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Abstract— Remarkable advances in Vision-Language Models
(VLMs) and Large Language Models (LLMs) have accelerated
progress in the field of intelligent robotics, enabling embodied
agents to perceive, reason, and act in a human-like manner.
One of the mainstream challenges in embodied Al is Vision-and-
Language Navigation (VLN), where an agent is required to fol-
low natural language instructions to navigate through previously
unseen environments using visual observations. Despite recent
progress, existing VLN approaches often struggle to handle long-
horizon and ordered instructions, which are prevalent in realistic
navigation scenarios. Such instructions involve multiple sequen-
tial substeps where later actions depend on earlier completions,
requiring contextual order understanding and stepwise execution.
In this work, we present CLOI-NAV, a framework that performs
sequential reasoning to follow navigation instructions in unseen
environments while preserving the intended order. We evaluate
CLOI-NAYV using our new instruction datasets featuring sequen-
tial dependencies in photorealistic environments. Through exten-
sive experiments, we demonstrate that our method enables more
accurate instruction following while maintaining path efficiency,
with success rate improving from 26.9 to 88.5 and SPL from 29.3
to 76.4. Our code and video demos are available at https://
sparolab.github.io/research/cloi_nav/\

I. INTRODUCTION

The Vision-and-Language Navigation (VLN) task has risen
to prominence in Embodied Al research, as it allows robots to
follow natural language instructions and interact with humans
in a more intuitive and practical way. In this task, an embodied
agent needs to execute textual instructions and navigate through
complex visual environments. To achieve this, the agent must
understand the meaning of each instruction in context, ground
it in visual observations, and make appropriate navigation de-
cisions.

Early VLN methods used LSTM architectures [[1], while later
approaches adopted Transformers for improved representation
learning and context-aware reasoning over temporal history [2].
More recently, large-scale vision-language models specialized
for VLN [3135]] build on pre-trained multimodal representations
whileincorporating navigation-specific objectives and datasets.
However, these approaches heavily depend on domain-specific
datasets with large scale and high-quality annotations. Con-
sequently, they struggle to generalize to open-world scenarios
involving novel environments and unseen instructions.

To address these limitations, recent works have explored in-
tegrating Large Language Models (LLMs), which show strong
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potential in zero-shot generalization, comprehensive scene un-
derstanding, and high-level decision-making. Several represen-
tative works demonstrate this potential by leveraging LLMs
with different strategies: NavGPT [[6] converts visual observa-
tions into textual descriptions and processes them with LLMs
to decide the next waypoint; InstructNav [/] extracts actions
and visual landmarks from instructions and uses them to guide
navigation decisions while grounding them with updated visual
information during navigation; Open-Nav [8]] introduces spe-
cialized roles for LLMs to perform instruction comprehension,
progress estimation, and navigation planning through scene
object and spatial description integration; and SnapMem [9]
provides LLMs with textual instructions and multi-view im-
ages, allowing rich visual understanding for enhanced naviga-
tion reasoning.

However, existing studies have confined their evaluations to
simple object-guided instructions (e.g., Find the wooden chair
by the window) or narrowly scoped instruction-following tasks
(e.g., Walk to the living room and go behind the couch). Such
simplified settings overlook the demands of open-world navi-
gation (OWN), including the ability to (i) handle human-issued
instructions that are commonly ambiguous and compositional,
and (ii) navigate environments with visually diverse objects
across varied scene contexts.

To this end, we propose CLOI-NAYV, a framework equipped
with LLM assistants, for complex and sequential instruction-
following tasks in open-world environments. The contributions
of our work include:

o Design an informative snapshot module that selectively
filters meaningful visual observations and provides them
as LLM input, enabling efficient and reliable execution of
contextual instruction-following tasks.

« Develop LLM-basednavigation assistants thatcanprocess
complex, sequential instructions, providing robust lan-
guage understanding and stepwise decision making, and
improved adaptability across diverse navigation scenarios.

« Integrate an exploration module within the embodied nav-
igation system, allowing the agent to effectively follow
instructions and navigate in unseen environments.

II. RELATED WORKS
A. Vision-and-Language Navigation

Since the introduction of Vision-and-Language Navigation
(VLN) by Anderson et al. [10], VLN has become a represen-
tative benchmark for embodied Al, driving research on mul-
timodal grounding, instruction following, and generalization
in navigation tasks. Early works primarily utilized language-
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“ I’ve reached the living room and

n a hallway is visible ahead.

