
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INHERENTLY INTERPRETABLE TREE ENSEMBLE
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Tree ensembles such as random forests and gradient boosting machines are among
the most effective methods for tabular prediction, but their strong performance
often comes at the cost of interpretability. We show that ensembles of shal-
low decision trees admit an equivalent functional ANOVA representation, making
them inherently interpretable while retaining competitive accuracy. Building on
this insight, we develop an exact algorithm that decomposes tree ensembles into
main effects and interactions, yielding faithful explanations without approxima-
tion. We further introduce two strategies to enhance interpretability: (i) imposing
constraints on depth, monotonicity, and interactions, and (ii) post-hoc pruning of
trivial effects via sparse modeling and effect selection. Across synthetic and real-
world datasets, our approach achieves a superior trade-off between interpretabil-
ity and predictive power compared to established interpretable models such as
Explainable Boosting Machines and GAMI-Net. These results position shallow
tree ensembles as a practical and theoretically grounded alternative for transpar-
ent high-performance modeling of tabular data.

1 INTRODUCTION

Tree ensembles are widely recognized as one of the most popular machine learning techniques for
modeling tabular data. For example, a bagging tree aggregates multiple regression or classification
trees by making bootstrap replicates of the training data (Breiman, 1996). The random forest also
averages a bunch of decision trees to reduce the variance, and it combines the bagging and ran-
dom feature selection strategies to draw training samples for every single tree (Breiman, 2001). In
contrast to constructing trees independently, gradient-boosted machines employ a sequential fitting
approach. Each new tree in the ensemble is added to address the deficiencies of the previous trees
and enhance the model’s performance (Friedman, 2001).

In general, gradient-boosting trees tend to exhibit superior predictive performance compared to ran-
dom forests and bagging trees. The state-of-the-art implementations of gradient-boosted machines
include XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Dorogush
et al., 2018), in which they have developed a wide range of extensions and enhancements built upon
the naı̈ve algorithm. Although tree ensemble models demonstrate superb predictive performance,
they often suffer from the model interpretation challenge. A well-performing tree ensemble model
usually consists of a large number of trees. Each tree can be interpreted separately, but it becomes
almost impossible to understand and interpret the whole model. As a result, tree ensemble models
are usually perceived as black boxes.

Functional analysis of variance (ANOVA) (Stone, 1994; Huang, 1998) is a promising framework
for interpreting black-box models. It decomposes a model as the sum of additive components. In
this paper, we demonstrate that when shallow decision trees are used as base learners, tree ensemble
models can not only become inherently interpretable but also sometimes lead to better generalization
performance. The main contribution of this paper is the development of a practical pipeline for
building models that are both high-performance and exactly interpretable, by leveraging the inherent
structure of shallow tree ensembles, as summarized below.

• We demonstrate that shallow tree ensembles (depth 2) are functionally equivalent to a
GA²M and provide an exact algorithm to decompose them. This allows for faithful, non-
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approximate interpretation of a mainstream, high-performance model class, a significant
advantage over model-agnostic approximation methods.

• We systematize the process into a coherent methodology: a) using standard hyperparam-
eters to design an exactly-decomposable model, b) applying an exact transformation to
reveal the GA²M structure, and c) providing a pruning strategy to distill the model into its
most parsimonious form.

• We show that this approach achieves a superior performance-interpretability trade-off com-
pared to specialized interpretable models (NAM, EBM, GAMI-Net). It provides a com-
pelling, off-the-shelf alternative that delivers both the accuracy of tree ensembles and the
exact, transparent explanations of a GA²M.

2 RELATED WORK

Interpretable machine learning techniques can be broadly categorized into post-hoc explanation tools
and inherently interpretable models. Post-hoc tools such as PDP (Friedman, 2001), ALE (Apley
& Zhu, 2020), LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017; Lundberg et al.,
2020) explain complex models after training but may produce approximations that deviate from
the true model behavior (Rudin, 2019). Inherently interpretable models, on the other hand, are
designed with constraints such as additivity, sparsity, and smoothness to ensure transparency with-
out sacrificing accuracy (Sudjianto & Zhang, 2021). Classic examples include generalized additive
models like EBM (Lou et al., 2013) and GAMI-Net (Yang et al., 2021), while recent advances
such as NAMs (Agarwal et al., 2021), NODE-GAM (Chang et al., 2021), SPAM (Dubey et al.,
2022), SIAN (Enouen & Liu, 2022), and Gamformer (Mueller et al., 2024) leverage neural net-
works and scalable architectures to capture complex feature relationships while maintaining inter-
pretability. Furthermore, extensions such as Neural Additive Models for Location, Scale, and Shape
(NAMLSS) (Thielmann et al., 2024) expand the GAM framework beyond modeling only the condi-
tional mean, enabling interpretable modeling of distributional properties.

While neural GAMs can offer more flexible shape functions on large datasets, our method provides
a practical and faithful interpretability solution for tree ensembles, with the additional advantage of
potentially better generalization performance compared with EBM for shallow trees. A comprehen-
sive review of related works is available in Appendix A.

3 PRELIMINARY AND NOTATIONS

Tree Ensemble Models. A tree ensemble model, such as XGBoost or LightGBM, can be repre-
sented as the addition of (tree, weight)-pairs

f(x) =
K∑

k=1

wkTk(x), (1)

where K is the total number of trees. In gradient boosting, the weights wk correspond to the learning
rates. Each tree Tk can be further represented as the addition of leaf nodes. By rearranging the
additive components, we can represent (1) as the addition of all leaf nodes, as follows,

f(x) =
M∑

m=1

vm
∏

j∈Sm

I
(
slmj ≤ xj < sumj

)
, (2)

where M is the total number of leaf nodes and vm is the value of the m-th leaf node, multiplied by
the corresponding tree weight. The symbol Sm represents the set of split variables in the decision
path of the m-th leaf node. The product of indicator functions denotes whether a sample belongs
to the corresponding leaf node. In specific, the interval [slmj , s

u
mj) is determined by the following

rules.

• If a tree has no split, then slmj = − inf and sumj = inf . This is a special case where the
root node stops splitting, and it corresponds to an intercept term.

2
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• As a feature is used only once in the decision path, and the leaf node belongs to the left side
of the split point s, then sumj = s and slmj = − inf . Otherwise, if the leaf node belongs to
the right side of the split point, then slmj = s and sumj = inf .

• As a feature is used multiple times in the decision path, then slmj and sumj are determined
by the intersection of these split-generated intervals.

