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ABSTRACT

Implemented symmetries of input and latent vectors is important for disentangle-
ment learning in VAEs, but most works focus on disentangling each factor without
consideration of multi-factor change close to real world transformation between
two samples, and even a few studies to handle it in autoencoder literature are
constrained to pre-defined factors. We propose a novel disentanglement framework
for Composite Factor-Aligned Symmetry Learning (CFASL) on VAEs for the
extension to general multi-factor change condition without constraint. CFASL
disentangles representations by 1) aligning their changes, explicit symmetries, and
unknown factors via proposed inductive bias, 2) building a composite symmetry
for multi-factor change between two samples, and 3) inducing group equivariant
encoder and decoder in the condition. To set up the multi-factor change condition,
we propose sample pairing for inputs, and an extended evaluation metric. In quan-
titative and in-depth qualitative analysis, CFASL shows significant improvement
of disentanglement in multi-factor change condition compared to state-of-the-art
methods and also gradually improves in single factor change condition on common
benchmarks.

1 INTRODUCTION

Disentangling representations by intrinsic factors of datasets is a crucial issue in machine learning lit-
erature (Bengio et al., 2013). In Variational Autoencoder (VAE) frameworks, a widely-used method to
handle the issue is to factorize latent vector dimensions to contain specific factor information (Kingma
& Welling, 2013; Higgins et al., 2017; Chen et al., 2018; Kim & Mnih, 2018; Jeong & Song, 2019;
Shao et al., 2020; 2022). Although their effective disentanglement learning methods, Locatello et al.
(2019) raises the serious difficulty of disentanglement without sufficient inductive bias.

In VAE literature, recent works using group theory provide a possible solution to inject such inductive
bias by decomposing group symmetries (Higgins et al., 2018) in the latent vector space. To implement
group equivariant VAE, Winter et al. (2022); Nasiri & Bepler (2022) achieve the translation and
rotation equivariant VAE. The other branch implements the group equivariant function (Yang et al.,
2022; Keller & Welling, 2021b) over the pre-defined group actions. All of the methods effectively
enhance disentanglement by adjusting symmetries, but they focused on symmetry control in only
single factor change or simple multi-factor change condition rather than unconstrained multi-factor
change.

Multi-factor change is important for symmetry control because transformation between two input
samples is unrestricted to single factor change in the real world. This issue has rarely been raised
in VAE frameworks. In other literature on autoencoder to control symmetries (Miyato et al., 2022;
Bouchacourt et al., 2021; Guo et al., 2019; Quessard et al., 2020; Shakerinava et al., 2022), there also
exist a few recent works to consider composite symmetry for the multi-factor change, but they are
constrained by allowing weak supervision to use factor class information of input pairs (Marchetti
et al., 2023). Furthermore, the methods on autoencoder are not directly applicable to VAEs, because
of the large difference to VAE in probabilistic interpretation.

In this paper, we propose a novel disentanglement method for Composite Factor-Aligned Symmetry
Learning (CFASL) on VAE frameworks to address the multi-factor change condition via the following
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distinguished approaches: 1) network architecture to learn an explicit codebook of symmetries
responsible for each single factor change, called factor-aligned symmetries, and their composition for
representing multi-factor change, 2) training losses to inject inductive bias for disentanglement via
interpreting representation changes as the explicit symmetries and directly adjusting their properties,
3) implementing group equivariant encoder and decoder functions for disentanglement in the multi-
factor change condition, 4) a problem setting that uses a pair of samples as an input without any
information of factor labels, and 5) an extended metric (m-FVMk) to evaluate disentanglement in the
multi-factor change condition. We quantitatively and qualitatively analyze the method in common
benchmarks of disentanglement on VAEs.

2 DIFFICULTY OF DISENTANGLING REPRESENTATIONS IN MULTI-FACTOR
CHANGE

Figure 1: Distribution of latent vectors for dimensions responsible for Shape, X-pos, Y-pos factors
in the dSprites dataset (Matthey et al., 2017). The groupified-VAE method is applied to β-TCVAE
because this model shows a better evaluation score (Yang et al., 2022), and its reproducibility is
introduced in Appendix D.2. The results show disentanglement for Shape from the combination of
the other two factors by coloring three shapes (square, ellipse, heart) as red, blue, and green color,
respectively. Each 3D-plot shows the whole distribution, and 2D-plots are cross-sections passing
the center area of the grid. The Left and right 2D-plot are perpendicular to X-pos and Y-pos axis,
respectively. We fix Scale and Orientation factor values, and plot randomly sampled 640 inputs
(20.8% of all possible observation (32× 32× 3 = 3, 072)). We select the dimensions responsible for
the factors by selecting the largest value of the Kullback-Leibuler divergence between the prior and
the posterior.

In this paper, we define multi-factor change condition as simultaneously altering more than two
factors in the transformation between two samples or representations. In current disentanglement
methods (Miyato et al., 2022; Bouchacourt et al., 2021; Guo et al., 2019; Quessard et al., 2020;
Shakerinava et al., 2022), this issue has not been directly considered in implementation (Zhu et al.,
2021), or has been handled in a limited environment of fixing specific pre-defined symmetries (Yang
et al., 2022).

To confirm the impact of the issue, we tested them in disentangling of Shape factor from the
combination of X-position and Y-position factors. In the first row of Fig. 1, the change of the
dimension value corresponding to Shape is not consistently adjusted by the change of latent dimension
mostly used for the factor, when the x-pos and y-pos change. This phenomenon implies that
disentangled representation in multi-factor change is still insufficiently handled. Our approach is to
directly consider the multi-factor change condition without factor limitation in VAE frameworks as
the result in the second row of Fig. 1.
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Figure 2: The overall architecture of our proposed method. The loss function is divided into four
parts: 1) commutative loss (Lc), 2) perpendicular, parallel, and sparsity loss (Lpd, Lpl, and Ls) in
Equation 2-4, 3) factor prediction loss (Lp) in Equation 5), and 4) equivariant loss (Lee, and Lde)in
Equation 9). MLP is a multi-layer perceptron, and, tr is a threshold. Attention score attne, sw(·),
and pis are introduced in section 3.3.

3 METHODS

3.1 PROBLEM SET-UP FOR LEARNING FROM MULTI-FACTOR CHANGE

Input and Output: A Pair of Two Samples To help a VAE recognize a multi-factor change of two
real samples and learn symmetries for the change directly, we give a pair of two different samples
as an input. During the training, samples in the mini-batch X|B| are randomly divided into two
parts X1

|B| = {x11, x12, . . . , x1|B|
2

}, and X2
|B| = {x21, x22, . . . , x2|B|

2

}, where |B| is a mini-batch size. In

the next, our model pairs the samples (x11, x
2
1), (x

1
2, x

2
2), . . . , (x

1
|B|
2

, x2|B|
2

) and is used for learning

symmetries between the elements of each pair.

Evaluation: m-FVM Metric for Disentanglement in Multi-Factor Change As far as we
investigated, there is no evaluation metric for disentanglement in multi-factor change, so we propose
the extended version of the Factor-VAE metric (FVM) score called as multi-FVM score (m-FVMk),
where k ∈ {2, 3, . . . , |F |−1}, and |F | is a number of factors. Similar to FVM, 1) we randomly choose
the k fixed factors (Fi, Fj , . . .), 2) sample each factor’s value (fi, fj , . . .) and fix the corresponding
factor dimension value in the mini-batch, where fi ∈ {1, 2, . . . |Fi|}, fj ∈ {1, 2, . . . |Fj |}, . . ., |Fi|
and |Fj | is a maximum value of each factor label. 3) Then we estimate the standard deviation (std.)
of each dimension to find the number of k lowest std. dimension (zl1, zl2, . . .) in one epoch. In the
next, 4) counting each pair of selected dimensions by std. (the number of (zl1, zl2, . . .), which are
corresponded to fixed factors) and 5) add the maximum value of the number of (zl1, zl2, . . .) on all
fixed factor cases, and divide with epoch.