" I’'m currently in the dressing room.
n I will leave this room and enter the adjacent bedroom.

lv I finally see the nightstand with

I the lamp. I’ve arrived!

Progress Estimation

Instruction Comprehension f

Leave the dressing room and go into the bedroom. Pass through the doorway to the living room, then
walk down the hallway. At the end, enter the room with the ceiling fan and brown dresser, and stop near

W\ the nightstand with the lamp.

Fig. 1. Given textual instructions, CLOI-NAV refines and decomposes the task into structured substeps. Once these substeps are established, the embodied agent
observes the surroundings and captures snapshots containing both semantically rich scene content and navigable frontiers. The agent then performs snapshot
reasoning to infer the next action and explores the environment accordingly, while monitoring progress through current substep completion.

grounded spatial representations, including 3D voxel maps [11-
13]], topological graphs [[14,15]], neural fields [16}/17], and 3D
scene graphs [[18| [19]]. These representations were commonly
integrated with vision-language models (VLMs) for multi-
modal grounding, but they still relied on fixed structural priors
that hindered scalability and adaptability, making it difficult to
generalize to novel contexts in open-world scenarios. To handle
this challenge, our work leverages a set of informative scene
snapshots that visually capture the spatial and semantic context
around the embodied agent. These snapshots provide cues for
reasoning about the place the agent is currently located in and
predicting where the navigable directions may lead, and even
interpreting spatial relationships among surrounding objects.

B. LLM-guided Embodied Exploration

Recent advances in large-scale models, including LLMs and
multimodal foundation models, have demonstrated powerful
capabilities in natural language processing, commonsense rea-
soning, and zero-shot visual perception. These capabilities are
closely related to embodied navigation. Existing approaches
have employed multimodal large models (e.g., CLIP [20],
BLIP-2 [21]], and GLIP [22]) as visual feature encoders, align-
ing visual features with language instructions to retrieve and
navigate toward target locations. However, these approaches
face challenges in grounding visual observations to lengthy and
descriptive instructions and often fail to capture the contex-
tual cues underlying natural language commands. Motivated by
these challenges, some studies [9}123,24] have explored LLM-
based high-level decision making for robotic navigation. These
works highlight LLM’s ability to comprehend language, reason
over context, and enable adaptive navigation strategies.

III. METHOD

Inspired by the way humans follow verbal directions to nav-
igate unfamiliar environments [25]], we propose an approach,
illustrated in Fig.[T] thatleverages LLMs to comprehend and ex-
ecute instructions through visual grounding and contextual rea-
soning. The framework consists of three interconnected mod-
ules: (i) instruction comprehension, including refinement and

decomposition; (ii) informative snapshot-based contextual rea-
soning, supporting progress estimation and navigation strategy;
and (iii) embodied exploration within the environment. This
design enables the agent to follow the instructions in unseen
environments with greater robustness and adaptability.

A. Instruction Comprehension

While concise goal-driven commands (e.g., Go to the front
door) may suffice in simple or familiar environments, instruc-
tions in practical settings—particularly those encountered in
complex and unseen environments—are typically long, contex-
tually dependent, and sequentially structured (e.g., Walk toward
the kitchen counter, turn into the hallway, and keep walking
until you reach the laundry room). This demands the agent’s
ability to comprehend and decompose them into finer-grained
subgoals. Our approach is designed to first refine the instruction
for clarity and then decompose it into an ordered sequence of
substeps that reflect the intended navigation path. This enables
the agent to reason over each subgoal in context and track its
progress accordingly.

Instruction Refinement. Directly decomposing instruc-
tions into substeps through LLMs can lead to ambiguity for
two reasons: first, original instructions often contain implicit
spatial connections or visual cues that are not explicitly stated;
second, the decomposition process tends to further simplify and
omit essential contextual information required for navigation
decisions. Tomitigate this, we refine the original instruction into
a form that is more suitable for decomposition, ensuring that
each substep preserves the necessary contextual information
and reduces potential ambiguity.