Functional ANOVA. Functional ANOVA decomposes a model as the sum of additive components,
as follows.

f(x) = µ+
∑
j

fj(xj) +
∑
jk

fjk(xj , xk) + . . . , (3)

where µ is the intercept, which captures the global mean, and

• The main effect fj(xj) shows how the output changes as xj varies;

• The pairwise interaction fjk(xj , xk) measures how xj and xk jointly influence the pre-
diction beyond what can be explained by their individual effects.

If fjk = 0, the relationship between xj and xk is additive, meaning there is no interaction between
them. Higher-order interactions capture interactions among three or more features. Each component
is orthogonal to lower-order components and has zero mean under its respective variables.

4 METHOD

Our goal is to interpret the prediction function f(x) using additive effects associated with different
subsets of features, following a functional ANOVA-style decomposition in (3). Figure 1 shows the
proposed pipeline of building inherently interpretable tree ensemble models by combining inter-
pretability constraints, functional ANOVA representation, and post-hoc effect pruning.

Figure 1: Pipeline of the tree ensemble interpretation framework.

4.1 TRAINING WITH INTERPRETABILITY-ORIENTED CONSTRAINTS

To enhance the interpretability of tree ensemble models like XGBoost, specific hyperparameters can
be configured to control model complexity, enforce domain knowledge, and simplify the resulting
functional ANOVA structure. Table 1 summarizes the most important hyperparameters and their
interpretability roles. Detailed explanations and examples are provided in Appendix B.

By carefully configuring these hyperparameters, practitioners can balance predictive performance
with interpretability, ensuring that the resulting tree ensemble models remain both accurate and
transparent.

3
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Table 1: Key hyperparameters for improving interpretability of tree ensemble models.

Hyperparameter Interpretability Effect

Max Tree Depth Depth 1: only main effects (GAM); Depth 2: main + pairwise (EBM-like), etc.
Monotonicity Prevents counterintuitive patterns (e.g., higher income leading to lower credit score).
Max Bins Reduces unnecessary discontinuities, making effects smoother and easier to visualize.
Interaction Keeps model focused on domain-relevant interactions.
Regularization Produces sparser functional ANOVA representation by shrinking or eliminating insignificant effects.
Early Stopping Prevents overfitting and curbs model growth, leading to simpler and more interpretable structures.

4.2 REPRESENTING TREE ENSEMBLE MODELS VIA FUNCTIONAL ANOVA

Given a fitted tree ensemble, we can represent it using the functional ANOVA framework. The
algorithm can be divided into three steps, i.e., aggregation, purification, and attribution.

4.2.1 AGGREGATION

The first step is to rearrange (2) using the functional ANOVA framework defined in (3), by assign-
ing each leaf node to the effect functions. For each leaf node, its corresponding effect function is
determined by the distinct split variables at its decision path. For example, leaf nodes with only one
distinct split variable are the main effects. The j-th main effect fj(xj) is obtained by the sum of all
the leaf node functions subject to Sm = {j}, as follows,

fj(xj) =
∑

Sm={j}

vm · I
(
slmj ≤ xj < sumj

)
. (4)

Leaf nodes with two distinct split variables correspond to pairwise interactions. A pairwise inter-
action fjk(xj , xk) can be calculated by the sum of all the leaf nodes subject to Sm = {j, k}, as
follows,

fjk(xj , xk) =
∑

Sm={j,k}

vm · I
(
slmj ≤ xj < sumj

)
· I

(
slmk ≤ xk < sumk

)
. (5)

Similarly, leaf nodes with more than two distinct split variables are assigned to the corresponding
higher-order interaction terms. For a depth-d tree ensemble model, each leaf node would have at
most d distinct split variables, and hence the highest possible interaction order is also d. In particular,
a shallow tree ensemble with a maximum depth of 1 can be represented as a generalized additive
model (GAM). A depth-2 tree ensemble can be represented as a generalized additive model with
pairwise interaction (GAMI), etc.

Note that all effect functions are piece-wise constant, representing a weighted sum of indicator
functions. A main effect fj(xj) with Nj distinct split points can be represented as a value vector of
length Nj +1. A pairwise interaction fjk(xj , xk) with Nj and Nk distinct split points on features j
and k, respectively, can be represented as a matrix of size (Nj +1, Nk+1). In general, higher-order
effects can also be represented using higher-order tensors, using a similar approach.

4.2.2 PURIFICATION

The functional ANOVA would suffer from the identifiability issue without any constraint. For ex-
ample, a main effect term can be absorbed into its parent interactions without changing the model
prediction. This will lead to multiple equivalent representations and make the interpretation non-
unique. To ensure a unique interpretation, it is assumed that the decomposed effects satisfy the
following constraint ∫

fi1···it (xi1 , · · · , xit) dxk = 0, k = i1, · · · , it, (6)

where i1, · · · , it are feature indices. It implies that all main and interaction effects a) have zero
means and b) are mutually orthogonal, i.e.,∫

fi1···iu (xi1 , · · · , xiu) fj1···jv (xj1 , · · · , xjv ) dx = 0, (7)

4
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whenever (i1, · · · , iu) ̸= (j1, · · · , jv).
In the aggregation step, we have rearranged all the leaf node rules to the corresponding effects.
However, these raw effects do not necessarily satisfy the functional ANOVA constraint in (6). To
address this issue, an effective purification algorithm proposed by Lengerich et al. (2020) is applied.
For an arbitrary effect fi1···it (xi1 , · · · , xit), it approximates (6) by removing the means of each slice
feature i1 · · · it iteratively and sequentially. The removed effects are then added to the corresponding
child effects to ensure the equivalence of the purified model and the original model.

For simplicity, we illustrate this algorithm using a pairwise interaction fjk(xj , xk). We take the
matrix representation of the pairwise interaction (of size (Nj +1, Nk +1)) as input. This algorithm
then operates on the matrix using the following steps:

• Calculate the average value along the first dimension, and get a mean vector of size (Nk +
1). Subtract the mean vector from the value matrix, and add it to the corresponding main
effect fk(xk).

• Calculate the average value along the second dimension, and get the mean vector of size
(Nj + 1). Subtract the mean vector from the value matrix, and add it to the corresponding
main effect fj(xj).

These two steps are repeated multiple times until convergence, i.e., as the maximum absolute dif-
ference of the matrix between two consecutive iterations is less than a predefined threshold. In the
end, we would get a purified pairwise interaction, as well as two updated child main effects. In
general, for a d-way interaction, the purification algorithm would iterate over each dimension of the
corresponding d-way tensor, and for each dimension, it moves the (d − 1)-way mean tensor to the
corresponding child (d− 1)-way interaction. The final result would be a purified d-way interaction,
together with d child (d− 1)-way interactions.