Objective and Base model Our method can be plugged into existing VAE frameworks, so the
objective function is additively integrated as

L(ϕ, θ;x) = LV AE + Lcodebook + Lequiv, (1)

where LV AE is the loss function of a VAE framework (Appendix A). The other loss Lcodebook =
Lpl + Lpd + Ls + Lc + Lp and Lequiv = Lee + ϵLde where ϵ is a hyper-parameter, which are
introduced in the following subsections.
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(a) parallel loss (b) (a) + sparsity loss (c) perpendicular loss (d) (c) + sparsity loss

Figure 3: Roles of parallel, perpendicular, and sparsity loss on symmetries in the codebook for
adjusting representation change. Parallel loss is for symmetries of the same section, and perpendicular
loss is for different sections. Each axis (x and y) only affects to a single factor.

3.2 FACTOR-ALIGNED SYMMETRY LEARNING WITH INDUCTIVE BIAS

On the symmetry codebook, we inject inductive bias for disentanglement via Parallel loss Lpl and
Perpendicular loss Lpd that adjust relations between latent vector changes by the symmetries. To
align the changes for a factor to a dimension of latent vector z, we add sparsity loss Ls to the losses
as shown in Fig. 3. Also, we implement the commutative loss Lc to reduce the computational costs
for matrix exponential multiplication.

Explicit and Learnable Symmetry Representation for Inductive Bias Injection To allow di-
rect injection of inductive bias to symmetries, we implement an explicit and learnable symmetry
codebook. The codebook G = {G1,G2, . . . ,Gk} is to assign a section Gi to a single factor, where
k ∈ {1, 2, . . . |S|}, and |S| is the number of sections. The section Gi is composed of Lie algebra
{gi1, gi2, . . . , gil}, where gij ∈ R|D|×|D|, l ∈ {1, 2, . . . , |SS|}, |SS| is the number of elements in
each section, and |D| is a dimension size of latent z. We assume that each Lie algebra consists
of linearly independent bases B = {Bi|Bi ∈ Rn×n,

∑
i αiBi ̸= 0, αi ̸= 0}: gij =

∑
b α

i,j
b Bb,

where b ∈ {1, 2, . . . , kl}. Then the dimension of the element of the codebook is equal to |B| and
the dimension of the Lie group which is composited by the codebook element is also |B|. To utilize
previously studied effective expression of symmetry for disentanglement, we set the symmetry to be
continuous (Higgins et al., 2022) and invertible via matrix exponential form (Xiao & Liu, 2020) as
gij = eg

i
j =

∑∞
k=0

1
k! (g

i
j)

k to construct the Lie group (Hall, 2015).

Inductive Bias: Parallel Change by Symmetries of A Same Factor We add a bias that latent
vector changes by two symmetries for the same factor should be parallel (z − gijz ∥ z − gilz for ith
section) as shown in Fig. 3a. We define a loss function to make them parallel as:

Lpl =

|S|∑
i=1

|SS|∑
j,k=1

log
< z − gijz, z − gikz >

||z − gijz||2 · ||z − gikz||2
, (2)

where gij = eg
i
j , < ·, · > is a dot product, and || · ||2 is a L2 norm.

Inductive Bias: Perpendicular Change by Symmetries of Different Factors Similarly to the
parallel loss, we inject another bias that changes by two symmetries for different factors should
satisfy the orthogonality ( z − gijz ⊥ z − gkl z for different ith and kth sections) as shown in Fig. 3c.
The loss for inducing the orthogonality is

Lpd =

|S|∑
i,k=1,i̸=k

|SS|∑
j,l=1

< z − gijz, z − gkl z >

||z − gijz||2 · ||z − gkl z||2
. (3)

This loss is computationally expensive to calculate (O(|S|2 · |SS|2)), so we randomly select a (j, l)
pair of symmetries of different sections. This random selection still holds the orthogonality, because
if all elements in the same section satisfy Equation 2 and a pair of elements from a different section
(Gi,Gj) satisfies Equation 3, then any pair of the element (gi ∈ Gi, gj ∈ Gj) satisfies the Equation 3.
More details are in Appendix B.
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Inductive Bias: Entangling A Factor to Only A Latent Dimension Factorizing latent dimensions
to represent the change of separate factors is an attribute of disentanglement defined in Bengio
et al. (2013) and derived by ELBO term in VAE training frameworks (Chen et al., 2018; Kim &
Mnih, 2018). However, the parallel and perpendicular loss has no specific constraint to generate the
attribute as shown in Fig. 3a, 3c. To guide symmetries to hold the attribute, we enforce the change
∆i

jz = z − gijz to be a parallel shift to a unit vector as Fig. 3b, 3d via sparsity loss defined as

Ls =

|S|∑
i=1

|SS|∑
j

[[ |D|∑
k=1

(∆i
jzk)

2
]2 −max

k
((∆i

jzk)
2)2

]
, where ∆i

jzk is a kth dimension value. (4)

3.3 COMPOSITION OF FACTOR-ALIGNED SYMMETRIES VIA TWO-STEP ATTENTION

First Step: Elements of Section Selection In the first step, the model chooses the appropriate
symmetries of each section through the attention score: attni

e = softmax([M ; Σ]W i
c + bic), where

[M ; Σ] = [µ1;σ1;µ2;σ2], W i
c ∈ R4|D|×|SS| and bic ∈ R|SS| are learnable parameters, and

i ∈ {1, 2, . . . |S|}.

Second Step: Section Selection In the second step, the proposed model forces to predict the factors
that we consider to have changed. We assume that if some factor value of two inputs is equal, then
the variance of the corresponding latent vectors dimension value is smaller than others. By this
assumption, we set the target for factor prediction: if z1,i − z2,i > threshold, then we set Ti as 1 and
0 otherwise, where Ti is a ith dimension value of T ∈ R|D|, zj,i is an ith dimension value of zj , and
we set the threshold as a hyper-parameter. For section prediction, we utilize the cross-entropy loss:

Lp =

|S|∑
i=1

∑
c∈C

1[Ti = c] · log softmax(pis), where pis = [M ; Σ]W i
s + bis, (5)

W i
s ∈ R4|D|×2 and bis ∈ R2 are learnable parameters, and c ∈ {0, 1}.

To infer the activated section of the symmetries codebook, we utilize the Gumbel softmax function to
implement on-and-off cases like a switch:

sw(G(pis)) =

{
G(pis,2) if pis,2 ≥ 0.5

1−G(pis,1) if pis,2 < 0.5
, (6)

where pis,j is a jth dimension value of pis, and G(·) is the Gumbel softmax with temperature as 1e-4.

Integration for Composite Symmetry For the composite symmetry gc, we apply the weighted
sum of switch function sw(ps) and prediction distribution attne as: gc =

∏|S|
i=1

∏|SS|
j=1 g

i
j , where

gij = esw(G(pi
s))·attn

i
e,j ·g

j
i , and attni

e,j is a jth dimension value of attnie.

Commutativity Loss for Computational Efficiency In the composite symmetry gc calculation,
the production

∏|S|
i=1

∏|SS|
j=1 g

i
j is a computationally expensive Taylor series repeated for all (i, j)

pairs. To reduce the cost by repetition, we enforce all pairs of basis gji to be commutative to convert
the production to e

∑
i,j gi

j (By the matrix exponential property: eAeB = eA+B as AB = BA,
where A,B ∈ Rn×n). The loss for the commutativity is Lc =

∑|S|
i,k=1

∑|SS|
j,l=1 g

i
jg

k
l − gkl g

i
j → 0.