Substep Decomposition. After refinement, the instruction
is decomposed into ordered substeps that follow the intended
navigation sequence. Each substep incorporates spatial tran-
sitions (e.g., Enter the hallway adjacent to the kitchen) and
visual landmarks provided in the refined instruction (e.g., Walk
past the table with a vase). This allows the agent to follow the
instruction step-by-step effectively, as each substep provides
explicit guidance on spatial movements and visual references.



B. Snapshot Reasoning

We introduce a novel approach that leverages informative
snapshots to support the agent’s reasoning process, building
on the idea that images contain rich visual context and recent
advances in multimodal reasoning capabilities of LLMs. The
snapshots capture both object-level details and room-level con-
textual cues, providing a more holistic scene representation that
guides navigation decisions through fine-grained evidence and
broader spatial awareness.

Snapshot Selection. A set of N RGB-D image observa-
tions O = {I1, I5, ..., Ix}is captured from the environment,
providing multiple views from different viewpoints around the
agent rather than relying on a single perspective. Among these,
informative snapshots .S are identified as:

S={I€O0|I€8SopVIES Sk} (1)

To determine .S, we apply simple criteria for filtering the ac-
quired images. First, we retain the images when they contain
a sufficient number of detected objects, forming the set Sop;.
This ensures thatthe preserved views providerich semantic cues
for reasoning. Next, we keep images that correspond to direc-
tions recognized as unexplored and navigable regions through
frontier-based exploration algorithm (Section [[TI-C)), forming
the set Spy+. This guides the agent toward directions that expand
its knowledge of the environment while remaining feasible for
navigation. Only these informative snapshots are then used for
reasoning, improving efficiency while ensuring comprehensive
coverage that spans visual cues and spatial context.

Progress Estimation. To precisely monitor and evaluate the
agent’s navigation progress, we design specific prompts to es-
timate the status of the current substep:

“You are a navigation assistant. Your task is to esti-
mate the agent’s progress through a sequence of spa-
tial substeps. You will be given the current substep,
optionally the next substep, informative snapshots
of the surroundings, and the reasoning history from
previous steps. Always preserve spatial details, do
not infer completion from the next substep, and if
uncertain, choose ‘In Progress’ as the status.
Answer: [In Progress / Completed]”

This estimation process, as shown in Fig.[2] combines the cur-
rent substep with the subsequent one, informative snapshots,
and the reasoning history accumulated from previous steps.
In particular, the reasoning history serves not only to indicate
whether the agent has been consistently following spatially
connected regions but also to enhance robustness in completion
checks, allowing reassessment of prior substeps if needed. This
design is inspired by the way humans strategically determine
their next move in unfamiliar environments, grounding local
decisions in immediate cues while maintaining awareness of
past experiences.

C. Embodied Exploration

Frontier Exploration. Recent works in VLN adapt the
frontier-based exploration algorithm proposed by Yamauchi et
al. [26], which guides agents to visit the boundaries between

“Walk past the kitchen counter. Go straight into the living room with a few
chairs on a mat. Find the doorway next to the picture and enter the room.
Stop in front of the chair near the window.”

@
~

Step 1. Walk past the kitchen counter in the kitchen area.

Decomposed Substeps

Completed
Step 2. Go straight into the living room with chairs on a mat. In Progress
Step 3. Move toward the doorway with a picture adjacent to it. Pending
Step 4. Enter the room through this doorway. Pending

Step 5. Stop in front of the chair near the window. Pending

Informative Snapshots Reasoning History

N
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Progress Estimation

“Now I can see the table with a few chairs around it. The space seems cozy and comfortable.
I think I've reached the living room. Let’s go to the next substep!”

Step 1. Walk past the kitchen counter in the kitchen area. Completed

Step 2. Go straight into the living room with chairs on a mat. Completed
Step 3. Move toward the doorway with a picture adjacent to it. In Progress
Step 4. Enter the room through this doorway. Pending

Step 5. Stop in front of the chair near the window. Pending

Fig. 2. Tllustration of progress estimation where each substep is evaluated
by LLM using contextual cues, informative snapshots, and reasoning history,
resulting in Completed, In Progress, or Pending labels.

explored and unexplored regions on a map thatis incrementally
constructed during navigation. Our frontier-based exploration
algorithm is based on the framework in Explore-EQA [27].
Specifically, the method utilizes a depth observation with its
corresponding observation pose and defines frontiers as clusters
of pixels in the unexplored region. These are regions where the
truncated signed distance field (TSDF) volumes are either unini-
tialized (i.e., no observation) or exceed the truncation margin,
indicating areas not yet observed or far from any known surface.