The whole purification algorithm would start from the highest-order interactions and recursively
cascade effects from high-order interactions to low-order interactions. Finally, for main effects, we
can simply center them to have zero means, and the subtracted mean is then added to the intercept
term. As the purification step finishes, we can visualize the main effects through 1D line plots and
pairwise interactions via 2D heatmaps. For higher-order interactions, we can draw 1D or 2D plots
for one or two features of interest, while fixing the rest features to certain representative values.

Complexity analysis. The purification algorithm becomes increasingly expensive as the interaction
order d grows. Both time and memory scale exponentially with d because each purification iteration
requires O(d ·Nd) time O(Nd) memory, where N is the number of bins per feature. This makes it
feasible for main effects (d = 1) and pairwise interactions (d = 2), and possibly d = 3 with small
N . However, for d > 3, the computational and storage requirements quickly become prohibitive, so
in practice, purification is typically limited to low-order interactions.

In the above discussion, we assume the data is uniformly and independently distributed over the
feature space, which may not be the case in practical applications. The weighted functional ANOVA
decomposition (Hooker, 2007) is accordingly proposed by considering the empirical distribution
of data. To use weighted functional ANOVA, we first calculate the probability for each bin of the
matrix / tensor, and the simple average is replaced by the weighted average.

4.2.3 ATTRIBUTION

As we have converted a tree ensemble model into the functional ANOVA representation, the next
step is to quantify the contribution of the decomposed effects, both locally (for an individual sample)
and globally (for the entire dataset). Below, we introduce the definition of effect contributions and
feature contributions.

The effect-level contribution quantifies the contribution of each effect to the model output. For
example, the contribution of the j-th main effect is fj(xj), and fjk(xj , xk) is the contribution of the
pairwise interaction (j, k), etc.

Local effect contribution. The model output for each sample can be interpreted as the sum of all
effect contributions plus the intercept term. Each effect contribution can have a positive, negative, or
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zero value. By considering the magnitude of effect values, we can select the most significant effects
for an individual sample.

Global effect importance. After calculating the effect contributions for each sample, we can sum-
marize the importance of each effect by examining the variance of the local effect contributions
across a given dataset, such as the training data. Subsequently, the effect’s importance is normalized
in a way that ensures the sum of all effects’ importance equals 1.

In contrast, the feature-level contribution quantifies the contribution of a feature j to the model
output of an individual sample, i.e.,

zj(xj) = fj(xj) +
1

2

∑
k

fjk(xj , xk) +
1

3

∑
kl

fjkl(xj , xk, xl) + · · ·+
1

p
f1···p(x1, · · · , xp). (8)

In this formula, the main effect fj(xj) is added directly to the j-th feature contribution. Additionally,
all pairwise interaction effects associated with feature j are included in the feature contribution, but
with a discount factor of 2. This rule is also extended to 3-way, 4-way, and up to p-way interactions,
where p is the number of features. Note that the feature contribution zj(xj) is derived from the
Shapley value (Shapley, 1953) of feature j, defined as follows,

ϕj =
∑

S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!

p!
(v(S ∪ {j})− v(S)) , (9)

where v is the value function that returns the prediction of each feature coalition S. The marginal
contribution of feature j to the coalition S is quantified by v(S ∪{j})− v(S), and the multiplier on
the left is the weight of feature coalitions. In the functional ANOVA framework, the value function
of different feature coalitions is already defined. The proof of the equivalence between Shapley value
and feature contribution zj(xj) can be found in Owen (2014). In shallow tree ensemble models, we
can exactly calculate the Shapley value / feature contribution without much computational burden.
According to zj(xj), we define the following feature-level importance.

Local feature contribution. Similar to the local effect contribution, we can locally interpret the
model output of an individual sample at the feature level, i.e., by zj(xj).

Global feature importance. The significance of feature j is determined by evaluating the variance
of zj(xj) on a specific dataset, such as the training data. After that, we normalize the feature
importance to ensure that the total importance of all features adds up to 1.

4.3 PRUNING TRIVIAL EFFECTS FOR CONCISE INTERPRETATIONS

To enhance the interpretability of a tree ensemble model, we can prune trivial effects after it is fitted.
This can be approached as a supervised feature selection problem, where each effect is treated as a
feature. Various existing feature selection algorithms can be employed to identify the most important
effects. In this paper, we introduce two straightforward strategies for effect pruning, as follows.

Sparse Linear Models. A simple approach for effect pruning is to fit a surrogate sparse linear
model to identify and remove trivial effects. In this paper, we choose Lasso for regression tasks
and L1 regularized logistic regression for classification tasks. The surrogate model can capture the
overall relationships between the effects and their impact on the response. It can also identify and
flag effects that contribute minimally or have a high correlation with other effects. These effects
can be automatically pruned from the model, enhancing its interpretability by focusing on the most
relevant and independent effects.

This pruning strategy shares a similar idea with the RuleFit algorithm (Friedman & Popescu, 2008).
Both of them try to pursue a parsimonious representation of tree ensemble models by sparse linear
modeling. The main difference lies in that RuleFit selects the most important decision rules, while
ours performs pruning on the effects functions decomposed by functional ANOVA. Both of these
methods are complementary and can also be combined. For instance, one may initially apply pruning
on the decision rules level and subsequently represent the selected rules using functional ANOVA.
However, such a combination is beyond the scope of this paper.

Forward or Backward Effect Selection. Another powerful strategy is called forward and backward
selection with early dropping (FBEDk; Borboudakis & Tsamardinos, 2019). It consists of k forward

6
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Algorithm 1 Pruning Functional ANOVA Effects

Require: Data {x, y}, initial effects F = {fS}, performance gain threshold τ , forward rounds k
1: Step 1: Sparse Linear Screening
2: Fit a sparse linear model between all fS(xS) and y, and let S̃ be the currently selected effects.
3: Step 2: Forward Selection with Early Dropping
4: Let C ← F \ S̃ be the candidate effects.
5: for iteration r = 1 to k do
6: while C ̸= ∅ do
7: For each fS ∈ C, compute the performance gain of adding fS conditional on S̃.
8: Add the best fS to S̃ if its performance gain ≥ τ .
9: Remove all fS with performance gain < τ from C.

10: end while
11: end for
12: Step 3: Backward Elimination
13: for each fS ∈ S̃ do
14: Compute performance gain of fS conditional on the rest selected effects.
15: if gain < τ then
16: Remove fS from S̃.
17: end if
18: end for
19: Step 4: Effects Adjustment
20: Fit an unconstrained linear or logistic model between S̃ and y to reduce bias.