3.4 EQUVARIANCE INDUCTION OF COMPOSITE SYMMETRIES

How to Induce Equivariance? Motivated by the equivariant mapping implementations (Yang
et al., 2022; Miyato et al., 2022) for disentanglement, we implement an equivariant encoder and
decoder that satisfies qϕ(ψi ∗ x) = gi ◦ qϕ(x) and pθ(gi ◦ z) = ψi ∗ pθ(z) respectively, where qϕ is
an encoder, and pθ is the decoder. In the notation, ψi and gi are group elements of the group (Ψ, ∗)
and (G, ◦) respectively, and both groups are isomorphic. Each group acts on the input and latent
vector space with group action ∗, and ◦, respectively. We specify the form of symmetry gi, and ◦ as
an invertible matrix, and group action as matrix multiplication on the latent vector space. Then, the
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encoder equivariant function can be rewritten by multiplying the inversion of gi on both sides and z
can be replaced with the qϕ(x) in the decoder equivariant function as

qϕ(x) = g−1
i ◦ qϕ(ψi ∗ x) ⇐⇒ qϕ(x)− g−1

i ◦ qϕ(ψi ∗ x) → 0 (for encoder) (7)
pθ(gi ◦ qϕ(x)) = ψi ∗ pθ(qϕ(x)) ⇐⇒ pθ(gi ◦ qϕ(x))− ψi ∗ pθ(qϕ(x)) → 0 (for decoder) (8)

For the equivariant encoder and decoder, we differently propose the single forward process by the
encoder and decoder objective functions compared to previous work (Yang et al., 2022).

Equivariance Loss for Encoder and Decoder To be the equivariant function between the input
and latent vector space, the mapping function qϕ(·) must satisfy Equation 7. Therefore, we directly
induce an equivariant encoder between input and latent space with MSE loss (Lee). Also, we induce
the equivariant decoder (Lde) with MSE loss following Equation 8:
Lequiv = Lee+ϵLde = MSE(qϕ(x1i ), g

−1
i ◦qϕ(x2i ))+ϵMSE(pθ(gi◦(qϕ(x1i )), ψi∗pθ(qϕ(x1i )), (9)

where x2i = ψi ∗ x1i . During the training, we replace the pθ(qϕ(x1i )) as a x1i because the ELBO term
includes the reconstruction error between pθ(qϕ(x1i )) and x1i to be close to zero.

4 RELATED WORK

Disentanglement Learning Diverse works for unsupervised disentanglement learning have elab-
orated in the machine learning field. The VAE based approaches have factorized latent vector
dimensions with weighted hyper-parameters or controllable weighted values to penalize Kullback-
Leibler divergence (KL divergence) (Higgins et al., 2017; Shao et al., 2020; 2022). Extended works
penalize total correlation for factorizing latent vector dimensions with divided KL divergence (Chen
et al., 2018) and discriminator (Kim & Mnih, 2018). Differently, we induce disentanglement learning
with group equivariant VAE for inductive bias.

Group Theory Based Approaches for Disentangled Representation In recent period, various
unsupervised disentanglement learning research proposes different approaches with another definition
of disentanglement, which is based on the group theory (Higgins et al., 2018). To learn the equivariant
function, Topographic VAE (Keller & Welling, 2021a) proposes the sequentially permuted activations
on the latent vector space called shifting temporal coherence, and Groupified VAE (Yang et al., 2022)
method proposes that inputs pass the encoder and decoder two times to implement permutation group
equivariant VAE models. Also, Commutative Lie Group VAE (CLG-VAE) (Zhu et al., 2021; Mercatali
et al., 2022) maps latent vectors into Lie algebra with one-parameter subgroup decomposition for
inductive bias to learn the group structure from abstract canonical point to inputs. Differently, we
propose the trainable symmetries that are extracted between two samples directly on the latent space
while maintaining the equivariance function between input and latent vector space.

Symmetry Learning with Equivariant Model Lie group equivariant CNN (Dehmamy et al., 2021)
and (Finzi et al., 2020) construct the In the other literature, several works extract symmetries, which
consist of matrices, between two inputs or objects. Miyato et al. (2022) extracts the symmetries
between sequential or sequentially augmented inputs by penalizing the transformation of difference
of the same time interval. Other work extracts the symmetries by comparing two inputs, in which
the differentiated factor is a rotation or translation, and implements symmetries with block diagonal
matrices (Bouchacourt et al., 2021). Furthermore, Marchetti et al. (2023) decomposes the class and
pose factor simultaneously by invariant and equivariant loss function with weakly supervised learning.
The unsupervised learning work (Winter et al., 2022) achieves class invariant and group equivariant
function in less constraint condition. Differently, we generally extend the class invariant and group
equivariant model in the more complex disparity condition without any knowledge of the factors of
datasets.

5 EXPERIMENTS

5.1 SETTINGS

We implement β-VAE (Higgins et al., 2017), β-TCVAE (Chen et al., 2018), Factor-VAE (Kim &
Mnih, 2018), control-VAE (Shao et al., 2020), and Commutative Lie Group VAE (CLG-VAE) (Zhu
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3D Car FVM beta VAE MIG SAP DCI m-FVM2 m-FVM3 m-FVM4

β-VAE 91.83(±4.39) 100.00(±0.00) 11.44(±1.07) 0.63(±0.24) 27.65(±2.50) 61.28(±9.40) - -
β-TCVAE 92.32(±3.38) 100.00(±0.00) 17.19(±3.06) 1.13(±0.37) 33.63(±3.27) 59.25(±5.63) - -
Factor-VAE 93.22(±2.86) 100.00(±0.00) 10.84(±0.93) 1.35(±0.48) 24.31(±2.30) 50.43(±10.65) - -

Control-VAE 93.86(±5.22) 100.00(±0.00) 9.73(±2.24) 1.14(±0.54) 25.66(±4.61) 46.42(±10.34) - -
CLG-VAE 91.61(±2.84) 100.00(±0.00) 11.62(±1.65) 1.35(±0.26) 29.55(±1.93) 47.75(±5.83) - -

CFASL 95.70(±1.90) 100.00(±0.00) 18.58(±1.24) 1.43(±0.18) 34.81(±3.85) 62.43(±8.08) - -

smallNORB FVM beta VAE MIG SAP DCI m-FVM2 m-FVM3 m-FVM4

β-VAE 60.71(±2.47) 59.40(±7.72) 21.60(±0.59) 11.02(±0.18) 25.43(±0.48) 24.41(±3.34) 15.13(±2.76) -
β-TCVAE 59.30(±2.52) 60.40(±5.48) 21.64(±0.51) 11.11(±0.27) 25.74(±0.29) 25.71(±3.51) 15.66(±3.74) -
Factor-VAE 61.93(±1.90) 56.40(±1.67) 22.97(±0.49) 11.21(±0.49) 24.84(±0.72) 26.43(±3.47) 17.25(±3.50) -

Control-VAE 60.63(±2.67) 61.40(±4.33) 21.55(±0.53) 11.18(±0.48) 25.97(±0.43) 24.11(±3.41) 16.12(±2.53) -
CLG-VAE 62.27(±1.71) 62.60(±5.17) 21.39(±0.67) 10.71(±0.33) 22.95(±0.62) 27.71(±3.45) 17.16(±3.12) -