Navigation Strategy. The embodied agent explores using a
snapshot selected through reasoning. When the agent chooses
a snapshot associated with a frontier, it directly navigates to
the location of the frontier from its current pose. If the chosen
snapshot is not related to any frontier, the agent navigates to-
ward the detected objects in the snapshot and positions itself
at an appropriate location for exploration. In our experiments,
we employ the collision-free planner provided by Habitat-sim
[28] to compute the shortest path between two locations in the
explored region and move the agent iteratively at each time step.

IV. EXPERIMENTS
A. Experimental Setup

Simulated Environments. Our experiments are conducted
in the Habitat simulator using the Habitat-Matterport 3D Re-
search Dataset (HM3D) [29]], which provides photorealistic 3D
scans of diverse real-world indoor spaces. This allows us to
evaluate our approach in a wide range of realistic indoor layouts
and scene configurations.



Instruction: Walk past the kitchen counter. Go straight into the living room with a few chairs on a mat. Find the doorway next to the picture and enter the room. Stop in front of the chair near the window.

= Ours (GPT-5) ! =
me= Qurs (GPT-40) -
== Bascline

Substep: [Step 1. Walk past the kitchen counter in the kitchen area.], [Step 2. Proceed straight into the living room.], [Step 3.
Locate the doorway with a picture hanging next to it.], [Step 4. Enter the room through this doorway.], [Step 5. Stop in front of
the chair near the window. ]

Thought: [Step 1. This direction follows along the kitchen counter toward the open area, allowing me to walk past it.], [Step 2.
This leads straight ahead past the dining area into the living room.], [Step 3. The doorway off the living room has a framed
picture hanging on the wall beside it.], [Step 4. This path goes through the visible doorway into the bedroom.], [Step 5. This path
moves closer toward the window where the chair is, allowing me to get in front of it.]

Fig. 3. Comparison of the exploration trajectories of the proposed and baseline methods in an HM3D environment with a given instruction. The right side of
the figure shows our method CLOI-NAV with GPT-5, a state-of-the-art VLM, along with egocentric views during navigation (top), decomposed substeps from

the instruction (middle), and the LLM’s step-by-step thoughts (bottom).
TABLE I
RESULTS ON HM3D WITH CUSTOM INSTRUCTIONS

TABLE II
ABLATION ON COMPONENT CONFIGURATIONS FOR NAVIGATION

Method [ TL NE({) OSR(D) SR(f) SPL(D) Method [ SR(D) SPL (1)
SnapMem[9] | 14.3 1.28 37.0 26.9 29.3 w/o Refinement 63.6 47.5
Ours 134 126 93.3 88.5 76.4 w/o Progress Estimation 63.6 47.3
w/o Reasoning History (N=0) 36.4 29.1
Instruction Generation. While prior work has focused on w/ Reasoning History (N=1) 54.6 39.8
relatively simple questions, we aim to demonstrate our frame- w/ Reasoning History (N=5) 54.6 37.4
work by generating complex multi-step instructions that better w/ ALL, Reasoning History (N=3) | 90.9 81.0

reflect realistic scenarios. To generate such instructions, we
sampled connected waypoints, extracted corresponding poses
and egocentric views, and provided them to LLM:s for instruc-
tion generation. We then ensured quality by manually filtering
trivial or unnatural cases.

B. Evaluation

Evaluation Metrics. We evaluate the agent’s navigation
performance using standard VLN metrics, including success
rate (SR), oracle success rate (OSR), success weighted by path
length (SPL), trajectory length (TL), and navigation error (NE).
A navigation task is deemed successful if the agent’s final posi-
tion is within 3 meters of the goal and the instruction is followed
in the correct order.

Results and Analysis. Table[[|compares the navigation per-
formance of our proposed method with the baseline frame-
work, SnapMem [9]. For fairness, both methods were evalu-
ated under the same exploration module to isolate and high-
light the contribution of the LLM-based reasoning modules.
Unlike SnapMem, which uses LLMs solely for image-based
reasoning to predict target points for navigation, our method
also integrates comprehensive instruction understanding. As a
result, our method CLOI-NAV significantly outperforms the
baseline in complex and sequential instructions, achieving over
3x higher SR, more than 2.5x higher SPL, with TL and NE
slightly reduced.

