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ABSTRACT

Tree ensembles such as random forests and gradient boosting machines are among
the most effective methods for tabular prediction, but their strong performance
often comes at the cost of interpretability. We show that ensembles of shal-
low decision trees admit an equivalent functional ANOVA representation, making
them inherently interpretable while retaining competitive accuracy. Building on
this insight, we develop an exact algorithm that decomposes tree ensembles into
main effects and interactions, yielding faithful explanations without approxima-
tion. We further introduce two strategies to enhance interpretability: (i) imposing
constraints on depth, monotonicity, and interactions, and (ii) post-hoc pruning of
trivial effects via sparse modeling and effect selection. Across synthetic and real-
world datasets, our approach achieves a superior trade-off between interpretabil-
ity and predictive power compared to established interpretable models such as
Explainable Boosting Machines and GAMI-Net. These results position shallow
tree ensembles as a practical and theoretically grounded alternative for transpar-
ent high-performance modeling of tabular data.

1 INTRODUCTION

Tree ensembles are widely recognized as one of the most popular machine learning techniques for
modeling tabular data. For example, a bagging tree aggregates multiple regression or classification
trees by making bootstrap replicates of the training data (Breiman, 1996). The random forest also
averages a bunch of decision trees to reduce the variance, and it combines the bagging and ran-
dom feature selection strategies to draw training samples for every single tree (Breiman, 2001). In
contrast to constructing trees independently, gradient-boosted machines employ a sequential fitting
approach. Each new tree in the ensemble is added to address the deficiencies of the previous trees
and enhance the model’s performance (Friedman, 2001).

In general, gradient-boosting trees tend to exhibit superior predictive performance compared to ran-
dom forests and bagging trees. The state-of-the-art implementations of gradient-boosted machines
include XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Dorogush
et al., 2018), in which they have developed a wide range of extensions and enhancements built upon
the naı̈ve algorithm. Although tree ensemble models demonstrate superb predictive performance,
they often suffer from the model interpretation challenge. A well-performing tree ensemble model
usually consists of a large number of trees. Each tree can be interpreted separately, but it becomes
almost impossible to understand and interpret the whole model. As a result, tree ensemble models
are usually perceived as black boxes.

Functional analysis of variance (ANOVA) (Stone, 1994; Huang, 1998) is a promising framework for
interpreting black-box models. It decomposes a model as the sum of additive components. In this
paper, we demonstrate that when the shallow decision trees are used as base learners, tree ensemble
models can not only become inherently interpretable but also sometimes lead to better generalization
performance. The main contributions of this paper are summarized below.

• We propose a practical pipeline for building inherently interpretable tree ensemble models:
a) Impose interpretability-orient constraints in model training stage, by adding hard con-
straints (e.g., maximum depth and monotonicity constraints) or soft regularization (e.g., L1
and L2 regularization); b) Reformulate the fitted model into main effects and interactions

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

via functional ANOVA decomposition; c) Prune trivial main / interaction effects, to make
the model parsimonious.

• Showcase the proposed methods through simulation and real datasets and compare them
with benchmark inherently interpretable methods. Compared with the well-known explain-
able boosting machine (EBM; Lou et al., 2013), tree ensemble models with a depth of 2
can achieve better predictive performance and interpretability. If needed, high-order inter-
actions can be included to the model.

2 RELATED WORK

Interpretable machine learning techniques can be broadly categorized into post-hoc explanation tools
and inherently interpretable models. Post-hoc tools such as PDP (Friedman, 2001), ALE (Apley
& Zhu, 2020), LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017; Lundberg et al.,
2020) explain complex models after training but may produce approximations that deviate from
the true model behavior (Rudin, 2019). Inherently interpretable models, on the other hand, are
designed with constraints such as additivity, sparsity, and smoothness to ensure transparency with-
out sacrificing accuracy (Sudjianto & Zhang, 2021). Classic examples include generalized additive
models like EBM (Lou et al., 2013) and GAMI-Net (Yang et al., 2021), while recent advances
such as NAMs (Agarwal et al., 2021), NODE-GAM (Chang et al., 2021), SPAM (Dubey et al.,
2022), SIAN (Enouen & Liu, 2022) and Gamformer (Mueller et al., 2024) leverage neural net-
works and scalable architectures to capture complex feature relationships while maintaining inter-
pretability. Furthermore, extensions such as Neural Additive Models for Location, Scale, and Shape
(NAMLSS) (Thielmann et al., 2024) expand the GAM framework beyond modeling only the condi-
tional mean, enabling interpretable modeling of distributional properties.

While neural GAMs can offer more flexible shape functions on large datasets, our method provides
a practical and faithful interpretability solution for tree ensembles, with the additional advantage of
potentially better generalization performance compared with EBM for shallow trees. A comprehen-
sive review of related works is available in Appendix A.

3 PRELIMINARY AND NOTATIONS

Tree Ensemble Models. A tree ensemble model such as XGBoost or LightGBM can be represented
as the addition of (tree, weight)-pairs

f(x) =
K∑

k=1

wkTk(x), (1)

where K is the total number of trees and g is a link function, which is an identity function for
regression or a logit function for binary classification. In gradient boosting, the weights wk corre-
spond to the learning rates. Each tree Tk can be further represented as the addition of leaf nodes.
By rearranging the additive components, we can represent (1) as the addition of all leaf nodes, as
follows,

f(x) =
M∑

m=1

vm
∏

j∈Sm

I
(
slmj ≤ xj < sumj

)
, (2)

where M is the total number of leaf nodes and vm is the value of the m-th leaf node, multiplied by
the corresponding tree weight. The symbol Sm represents the set of split variables in the decision
path of the m-th leaf node. The product of indicator functions denotes whether a sample belongs
to the corresponding leaf node. In specific, the interval [slmj , s

u
mj) is determined by the following

rules.

• If a tree has no split, then slmj = − inf and sumj = inf . This is a special case where the
root node stops splitting, and it corresponds to an intercept term.

