range (attributed to the population mean interpolation
model), which in the case of ABPm is 70-100 mmHg, while TACD-GRU predicts values in the

abnormal range.

ABPm(lobs:

5) NBPm(lobs=90)

WBC(lobs:
w
5

5

Platelets(lobs=355)

=14)

RR(lobs:
"
&

nan)

& 3 8

H

90
o
I
°

-
]
8

8

W
K

=6)

Creatinine(lobs

NN
g h 88
888 ¢

B
13

H
31375
I
§ 135.01

2 132.5

=9)

Hgb(lobs

10.0

9.5 1

9.0 1

—o— Target

B —e— TACD-GRU
—e— mTAND

4 /\ GRU-D

L
MS—SAW—PS—S—‘O—;S—S—S—S—S—F*- f-CRU

| - mTanD

R GRU-D
—— LatentODE
7 —e— fcru

—e— Target
&\ . S —e— TACD-GRU
> oo o —e— mTAND
8 Y GRU-D
- e ~ e e . % . 4 tatentoDE
——— = v —— f-CRU
-4 —e— Target e o °]
—e— TACD-GRU T~— I

—o— Target

—e— TACD-GRU

—e— mTAND
- GRU-D

e P —" —e— LatentODE

TN "~ — v o ey

"
&

—o— Target
—e— TACD-GRU
. —8— mTAND
GRU-D
L —e— LatentODE
—eo— f-CRU

»

—e— Target
—e— TACD-GRU
—e— mTAND

GRU-D
—e— LatentoDE
H —e— f-CRU

—e— Target
—e— TACD-GRU
—e— mTAND
GRU-D
—e— LatentODE
—e— f-CRU

—e— Target
—e— TACD-GRU
—8— mTAND
GRU-D
—e— LatentODE
—e— f-CRU

—o— Target
—e— TACD-GRU
—— mTAND
GRU-D
—e— LatentODE

—e— f-CRU
0

B 10 15 20
Prediction Horizon (hours)

Figure 4: Example 1 for MIMIC-III multi-step prediction task.

23

Under review as a conference paper at ICLR 2025

%0 —e— Target
g —e— TACD-GRU
I3 & -+ mmanD
£ s0 /- GRU-D
s ot o/ —8— LatentoDE
: — L e . e V \—\r"v—/ fery

70

A —e— Target
2201 & & 4 \i(& = 2eeee &—'— TACD-GRU
& < - R —8— mTAND
% s GRU-D
z —e— LatentODE
& —e— f-CRU

10

0.050
—e— Target
0.025 —e— TACD-GRU
—e— mTAND
0.000 GRUD
—0.025 —e— LatentoDE
i —e— f-CRU
-0.050
s 2° —e— Target
'ﬁ —e— TACD-GRU
£ 100 —e— mTAND
2 GRU-D
E « 9 9 o o o o gratuntapE
2 —e— f.CRU
-
_ 125 ! —e— Target
o —e— TACD-GRU
& 10.0
2 —e— mTAND
2 s GRU-D
§ d —e— LatentODE
50 —e— f-CRU
.
= 150 0
=
. —e— Target
125 —e— TACD-GRU
—e— mTAND
100 . GRU-D
0.75 - —e— LatentODE
—e— £CRU
G os0 o
7w 220 3
i —e— Target
200 —e— TACD-GRU
. —&— mTAND
180 GRU-D
—e— LatentODE
160 —e— f-CRU
°
.
. 1s00 —o— Target
E 139.5 —e— TACD-GRU
u s —e— mTAND
% 139.0 GRU-D
T 1385 —e— LatentODE
* 1380 . —e— f-CRU
~ —e— Target
812 —e— TACD-GRU
" —e— mTAND
G ° GRU-D
2u -
z —e— LatentoDE
T ! —e— f-CRU
10
5 10 15 20

Prediction Horizon (hours)

Figure 5: Example 2 on MIMIC-III

24

Under review as a conference paper at ICLR 2025

H
3
H
i
]
H
H

HR(I
8

0.050
0.025
0.000

-0.025

I
°
°
a
°

18) NBPm(lobs=103)
N
] BB oo
< 5 B8
o 888538

17.5

WBC(lobs=
]
N
w o

2)

e I
N B

370) creatinine(lobs
2 -
8 °

g_
3

8
H

Platelets(lobs:
8
H

=8)