21: return Pruned effect functions S̃.

selection rounds and one backward elimination. The first forward selection round starts from a
null model or a pre-defined effect set and iteratively adds effects that contribute significantly to the
model’s performance. The performance gain threshold τ controls whether an effect can be selected
or dropped. In this paper, we use the R2 score for regression and the AUC for classification. Both
of them range from 0 to 1, and we can empirically adjust the threshold from 1e-5 to 1e-3, to make
sure selected effects do contribute to the model.

As k > 1, we would perform multiple rounds of forward selection, and each one starts from the
selected effects of previous rounds. Due to the existence of the performance gain threshold, the
length of the candidate effects list would become smaller and smaller within each round. Multiple
forward rounds are used, as it is possible that one effect is not important in the first forward round but
will become significant as conditioning on some other effects. Typically, k = 2 or k = 3 iterations
are sufficient for the algorithm to converge and find a stable set of features. This is because the
later iterations re-evaluate features that were dropped early in the first round but might be useful in
combination with the newly selected features. Throughout this paper, we set k = 2.

Finally, as all the forward selection rounds are complete, we do a backward elimination round,
starting from the least significant effects. This is testing whether the performance gain of each
selected effect (conditioning on the rest selected effects) is greater than the threshold. Effects that
fail this test are considered trivial and then removed from the model. As the effects are selected,
we refit a generalized linear model between the selected effects and the target variable. The scale
of each effect will be changed, while its shape will not. Note that the refitting step may make the
model achieve better predictive performance.

A Hybrid Approach. In this paper, we use a hybrid approach that combines the above two strate-
gies. First of all, we fit a sparse linear model to roughly select the important effects. Then, we treat
the selected effects as initialization and use the FBEDk algorithm to fine-tune the results. It will
assess the marginal contribution of each effect, and the ones with contributions greater or less than
a pre-defined threshold will be added or deleted accordingly. Finally, given the selected effects, we
refit a linear model without sparsity constraints to adjust the coefficients. See 1 for the pseudo codes
of this hybrid approach.

7
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Table 2: Predictive performance comparison.

Task Dataset n p pyGAM NAM XGB-1 EBM GAMI-Net XGB-2 XGB-3 XGB-5

REG
(RMSE)

friedman 2000 10 1.359 ± 0.042 1.420 ± 0.042 1.423 ± 0.032 0.603 ± 0.043 0.149 ± 0.008 0.509 ± 0.030 0.571 ± 0.036 0.693 ± 0.048
bikesharing 17379 8 0.662 ± 0.008 0.683 ± 0.009 0.662 ± 0.008 0.417 ± 0.010 0.439 ± 0.014 0.413 ± 0.008 0.401 ± 0.010 0.395 ± 0.008
wine quality 1599 11 0.625 ± 0.016 0.621 ± 0.019 0.619 ± 0.022 0.602 ± 0.024 0.630 ± 0.021 0.609 ± 0.027 0.597 ± 0.027 0.583 ± 0.029

boston 506 13 3.759 ± 0.615 4.122 ± 0.822 3.820 ± 0.781 3.757 ± 0.654 3.771 ± 0.634 3.237 ± 0.697 3.147 ± 0.742 3.381 ± 0.636
concrete 1030 8 5.358 ± 0.791 6.973 ± 0.287 5.041 ± 0.392 4.156 ± 0.458 5.258 ± 0.324 4.331 ± 0.578 4.273 ± 0.537 4.088 ± 0.429
energy 768 9 0.866 ± 0.284 4.880 ± 0.675 0.938 ± 0.067 0.534 ± 0.043 1.103 ± 0.344 0.551 ± 0.075 0.597 ± 0.106 0.670 ± 0.165
abalone 4177 8 2.162 ± 0.085 2.227 ± 0.081 2.225 ± 0.068 2.232 ± 0.060 2.158 ± 0.108 2.184 ± 0.068 2.174 ± 0.061 2.202 ± 0.056

CLS
(AUC)

taiwancredit 30000 18 0.773 ± 0.007 0.766 ± 0.008 0.772 ± 0.007 0.774 ± 0.007 0.770 ± 0.007 0.774 ± 0.006 0.774 ± 0.008 0.775 ± 0.006
creditsimu 20000 7 0.740 ± 0.022 0.743 ± 0.006 0.745 ± 0.009 0.753 ± 0.007 0.753 ± 0.008 0.754 ± 0.008 0.752 ± 0.006 0.753 ± 0.008

adult 48842 14 0.912 ± 0.003 0.907 ± 0.003 0.912 ± 0.003 0.914 ± 0.003 0.910 ± 0.003 0.913 ± 0.003 0.914 ± 0.003 0.914 ± 0.003
bank 45211 16 0.916 ± 0.004 0.901 ± 0.002 0.916 ± 0.004 0.930 ± 0.003 0.911 ± 0.005 0.932 ± 0.003 0.935 ± 0.002 0.936 ± 0.003

compas 5278 13 0.731 ± 0.014 0.734 ± 0.015 0.734 ± 0.014 0.735 ± 0.013 0.734 ± 0.013 0.733 ± 0.013 0.733 ± 0.014 0.731 ± 0.013
magic 19020 10 0.908 ± 0.008 0.903 ± 0.006 0.908 ± 0.007 0.936 ± 0.004 0.920 ± 0.009 0.939 ± 0.004 0.940 ± 0.005 0.940 ± 0.003
titanic 2201 3 0.744 ± 0.028 0.738 ± 0.024 0.744 ± 0.028 0.757 ± 0.029 0.744 ± 0.026 0.757 ± 0.030 0.757 ± 0.029 0.757 ± 0.029

5 NUMERICAL RESULTS

Among the tree ensemble models, we choose the XGB model implemented by the xgboost package
throughout the experiments. As maximum depth is the most important hyperparameter, we abbre-
viate XGB with max depth 1 as XGB-1, and XGB with max depth 2 as XGB-2, etc. The detailed
experiment setup can be found in Appendix C.

5.1 PREDICTIVE PERFORMANCE COMPARISON

To comprehensively evaluate the predictive accuracy of competing models, we conduct experiments
on a diverse collection of publicly available benchmark datasets spanning both classification and
regression tasks. For regression, we evaluate performance on the friedman simulation dataset and
six widely used real-world datasets, including bike sharing, wine quality, boston, concrete, energy,
and abalone. The classification suite includes taiwancredit, creditsimu, adult, bank, compas, magic,
and titanic, covering a broad range of sample sizes. These datasets represent typical tabular learning
scenarios in housing prices, credit scoring, socio-economic prediction, healthcare risk assessment,
etc.