• As a feature is used only once in the decision path, and the leaf node belongs to the left side
of the split point s, then sumj = s and slmj = − inf . Otherwise, if the leaf node belongs to
the right side of the split point, then slmj = s and sumj = inf .
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• As a feature is used multiple times in the decision path, then slmj and sumj are determined
by the intersection of these split-generated intervals.

Functional ANOVA. Functional ANOVA decomposes a model as the sum of additive components,
as follows.

f(x) = µ+
∑
j

fj(xj) +
∑
jk

fjk(xj , xk) + . . . , (3)

where

• µ is the intercept, which capture the global mean;
• The main effect fj(xj) shows how the output changes as xj varies, on average over all

other features;
• The pairwise interaction fjk(xj , xk) measures how xj and xk jointly influence the pre-

diction beyond what can be explained by their individual effects.

If fjk = 0, the relationship between xj and xk is additive, meaning there is no interaction between
them. Higher-order interactions capture interactions among three or more features. Each component
is orthogonal to lower-order components and has zero mean under its respective variables.

4 METHOD

Our goal is to interpret the prediction function f(x) using additive effects associated with different
subsets of features, following an functional ANOVA-style decomposition in (3). Figure 1 shows the
proposed pipeline of building inherently interpretable tree ensemble models, by combining inter-
pretability constraints, functional ANOVA representation, and post-hoc effect pruning.

Figure 1: Pipeline of the tree ensemble interpretation framework.

4.1 TRAINING WITH INTERPRETABILITY-ORIENTED CONSTRAINTS

To enhance the interpretability of tree ensemble models like XGBoost, specific hyperparameters can
be configured to control model complexity, enforce domain knowledge, and simplify the resulting
functional ANOVA structure. Table 1 summarizes the most important hyperparameters and their
interpretability roles. Detailed explanations and examples are provided in Appendix B.

By carefully configuring these hyperparameters, practitioners can balance predictive performance
with interpretability, ensuring that the resulting tree ensemble models remain both accurate and
transparent.

3
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Table 1: Key hyperparameters for improving interpretability of tree ensemble models.

Hyperparameter Interpretability Effect
Max Tree Depth Depth 1 → only main effects (GAM); Depth 2 → main + pairwise

(EBM-like). Higher depths increase complexity exponentially.
Monotonicity Prevents counterintuitive patterns (e.g., higher income leading to lower

credit score). Improves trust and domain alignment.
Max Bins Reduces unnecessary discontinuities, making effects smoother and eas-

ier to visualize.
Interaction Keeps model focused on domain-relevant interactions while allowing

deeper trees without increasing interaction order.
Regularization Produces sparser functional ANOVA representation by shrinking or

eliminating insignificant effects.
Early Stopping Prevents overfitting and curbs model growth, leading to simpler and

more interpretable structures.

4.2 REPRESENTING TREE ENSEMBLE MODELS VIA FUNCTIONAL ANOVA

Given a fitted tree ensemble, we can represent it using the functional ANOVA framework. The
algorithm can be divided into three steps, i.e., aggregation, purification, and attribution.

4.2.1 AGGREGATION

The first step is to rearrange (2) using the functional ANOVA framework defined in (3), by assign-
ing each leaf node to the effect functions. For each leaf node, its corresponding effect function is
determined by the distinct split variables at its decision path. For example, leaf nodes with only one
distinct split variable are the main effects. The j-th main effect fj(xj) is obtained by the sum of all
the leaf nodes functions subject to Sm = {j}, as follows,

fj(xj) =
∑

Sm={j}

vm · I
(
slmj ≤ xj < sumj

)
. (4)

Leaf nodes with two distinct split variables correspond to pairwise interactions. A pairwise inter-
action fjk(xj , xk) can be calculated by the sum of all the leaf nodes subject to Sm = {j, k}, as
follows,

fjk(xj , xk) =
∑

Sm={j,k}

vm · I
(
slmj ≤ xj < sumj

)
· I

(
slmk ≤ xk < sumk

)
. (5)

Similarly, leaf nodes with more than two distinct split variables are assigned to the corresponding
higher-order interaction terms. For a depth-d tree ensemble model, each leaf node would have at
most d distinct split variables, and hence the highest possible interaction order is also d. In particular,
a shallow tree ensemble with a maximum depth of 1 can be represented as a generalized additive
model (GAM). A depth-2 tree ensemble can be represented as a generalized additive model with
pairwise interaction (GAMI), etc.

Note that all effect functions are piece-wise constant representing a weighted sum of indicator func-
tions. A main effect fj(xj) with Nj distinct split points can be represented as a value vector of
length Nj +1. A pairwise interaction fjk(xj , xk) with Nj and Nk distinct split points on features j
and k, respectively, can be represented as a matrix of size (Nj +1, Nk+1). In general, higher-order
effects can also be represented using higher-order tensors, using a similar approach.

4.2.2 PURIFICATION

The functional ANOVA would suffer from the identifiability issue if without any constraint. For
example, a main effect term can be absorbed into its parent interactions without changing the model
prediction. This will lead to multiple equivalent representations and make the interpretation non-
unique. To ensure a unique interpretation, it is assumed that the decomposed effects satisfy the
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following constraint ∫
fi1···it (xi1 , · · · , xit) dxk = 0, k = i1, · · · , it, (6)

where i1, · · · , it are feature indices. It implies that all main and interaction effects a) have zero
means and b) are mutually orthogonal, i.e.,∫

fi1···iu (xi1 , · · · , xiu) fj1···jv (xj1 , · · · , xjv ) dx = 0, (7)

whenever (i1, · · · , iu) ̸= (j1, · · · , jv).
In the aggregation step, we have rearranged all the leaf node rules to the corresponding effects.
However, these raw effects do not necessarily satisfy the functional ANOVA constraint in (6). To
address this issue, an effect purification algorithm proposed by Lengerich et al. (2020) is applied.
For an arbitrary effect fi1···it (xi1 , · · · , xit), it approximates (6) by removing the means of each slice
feature i1 · · · it iteratively and sequentially. The removed effects are then added to the corresponding
child effects, to ensure the equivalence of the purified model and the original model.