Hgb lobs
9 v ©
w e wn

Ed
°

|
i

|

144

Target
TACD-GRU
mMTAND
GRU-D

14

f-CRU

teitds

Target
TACD-GRU
mTAND
GRU-D
LatentODE
f-CRU

t4ited

Target
TACD-GRU
mTAND
GRU-D
LatentODE
f-CRU

¢

LatentODE
f-CRU

oo

Pidae|[4et4dd

Target
TACD-GRU
mTAND
GRU-D
LatentODE
f-CRU

teitds

Target
TACD-GRU
mTAND
GRU-D
LatentODE
f-CRU

thitee

Target
TACD-GRU
mTAND
GRU-D
LatentODE
f-CRU

thides

Target
TACD-GRU
mMTAND
GRU-D
LatentODE
f-CRU

teitde

Target
TACD-GRU
mTAND
GRU-D
LatentODE
f-CRU

10 15
Prediction Horizon (hours)

Figure 6: Example 3 on MIMIC-III

25

Under review as a conference paper at ICLR 2025

20

—e— Target
g = /o A~ —e— TACD-GRU)
% 80 N / —e— mTAND
g \.\./o—o—o——"\/"——o\ GRU-D
= ~J \,\'/—o— LatentODE
<70 —e— f-CRU)|
2 —e— Target
) -\‘\._—o— TACD-GRU
I 2a —o- mTaND |
K] 2 GRU-D
g —e— LatentODE
E 0 —e— f-CRU
= /f/’\. _ o Target |

80 — e

" /y —&— TACD-GRU)
2 N e —e— mTAND
g —&- GRU-D)
E o * T~ —e— LatentODE
2 —e— f-CRU
0.050

—eo— Target

o
°
5
Q

—e— TACD-GRU
—e— mTAND
0.000 GRU-D
—e— LatentODE
—e— f-CRU

wws=/1)

o oL
!

o 9 ¢
°
I
o

—o— Target

—e— TACD-GRU

—e— mTAND
GRU-D

—e— LatentODE

—e— f-CRU ‘_‘.\‘

—e— Target

—e— TACD-GRU

—e— mMTAND
GRU-D

—e— LatentODE
—o— f-CRU

5)

WBC(lobs
w

=6)

/

a

Creatinine(lobs:
N

—e— Target L < 2 S 2]

—e— TACD-GRU

—e— MTAND
GRU-D

—e— LatentODE

—e— f-CRU s

=172)
8
S

HoE e
]
-]

I
]

Platelets(lobs:

B
s

—e— Target

—e— TACD-GRU

—e— mTAND
GRU-D

——

—e— LatentODE

—e— f-CRU \'_‘

—o— Target

—e— TACD-GRU

—e— mTAND
GRU-D

—e— LatentODE
—e— f-CRU

M
&
@

=134)
B
jrd
a

&
&

Na(lobs
BB

&

N

5

=8)
©

Hgb(lobs
)

-—

|

5 10 15 20
Prediction Horizon (hours)

Figure 7: Example 4 on MIMIC-III

J TACD-GRU INTERPRETING MIMIC-III EMBEDDINGS

Having trained TACD-GRU on MIMIC-III multi-step prediction, we inspect which variables the
attention based model attend to for specific target variable prediction. Since the time-elapsed
embedding are concatenated with the time series embedding (as in Equation (12)), we set a fixed
univariate target time series and set its time-elapsed to 2 hours. We vary all but the target time series
in the range of time elapses 15 minutes to 4 hours in increments of 30 minutes. The choices of these
time related parameters are fairly arbitrary, and the main objective is to study the attention of a target
variable over other time series at different time-elapses.

We analyze the attention weights for ABPm target over all medication administration time series
in Figure[8] Interestingly, there is no effect of medications observed after the last observed target
variable indicated by zero-weights until 2 hours of time-elapses (as we fix target’s last observation
time to 2 hours). The attention based estimator learns the behavior of attending to itself and ignoring
other time series if they occur between between the prediction time and its last observed value. It
puts non-zero weights to the time series that occur before target’s last observed time.

We find that for target ABPm, top-5 medications according to attention weights are “Lansoprazole”,
”Albumin 25%”, ”PO Intake” , ”OR Colloid Intake” and ”Vasopressin”. Albumin, PO Intake, and
OR Colloid Intake are used for volume (fluid) therapy or cover fluid intake in general and hence,
can effect blood pressure. Vasopressin is a medication to treat hypotension (abnormally low-blood
pressure condition). It is somewhat unexpected to find Lansoprazole in the top-5 medications. It

26

Under review as a conference paper at ICLR 2025

is a medication for treating acid reflux, and it is commonly prescribed for ICU patients. However,
literature suggests it may have blood pressure reduction effects for hypertensive patient.

Target=ABPm

-0.004

0.003

- 0.002

Medication indices
w
o

- 0.001

g \ \] \ \ - 0.000
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75

Time-Elapsed in hours

Figure 8: ABPm’s attention over medication time series at different time-elapses.