The results in Table 2 show that across both regression and classification tasks. The best results
are highlighted in bold, while statistically close results are underlined. For regression datasets,
XGB-2 often ranks among the top methods, with RMSE only slightly higher than the best values
in datasets like Boston, Concrete, Energy, and Abalone. Similarly, for classification datasets, XGB-
2 reaches AUC values comparable to or just below the top-performing models. Importantly, while
achieving near state-of-the-art predictive performance, XGB-2 remains highly interpretable, striking
a favorable balance between accuracy and model transparency. This makes it a strong candidate for
applications where interpretability is critical without substantially sacrificing performance.

5.2 CASE STUDY: FRIEDMAN DATASET

The Friedman data is generated using the following simulation function as described in (Friedman,
1991; Breiman, 1996).

y(x) = 10 sin (πx1x2) + 20 (x3 − 0.5)
2
+ 10x4 + 5x5 + ε, (10)

where ε ∼ N
(
0, σ2

)
. The covariates are uniformly distributed between 0 and 1. In this experiment,

we simulate data with n = 2000 and σ = 0.1. In addition, we introduce another 5 noise features
(x6 to x10) when generating the data. We first fit an XGB-2 model using training data, and then
transform it into a functional ANOVA representation with 10 main effects and 45 pairwise inter-
actions. After that, we use Lasso with different regularization strengths to reveal the relationship
between predictive performance and the number of selected effects in Figure 2. The x-axis is the
regularization strength; the bar chart (on the left y-axis) shows the number of selected effects, and
the line plot (on the right y-axis) displays the 5-fold cross-validation R-squared (R2) score. From the
results, it can be observed that R2 reaches its maximum when the regularization is small (from 0.001
to 0.009). As the regularization strength increases to 0.078, the selected effects suddenly shrink to 5
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(b) XGB-2 Interpretation

Figure 3: The fitted results of XGB-2 vs. the ground truth of the Friedman dataset.

main effects and 1 pairwise interaction, while the R2 score does not change too much. This means
that the rest 5 main effects and 44 pairwise interactions are trivial and can be pruned.
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Figure 2: The number of selected effects (y-
axis) and 5-fold cross-validation performance un-
der different regularization strengths of Lasso for
the Friedman dataset.

Inspired by this, we do post-hoc effect pruning
by fitting a Lasso with a regularization strength
of 0.078, and then fine-tune the selected effects
by the FBEDk algorithm. It is worth mention-
ing that after effect pruning, the test set RMSE
gets improved to around 0.425. This means that
removing the trivial effects can not only en-
hance model interpretability but also mitigate
overfitting.

Figure 3 displays the obtained main effects and
pairwise interactions after effect pruning, to-
gether with the ground truth functions. For each
effect plot, we show the corresponding effect
importance in the title. Overall, the effects fit-
ted by XGB-2 are close to the actual functions,
and the difference is due to the inherent model
form of tree ensemble models, i.e., the piece-
wise constant model fits. More details about global and local feature / effect importance can be
found in Appendix D.

5.3 CASE STUDY: BIKE SHARING DATASET

This dataset 1 records the hourly count of rental bikes in the Capital bikeshare system from 2011 to
2012. It has 17389 samples, each data record captures the weather and seasonal conditions within
an hour, and the task is to predict the total rental bikes, including both casual and registered. For
modeling purposes, we remove some of the highly redundant variables. The selected predictors
include season, hr (hour of a day), holiday (whether the day is a holiday or not), weekday (day of the
week), weathersit (weather conditions), atemp (normalized feeling temperature), hum (normalized
humidity), and windspeed (normalized wind speed). As the response is counting data, we process it
using a log transformation.

We first fit an XGB-3 model, and then analyze the relationship between the number of effects and
the predictive performance using the Lasso regularization path plot, as shown in Figure 4. Based on
this plot, we conduct post-hoc effect pruning with Lasso (regularization strength equals 0.005) and
FBEDk (for fine-tuning). Finally, the pruned model has 8 main effects, 37 pairwise interactions, and
46 3-way interactions. The pruned model has a test set RMSE of around 0.408, which is close to
that of the raw XGB-3 model (0.406, with the same random seed).

1https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
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(b) Visualization of a 3-way interaction

Figure 5: The fitted results of XGB-2 vs. the ground truth of the Friedman dataset.
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Figure 4: The number of selected ef-
fects (y-axis) and 5-fold cross-validation
performance under different regularization
strengths of Lasso for the BikeSharing
dataset.

The decomposed effects of the final model is dis-
played in Figure 5, which shows the most important
main effects and pairwise interactions after pruning.
For 3-way interactions, we can use the sliced 1D
plot to reveal the patterns. For example, the most
important 3-way interaction is season, weekday, and
atemp. It’s interesting to note that even the most im-
portant 3-way interaction has an effect importance
close to zero, which indicates that high-way inter-
actions are in general less important than main ef-
fects and 2-way interactions. Conditioning on dif-
ferent value combinations of season and weekday,
we draw this interaction value against atamp in Fig-
ure 5. This plot only uses season=1.0, and the other
values of season can also be drawn in other plots. It
reveals that atemp has an increasing trend to the tar-
get as season=1.0 and weekday is 2.0 or 3.0 (Tues-
day or Wednesday); however, a decreasing trend is
observed as weekday is 6.0 (Saturday).

6 CONCLUSION

This paper proposes an interpretation algorithm to open the black box of tree ensemble models.
Based on the functional ANOVA framework, a fitted tree ensemble model can be equivalently con-
verted into the generalized additive model with interactions. Each of the decomposed main effects
and pairwise interactions can be easily interpreted and visualized. Multi-way interactions are more
difficult to interpret; however, we empirically show that they are less important and sometimes can
be pruned without sacrificing too much predictive performance.

A notable limitation of the proposed approach is its difficulty in capturing interactions beyond third-
order. While this restriction is sufficient for many tabular datasets, it constrains the model’s applica-
bility in domains where higher-order or more complex feature interactions play a critical role, such as
in computer vision or natural language understanding. This limitation arises from the combinatorial
growth of interaction terms and the corresponding challenges in estimation and interpretability. Fu-
ture work could address this by exploring strategies to efficiently approximate or selectively model
higher-order interactions.
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A EXTENDED RELATED WORKS

The techniques in interpretable machine learning can be roughly classified into post-hoc explanation
tools and inherently interpretable models. The former aims at explaining an arbitrary model, and it
can be further divided into global and local explanations. Examples of global explanation include
partial dependence plot (PDP; Friedman, 2001) and accumulative local effects (ALE; Apley & Zhu,
2020), where both of them are used to reveal the relationship between one or two features and the
model prediction. In contrast, local explanation methods like the local interpretable model-agnostic
explanation (LIME; Ribeiro et al., 2016) and Shapley additive explanations (SHAP; Lundberg &
Lee, 2017; Lundberg et al., 2020) decompose the prediction outcome of an individual sample into
the contributions of each feature. The primary drawback of post-hoc explanation tools is that the
interpretation results are mere approximations, which may deviate from the original model and be
incorrect or unfaithful (Rudin, 2019). This can pose significant risks, especially in sensitive domains
such as healthcare and finance.