For simplicity, we illustrate this algorithm using a pairwise interaction fjk(xj , xk). We take the
matrix representation of the pairwise interaction (of size (Nj +1, Nk +1)) as input. This algorithm
then operates the matrix using the following steps:

• Calculate the average value along the first dimension, and get a mean vector of size (Nk +
1). Subtract the mean vector from the value matrix, and add it to the corresponding main
effect fk(xk).

• Calculate the average value along the second dimension, and get the mean vector of size
(Nj + 1). Subtract the mean vector from the value matrix, and add it to the corresponding
main effect fj(xj).

These two steps are repeated multiple times until convergence, i.e., as the absolute difference of the
matrix between two consecutive iterations is less than a predefined threshold. In the end, we would
get a purified pairwise interaction, as well as two updated child main effects. In general, for a d-
way interaction, the purification algorithm would iterate over each dimension of the corresponding
d-way tensor, and for each dimension, it moves the (d − 1)-way mean tensor to the corresponding
child (d − 1)-way interaction. The final result would be a purified d-way interaction, together with
d child (d− 1)-way interactions.

The whole purification algorithm would start from the highest-order interactions and recursively
cascade effects from high-order interactions to low-order interactions. Finally, for main effects, we
can simply center them to have zero means, and the subtracted mean is then added to the intercept
term. As the purification step finishes, we can visualize the main effects through 1D line plots and
pairwise interactions via 2D heatmaps. For higher-order interactions, we can draw 1D or 2D plots
for one or two features of interest, while fixing the rest features to certain representative values.

Complexity analysis. The purification algorithm becomes increasingly expensive as the interaction
order d grows. Both time and memory scale exponentially with d because each purification iteration
requires O(d ·Nd) time O(Nd) memory, where N is the number of bins per feature. This makes it
feasible for main effects (d = 1) and pairwise interactions (d = 2), and possibly d = 3 with small
N . However, for d > 3, the computational and storage requirements quickly become prohibitive, so
in practice, purification is typically limited to low-order interactions.

In the above discussion, we assume the data is uniformly and independently distributed over the
feature space, which may be not the case in practical applications. The weighted functional ANOVA
decomposition (Hooker, 2007) is accordingly proposed by considering the empirical distribution of
data. To use weighted functional ANOVA, we first calculate the density for each bin of the matrix /
tensor, and the simple average is replaced by the weighted average.

4.2.3 ATTRIBUTION

As we have converted a tree ensemble model into the functional ANOVA representation, the next
step is to quantify the contribution of the decomposed effects, both locally (for an individual sample)

5
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and globally (for the entire dataset). Below we introduce the definition of effect contributions and
feature contributions.

The effect-level contribution quantifies the contribution of each effect to the model output. For
example, the contribution of the j-th main effect is fj(xj), and fjk(xj , xk) is the contribution of the
pairwise interaction (j, k), etc.

Local effect contribution. The model output for each sample can be interpreted as the sum of all
effect contributions plus the intercept term. Each effect contribution can have a positive, negative, or
zero value. By considering the magnitude of effect values, we can select the most significant effects
for an individual sample.

Global effect importance. After calculating the effect contributions for each sample, we can sum-
marize the importance of each effect by examining the variance of the local effect contributions
across a given dataset, such as the training data. Subsequently, the effect importance is normalized
in a way that ensures the sum of all effects’ importance equals 1.

In contrast, the feature-level contribution quantifies the contribution of a feature j to the model
output of an individual sample, i.e.,

zj(xj) = fj(xj) +
1

2

∑
jk

fjk(xj , xk) +
1

3

∑
jkl

fjkl(xj , xk, xl) + · · ·+ 1

p
f1···p(x1, · · · , xp). (8)

In this formula, the main effect fj(xj) is added directly to the j-th feature contribution. Additionally,
all pairwise interaction effects associated with feature j are included in the feature contribution, but
with a discount factor of 2. This rule is also extended to 3-way, 4-way, and up to p-way interactions,
where p is the number of features. Note that the feature contribution zj(xj) is derived from the
Shapley value (Shapley, 1953) of feature j, defined as follows,

ϕj =
∑

S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!

p!
(v(S ∪ {j})− v(S)) , (9)

where v is the value function that returns the prediction of each feature coalition S. The marginal
contribution of feature j to the coalition S is quantified by v(S ∪{j})− v(S), and the multiplier on
the left is the weight of feature coalitions. In the functional ANOVA framework, the value function
of different feature coalitions is already defined. The proof of the equivalence between Shapley value
and feature contribution zj(xj) can be found in Owen (2014). In shallow tree ensemble models, we
can exactly calculate the Shapley value / feature contribution without much computational burden.
According to zj(xj), we define following feature-level importance.

Local feature contribution. Similar to the local effect contribution, we can locally interpret the
model output of an individual sample at the feature level, i.e., by zj(xj).

Global feature importance. The significance of feature j is determined by evaluating the variance
of zj(xj) on a specific dataset, such as the training data. After that, we normalize the feature
importance to ensure that the total importance of all features adds up to 1.

4.3 PRUNING TRIVIAL EFFECTS FOR CONCISE INTERPRETATIONS

To enhance the interpretability of a tree ensemble model, we can prune trivial effects after it is fitted.
This can be approached as a supervised feature selection problem, where each effect is treated as a
feature. Various existing feature selection algorithms can be employed to identify the most important
effects. In this paper, we introduce two straightforward strategies for effect pruning, as follows.

Sparse Linear Models. A simple approach for effect pruning is to fit a surrogate sparse linear
model to identify and remove trivial effects. In this paper, we choose Lasso for regression tasks
and L1 regularized logistic regression for classification tasks. The surrogate model can capture the
overall relationships between the effects and their impact on the response. It can also identify and
flag effects that contribute minimally or have a high correlation with other effects. These effects
can be automatically pruned from the model, enhancing its interpretability by focusing on the most
relevant and independent effects.

This pruning strategy shares a similar idea with RuleFit algorithm (Friedman & Popescu, 2008).
Both of them try to pursue a parsimonious representation of tree ensemble models by sparse linear

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

modeling. The main difference lies in that RuleFit selects the most important decision rules, while
ours perform pruning on the effects functions decomposed by functional ANOVA. Both of these
methods are complementary and can also be combined. For instance, one may initially apply pruning
on the decision rules level and subsequently represent the selected rules using functional ANOVA.
However, such a combination is beyond the scope of this paper.