CFASL 62.73(±3.96) 63.20(±4.13) 22.23(±0.48) 11.42(±0.48) 24.58(±0.51) 27.96(±3.00) 17.37(±2.33) -

dSprites FVM beta VAE MIG SAP DCI m-FVM2 m-FVM3 m-FVM4

β-VAE 73.54(±6.47) 83.20(±7.07) 13.19(±4.48) 5.69(±1.98) 21.49(±6.30) 53.80(±10.29) 50.13(±11.98) 48.02(±8.98)
β-TCVAE 79.19(±5.87) 89.20(±4.73) 23.95(±10.13) 7.20(±0.66) 35.33(±9.07) 61.75(±6.71) 57.82(±5.39) 63.81(±9.45)
Factor-VAE 78.10(±4.45) 84.40(±5.55) 25.74(±10.58) 6.37(±1.82) 32.30(±9.47) 58.39(±5.18) 51.63(±2.88) 53.71(±4.22)

Control-VAE 69.64(±7.67) 82.80(±7.79) 5.93(±2.78) 3.89(±1.89) 12.42(±4.95) 38.99(±9.31) 29.00(±10.75) 19.33(±5.98)
CLG-VAE 82.33(±5.59) 86.80(±3.43) 23.96(±6.08) 7.07(±0.86) 31.23(±5.32) 63.21(±8.13) 48.68(±9.59) 51.00(±8.13)

CFASL 82.30(±5.64) 90.20(±5.53) 33.62(±8.18) 7.28(±0.63) 46.52(±6.18) 68.32(±0.13) 66.25(±7.36) 71.35(±12.08)

3D Shapes FVM beta VAE MIG SAP DCI m-FVM2 m-FVM3 m-FVM4

β-VAE 84.33(±10.65) 91.20(±4.92) 45.80(±21.20) 8.66(±3.80) 66.05(±7.44) 70.26(±6.27) 61.52(±8.62) 60.17(±8.48)
β-TCVAE 86.03(±3.49) 87.80(±3.49) 60.02(±10.05) 5.88(±0.79) 70.38(±4.63) 70.20(±4.08) 63.79(±5.66) 63.61(±5.90)
Factor-VAE 79.54(±10.72) 95.33(±5.01) 52.68(±22.87) 6.20(±2.15) 61.37(±12.46) 66.93(±17.49) 63.55(±18.02) 57.00(±21.36)

Control-VAE 81.03(±11.95) 95.00(±5.60) 19.61(±12.53) 4.76(±2.79) 55.93(±13.11) 62.22(±11.35) 55.83(±13.61) 51.66(±12.08)
CLG-VAE 83.16(±8.09) 89.20(±4.92) 49.72(±16.75) 6.36(±1.68) 63.62(±3.80) 65.13(±5.26) 58.94(±6.59) 60.51(±7.62)

CFASL 89.70(±9.65) 96.20(±4.85) 62.12(±13.38) 9.28(±1.92) 75.49(±8.29) 74.26(±2.82) 67.68(±2.67) 63.48(±4.12)

Table 1: Disentanglement scores for single factor change (left 5 metrics) and multi-factor change
(m-FVMs) with 10 random seeds.

et al., 2021) for baseline. For common settings to baselines, we set batch size 64, learning rate
1e-4, and random seed from {1, 2, . . . , 10} without weight decay. We train for 3× 105 iterations on
dSprites smallNORB and 3D Cars, and 5×105 iterations on 3D Shapes. Also, each dataset guarantees
the commutativity of transformation. More details for experimental settings are in Appendix C.

5.2 QUANTITATIVE ANALYSIS RESULTS AND DISCUSSION

Figure 4: Reconstruction loss vs. Factor VAE
metric on 3D Shapes dataset. The numbers next
to each plot represent the value of lossrec group of
CLG-VAE and the others are the value of β param-
eter.

Disentanglement Performance in Single and
Multi-Factor Change We evaluate four com-
mon disentanglement metrics: FVM (Kim &
Mnih, 2018), MIG (Chen et al., 2018), SAP (Ku-
mar et al., 2018), and DCI (Eastwood &
Williams, 2018), and more details of evalua-
tion settings are in Appendix C. As shown in
Table 1, our method gradually improves the dis-
entanglement learning in dSprites, 3D Cars, 3D
Shapes, and smallNORB datasets in most met-
rics. This result also shows that our method
positively affects single factor change condition.
More details are in Appendix D.1.

To show the quantitative score of the disentan-
glement in multi-factor change, we evaluate
the m-FVMk, where max(k) is 2, 3, and 4 in
3D Cars, smallNORB, and dSprites datasets re-
spectively. As shown in Table 1, the proposed
method shows a statistically significant improve-
ment. It implies that our method has the benefit of disentanglement learning in the multi-factor
change condition. We provide additional results in Appendix D.1.

As shown in Figure 4, we show the scatter plot of reconstruction loss against the Factor VAE metric
(FVM) on the 3D Shapes dataset. The proposed method CFASL shows a high improvement in the
disentanglement performance but a slight cost of reconstruction while the other baselines sacrifice
reconstruction.

7
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Lp Lc Le. Lpl Lpd Ls FVM MIG SAP DCI m-FVM2

β-VAE

✗ ✗ ✗ ✗ ✗ ✗ 88.19(±4.60) 6.82(±2.93) 0.63(±0.33) 20.45(±3.93) 42.36(±7.16)
✗ ✓ ✓ ✓ ✓ ✓ 88.57(±6.68) 7.18(±2.52) 1.85(±1.04) 18.39(±4.80) 48.23(±5.51)
✓ ✓ ✗ ✓ ✓ ✓ 88.56(±7.78) 7.27(±4.16) 1.31(±0.70) 19.58(±4.45) 42.63(±4.21)
✓ ✓ ✓ ✗ ✓ ✓ 86.95(±5.96) 7.11(±3.49) 1.09(±0.40) 18.35(±3.32) 41.90(±7.80)
✓ ✓ ✓ ✓ ✗ ✓ 85.42(±7.89) 7.30(±3.73) 1.15(±0.70) 21.69(±4.70) 41.90(±6.07)
✓ ✓ ✓ ✗ ✗ ✗ 89.34(±5.18) 9.44(±2.91) 1.26(±0.40) 23.14(±5.51) 51.37(±9.29)
✓ ✓ ✓ ✓ ✓ ✗ 90.71(±5.75) 9.29(±3.74) 1.07(±0.65) 22.74(±5.06) 45.84(±7.71)
✓ ✓ ✓ ✓ ✓ ✓ 91.91(±3.45) 9.51(±2.74) 1.42(±0.52) 20.72(±3.65) 55.47(±10.09)

Table 2: Ablation study for loss functions on 3D-Cars and β-VAE with 10 random seeds.

Ablation Study Table 2 shows the ablation study to evaluate the impact of each component of our
method for disentanglement learning. To compare factor-aligned losses (w/o Lpl, w/o Lpd, w/o Ls,
and w/o Lpl +Lpd +Ls), the best of among four cases is the w/o Lpl +Lpd +Ls and it implies that
these losses are interrelated. In the case of w/o Lpl, extracting the composite symmetry gc is difficult,
because the role of each section is not unified. Composite symmetry gc is affected by the second
section selection method, which is whether to use the section or not (0 or 1). Therefore, composite
with having a different role on elements in the same section struggle with constructing adequate
composite symmetry gc. With the similar perspective referred to w/o Lpl case, the coverage of code
w/o Lpd is restricted, because there is no guarantee that each section aligns on different factors. In the
case of w/o Ls, each section assigns a different role and the elements of each section align on the same
factor, w/o Ls case is better than w/o Lpl and w/o Lpd. Also, constructing the symmetries without
the equivariant model is meaningless because the model does not satisfy Equation 7- 9. The w/o
Lequiv naturally shows the lowest results compared to other cases except w/o Lpd and Lpl. Moreover,
the w/o Lp case shows the impact of the second section selection for unsupervised learning. Most of
all, each group shows a positive impact on disentanglement compared to the base model (β-VAE).
Integrating all loss functions, the method shows the best performance in most metrics except DCI.
The inductive bias for symmetry changes (Lpl + Lpd) is less effective than that for composition
because the bias is only for symmetry change control without latent dimension matching to a factor.
Adding sparsity loss, this issue is resolved and shows the best improvement. More details are in the
Appendix D.2.