The second category aims at developing inherently interpretable models. This is in contrast to
black-box models (e.g., neural networks), in which the decision-making process is too complicated
to interpret. In practice, much of the complexity is unnecessary and may lead to overfitting. The
key idea of inherently interpretable models is to regularize or constrain complex models to be in-
terpretable, without sacrificing predictive performance. Some principles of designing interpretable
models include additivity, sparsity, smoothness, etc (Sudjianto & Zhang, 2021).

For instance, an explainable boosting machine (EBM; Lou et al., 2013) is a generalized additive
model (GAM) with functional pairwise interactions. It fits the main effects and interactions sequen-
tially using shallow tree ensemble models. The generalized additive model with structured pairwise
interactions network (GAMI-Net; Yang et al., 2021) is an alternative to EBM, but uses modularized
neural networks to estimate the main effects and pairwise interactions. The GAMI-Lin-T (Hu et al.,
2023) model is another recently proposed interpretable model under the functional ANOVA frame-
work. It also uses the boosting algorithm, and the base learners are trees with linear functions in
leaves.

More recent work has explored combining the flexibility of deep learning with the transparency of
GAMs. Neural Additive Models (NAMs; Agarwal et al., 2021) extend classical GAMs by training
a separate neural subnetwork per feature and summing their outputs, offering deep learning expres-
sivity while preserving clear per-feature shape functions. NODE-GAM and NODE-GA2M (Chang
et al., 2021) further improve scalability by introducing differentiable architectures for GAMs and
GA2Ms that can handle large datasets and benefit from modern optimization techniques. Neural
Basis Models (NBM; Radenovic et al., 2022) address the parameter inefficiency of NAMs by learn-
ing a small shared set of basis functions across features. Similarly, Scalable Polynomial Additive
Models (SPAM; Dubey et al., 2022) employ tensor decompositions to compactly model higher-order
interactions. Sparse Interaction Additive Networks (SIAN; Enouen & Liu, 2022) focus on detecting
and selecting only a small subset of important interactions, balancing interpretability and predictive
power. Extensions such as NAM-LSS (Thielmann et al., 2024) incorporate probabilistic modeling by
predicting not only the mean but also other distributional parameters, while GAMformer (Mueller
et al., 2024) leverages transformers to perform amortized inference of GAM components. These
developments highlight a growing trend toward models that remain inherently interpretable while
offering scalability and accuracy comparable to complex black-box models.

The proposed interpretation algorithm combines elements from both categories mentioned above,
serving as a post-hoc tool specifically for interpreting tree ensemble models. Notably, it endows tree
ensemble models with inherent interpretability, ensuring the derived interpretations are precise with-
out any approximation. Additionally, a recently introduced effect purification algorithm (Lengerich
et al., 2020) is incorporated to tackle the identifiability problem between main effects and their cor-
responding interaction effects under the functional ANOVA framework. This paper leverages this
purification algorithm to convert tree ensemble models into a functional ANOVA-based representa-
tion.

In the literature, there exist some attempts to interpret shallow tree ensemble models. For example,
the decision stump boosting (Oliver & Hand, 1994; Denison, 2001) uses decision trees with only one
split as base learners, and the resulting model can be represented as a generalized additive model.
The EBM models share the same model form as tree ensemble models, as the maximum tree depth
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is 2. Both of them are composed of main effects and pairwise interactions, and the effect functions
are piecewise constant. The main difference is in the model fitting method. In EBM, the main effects
are fitted first in a round-robin fashion, and followed by the pairwise interactions. In contrast, tree
ensemble models fit all effects greedily without any predefined order, and, therefore, tend to have
better predictive performance.

Our work is also highly related to Molnar et al. (2019), where the authors introduce a post-hoc
tool to measure model complexity, by leveraging ALE and functional ANOVA to approximate main
effects and interaction strength. In Schneider et al. (2023), post-hoc interpretability metrics like fea-
ture sparsity, interaction sparsity, and monotonicity are proposed, and a multi-objective optimization
framework is designed to search for a better trade-off of model interpretability and predictive per-
formance. Compared to these 2 methods, our work is a complement and an alternative that provides
exact, faithful interpretations for tree ensemble models by construction. a) In the model decompo-
sition stage: By constraining the model to be a shallow tree ensemble, we can perform an exact
functional ANOVA decomposition. We identify main effects and interactions exactly with a precise
functional form, without approximating them with ALE or PDPs. Our explanation is guaranteed
to match the model’s output exactly, for every prediction; b) In the pruning stage, we provide the
option to further enhance the fitted model, towards a more interpretable / robust model. Beyond
reporting a sparsity score (like Schneider et al.), our enhanced model can still be directly visualized
and interpreted for every main effect and interaction.

B INTERPRETABILITY-ORIENTED HYPERPARAMETERS

This appendix provides full descriptions and practical considerations for the hyperparameters listed
in Table 1, which can be adjusted to enhance the interpretability of tree ensemble models.

B.1 MAXIMUM TREE DEPTH

In the full functional ANOVA representation, the total number of effects is 2p − 1. This number
would become extremely large with the increase of p. If all the effects are active or non-zero, then the
resulting model can be very complicated and hard to interpret. Fortunately, in tree ensemble models,
we can easily control the highest interaction order by maximum tree depth, which is a commonly
used hyperparameter. For example, as the maximum tree depth is 1, then all the interaction effects
are zero, and the model reduces to a generalized additive model (GAM) with at most p main effects;
as the tree depth is 2, then the model would only have main effects and pairwise interactions, which
has same model form as the explainable boosting machine (EBM). In this case, the total number of
effects is less than or equal to p(p + 1)/2. As not all the features are used as split variables, the
number of active effects is usually smaller than the number of possible effects.

With a maximum tree depth of 3, we can still interpret the interactions involving 3 features using
3D heatmaps or sliced 1D plots. For example, we can examine a 3-way interaction by visualizing
one or two features while keeping the rest one or two features fixed at certain values. However, as
the tree depth increases, the model’s complexity grows exponentially, making it more challenging
to interpret deep tree ensemble models.

In addition, deep tree ensembles are hard to interpret, also from an algorithmic perspective. If given
adequate computing resources, the purification algorithm can be applied to arbitrary interaction
effects. However, the tensors representing high-order interactions tend to become excessively large,
making them difficult to process. In practical scenarios, purifying interactions involving 4 or more
features becomes challenging, and sometimes even impossible. Hence, to maintain feasibility, our
interpretation in this paper is restricted to depth-3 tree ensemble models.