C. Ablation Study

We conducted ablation studies using 41 episodes randomly
sampled from various scenes in the evaluation set.

Effect of Comprehension and Reasoning History. Tablel[[]|
shows significant performance drops without refinement or

* ALL denotes the use of all instruction comprehension components.
T N denotes the length of the reasoning history window.

TABLE III
COMPARISON OF GPT VARIANTS FOR NAVIGATION

Method [ RT[s] NE() SR() SPL(1)
CLOI-NAV-GPT4o | 187.8  1.15 87.8 71.9
CLOI-NAV-GPT5 | 452.6 125 95.1 71.7

progress estimation, as LLMs often interpret instructions glob-
ally rather than sequentially, causing confusion in path order
and visual grounding. We also found optimal performance with
N=3 reasoning thoughts from previous steps. Excessive history
introduces irrelevant information that interferes with current
decisions, while insufficient context leads to navigation failure.

Effect of Improved LLMs on Navigation. We compared
GPT variants to assess their impact on navigation performance.
As shown in Table[[Tl, GPT-5 requires 2x longer reasoning time
but achieves superior results, notably confirming that advances
in reasoning capabilities lead to better navigation.

V. CONCLUSION

In this work, we present CLOI-NAYV, a novel framework that
effectively addresses complex sequential instructions in realis-
tic navigation scenarios. We demonstrate that CLOI-NAV sig-
nificantly improves navigation performance through enhanced
instruction comprehension and rich visual scene understanding.
Furthermore, we expect our method will benefit from advances
inLLM spatial and semantic reasoning capabilities. Building on
these promising results, we plan to validate our VLN pipeline
through deployment on real robot systems.



(1]

[2

[3]

[4

[5]

(6

(7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

C.-Y. Ma, J. Lu, Z. Wu, G. AlRegib, Z. Kira, R. Socher, and C. Xiong, “Self-
monitoring navigation agent via auxiliary progress estimation,” arXiv preprint
arXiv:1901.03035, 2019.

S. Chen, P-L. Guhur, C. Schmid, and I. Laptev, “History aware multimodal
transformer for vision-and-language navigation,” Advances in neural information
processing systems, vol. 34, pp. 5834-5847, 2021.

A.-C. Cheng, Y. Ji, Z. Yang, Z. Gongye, X. Zou, J. Kautz, E. B1yik, H. Yin, S. Liu,
and X. Wang, “Navila: Legged robot vision-language-action model for navigation,”
arXiv preprint arXiv:2412.04453, 2024.

J. Zhang, K. Wang, R. Xu, G. Zhou, Y. Hong, X. Fang, Q. Wu, Z. Zhang, and
H. Wang, “Navid: Video-based vlm plans the next step for vision-and-language
navigation,” arXiv preprint arXiv:2402.15852, 2024.

K. Lin, P. Chen, D. Huang, T. H. Li, M. Tan, and C. Gan, “Learning vision-
and-language navigation from youtube videos,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 8317-8326.

G. Zhou, Y. Hong, and Q. Wu, “Navgpt: Explicit reasoning in vision-and-language
navigation with large language models,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 38, no. 7, 2024, pp. 7641-7649.

Y. Long, W. Cai, H. Wang, G. Zhan, and H. Dong, “Instructnav: Zero-shot system
for generic instruction navigation in unexplored environment,” arXiv preprint
arXiv:2406.04882, 2024.

Y. Qiao, W. Lyu, H. Wang, Z. Wang, Z. Li, Y. Zhang, M. Tan, and Q. Wu, “Open-nav:
Exploring zero-shot vision-and-language navigation in continuous environment
with open-source 1lms,” arXiv preprint arXiv:2409.18794, 2024.

Y. Yang, H. Yang, J. Zhou, P. Chen, H. Zhang, Y. Du, and C. Gan, “Snapmem:
Snapshot-based 3d scene memory for embodied exploration and reasoning,” 2024.
P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf, I. Reid,
S. Gould, and A. Van Den Hengel, “Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018, pp.
3674-3683.