Forward or Backward Effect Selection. Another powerful strategy is called forward and backward
selection with early dropping (FBEDk; Borboudakis & Tsamardinos, 2019). It consists of k forward
selection rounds and one backward elimination. The first forward selection round starts from a null
model or a pre-defined effect sets and iteratively adds effects that contribute significantly to the
model’s performance. In the beginning, we regress each effect with the target variable, the effect
with the best cross-validation performance will be selected and added to the null model. Also in
this step, a filtering step is performed, and all the effects with performance gain greater than the
pre-defined threshold are selected as candidate effects. Next, conditional on the selected effect, we
select the second one by assessing the performance gain of adding each candidate effect to the linear
model. Again, the best one is selected and the candidate effect list is updated. This procedure is
repeated until the candidate list is empty.

As k > 1, we would perform multiple rounds of forward selection, and each one starts from the
selected effects of previous rounds. Due to the existence of the performance gain threshold, the
length of the candidate effects list would become smaller and smaller within each round. Multiple
forward rounds are used as it is possible that one effect is not important in the first forward round but
will become significant as conditioning on some other effects. Throughout this paper, we set k = 2.

Finally, as all the forward selection rounds are complete, we do a backward elimination round,
starting from the least significant effects. This is testing whether the performance gain of each
selected effect (conditioning on the rest selected effects) is greater than the threshold. Effects that
fail this test are considered trivial and then removed from the model. As the effects are selected,
we refit a generalized linear model between the selected effects and the target variable. The scale of
each effect will be changed, while their shape would not. Note that the refitting step may make the
model achieve better predictive performance.

A Hybrid Approach. In this paper, we use a hybrid approach that combines the above two strate-
gies. First of all, we fit a sparse linear model to roughly select the important effects. Then, we treat
the selected effects as initialization and use the FBEDk algorithm to fine-tune the results. It will
assess the marginal contribution of each effect, and the ones with contributions greater or less than
a pre-defined threshold will be added or deleted accordingly. Finally, given the selected effects, we
refit a linear model without sparsity constraints to adjust the coefficients.

5 NUMERICAL RESULTS

In this section, we demonstrate the proposed interpretation algorithm using a classic synthetic
dataset. Among the tree ensemble models, we choose the XGB model implemented by the xgboost
package throughout the experiments. As maximum depth is the most important hyperparameter, we
enumerate maximum depth from 1 to 5, abbreviated as XGB-1, XGB-2, ..., XGB-5. For compari-
son, the spline-based GAM, EBM, and GAMI-Net are included as benchmark models. See detail
experiment setup in Appendix C.

The Friedman data is based on the following simulation function as described in (Friedman, 1991;
Breiman, 1996).

y(x) = 10 sin (πx1x2) + 20 (x3 − 0.5)
2
+ 10x4 + 5x5 + ε, (10)

where ε ∼ N
(
0, σ2

)
. The covariates are uniformly distributed between 0 and 1. In this experiment,

we simulate data with n = 2000 and σ = 0.1. Table 2 compares the predictive performance of
different models on the Friedman dataset. The best model performance of XGB is achieved as the
maximum depth is 2, which means the model only captures main effects and pairwise interactions.
As the maximum depth further increases, the XGB model tends to overfit the training set, and the test
RMSE inversely increases. Compared with EBM, XGB-2 has a much lower RMSE, which means
that the latter model is superior to EBM in this specific task. However, we observe that XGB-1 and
XGB-2 are less comparable to their counterpart benchmarks pyGAM and GAMI-Net, respectively.

7
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Table 2: Comparison results of the Friedman dataset.

AUC #Effects
Train Test 1-way 2-way 3-way

XGB-1 1.251±0.062 1.423±0.032 9.9±0.3 0.0±0.0 0.0±0.0
XGB-2 0.223±0.046 0.509±0.030 10.0±0.0 44.9±0.3 0.0±0.0
XGB-3 0.212±0.062 0.571±0.036 10.0±0.0 52.5±1.1 116.9±3.3
XGB-4 0.120±0.062 0.622±0.035 - - -
XGB-5 0.143±0.147 0.693±0.048 - - -
pyGAM 1.292±0.038 1.359±0.042 10.0±0.0 0.0±0.0 0.0±0.0

EBM 0.289±0.061 0.603±0.043 10.0±0.0 5.2±2.7 0.0±0.0
GAMI-Net 0.122±0.005 0.149±0.008 5.0±0.0 8.7±1.4 0.0±0.0

That is because the ground truth function is continuous. pyGAM and GAMI-Net with continuous
shape functions can better capture the actual patterns. The tree ensemble models, however, can only
approximate the actual patterns via piecewise constant functions.
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Figure 2: The number of selected effects and
5-fold cross-validation performance under
different regularization strengths of Lasso for
the Friedman dataset.

For demonstration, the raw XGB-2 model is inter-
preted using the proposed algorithm. In total, the
raw XGB-2 model is transformed into a functional
ANOVA representation with 10 main effects and 45
pairwise interactions. After that, we use Lasso with
different regularization strengths to reveal the re-
lationship between predictive performance and the
number of selected effects in Figure 2. The x-axis
is the regularization strength; the bar chart (on the
left y-axis) shows the number of selected effects and
the line plot (on the right y-axis) displays the 5-fold
cross-validation R-squared (R2) score. From the re-
sults, it can be observed that R2 reaches its maxi-
mum when the regularization is small (from 0.001
to 0.009). As the regularization strength increases to
0.078, the selected effects suddenly shrink to 5 main
effects and 1 pairwise interaction, while the R2 score
does not change too much. This means that the rest 5 main effects and 44 pairwise interactions are
trivial and can be pruned.