In practice, well-configured shallow tree ensemble models are often sufficient to achieve good pre-
dictive performance. It’s worth noting that when we limit the maximum depth of base tree learners,
it is recommended to increase the number of estimators (boosting rounds). This is because shallow
trees in nature have much lower expressive power compared to deeper ones. For instance, a depth 2
tree ensemble model with 100 estimators would have at most 400 leaf nodes, while a similar depth
5 model would have at most 3200 leaf nodes. Therefore, to compensate for the reduction in tree
depth, we may need to increase the number of estimators.
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B.2 MONOTONICITY

In many real-world applications, enforcing feature monotonicity in a model is highly desirable for
interpretation purposes. In a credit scoring model, it is expected that applicants’ credit scores in-
crease monotonically with their income. However, in practice, this assumption can be easily violated
due to noisy data, rendering the model difficult to interpret and diminishing people’s trust in its pre-
dictions. In tree ensemble models, monotonicity constraints can be imposed in fitting each tree. For
instance, to make a feature monotonic increasing, we can prohibit candidate splits of that feature
where the resulting left child node value is greater than that of the right one.

The monotonicity constraint can be specified by leveraging domain knowledge before model train-
ing. It can significantly enhance the interpretability and trustworthiness of the model. On the other
hand, the EBM model, as a counterpart benchmark, lacks inherent monotonicity constraints, and
adjustments can only be made post-training. Such post-hoc adjustments may introduce bias and
potentially decrease the overall performance of the model.

B.3 MAXIMUM NUMBER OF BINS

This parameter is preliminarily employed to reduce the search space of split points. Instead of
considering all possible unique feature values as candidate split points, it selects a predetermined
number of quantiles for each feature as candidates. From the perspective of model interpretability,
restricting the number of bins can also prevent unnecessary discontinuities and make the estimated
effects more easily comprehensible. Therefore, this hyperparameter is very useful in practical ap-
plications.

B.4 INTERACTION CONSTRAINT

Certain tree ensemble learning frameworks provide an API that allows for the restriction of candidate
feature interactions. By using this option, interactions outside of a predefined list of interactions can
be prohibited. For example, if we specify the allowed interactions as (x1, x2) and (x2, x3), the
resulting fitted model would not include interactions such as (x1, x3). This feature is useful when
we possess prior or domain knowledge about the data being modeled, or when we just aim to reduce
the complexity of the model.

It is important to note that by applying the feature interaction constraint, the maximum tree depth
parameter can be relaxed and set to a larger value without increasing the highest order of interactions.
For example, if our goal is to include only main effects and pairwise interactions, we can set the
maximum tree depth to a value greater than 2, while constraining the interaction list to encompass all
possible pairwise interactions. This approach provides flexibility in hyperparameter tuning, allowing
us to vary the depth of the trees while still capturing the desired level of interactions. By using this
trick, we can strike a balance between model complexity and interpretability, tailoring the model to
our specific requirements.

B.5 MISCELLANEOUS

There are several other hyperparameters that can be utilized to enhance the interpretability of tree
ensemble models. Here, we outline some of the commonly employed ones:

L1 / L2 Regularization. Similar to the regularization techniques used in linear models, the appli-
cation of L1 or L2 regularization can help penalize large values in leaf nodes. By increasing the
regularization strength, insignificant leaf nodes can be eliminated, effectively reducing their impact
to zero. Consequently, the functional ANOVA representation will also become sparser, making it
easier to interpret.

Early Stopping Conditions. In addition to the aforementioned criteria, certain early stopping con-
ditions can also be considered as interpretability constraints. These include hyperparameters such
as the minimum number of samples per leaf, the minimum loss reduction required for splits, the
number of rounds for early stopping, and so on.
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C EXPERIMENT SETUP

For comparison, the spline-based GAM, Neural additive model (NAM), EBM, GAMI-Net, and
XGB-5 are included as benchmarks. The spline-based GAM is implemented by the pyGAM Python
package (Servén & Brummitt, 2018). The NAM is implemented by the nam Python package (Kayid
et al., 2020). The EBM model is implemented in the Python package interpret (Nori et al., 2019).
The GAMI-Net model is based on the implementation in the PiML Python package 2. Moreover,
the proposed tree ensemble model interpretation algorithm is also integrated into the PiML package.

We randomly split each dataset into training (80%) and test (20%) sets. For hyperparameter tun-
ing and monitoring the early stopping criteria, 20% of the training samples are used for validation
purposes. For each XGBoost model, we tune the number of estimators (50 to 3000), learning rate
(0.01 to 1), L1 regularization (0.001 to 1000), L2 regularization (0.001 to 1000), and maximum
number of bins (2 to 200). In pyGAM, we tune the spline order (0 to 3), number of splines (10 to
50), and smoothing penalty (0.001 to 1000). In EBM, we tune the number of interactions (0 to 100)
and the learning rate (0.01 to 1). For each model, we tune the hyperparameters using the random
search strategy (Bergstra & Bengio, 2012), and the number of trials is set to 30. Specifically, we
randomly generate 30 hyperparameter configurations for each model within the search space; the
one that achieves the best validation performance is selected, and then we refit the model using all
the training data. For speed consideration, most hyperparameters in NAM are set to default, and
we empirically set the activation function to ReLU, and the maximum epoch to 200. GAMI-Net is
configured and trained using the default settings, with the number of interactions fixed to 10.

The predictive performance is measured by the root-mean-square error (RMSE) for regression tasks
and the area under the ROC curve (AUC) for binary classification tasks. All the experiments are
repeated 10 times.

D EXTENDED CASE STUDIES

D.1 MORE RESULTS OF FRIEDMAN DATASET

Figure 6a and Figure 6b show the effect and feature importance defined in Section 4. The 5 main
effects X1, X2, · · · , X5 are most important to the model prediction, followed by the interaction
X1×X2. The feature importance further aggregates the contribution of interactions to each feature.
It turns out that X4 is the most important, X2, X1 are less important, and X5, X3 are of the least
importance.

Given a specific sample, the local explanation tries to explain how the model generates its prediction.
The prediction can be additively decomposed into effect contributions and feature contributions, see
a demo in Figure 6c and Figure 6d. The left axis is the effect / feature names, the right axis shows
the feature values of the given sample, and the bar charts represent the contributions of each effect /
feature to the prediction. In the title, we also give the predicted value and the actual response.