P. Liu, Y. Orru, J. Vakil, C. Paxton, N. M. M. Shafiullah, and L. Pinto, “Ok-robot:
What really matters in integrating open-knowledge models for robotics,” arXiv
preprint arXiv:2401.12202, 2024.

D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov, “Object
goal navigation using goal-oriented semantic exploration,” Advances in Neural
Information Processing Systems, vol. 33, pp. 4247-4258, 2020.

Z.Zhou, Y. Hu, L. Zhang, Z. Li, and S. Chen, “Beliefmapnav: 3d voxel-based belief
map for zero-shot object navigation,” arXiv preprint arXiv:2506.06487, 2025.

N. Kim, O. Kwon, H. Yoo, Y. Choi, J. Park, and S. Oh, “Topological semantic graph
memory for image-goal navigation,” in Conference on Robot Learning. PMLR,
2023, pp. 393-402.

S. H. Allu, I. Kadosh, T. Summers, and Y. Xiang, “Autonomous exploration and
semantic updating of large-scale indoor environments with mobile robots,” arXiv
preprint arXiv:2409.15493, 2024.

Z. Wang, X. Li, J. Yang, Y. Liu, J. Hu, M. Jiang, and S. Jiang, “Lookahead
exploration with neural radiance representation for continuous vision-language
navigation,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2024, pp. 13753-13762.

X. Lei, M. Wang, W. Zhou, and H. Li, “Gaussnav: Gaussian splatting for visual
navigation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2025.

K. P. Singh, J. Salvador, L. Weihs, and A. Kembhavi, “Scene graph contrastive
learning for embodied navigation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 10 884-10 894.

H. Yin, X. Xu, Z. Wu, J. Zhou, and J. Lu, “Sg-nav: Online 3d scene graph prompt-
ing for llm-based zero-shot object navigation,” Advances in neural information
processing systems, vol. 37, pp. 5285-5307, 2024.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from
natural language supervision,” in International conference on machine learning.
PmLR, 2021, pp. 8748-8763.

J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models,” in International
conference on machine learning. PMLR, 2023, pp. 19730-19 742.

L. H. Li, P. Zhang, H. Zhang, J. Yang, C. Li, Y. Zhong, L. Wang, L. Yuan, L. Zhang,
J.-N. Hwang et al., “Grounded language-image pre-training,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp.
10965-10975.

Y. Long, X. Li, W. Cai, and H. Dong, “Discuss before moving: Visual language
navigation via multi-expert discussions,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2024, pp. 1738017 387.

A. Anwar, J. Welsh, J. Biswas, S. Pouya, and Y. Chang, “Remembr: Building and
reasoning over long-horizon spatio-temporal memory for robot navigation,” arXiv
preprint arXiv:2409.13682, 2024.

V. J. A. Anacta, A. Schwering, R. Li, and S. Muenzer, “Orientation information
in wayfinding instructions: evidences from human verbal and visual instructions,”
GeoJournal, vol. 82, no. 3, pp. 567-583, 2017.

B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Pro-
ceedings 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA’97.Towards New Computational Principles for
Robotics and Automation’. 1EEE, 1997, pp. 146-151.

A.Z.Ren,]J. Clark, A. Dixit, M. Itkina, A. Majumdar, and D. Sadigh, “Explore until

[28]

[29]

confident: Efficient exploration for embodied question answering,” arXiv preprint
arXiv:2403.15941, 2024.

M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub,
J. Liu, V. Koltun, J. Malik et al., “Habitat: A platform for embodied ai research,”
in Proceedings of the IEEE/CVF international conference on computer vision,
2019, pp. 9339-9347.

K. Yadav, R. Ramrakhya, S. K. Ramakrishnan, T. Gervet, J. Turner, A. Gokaslan,
N. Maestre, A. X. Chang, D. Batra, M. Savva et al., “Habitat-matterport 3d
semantics dataset,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 4927-4936.



	Introduction
	Related Works
	Vision-and-Language Navigation
	LLM-guided Embodied Exploration

	Method
	Instruction Comprehension
	Snapshot Reasoning
	Embodied Exploration

	Experiments
	Experimental Setup
	Evaluation
	Ablation Study

	Conclusion