K ROBUSTNESS OF THE META-DECISION MODEL

Figure 9: Plots for weight assigned to TACD-GRU-ATTENTION at different perturbation noise levels
for Physionet (left) and USHCN (right) datasets. Plots indicate that as TACD-GRU-CONTEXT
become more noisier (by increasing the noise level), the meta-decision model assigns more weight to
TACD-GRU-ATTENTION. Noise level of 0.0 is no perturbation; 0.25 is 0.25 random noise and 0.75
TACD-GRU-CONTEXT.

1.0

1.0

0.8 0.8

0.6 noise level
— 0.0
— 0.25

0.6 noise level
— 0.0
— 0.25

Attention-based estimator weight
Attention-based estimator weight

0.4 — 0.75 0.4 — 0.75
o MWWMwMWWWWWMWW i
0.0
0 5 10 15 20 25 0 100 200 300 400 500 600 700 800
Extrapolation time steps Extrapolation time steps

To evaluate the robustness of the meta-model that combines the two estimators, we perturb one
of the estimator’s predictions by introducing noise. Specifically, we add noise uniformly sampled
from the range [0, 1] to the TACD-GRU-CONTEXT predictions. The choice of the range [0, 1] is
deliberate because by design, the targets are bounded in the range [0, 1] (due to min-max re-scaling),
and consequently, the prediction model should also calibrate to that range. Additionally, to assess the
sensitivity of the meta-model at different noise levels, we blend the actual estimates with the noise
using a convex combination. The weighting of this combination determines the noise contribution to
the final TACD-GRU-CONTEXT’s predictions X; A -

X A7 = call + (1 — n)XE Ap. (16)

27

Under review as a conference paper at ICLR 2025

where each element in the noise vector: n; ~ U(0, 1), and noise coefficient c,, € [0, 1] is fixed for the
. X Zen b —~c
entire experiment. For the reported results on robustness, meta model uses X;’ A7 instead of X; -

The expectation is if one of the estimators is susceptible to errors, then the meta-model switches to
the other estimator by assigning more weight to it. In our ablation, the TACD-GRU-CONTEXT"’s
prediction is perturbed at different noise levels, and so we expect a robust meta-model to switch to
the TACD-GRU-ATTENTION model as noise level (controlled by ¢,,) increase. Figure [9shows that
as we increase the noise, the weight assigned to the TACD-GRU-ATTENTION model progressively
increases for both USHCN and Physionet datasets. This significant shift from low to high attention
estimator weighting demonstrates the proposed meta-model’s ability to dynamically calibrate the
model weighting in order to reduce the noise in the final output.

L COMPUTATIONAL COST ANALYSIS

We provide a comprehensive comparison of the computational complexity across all models examined
in our study in the Figure[I0] We evaluate and contrast the training times, inference times, and peak
GPU memory usage for each model when performing single-step prediction on the Physionet dataset.
All reported times are in seconds and represent averages over all training epochs. Our analysis reveals
a clear trend in terms of the train time. We note that methods (ContiFormer, ODE-RNN, Latent
ODE) that rely on numerical solvers exhibit the longest training times, followed by models (CRU,
f-CRU, RKN-A,) that assume linear dynamics. Recurrent models (TACD-GRU, GRU-D, GRU-A;)
demonstrate moderate training times. Lastly, models that can be parallelized in the time dimension
(mTAND and T-PatchGNN) are the fastest to train. However, it is crucial to note that the models
with the fastest training times (mMTAND and T-PatchGNN) come with a significantly higher memory
requirement as illustrated in Figure [I0b}

Having trained the time series model on retrospective EHR data, our primary goal is to deploy it
as an early warning system to prevent adverse patient conditions in the ICU. This model operates
in an inherently online context, characterized by a continuous stream of (near) real-time data. This
data stream includes critical patient information such as vital signs and medication administration
records, which the deployed model processes continuously. To simulate this online environment,
we use the Physionet dataset, streaming observations from 100 randomly selected patients in an
online manner. The models are evaluated based on total inference time and peak GPU memory usage
during inference. In our analysis, we compare TACD-GRU with models that offer the best train
times: mTAND and T-PatchGNN. We observe that since mMTAND and T-PatchGNN do not have a
Markovian latent state representation, it needs to buffer the past observations to make the inference.
This results in higher inference cost both in terms of time and memory. Moreover, these costs grows
over time. In contrast, models that consists of Markov state representation such as TACD-GRU are
independent of the past observations thus, maintaining a constant, low time and memory requirement.