Inspired by this result, we can do post-hoc effect pruning by fitting a Lasso with a regularization
strength of 0.078, and then fine-tune the selected effects by the FBEDk algorithm. It is worth men-
tioning that after effect pruning, the test set RMSE gets improved to around 0.425. This means that
removing the trivial effects can not only enhance model interpretability but also mitigate overfit-
ting. Figure 3 shows the effect and feature importance defined in Section 4. The 5 main effects
X1, X2, · · · , X5 are most important to the model prediction, followed by the interaction X1xX2.
The feature importance further aggregates the contribution of interactions to each feature. It turns
out that X4 is the most important, X2, X1 are less important, and X5, X3 are of the least importance.

Figure 4 displays the obtained main effects and pairwise interactions after effect pruning, together
with the ground truth functions. For each effect plot, we show the corresponding effect importance
in the title. Overall, the effects fitted by XGB-2 are close to the actual functions, and the difference
is due to the inherent model form of tree ensemble models, i.e., the piecewise constant model fits.

Given a specific sample, local explanation tries to explain how the model generates its prediction.
The prediction can be additively decomposed into effect contributions and feature contributions, see
a demo in Figure 5. The left axis is the effect / feature names, the right axis shows the feature values
of the given sample, and the bar charts represent the contributions of each effect / feature to the
prediction. In the title, we also give the predicted value and the actual response. See more case
studies in Appendix D.
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Figure 3: The effect and feature importance of the Friedman dataset.
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Figure 4: The fitted results of XGB-2 vs. the ground truth of the Friedman dataset.
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Figure 5: A demo of local explanation of the Friedman dataset.

6 CONCLUSION

This paper proposes an interpretation algorithm to open the black box of tree ensemble models.
Based on the functional ANOVA framework, a fitted tree ensemble model can be equivalently con-
verted into the generalized additive model with interactions. Each of the decomposed main effects
and pairwise interactions can be easily interpreted and visualized. High-way interactions are more
difficult to interpret, however, we empirically show that they are less important and sometimes can
be pruned without sacrificing too much predictive performance.

The proposed algorithm is simple but efficient in explaining the fitted tree ensemble models. It can
be used for arbitrary tree ensemble models. The following topics are worth investigating. First,
although current tree ensemble implementations support monotonicity constraints, they still lack
other shape constraints, e.g., convex, concave, etc. Second, it is a promising direction to develop
better visualization tools to display high-way interactions.
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A FULL RELATED WORKS

The techniques in interpretable machine learning can be roughly classified into post-hoc explanation
tools and inherently interpretable models. The former aims at explaining an arbitrary fitted model,
and it can be further divided into global and local explanations. Examples of global explanation
include partial dependence plot (PDP; Friedman, 2001) and accumulative local effects (ALE; Apley
& Zhu, 2020), where both of them are used to reveal the relationship between one or two features
and the model prediction. In contrast, local explanation methods like the local interpretable model-
agnostic explanation (LIME; Ribeiro et al., 2016) and Shapley additive explanations (SHAP; Lund-
berg & Lee, 2017; Lundberg et al., 2020) decompose the prediction outcome of an individual sample
into the contributions of each feature. The primary drawback of post-hoc explanation tools is that the
interpretation results are mere approximations, which may deviate from the original model and be
incorrect or unfaithful (Rudin, 2019). This can pose significant risks, especially in sensitive domains
such as healthcare and finance.

The second category aims at developing inherently interpretable models. This is in contrast to
black-box models (e.g., neural networks), in which the decision-making process is too complicated
to interpret. In practice, much of the complexity is unnecessary and may lead to overfitting. The
key idea of inherently interpretable models is to regularize or constrain complex models to be in-
terpretable, without sacrificing predictive performance. Some principles of designing interpretable
models include additivity, sparsity, smoothness, etc (Sudjianto & Zhang, 2021).

For instance, an explainable boosting machine (EBM; Lou et al., 2013) is a generalized additive
model (GAM) with functional pairwise interactions. It fits the main effects and interactions sequen-
tially using shallow tree ensemble models. The generalized additive model with structured pairwise
interactions network (GAMI-Net; Yang et al., 2021) is an alternative to EBM, but uses modularized
neural networks to estimate the main effects and pairwise interactions. The GAMI-Lin-T (Hu et al.,
2023) model is another recently proposed interpretable model under the functional ANOVA frame-
work. It also uses the boosting algorithm and the base learners are trees with linear functions in
leaves.

More recent work has explored combining the flexibility of deep learning with the transparency of
GAMs. Neural Additive Models (NAMs; Agarwal et al., 2021) extend classical GAMs by training
a separate neural subnetwork per feature and summing their outputs, offering deep learning expres-
sivity while preserving clear per-feature shape functions. NODE-GAM and NODE-GA2M (Chang
et al., 2021) further improve scalability by introducing differentiable architectures for GAMs and
GA2Ms that can handle large datasets and benefit from modern optimization techniques. Neural
Basis Models (NBM; Radenovic et al., 2022) address the parameter inefficiency of NAMs by learn-
ing a small shared set of basis functions across features. Similarly, Scalable Polynomial Additive
Models (SPAM; Dubey et al., 2022) employ tensor decompositions to compactly model higher-order
interactions. Sparse Interaction Additive Networks (SIAN; Enouen & Liu, 2022) focus on detecting
and selecting only a small subset of important interactions, balancing interpretability and predictive
power. Extensions such as NAM-LSS (Thielmann et al., 2024) incorporate probabilistic modeling by
predicting not only the mean but also other distributional parameters, while GAMformer (Mueller
et al., 2024) leverages transformers to perform amortized inference of GAM components. These
developments highlight a growing trend toward models that remain inherently interpretable while
offering scalability and accuracy comparable to complex black-box models.

The proposed interpretation algorithm combines elements from both categories mentioned above,
serving as a post-hoc tool specifically for interpreting tree ensemble models. Notably, it endows tree
ensemble models with inherent interpretability, ensuring the derived interpretations are precise with-
out any approximation. Additionally, a recently introduced effect purification algorithm (Lengerich
et al., 2020) is incorporated to tackle the identifiability problem between main effects and their cor-
responding interaction effects under the functional ANOVA framework. This paper leverages this
purification algorithm to convert tree ensemble models into a functional ANOVA-based representa-
tion.