5.3 QUALITATIVE ANALYSIS RESULTS AND DISCUSSION

Figure 5: Heatmaps of Eigenvectors for
latent vector representations.

Disentanglement in Multi-Factor Change Previously
shown in Fig. 1 is a clear example of the effectiveness of
our approach in multi-factor change, because our method
forms layers over the shape factor consistently in most
x-pos and y-pos factor combinations. Also, the result of
the method applied on β-TCVAE is close to the ideal case,
which forms the flat planes parallel to the x-y plane.

Alignment of Factor, Latent Dimensions, and Sym-
metries In the principal component analysis of la-
tent vectors shown in Fig. 5, the eigenvectors V =
[v1,v2, . . . ,v|D|] are close to one-hot vectors compared to the baseline, and the dominating di-
mension of the one-hot vectors are all different. This result implies that the representation changes
are aligned to latent dimensions, and the changes are disentangled by a dimension supposed to work
as a factor.

Generation Quality of Composite Symmetries To verify the quality of trained composite symme-
tries, we randomly select a sample pair (red box in Fig. 6a), extract the composite symmetries between
both, and obtain other (the bottom right image in a blue box) by applying gc to the latent vector z1
(pθ(gcz1)) as shown in 1st box of Fig. 6a. The bottom left image in a blue box is a generated image
from input x1. As shown in Fig. 6b, the model generates the right targets by composite symmetries.

Disentanglement of Symmetries by Factors To confirm the distinction of symmetries by the
factors, we generate images by sequentially (pθ(z1), pθ(g11z1), pθ(g

1
2z1), . . .) applying the symmetry

of each factor of the composite symmetry (
∏

i,j g
i
j) as shown in 2nd left box of Fig. 6a. In the second

row of Fig. 6c, each symmetry changes only one factor.
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(a) Overview of processes to generate images from symmetries in qualitative analysis

(b) Composition (c) Decomposed symmetries for factors on 3D Cars and dSprites

(d) Latent dimension replacement by Largest KLD on 3D Cars, dSprites, and smallNORB datasets

(e) Unseen change prediction of adjacent pairs in 3D Shapes

Figure 6: Qualitative Analysis to Generate Images from Latent Vectors in Various Conditions. More
details are in the Appendix D.3.

Disentanglement of Latent Dimensions by Factors To analyze the distinction of factors by
latent dimensions, we select two random samples, generate latent vectors z1 and z2, and select the
largest Kullback-Leibler divergence (KLD) value dimension from their posterior. Then, replacing
the dimension value of z1 to the value of z2 one by one sequentially, we generate new images as the
process shown in the 3rd left box of Fig. 6a. In Fig. 6d, generated images in the red box show that
the change of a latent dimension causes multi-factor changes in the baseline model, but our method
changes only a factor.

Unseen Change Prediction in Sequential Data We evaluate the quality of unseen change pre-
diction of our method in images sequentially changing a factor. Training with the data, our method
randomly selects pairs of images, so the number of pairs composed of adjacent images is rare (less 1
pair among |X|/2 for sequential image dataset X). We set pairs {(xi−1, xi)|1 ≤ i ≤ ||X|| − 1} then
extract the symmetries between elements of each pair gp = {g(1,2), g(2,3), . . . g(k−1,k)} in inference
step, where g(k−1,k) is a symmetry between zk−1 and zk. In the last, we generate the sequential
outputs as shown in the last box of Fig. 6a. In Fig. 6e, all pairing of adjacent samples is mostly
unused in training, but their generated images via trained symmetries of our method are similar. This
result implies that our method is strongly regularized for unseen change.

6 CONCLUSION

This work tackles the difficulty of disentanglement learning of VAEs in multi-factor change condition.
We propose a novel framework to learn composite symmetries from factor-aligned symmetries to
directly represent the multi-factor change of a pair of samples. The framework enhances disentangle-
ment by learning an explicit symmetry codebook, injecting three inductive biases on the symmetries
aligned to unknown factors, and inducing a group equivariant VAE model. We quantitatively evaluate
disentanglement in the condition by a novel metric (m-FVMk) extended from a common metric for a
single factor change condition. This method significantly improved in the multi-factor change and
gradually improved in the single factor change condition compared to state-of-the-art disentanglement
methods of VAEs. This work can be easily plugged into VAEs, and extends disentanglement to more
general factor conditions of complex real world datasets.
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REPRODUCIBILITY

We provide the code for reproduction and describe the code details in the README.md file in the
supplementary materials. Also, we describe the implementation details in the Appendix C.
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A LOSS FUNCTION OF BASELINE

As shown in Table 3, we train the baselines with each objective function.
VAEs LV AE

β-VAE Eqϕ(z|x) log pθ(x|z) − βDKL(qϕ(z|x)||p(z))

β-TCVAE Eqϕ(z|x) log pθ(x|z) − αDKL(q(z, n)||q(z)p(n))
−βDKL(q(z)||

∏
j a(zj)) − γ

∑
j DKL(q(zj)||p(zj))

Factor-VAE
1
N

∑N
i [Eq(z|xi)[log p(xi|z)] − DKL(q(z|xi)||p(z))]

−γDKL(q(z)||
∏

j(zj))

Control-VAE Eqϕ(z|x) log pθ(x|z) − β(t)DKL(qϕ(z|x)||p(z))

CLG-VAE Ea(z|x)q(t|z) log p(x|z)p(z|t)
−Eq(z|x)DKL(q(t|z)||p(t)) − Eq(z|x) log q(z|x)

Table 3: Objective Function of the VAEs.

B PERPENDICULAR AND PARALLEL LOSS RELATIONSHIP

We define parallel loss Lp to set two vectors in the same section of the symmetries codebook to be
parallel: z − gij ∥ z − gij′z then,

z − gijz = c(z − gij′z) (10)

⇒ (1− c)z = (gij − cgij′)z (11)

⇒ (1− c)I = gij − cgij′ or [(1− c)I + cgij′ − gij ]z = 0, (12)

where I is an identity matrix and constant c ∈ R. However, all latent z is not eigenvector of
[(1− c)I + cgij′ − gij ]. Then, we generally define symmetry as:

gij′ =
1

c
gij +

c− 1

c
I, (13)

where i, j, and j′ are natural number 1 ≤ i ≤ |S|, 1 ≤ j, j′ ≤ |SS|, and k ̸= j. Therefore, all
symmetries in the same section are parallel then, any symmetry in the same section is defined by a
specific symmetry in the same section.

We define orthogonal loss Lo between two vectors, which are in different sections, to be orthogonal:
z − gijz ⊥ z − gkl z, where i ̸= k, 1 ≤ i, k ≤ |S|, and 1 ≤ j, l ≤ |SS|. By the Equation 13,

z − gijz ⊥ z − gkl z (14)

⇒ (
1

ca
gia +

ca − 1

ca
I)z − z ⊥ (

1

cb
gkb +

cb − 1

cb
I)z − z (15)

⇒ 1

ca
(giaz − z) ⊥ 1

cb
(gkb z − z), (16)

where ca and cb are any natural number, and 1 ≤ a, b ≤ |SS|. Therefore, if two vectors from different
sections are orthogonal and satisfied with Equation 13, then any pair of vectors from different sections
is always orthogonal.