D.2 CASE STUDY: CREDITSIMU DATASET

This example is a credit decision dataset 3 with synthetic features of applicants, including Mort-
gage (mortgage size), Balance (average credit card balance), Amount Past Due (minimum required
payment that was not applied to the account as of the last payment due date), Delinquency status
(0: current, 1: less than 30 days delinquent, 2: 30-60 days delinquent, 3: 60-90 days, etc), Credit
Inquiry (number of credit inquiries), Open Trade (number of open credit accounts), and Utilization
(credit utilization ratio). This data is provided in the PiML package, and the response feature is
binary, indicating whether the application is approved or not.

According to our domain knowledge, it is expected that some of the features are monotonic with
respect to the credit card approval rate. In addition to the raw XGB-2 model, we fit another XGB-
2 model with enhanced interpretability constraints. Specifically, we constrain the Mortgage to be

2https://github.com/SelfExplainML/PiML-Toolbox/
3https://github.com/SelfExplainML/PiML-Toolbox/blob/main/datasets/

SimuCredit.csv
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Figure 6: The effect and feature importance of the Friedman dataset.

0.
00

1

0.
00

9

0.
07

8

0.
69

5

6.
15

8

54
.5

56

48
3.

29
3

Regularization Strength

0

5

10

15

20

25

# 
Ef

fe
ct

s

1D
2D

0.72

0.73

0.74

0.75

0.76
AU

C 
Sc

or
e

Figure 7: The number of selected effects (y-axis) and 5-fold cross-validation performance under
different regularization strengths of Lasso for the CreditSimu dataset.

monotonically increasing and Utilization to be monotonically decreasing. We also limit the maxi-
mum number of bins to 20 to avoid unnecessary jumps in fitted shape functions. The constrained
XGB-2 model still achieves a test AUC score of around 0.754. This means that the interpretability
constraint does not come with any sacrifice in predictive performance.

Finally, we also show the Lasso regulation path of the constrained XGB-2 upon functional ANOVA
decomposition in Figure 7. According to the trade-off between model sparsity and AUC score, we
prune the constrained XGB-2 via L1-regularization logistic regression (with regularization strength
equal to 10) and FBEDk (for fine-tuning). The pruned model has a test AUC score of around

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Utilization (50.8%)

0.2 0.4 0.6 0.8 1.0 1.2
1e6

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Mortgage (7.8%)

0 1 2 3 4 5

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25
Delinquency (23.2%)

0 5000 10000 15000 20000
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
Balance (7.0%)

(a) Raw XGB-2

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Utilization (50.3%)

0.2 0.4 0.6 0.8 1.0 1.2
1e6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Mortgage (9.3%)

0 1 2 3 4 5
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25
Delinquenc  (23.2%)

0 5000 10000 15000 20000
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
Balance (7.3%)

(b) Constrained XGB-2

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Utilization (49.9%)

0 1 2 3 4 5

−0.5

0.0

0.5

1.0

Delinquenc) (23.1%)

0.2 0.4 0.6 0.8 1.0 1.2
1e6

−0.50

−0.25

0.00

0.25

0.50

0.75

Mortgage (7.8%)

0 5000 10000 15000 20000
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
Balance (7.7%)

0 2 4 6 8
−0.6

−0.4

−0.2

0.0

0.2

0.4

Credit Inquir) (0.7%)

0 2500 5000 7500 10000 12500 15000
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

A ount Pa%t Due (0.3%)

-0.60

-0.40

-0.20

0.00

0.20

0.40

0 1 2 3 4 5

0.2

0.4

0.6

0.8

Delinquency x Utilization (5.3%)

-0.40

-0.20

0.00

0.20

0.40

0 5000 10000 15000

0.2

0.4

0.6

0.8

Amount Past Due x Utilization (1.8%)

-0.10

0.00

0.10

0.20

0 5000 10000 15000
0

1

2

3

4

5
Amount Past Due x Delinquency (0.6%)

-0.15

-0.10

-0.05

0.00

0.05

0.10

0 2 4 6 8

0.2

0.4

0.6

0.8

Credit Inquiry x Utilization (0.5%)

-0.05

0.00

0.05

0.10

0.15

0 5000 10000 15000
0

2

4

6

8

Amount Past Due x Credit Inquiry (0.5%)

(c) Constrained XGB-2 with post-hoc effect pruning

Figure 8: The visualization comparison of different versions of XGB-2 on the CreditSimu dataset.

0.753 but only includes 7 main effects and 15 pairwise interactions. In Figure 8, we show the
extracted main effects and pairwise interactions of the pruned XGB-2 model. Note that this is a
binary classification task, and hence the y-axis is the log odds ratio. For comparison purposes, we
also display the effects of the raw XGB-2 and constrained XGB-2. For simplification, we only show
the effects of Mortgage, Utilization, Delinquency, and Balance. It can be found that these constraints
make the shape functions of main effects less jumpy and easier to interpret.
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Figure 9: The number of selected effects (y-axis) and 5-fold cross-validation performance under
different regularization strengths of Lasso for the TaiwanCredit dataset.

D.3 CASE STUDY: TAIWANCREDIT DATASET

TaiwanCredit data 4 is obtained from the UCI repository, which consists of 30,000 credit card clients
in Taiwan from 200504 to 200509. In this experiment, we only use the 18 payment features as
predictors, including Pay 1 to 6 (past payment delay status), BILL AMT1 to 6 (amount of bill
statement), and PAY AMT1 to 6 (amount of previous payment). Note that Pay 1 is renamed from
Pay 0 in the original data. The target variable is default payment, with 1 indicating default payment.

Similar to the previous analysis, we first add monotonically increasing constraints for Pay 1 to 6
(history of past payment) and BILL AMT1 to 6; while PAY AMT1 to 6 are enforced to be monoton-
ically decreasing. In addition, the maximum number of bins is set to 20. With these interpretability
constraints, the constrained XGB-2 model has a test set AUC score of around 0.772, which is slightly
lower than that of the raw XGB-2 (around 0.774). The regularization path of the constrained XGB-2
model is drawn in Figure 9. Using this plot, we set the regularization strength of L1-regularized
logistic regression to 15 and fine-tune the selected effects by FBEDk. The final pruned model has
15 main effects and 24 pairwise interactions, which is much smaller than the non-pruned model (18
main effects and 97 pairwise interactions). Meanwhile, the pruned model also has a test set AUC
score of around 0.772.

Figure 10 shows the effects visualization of the 3 versions of XGB-2 models. Clearly, with enhanced
interpretability constraints, the effect functions look much more reasonable compared to the uncon-
strained ones. This further verified our belief that properly imposed constraints can make machine
learning models more interpretable.

4https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
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Figure 10: The visualization comparison of different versions of XGB-2 on the TaiwanCredit
dataset.
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