In the literature, there exist some attempts to interpret shallow tree ensemble models. For example,
the decision stump boosting (Oliver & Hand, 1994; Denison, 2001) uses decision trees with only one
split as base learners, and the resulting model can be represented as a generalized additive model.
The EBM models share the same model form as tree ensemble models as the maximum tree depth is
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2. Both of them are composed of main effects and pairwise interactions, and the effect functions are
piecewise constant. The main difference is in the model fitting method. In EBM, the main effects
are fitted first in a round-robin fashion, and followed by the pairwise interactions. In contrast, tree
ensemble models fit all effects greedily without any predefined order, and therefore, tend to have
better predictive performance.

B INTERPRETABILITY-ORIENTED HYPERPARAMETERS

This appendix provides full descriptions and practical considerations for the hyperparameters listed
in Table 1, which can be adjusted to enhance the interpretability of tree ensemble models.

B.1 MAXIMUM TREE DEPTH

In the full functional ANOVA representation, the total number of effects is 2p − 1. This number
would become extremely large with the increase of p. If all the effects are active or non-zero, then the
resulting model can be very complicated and hard to interpret. Fortunately, in tree ensemble models,
we can easily control the highest interaction order by maximum tree depth, which is a commonly
used hyperparameter. For example, as the maximum tree depth is 1, then all the interaction effects
are zero, and the model reduces to a generalized additive model (GAM) with at most p main effects;
as the tree depth is 2, then the model would only have main effects and pairwise interactions, which
has same model form as the explainable boosting machine (EBM). In this case, the total number of
effects is less than or equal to p(p + 1)/2. As not all the features are used as split variables, the
number of active effects is usually smaller than the number of possible effects.

With a maximum tree depth of 3, we can still interpret the interactions involving 3 features using
3D heatmaps or sliced 1D plots. For example, we can examine a 3-way interaction by visualizing
one or two features while keeping the rest one or two features fixed at certain values. However, as
the tree depth increases, the model’s complexity grows exponentially, making it more challenging
to interpret deep tree ensemble models.

In addition, deep tree ensembles are hard to interpret also from the algorithm perspective. If given
adequate computing resources, the purification algorithm can be applied to arbitrary interaction
effects. However, the tensors representing high-order interactions tend to become excessively large,
making them difficult to process. In practical scenarios, purifying interactions involving 4 or more
features becomes challenging, and sometimes even impossible. Hence, to maintain feasibility, our
interpretation in this paper is restricted to depth 3 tree ensemble models.

In practice, well-configured shallow tree ensemble models are often sufficient to achieve good pre-
dictive performance. It’s worth noting that when we limit the maximum depth of base tree learners,
it is recommended to increase the number of estimators (boosting rounds). This is because shallow
trees in nature have much lower expressive power compared to deeper ones. For instance, a depth 2
tree ensemble model with 100 estimators would have at most 400 leaf nodes, while a similar depth
5 model would have at most 3200 leaf nodes. Therefore, to compensate for the reduction in tree
depth, we may need to increase the number of estimators.

B.2 MONOTONICITY

In many real-world applications, enforcing feature monotonicity in a model is highly desirable for
interpretation purposes. In a credit scoring model, it is expected that applicants’ credit scores in-
crease monotonically with their income. However, in practice, this assumption can be easily violated
due to noisy data, rendering the model difficult to interpret and diminishing people’s trust in its pre-
dictions. In tree ensemble models, monotonicity constraints can be imposed in fitting each tree. For
instance, to make a feature monotonic increasing, we can prohibit candidate splits of that feature
where the resulting left child node value is greater than that of the right one.

The monotonicity constraint can be specified by leveraging domain knowledge before model train-
ing. It can significantly enhance the interpretability and trustworthiness of the model. On the other
hand, the EBM model, as a counterpart benchmark, lacks inherent monotonicity constraints, and
adjustments can only be made post-training. Such post-hoc adjustments may introduce bias and
potentially decrease the overall performance of the model.
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B.3 MAXIMUM NUMBER OF BINS

This parameter is preliminarily employed to reduce the search space of split points. Instead of
considering all possible unique feature values as candidate split points, it selects a predetermined
number of quantiles for each feature as candidates. From the perspective of model interpretability,
restricting the number of bins can also prevent unnecessary discontinuities and make the estimated
effects more easily comprehensible. Therefore, this hyperparameter is very useful in practical ap-
plications.

B.4 INTERACTION CONSTRAINT

Certain tree ensemble learning frameworks provide an API that allows for the restriction of candidate
feature interactions. By using this option, interactions outside of a predefined list of interactions can
be prohibited. For example, if we specify the allowed interactions as (x1, x2) and (x2, x3), the
resulting fitted model would not include interactions such as (x1, x3). This feature is useful when
we possess prior or domain knowledge about the data being modeled, or when we just aim to reduce
the complexity of the model.

It is important to note that by applying the feature interaction constraint, the maximum tree depth
parameter can be relaxed and set to a larger value without increasing the highest order of interactions.
For example, if our goal is to include only main effects and pairwise interactions, we can set the
maximum tree depth to a value greater than 2, while constraining the interaction list to encompass all
possible pairwise interactions. This approach provides flexibility in hyperparameter tuning, allowing
us to vary the depth of the trees while still capturing the desired level of interactions. By using this
trick, we can strike a balance between model complexity and interpretability, tailoring the model to
our specific requirements.

B.5 MISCELLANEOUS

There are several other hyperparameters that can be utilized to enhance the interpretability of tree
ensemble models. Here, we outline some of the commonly employed ones:

L1 / L2 Regularization. Similar to the regularization techniques used in linear models, the appli-
cation of L1 or L2 regularization can help penalize large values in leaf nodes. By increasing the
regularization strength, insignificant leaf nodes can be eliminated, effectively reducing their impact
to zero. Consequently, the functional ANOVA representation will also become sparser, making it
easier to interpret.

Early Stopping Conditions. In addition to the aforementioned criteria, certain early stopping con-
ditions can also be considered as interpretability constraints. These include hyperparameters such
as the minimum number of samples per leaf, the minimum loss reduction required for splits, the
number of rounds for early stopping, and so on.