28

Under review as a conference paper at ICLR 2025

x2-only fi12:20 X3-only
XC-only XC-only
TACD-GRU TACD-GRU
T-PatchGNN T-PatchGNN
GRU-A¢ fJ7-32 GRU-A:¢
RKN-A; RKN-A¢
CRU CRU
ODE-RNN ODE-RNN
ContiFormer ContiFormer
Latent ODE Latent ODE
GRU-D GRU-D
mTAND mTAND
f-CRU f-CRU
0 100 200 300 400 500 600 0 5 10 15 20
avg. train time (s/epoch) GPU memory (GB) consumed during training
(@) (b)
X?-only
X€-only
TACD-GRU 5.669 g 40
T-PatchGNN @5 o
GRU-A¢ § 3
RKN-A¢ Eq E 30
CRU ° 2
ODE-RNN £3 8 5
ContiFormer S 2
Latent ODE £2 £
GRU-D H g 10
mTAND 5 ! 0.382 E
-CRU 0 0045)
)) &
0 5 10 15 20 25 30 & e & <
avg. inference time (ms/instance) R\ &
©) (d)

Figure 10: Computational cost analysis on the Physionet dataset. (a) Compares the average train time per epoch
in seconds. (b) Peak GPU memory usage in GBs during training. (c¢) Average inference time in milliseconds per
instance. (d) Comparison of the inference time (left) and memory consumption (right) in an online deployment.

M ADDITIONAL EXPERIMENTAL RESULTS

This section includes additional supporting experimental results for our paper.

Table 5: Additional statistics for MIMIC-III multi-step prediction.

(b) MIMIC-III multi-step prediction MSE (x 10~ 2) analysis on dis-
joint time intervals in 24-hour prediction window. For instance, 1 — 8

(a) MIMIC-III multi-step prediction TACD- considers all the targets in prediction horizon range 1 to 8 hours.
GRU'’s Win Rate % under MSE and MAE metrics
across baseline models. Multi-step pred. ranges (in hours)
Win Rate % Model 1-8 8 — 16 16 — 24
Models MSE MAE mTAND 1.74 1.88 1.77
GRU-D 1.35 1.54 1.50
mTAND 59.28 59.28 Latent ODE 1.69 1.88 1.78
GRU-D 56.70 54.90 f-CRU 1.73 1.88 1.75
Latent ODE 65.21 65.72 CRU 1.70 1.86 1.76
f-CRU 64.18 65.21 ContiFormer 1.34 1.54 1.57
CRU 63.07 61.99 ODE-RNN 1.55 1.73 1.63
ContiFormer ~ 67.78 69.07 RKN-A, 1.64 1.80 1.70
ODE-RNN 61.46 62.80 GRU-A; 1.78 1.90 1.79
RKN-A; 67.39 66.85
GRU-A, 64.15 63.61 TACD-GRU 1.13 1.41 1.38

Aoverbest (+0.21) (+0.13) (+0.12)

N COMPUTING INFRASTRUCTURE

We used one server machine to deploy the experiments reported in the paper. This machine is
equipped with 100GB memory, one NVIDIA L40S GPU, with Intel Xeon Platinum 8462Y+ @ 2.80
GHz processor and 16 CPU cores.

29

	Introduction
	Related Work
	Method
	State Update Module
	Prediction module
	Summary of TACD-GRU

	Empirical Evaluation
	Results and Discussion
	Conclusion
	Limitations
	Algorithms
	Datasets
	USHCN
	Physionet
	MIMIC-III

	Dataset attributes

	Baselines
	Generic hyper-parameters for prediction tasks
	Hyper-parameters for prediction tasks on USHCN
	mTAND
	GRU-D
	CRU
	f-CRU
	Latent ODE
	ODE-RNN
	ContiFormer
	GRU-t
	RKN-t
	T-PatchGNN
	GraFITi
	TACD-GRU
	TACD-GRU-Attention
	TACD-GRU-Context

	Hyper-parameters for prediction tasks on Physionet
	mTAND
	GRU-D
	f-CRU
	CRU
	Latent ODE
	ODE-RNN
	ContiFormer
	GRU-t
	RKN-t
	T-PatchGNN
	GraFITi
	TACD-GRU
	TACD-GRU-Attention
	TACD-GRU-Context

	Hyper-parameters for prediction tasks on MIMIC-III
	mTAND
	GRU-D
	Latent ODE
	f-CRU
	CRU
	ODE-RNN
	ContiFormer
	GRU-t
	RKN-t
	T-PatchGNN
	GraFITi
	TACD-GRU
	TACD-GRU-Attention
	TACD-GRU-Context

	Effects of Time Normalization
	MIMIC-III Qualitative Examples
	TACD-GRU Interpreting MIMIC-III Embeddings
	Robustness of the meta-decision model
	Computational Cost Analysis
	Additional Experimental Results
	Computing Infrastructure