C EXPERIMENT DETAILS

Device We set the below settings for all experiments in a single Galaxy 2080Ti GPU for 3D Cars
and smallNORB, and a single Galaxy 3090 for dSprites 3D Shapes and CelebA. More details are in
README.md file.

Datasets 1) The dSprites dataset consists of 737,280 binary 64× 64 images with five independent
ground truth factors(number of values), i.e. x-position(32), y-position(32), orientation(40), shape(3),
and scale(6), Matthey et al. (2017). Any composite transformation of x- and y-position, orientation
(2D rotation), scale, and shape is commutative. 2) The 3D Cars dataset consists of 17,568 RGB 64×
64× 3 images with three independent ground truth factors: elevations(4), azimuth directions(24), and
car models(183) Reed et al. (2015). Any composite transformation of elevations(x-axis 3D rotation),
azimuth directions (y-axis 3D rotation), and models are commutative. 3) The smallNORB (LeCun
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et al., 2004) dataset consists of total 96× 96 24,300 grayscale images with four factors, which are
category(10), elevation(9), azimuth(18), light(6) and we resize the input as 64× 64. Any composite
transformation of elevations(x-axis 3D rotation), azimuth (y-axis 3D rotation), light, and category
is commutative. 4) The 3D Shapes dataset consists of 480,000 RGB 64× 64× 3 images with six
independent ground truth factors: orientation(15), shape(4), floor color(10), scale(8), object color(10),
and wall color(10) Burgess & Kim (2018). 5) The CelebA dataset Liu et al. (2015) consists of
202,599 images, and we crop the center 128 × 128 area and then, resize to 64 × 64 images.

Evaluation Settings We set prune dims.threshold as 0.06, 100 samples to evaluate global empirical
variance in each dimension, and run it a total of 800 times to estimate the FVM score introduced
in Kim & Mnih (2018). For the other metrics, we follow default values introduced in Michlo (2021),
training and evaluation 10,000 and 5,000 times with 64 mini-batches, respectively Cao et al. (2022).

Model Hyper-parameter Tuning We implement β-VAE (Higgins et al., 2017), β-TCVAE (Chen
et al., 2018), control-VAE (Shao et al., 2020), Commutative Lie Group VAE (CLG-VAE) (Zhu
et al., 2021), and Groupified-VAE (G-VAE) (Yang et al., 2022) for baseline. For common settings
to baselines, we set batch size 64, learning rate 1e-4, and random seed from {1, 2, . . . , 10} without
weight decay. We train for 3× 105 iterations on dSprites smallNORB and 3D Cars, 6× 105 iterations
on 3D Shapes, and 106 iterations on CelebA. We set hyper-parameter β ∈ {1.0, 2.0, 4.0, 6.0} for
β-VAE and β-TCVAE, fix the α, γ for β-TCVAE as 1 (Chen et al., 2018). We follow the ControlVAE
settings (Shao et al., 2020), the desired value C ∈ {10.0, 12.0, 14.0, 16.0}, and fix the Kp = 0.01,
Ki = 0.001. For CLG-VAE, we also follow the settings (Zhu et al., 2021) as λhessian = 40.0,
λdecomp = 20.0, p = 0.2, and balancing parameter of lossrec group ∈ {0.1, 0.2, 0.5, 0.7}. For G-VAE,
we follow the official settings (Yang et al., 2022) with β-TCVAE (β ∈ {10, 20, 30}), because applying
this method to the β-TCVAE model usually shows higher performance than other models (Yang
et al., 2022). Then we select the best case of models. We run the proposed model on the β-VAE
and β-TCVAE because these methods have no inductive bias to symmetries. We set the same hyper-
parameters of baselines with ϵ ∈ {0.1, 0.01}, threshold ∈ {0.2, 0.5}, |S| = |SS| = |D|, where |D|
is a latent vector dimension. More details for experimental settings.

C.1 BEST MODELS FOR QUANTITATIVE ANALYSIS

In this section, we show how we pick the best model among hyper-parameter tuning results. As
shown in Table 4-6, we choose the best model on each datasets.

β beta VAE FVM MIG SAP DCI
1.0 78.80(±6.61) 65.13(±12.78) 4.62(±3.21) 2.67(±1.52) 9.22(±3.05)
2.0 81.00(±7.62) 64.78(±10.02) 6.34(±3.66) 3.37(±1.70) 10.95(±4.42)
4.0 82.67(±7.28) 73.54(±6.47) 13.19(±4.48) 5.69(±1.98) 21.49(±6.30)
6.0 74.80(±10.46) 63.20(±6.76) 8.35(±2.95) 2.43(±1.27) 13.45(±5.07)

(a) β-VAE
β beta VAE FVM MIG SAP DCI

1.0 77.20(±8.01) 65.46(±8.79) 4.32(±1.46) 2.41(±1.30) 9.34(±1.23)
2.0 78.20(±9.59) 70.68(±11.16) 11.74(±8.51) 3.84(±2.83) 16.80(±11.20)
4.0 87.40(±4.72) 78.18(±7.31) 19.47(±6.61) 6.32(±1.70) 30.05(±8.57)
6.0 89.20(±4.73) 79.19(±5.87) 23.95(±10.13) 7.20(±0.66) 35.33(±9.07)

(b) β-TCVAE
C beta VAE FVM MIG SAP DCI

10.0 82.80(± 7.79) 69.64(±7.67) 5.93(±2.78) 3.89(±1.89) 12.42(±4.95)
12.0 75.20(±5.43) 68.00(±8.67) 5.10(±2.24) 2.49(±1.50) 9.82(±3.69)
14.0 73.60(±9.03) 61.58(±7.87) 4.53(±2.60) 2.11(±1.67) 9.30(±1.89)
16.0 76.20(±8.14) 63.28(±7.98) 4.09(±2.00) 2.08(±1.37) 8.91(±1.88)

(c) Control-VAE
lossrec group beta VAE FVM MIG SAP DCI

0.1 86.80(±3.43) 82.33(±5.59) 23.96(±6.08) 7.07(±0.86) 31.23(±5.32)
0.2 88.20(±4.57) 82.88(±3.55) 20.39(±6.31) 6.82(±1.80) 28.28(±7.09)
0.5 88.20(±5.53) 81.05(±7.51) 20.63(±6.64) 6.49(±1.98) 27.45(±6.07)
0.7 88.00(±4.81) 79.93(±8.16) 18.95(±6.86) 6.94(±1.19) 27.27(±6.76)

(d) Commutative Lie Group VAE

Table 4: Baselines hyper-parameter tuning results on dSprites dataset with 10 random seeds.
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β FVM MIG SAP DCI m-fvm2
1.0 88.19(±4.60) 6.82(±2.93) 0.63(±0.33) 20.45(±3.93) 42.36(±7.16)
2.0 88.51(±5.44) 10.00(±3.84) 0.79(±0.38) 28.78(±7.28) 50.98(±8.33)
4.0 90.95(±4.01) 12.76(±1.19) 0.61(±0.36) 30.70(±3.06) 55.76(±9.97)
6.0 91.83(±4.39) 11.44(±1.07) 0.63(±0.24) 27.65(±2.50) 61.28(±9.40)

(a) β-VAE
β FVM MIG SAP DCI m-fvm2

1.0 89.85(±7.17) 7.27(±3.94) 0.71(±0.40) 21.21(±6.26) 41.99(±3.09)
2.0 91.29(±3.95) 11.62(±3.70) 0.79(±0.27) 30.60(±5.23) 54.87(±3.20)
4.0 92.70(±3.41) 17.31(±2.91) 1.07(±0.36) 33.19(±3.38) 59.12(±2.20)
6.0 92.32(±3.38) 17.20(±3.06) 1.13(±0.36) 33.63(±3.27) 59.25(±5.63)