C DETAILS ABOUT EXPERIMENT SETUP

The spline-based GAM is implemented by the pyGAM Python package (Servén & Brummitt, 2018).
The EBM model is implemented in the Python package interpret (Nori et al., 2019). The GAMI-Net
model is based on the implementation in the PiML Python package 1. Moreover, the proposed tree
ensemble model interpretation algorithm is also integrated into the PiML package.

We randomly split each dataset into training (80%) and test (20%) sets. For hyperparameter tuning
and monitoring the early stopping criteria, 20% of the training samples are used for validation pur-
poses. For each of these 8 XGBoost models, we tune the number of estimators (50 to 3000), learning
rate (0.01 to 1), L1 regularization (0.001 to 1000), L2 regularization (0.001 to 1000), and maximum
number of bins (2 to 200). In pyGAM, we tune the spline order (0 to 3), number of splines (10 to
50), and smoothing penalty (0.001 to 1000). In EBM, we tune the number of interactions (0 to 100)
and the learning rate (0.01 to 1). For each model, we tune the hyperparameters using the random
search strategy (Bergstra & Bengio, 2012), and the number of trials is set to 30. In specific, we

1https://github.com/SelfExplainML/PiML-Toolbox/
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Table 3: Comparison results of the CreditSimu dataset.

RMSE #Effects
Train Test 1-way 2-way 3-way

XGB-1 0.751±0.002 0.745±0.009 7.0±0.0 0.0±0.0 0.0±0.0
XGB-2 0.766±0.004 0.754±0.008 7.0±0.0 18.4±1.8 0.0±0.0
XGB-3 0.770±0.004 0.754±0.008 7.0±0.0 25.5±1.1 27.0±4.2
XGB-4 0.773±0.006 0.754±0.007 - - -
XGB-5 0.774±0.005 0.753±0.008 - - -
pyGAM 0.743±0.021 0.740±0.022 7.0±0.0 0.0±0.0 0.0±0.0

EBM 0.768±0.002 0.753±0.007 7.0±0.0 10.5±6.3 0.0±0.0
GAMI-Net 0.756±0.003 0.753±0.008 4.2±0.4 1.7±0.7 0.0±0.0

randomly generate 30 hyperparameter configurations for each model within the search space; the
one that achieves the best validation performance is selected, and then we refit the model using all
the training data. For speed consideration, GAMI-Net is configured and trained using the default
settings, with the number of interactions fixed to 10.

The predictive performance is measured by the root-mean-square error (RMSE) for regression tasks
and the area under the ROC curve (AUC) for binary classification tasks. All the experiments are
repeated 10 times, and we report the average results.

D MORE CASE STUDIES

D.1 CREDITSIMU DATASET

This example is a credit decision dataset 2 with synthetic features of applicants, including Mort-
gage (mortgage size), Balance (average credit card balance), Amount Past Due (minimum required
payment that was not applied to the account as of the last payment due date), Delinquency status
(0: current, 1: less than 30 days delinquent, 2: 30-60 days delinquent, 3: 60-90 days, etc), Credit
Inquiry (number of credit inquiries), Open Trade (number of open credit accounts), and Utilization
(credit utilization ratio). This data is provided in the PiML package, and the response feature is
binary, indicating whether the application is approved or not.

The comparison results are shown in Table 3. From the results, we can find that the XGB-2 model
reaches the best test set AUC, and adding higher-order interactions will not increase its predictive
performance. The EBM and GAMI-Net models also have very close predictive performance. All
the models with at least 2-way interactions outperform the ones with only main effects, i.e., XGB-1
and pyGAM. This reveals the necessity of including pairwise interactions in this task.

According to our domain knowledge, it is expected that some of the features are monotonic with
respect to the credit card approval rate. In addition to the raw XGB-2 model, we fit another XGB-
2 model with enhanced interpretability constraints. In specific, we constrain the Mortgage to be
monotonically increasing and Utilization to be monotonically decreasing. We also limit the maxi-
mum number of bins to 20 to avoid unnecessary jumps in fitted shape functions. The constrained
XGB-2 model still achieves a test AUC score of around 0.754. This means that the interpretability
constraint does not come with any sacrifice in predictive performance.

Finally, we also show the Lasso regulation path of the constrained XGB-2 upon functional ANOVA
decomposition in Figure 6. According to the trade-off between model sparsity and AUC score, we
prune the constrained XGB-2 via L1-regularization logistic regression (with regularization strength
equals 10) and FBEDk (for fine-tuning). The pruned model has a test AUC score of around 0.753 but
only includes 7 main effects and 15 pairwise interactions. In Figure 7, we show the extracted main
effects and pairwise interactions of the pruned XGB-2 model. Note that this is a binary classification
task, and hence the y-axis is the log odds ratio. For comparison purposes, we also display the
effects of the raw XGB-2 and constrained XGB-2. For simplification, we only show the effects of

2https://github.com/SelfExplainML/PiML-Toolbox/blob/main/datasets/
SimuCredit.csv
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Figure 6: The number of selected effects and 5-fold cross-validation performance under different
regularization strengths of Lasso for the CreditSimu dataset.

Table 4: Comparison results of the BikeSharing dataset.

RMSE #Effects
Train Test 1-way 2-way 3-way

XGB-1 0.650±0.002 0.662±0.008 8.0±0.0 0.0±0.0 0.0±0.0
XGB-2 0.378±0.006 0.413±0.008 8.0±0.0 28.0±0.0 0.0±0.0
XGB-3 0.343±0.013 0.401±0.010 8.0±0.0 38.8±0.4 54.4±1.0
XGB-4 0.310±0.025 0.396±0.008 - - -
XGB-5 0.292±0.031 0.395±0.008 - - -
pyGAM 0.650±0.002 0.662±0.008 8.0±0.0 0.0±0.0 0.0±0.0

EBM 0.376±0.009 0.417±0.010 8.0±0.0 19.9±7.2 0.0±0.0
GAMI-Net 0.429±0.008 0.439±0.014 5.5±0.7 8.6±1.1 0.0±0.0

Mortgage, Utilization, Delinquency, and Balance. It can be found that these constraints make the
shape functions of main effects less jumpy and easier to interpret.