(b) β-TCVAE
C FVM MIG SAP DCI m-fvm2

10.0 93.86(±5.12) 9.73(±2.24) 1.14(±0.54) 25.66(±4.61) 46.42(±10.34)
12.0 91.43(±5.32) 8.65(±3.59) 11.28(±0.70) 21.05(±3.93) 46.06(±11.20)
14.0 88.09(±5.46) 6.11(±3.46) 1.05(±0.57) 22.09(±4.34) 45.87(±10.84)
16.0 89.65(±6.87) 8.12(±3.71) 0.71(±0.36) 20.89(±6.30) 45.77(±10.23)

(c) Control-VAE
lossrec group FVM MIG SAP DCI m-fvm2

0.1 91.64(±3.91) 10.68(±3.18) 1.22(±0.47) 31.24(±5.42) 45.74(±8.68)
0.2 91.18(±3.18) 11.45(±1.12) 1.06(±0.25) 31.09(±4.15) 48.12(±6.04)
0.5 90.19(±3.46) 10.90(±1.53) 1.51(±0.30) 30.68(±3.01) 49.53(±8.44)
0.7 91.61(±2.84) 11.62(±1.65) 1.35(±2.61) 29.55(±1.93) 47.75(±5.83)

(d) Commutative Lie Group VAE

Table 5: Baselines hyper-parameter tuning results on 3D Cars dataset with 10 random seeds.

β beta VAE FVM MIG SAP DCI
1.0 59.40(±7.72) 60.71(±2.47) 21.61(±0.59) 11.02(±0.18) 25.43(±0.48)
2.0 56.80(±7.90) 54.69(±2.96) 19.97(±0.31) 10.45(±0.24) 21.15(±0.47)
4.0 52.40(±7.65) 55.19(±1.73) 19.14(±0.49) 9.67(±0.24) 20.54(±0.41)
6.0 52.67(±7.28) 53.42(±1.54) 18.05(±0.27) 10.10(±0.28) 21.03(±0.27)

(a) β-VAE
β beta VAE FVM MIG SAP DCI

1.0 60.40(±5.48) 59.30(±2.52) 21.64(±0.51) 11.11(±0.27) 25.74(±0.29)
2.0 56.60(±9.24) 59.48(±2.14) 21.72(±0.44) 11.08(±0.35) 23.74(±0.33)
4.0 58.00(±6.86) 56.40(±1.55) 21.50(±0.62) 10.98(±0.35) 22.29(±0.73)
6.0 56.00(±8.17) 55.46(±1.42) 21.49(±0.52) 10.50(±0.25) 20.24(±0.51)

(b) β-TCVAE
C beta VAE FVM MIG SAP DCI

10.0 59.80(±5.77) 60.34(±2.58) 21.53(±0.33) 10.91(±0.37) 25.55(±0.49)
12.0 60.20(±10.60) 61.00(±1.86) 21.39(±0.41) 11.25(±0.32) 25.71(±0.37)
14.0 61.40(±4.33) 60.63(±2.67) 21.55(±0.53) 11.18(±0.48) 25.97(±0.43)
16.0 60.20(±7.69) 60.50(±2.89) 21.72(±0.31) 11.30(±0.41) 25.60(±0.33)

(c) Control-VAE
lossrec group beta VAE FVM MIG SAP DCI

0.1 59.20(±5.75) 59.54(±1.64) 20.61(±0.41) 10.93(±0.36) 23.77(±0.60)
0.2 63.40(±9.14) 59.74(±1.60) 20.87(±0.36) 10.80(±0.47) 23.59(±0.63)
0.5 64.20(±8.24) 61.28(±1.68) 21.20(±0.53) 10.58(±0.36) 22.88(±0.52)
0.7 62.60(±5.17) 62.26(±1.71) 21.39(±0.67) 10.71(±0.33) 22.95(±0.62)

(d) Commutative Lie Group VAE

Table 6: Baselines hyper-parameter tuning results on smallNORB dataset with 10 random seeds.
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p-value FVM MIG SAP DCI
dSprites 0.011 0.005 0.016 0.001
3D Cars 0.006 0.000 0.97 0.003

smallNORB 0.000 0.002 0.000 1.000

Table 7: p-value estimation on each datasets.

3D Shapes β-VAE β-TCVAE Factor-VAE Control-VAE CLG-VAE OURS
m-FVM5 80.26(±3.78) 79.21(±5.87) 76.69(±5.08) 73.31(±6.54) 73.61(±4.22) 83.03(±2.73)

Table 8: m-FVMs results.

Figure 7: Disentanglement Scores with box plots.

D ADDITIONAL EXPERIMENT

D.1 DISENTANGLEMENT PERFORMANCE

Statistically Significant Improvements As shown in Figure 7, our model significantly improves
disentanglement learning.

3D Shapes As shown in Table 8, CFASL also shows an advantage on multi-factor change.

D.2 ABLATION STUDIES

How Commutative Lie Group Improves Disetanglement Learning? The Lie group is not
commutative, however most factors of the used datasets are commutative. For example, 3D Shapes
dataset factors consist of the azimuth (x-axis), yaw (z-axis), coloring, scale, and shape. Their
3D rotations are all commutative. Also, other composite symmetries as coloring and scale are
commutative. Even though we restrict the Lie group to be commutative, our model shows better
results than baselines as shown in Table 1.

Impact of Hyper-Parameter tuning We operate a grid search of the hyper-parameter ϵ. As shown
in Figure 8a, the Kullback-Leibler divergence convergences to the highest value, when ϵ is large
(ϵ = 1.0) and it shows less stable results. It implies that the CFASL with larger ϵ struggles with
disentanglement learning, and is shown in Tabel 9a. Also, the Lee in Figure 8b is larger than other
cases, which implies that the model struggles with extracting adequate composite symmetry because
its encoder is far from the equivariant model and it is also shown in Table 9a. Even though ϵ = 0.01
case shows the lowest value in the most loss, Lde in Figure 8e is higher than others and it also implies
the model struggles with learning symmetries, as shown in Table 9a because the model does not close
to the equivariant model compare to ϵ = 0.1 case.
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ϵ FVM beta VAE MIG SAP DCI
0.01 76.98(±8.63) 87.33(±7.87) 29.68(±11.38) 6.96(±1.16) 41.28(±11.93)
0.1 82.21(±1.34) 90.33(±5.85) 34.79(±3.26) 7.45(±0.61) 48.07(±5.62)
1.0 76.77(±7.05) 78.33(±13.88) 22.42(±11.14) 6.02(±0.48) 38.87(±7.83)

(a) Hyper-parameter tuning with 6 random seeds.

3D Cars |G|=100 |G|=10
FVM 95.70(±1.90) 48.63(±24.55)
MIG 18.58(±1.24) 2.99(±6.04)
SAP 1.43(±0.18) 0.29(±0.34)
DCI 34.81(±3.85) 6.12(±10.44)

FVM2 62.43(±8.08) 37.94(±10.01)

(b) Codebook size impact

Table 9: Table

(a) kld (hyper) (b) encoder (hyper) (c) kld (w/o) (d) encoder (w/o)

(e) decoder (hyper) (f) perpendicular (hyper) (g) decoder (w/o) (h) perpendicular (w/o)

(i) parallel (hyper) (j) sparsity (hyper) (k) parallel (w/o) (l) sparsity (w/o)

Figure 8: Loss curves: 1) HT: hyper-parameter tuning (ϵ ∈ {0.01, 0.1, 1.0}) with β-TCVAE based
CFASL. 2) AB: ablation study with β-VAE based CFASL.

Impact of Factor-Aligned Symmetry Size We set the codebook size as 100, and 10 to validate the
robustness of our method. In Table 9b, the larger size shows better results than the smaller one, and is
more stable by showing a low standard deviation.

3D Cars Lc without Lc

x4.63 x1.00

Table 10: Complexity.

Impact of Commutative Loss on Computational Complexity As
shown in Table 10, our methods reduce the composite symmetries com-
putation. Matrix exponential is based on the Taylor series and it needs
high computation cost though its approximation is lighter than the Taylor
series. We need one matrix exponential computation for composite symmetries with commutative
loss, in contrast, the other case needs the number of symmetry codebook elements |S| · |SS| for the
matrix exponential and also |S| · |SS| − 1 time matrix multiplication.

Comparison of Plug-in Methods To compare plug-in methods, we evaluate common disentangle-
ment metrics on G-VAE Shakerinava et al. (2022) and apply both methods to β-TCVAE. As shown
in Table 11, our method shows statistically significant improvements in disentanglement learning
although β hyper-parameter of CFASL is smaller than G-VAE. As shown in Table 7, we estimate the

Datasets FVM MIG SAP DCI
G-VAE CFASL G-VAE CFASL G-VAE CFASL G-VAE CFASL

dSprites 69.75(±13.66) 82.30(±5.64) 21.09(±9.20) 33.62(±8.18) 5.45(±2.25) 7.28(±0.63) 31.08(±10.87) 46.52(±6.18)
3D Car 92.34(±2.96) 95.70(±1.90) 11.95(±2.16) 18.58(±1.24) 2.10(±0.96) 1.43(±0.18) 26.91(±6.24) 34.81(±3.85)

smallNROB 46.64(±1.45) 61.15(±4.23) 20.66(±1.22) 22.23(±0.48) 10.37(±0.51) 11.12(±0.48) 27.77(±0.68) 24.59(±0.51)

Table 11: Comparison of disentanglement scores of plug-in methods in single factor change.
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p-value over common disentanglement metrics on each dataset. Most values show that improvements
in disentanglement learning are statistically significant.

D.3 ADDITIONAL QUALITATIVE ANALYSIS (BASELINE VS. CFASL)

Fig. 9-10 show the qualitative results on 3D Cars introduced in Fig. 6a. Fig. 11-12, and Fig. 15 show
the dSprites and smallNORB dataset results respectively. Additionally, we describe Fig. 13-14, and
Fig. 16 results over 3D Shapes, and CelebA datasets respectively. We randomly sample the images in
all cases.

3D Cars As shown in Figure 10c, CFASL shows better results than the baseline. In the 1st and 2nd

rows, the baseline changes shape and color factor when a single dimension value is changed, but ours
clearly disentangle the representations. Also in the 3rd row, the baseline struggles with separating
color and azimuth but CFASL successfully separates the color and azimuth factors.

• 1st row: our model disentangles the shape and color factors when the 2nd dimension value
is changed.

• 2nd row: ours disentangles shape and color factors when the 1st dimension value is changed.
• 4th row: ours disentangles the color, and azimuth factors when the 2nd dimension value is

changed.

dSprites As shown in Figure 12c, the CFASL shows better results than the baseline. The CFASL
significantly improves the disentanglement learning as shown in the 4th and 5th rows. The baseline
shows the multi-factor changes during a single dimension value is changed, while ours disentangles
all factors.

• 1st row: ours disentangles the x- and y-pos factor when the 2nd dimension value is changed.
• 2nd row: ours disentangles the rotation and scale factor when the 2nd dimension value is

changed.
• 3rd row: ours disentangles the x- and y-pos, and rotation factor when the 1st and 2nd

dimension values are changed.
• 4th row: ours disentangles the all factors when the 1st and 2nd dimension values are

changed.

3D Shapes As shown in Figure 14c, the CFASL shows better results than the baseline. In the
1st, 3rd, and 5th rows, our model clearly disentangles the factors while the baseline struggles with
disentangling multi-factors. Even though our model does not clearly disentangle the factors, compared
to the baseline, which is too poor for disentanglement learning, ours improves the performance.

• 1st row: our model disentangles the object color and floor color factor when the 2nd and
3rd dimension values are changed.

• 2nd row: ours disentangles shape factor in 1st dimension, and object color and floor color
factors at the 4th dimension value are changed.

• 3rd row: ours disentangles the object color and floor color factor when the 3rd dimension
value is changed.

• 4th row: ours disentangles the scale, object color, wall color, and floor color factor when
the 2nd and 3rd dimension values are changed.

• 5th row: ours disentangles the shape, object color, and floor color factor when the 1st and
2nd dimension values are changed.

smallNORB Even though our model does not clearly disentangle the multi-factor changes, ours
shows better results than the baseline as shown in Figure 15c.

• 1st row: our model disentangles the category and light factor when the 2nd dimension value
is changed.

• 3rd row: ours disentangles category factor and azimuth factors when the 5th dimension
value is changed.
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celebA As shown in Figure 16c, the CFASL shows better results than the baseline. Our model clearly
disentangles the multi-factor change while the baseline shows poor disentanglement performance.
Furthermore, CFASL learns the sunglasses factor that is not observed in the baseline results. It
implies that our model effectively disentangles the multi-factors in the same condition and is much
more effective in the complex dataset compared to the baseline.

• 1st row: our model disentangles the background, skin color, and face shape factor when the
2nd.

• 2nd row: ours disentangles azimuth, hair length, and hair color factors from 2nd to 4th

dimension values are changed. Furthermore, our method newly learns the sunglasses factor
that is not observed in baseline results.

• 3rd row: ours disentangles the forehead, azimuth, and background factor when the 2nd and
3rd dimension values are changed.
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Figure 9: Unseen change prediction in sequential case results on 3D Cars dataset.

(a) Generation Quality of Composite Symmetries

(b) Disentanglement of Symmetries by Factors

(c) Disentanglement of latent dimensions by factors

Figure 10: Fig. 10a shows the generation quality of composite symmetries results, Fig. 10b shows the
disentanglement of symmetries by factors results, and Fig. 10c shows the disentanglement of latent
dimensions by factors results.
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Figure 11: Inseen change predictions in sequential case results on dSprites dataset.

(a) Generation Quality of Composite Symmetries

(b) Disentanglement of Symmetries by Factors

(c) Disentanglement of latent dimensions by factors

Figure 12: Fig. 12a shows the generation quality of composite symmetries results, Fig. 12b shows the
disentanglement of symmetries by factors results, and Fig. 12c shows the disentanglement of latent
dimensions by factors results.
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Figure 13: Unseen change predictions in sequential case results on 3D Shapes dataset.

(a) Generation Quality of Composite Symmetries

(b) Disentanglement of Symmetries by Factors

(c) Disentanglement of latent dimensions by factors
Figure 14: Fig. 14a shows the generation quality of composite symmetries results, Fig. 14b shows the
disentanglement of symmetries by factors results, and Fig. 14c shows the disentanglement of latent
dimensions by factors results.
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(a) Generation Quality of Composite Symmetries

(b) Disentanglement of Symmetries by Factors

(c) Disentanglement of latent dimensions by factors

Figure 15: Fig. 15a shows the generation quality of composite symmetries results, Fig. 15b shows the
disentanglement of symmetries by factors results, and Fig. 15c shows the disentanglement of latent
dimensions by factors results.
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(a) Generation Quality of Composite Symmetries

(b) Disentanglement of Symmetries by Factors

(c) Disentanglement of latent dimensions by factors, the blue represents the only observed factor in the
CFASL.

Figure 16: Fig. 16a shows the generation quality of composite symmetries results, Fig. 16b shows the
disentanglement of symmetries by factors results, and Fig. 16c shows the disentanglement of latent
dimensions by factors results.
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