D.2 BIKESHARING DATASET

This dataset 3 records the hourly count of rental bikes in the Capital bikeshare system from 2011 to
2012. It has 17389 samples, each data record captures the weather and seasonal conditions within
an hour, and the task is to predict the total rental bikes including both casual and registered. For
modeling purposes, we remove some of the highly redundant variables. The selected predictors
include season, hr (hour of a day), holiday (weather day is holiday or not), weekday (day of the
week), weathersit (weather conditions), atemp (normalized feeling temperature), hum (normalized
humidity), and windspeed (normalized wind speed). As the response is counting data, we process it
using log transformation.

In Table 4, the comparison results of the Bike Sharing dataset are shown. As this is a real-world
application, the actual functional form and the highest interaction order are unknown. In this case,
we observe that the XGB-5 model achieves the best test set RMSE, and it is possible that deeper
XGB may perform even better. However, the performance gain by increasing tree depth seems to be
small; the XGB-3 model also has quite good RMSE. To pursue better interpretability, it is worthy
of slightly sacrificing the predictive performance, and we select XGB-3 as the target model to be
explained.

3https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
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(c) Constrained XGB-2 with post-hoc effect pruning

Figure 7: The visualization comparison of different versions of XGB-2 on the CreditSimu dataset.

To make the XGB-3 model more interpretable, we analyze the relationship between the number of
effects and the predictive performance using the Lasso regularization path plot, as shown in Figure 8.
Based on this plot, we conduct post-hoc effect pruning with Lasso (regularization strength equals
0.005) and FBEDk (for fine-tuning). Finally, the pruned model has 8 main effects, 37 pairwise
interactions, and 46 3-way interactions. The pruned model has a test set RMSE of around 0.408,
which is close to that of the raw XGB-3 model (0.406, with the same random seed).

Figure 9 displays the most important main effects and pairwise interactions in this XGB-3 model,
compared with the top main effects of the raw XGB-3. For 3-way interactions, we can use the
sliced 1D plot to reveal the patterns. For example, the most important 3-way interaction is season,
weekday, and atemp. Conditioning on different value combinations of season and weekday, we
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Figure 8: The number of selected effects and 5-fold cross-validation performance under different
regularization strengths of Lasso for the BikeSharing dataset.
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Figure 9: The visualization comparison of different versions of XGB-2 on the BikeSharing dataset.

draw this interaction value against atamp in Figure 10. This plot only uses season=1.0, and the other
values of season can also be drawn in other plots. It reveals that atemp has an increasing trend to
the target as season=1.0 and weekday is 2.0 or 3.0 (Tuesday or Wednesday); however, a decreasing
trend is observed as weekday is 6.0 (Saturday).
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Figure 10: Visualization of a 3-way interaction of the BikeSharing dataset.

Table 5: Comparison results of the TaiwanCredit dataset.

RMSE #Effects
Train Test 1-way 2-way 3-way

XGB-1 0.781±0.003 0.772±0.007 17.7±0.7 0.0±0.0 0.0±0.0
XGB-2 0.787±0.008 0.774±0.006 18.0±0.0 93.3±27.5 0.0±0.0
XGB-3 0.794±0.012 0.776±0.007 18.0±0.0 159.8±28.5 265.0±115.9
XGB-4 0.795±0.007 0.776±0.006 - - -
XGB-5 0.797±0.014 0.775±0.006 - - -
pyGAM 0.781±0.002 0.773±0.007 18.0±0.0 0.0±0.0 0.0±0.0

EBM 0.793±0.002 0.774±0.007 18.0±0.0 48.9±22.0 0.0±0.0
GAMI-Net 0.775±0.002 0.770±0.007 12.1±2.2 1.2±0.8 0.0±0.0

D.3 TAIWANCREDIT DATASET

TaiwanCredit data 4 is obtained from the UCI repository, which consists of 30,000 credit card clients
in Taiwan from 200504 to 200509. In this experiment, we only use the 18 payment feature as
predictors, including Pay 1 to 6 (past payment delay status), BILL AMT1 to 6 (amount of bill
statement), and PAY AMT1 to 6 (amount of previous payment). Note that Pay 1 is renamed from
Pay 0 in the original data. The target variable is default payment, with 1 indicating default payment.

Table 5 summarizes the AUC comparison of different models on the TaiwanCredit dataset. The best
test set performance is obtained by XGB-3. However, XGB-1 and XGB-2 also have very good AUC
scores, i.e., 0.772 and 0.774, respectively. The rest compared models all have similar performance,
with test AUC ranging from 0.770 to 0.776.

Similar to the previous analysis, we first add monotonically increasing constraints for Pay 1 to 6
(history of past payment) and BILL AMT1 to 6; while PAY AMT1 to 6 are enforced to be monoton-
ically decreasing. In addition, the maximum number of bins is set to 20. With these interpretability
constraints, the constrained XGB-2 model has a test set AUC score of around 0.772, which is slightly
lower than that of the raw XGB-2 (around 0.774). The regularization path of the constrained XGB-2
model is drawn in Figure 11. Using this plot, we set the regularization strength of L1-regularized
logistic regression to 15 and fine-tune the selected effects by FBEDk. The final pruned model has
15 main effects and 24 pairwise interactions, which is much smaller than the non-pruned model (18
main effects and 97 pairwise interactions). Meanwhile, the pruned model also has a test set AUC
score of around 0.772.

Figure 12 shows the effects visualization of the 3 versions of XGB-2 models. Clearly, with en-
hanced interpretability constraints, the effect functions look much more reasonable as compared to
the unconstrained one. This further verified our belief that properly imposed constraints can make
machine learning models more interpretable.

4https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
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Figure 11: The number of selected effects and 5-fold cross-validation performance under different
regularization strengths of Lasso for the TaiwanCredit dataset.
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(c) Constrained XGB-2 with post-hoc effect pruning

Figure 12: The visualization comparison of different versions of XGB-2 on the TaiwanCredit
dataset.
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