

000
001 **INHERENTLY INTERPRETABLE TREE ENSEMBLE**
002 **LEARNING**
003

004 **Anonymous authors**
005

006 Paper under double-blind review
007
008
009
010

011 **ABSTRACT**
012
013
014
015
016
017
018
019
020
021
022
023
024

025 Tree ensembles such as random forests and gradient boosting machines are among
026 the most effective methods for tabular prediction, but their strong performance
027 often comes at the cost of interpretability. We show that ensembles of shallow
028 decision trees admit an equivalent functional ANOVA representation, making
029 them inherently interpretable while retaining competitive accuracy. Building on
030 this insight, we develop an exact algorithm that decomposes tree ensembles into
031 main effects and interactions, yielding faithful explanations without approxima-
032 tion. We further introduce two strategies to enhance interpretability: (i) imposing
033 constraints on depth, monotonicity, and interactions, and (ii) post-hoc pruning of
034 trivial effects via sparse modeling and effect selection. Across synthetic and real-
035 world datasets, our approach achieves a superior trade-off between interpretabil-
036 ity and predictive power compared to established interpretable models such as
037 Explainable Boosting Machines and GAM-Net. These results position shallow
038 tree ensembles as a practical and theoretically grounded alternative for transpar-
039 ent high-performance modeling of tabular data.
040

041 **1 INTRODUCTION**
042
043

044 Tree ensembles are widely recognized as one of the most popular machine learning techniques for
045 modeling tabular data. For example, a bagging tree aggregates multiple regression or classification
046 trees by making bootstrap replicates of the training data (Breiman, 1996). The random forest also
047 averages a bunch of decision trees to reduce the variance, and it combines the bagging and ran-
048 dom feature selection strategies to draw training samples for every single tree (Breiman, 2001). In
049 contrast to constructing trees independently, gradient-boosted machines employ a sequential fitting
050 approach. Each new tree in the ensemble is added to address the deficiencies of the previous trees
051 and enhance the model’s performance (Friedman, 2001).
052

053 In general, gradient-boosting trees tend to exhibit superior predictive performance compared to ran-
054 dom forests and bagging trees. The state-of-the-art implementations of gradient-boosted machines
055 include XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Dorogush
056 et al., 2018), in which they have developed a wide range of extensions and enhancements built upon
057 the naïve algorithm. Although tree ensemble models demonstrate superb predictive performance,
058 they often suffer from the model interpretation challenge. A well-performing tree ensemble model
059 usually consists of a large number of trees. Each tree can be interpreted separately, but it becomes
060 almost impossible to understand and interpret the whole model. As a result, tree ensemble models
061 are usually perceived as black boxes.
062

063 Functional analysis of variance (ANOVA) (Stone, 1994; Huang, 1998) is a promising framework
064 for interpreting black-box models. It decomposes a model as the sum of additive components. In
065 this paper, we demonstrate that when shallow decision trees are used as base learners, tree ensemble
066 models can not only become inherently interpretable but also sometimes lead to better generalization
067 performance. The main contribution of this paper is the development of a practical pipeline for
068 building models that are both high-performance and exactly interpretable, by leveraging the inherent
069 structure of shallow tree ensembles, as summarized below.
070

071 • We demonstrate that shallow tree ensembles (depth 2) are functionally equivalent to a
072 GA²M and provide an exact algorithm to decompose them. This allows for faithful, non-
073

054 approximate interpretation of a mainstream, high-performance model class, a significant
 055 advantage over model-agnostic approximation methods.
 056

- 057 • We systematize the process into a coherent methodology: a) using standard hyperparameters
 058 to design an exactly-decomposable model, b) applying an exact transformation to
 059 reveal the GA²M structure, and c) providing a pruning strategy to distill the model into its
 060 most parsimonious form.
- 061 • We show that this approach achieves a superior performance-interpretability trade-off com-
 062 pared to specialized interpretable models (NAM, EBM, GAMI-Net). It provides a com-
 063 pelling, off-the-shelf alternative that delivers both the accuracy of tree ensembles and the
 064 exact, transparent explanations of a GA²M.

065 **2 RELATED WORK**

066 Interpretable machine learning techniques can be broadly categorized into post-hoc explanation tools
 067 and inherently interpretable models. Post-hoc tools such as PDP (Friedman, 2001), ALE (Apley
 068 & Zhu, 2020), LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017; Lundberg et al.,
 069 2020) explain complex models after training but may produce approximations that deviate from
 070 the true model behavior (Rudin, 2019). Inherently interpretable models, on the other hand, are
 071 designed with constraints such as additivity, sparsity, and smoothness to ensure transparency with-
 072 out sacrificing accuracy (Sudjianto & Zhang, 2021). Classic examples include generalized additive
 073 models like EBM (Lou et al., 2013) and GAMI-Net (Yang et al., 2021), while recent advances
 074 such as NAMs (Agarwal et al., 2021), NODE-GAM (Chang et al., 2021), SPAM (Dubey et al.,
 075 2022), SIAN (Enouen & Liu, 2022), and Gamformer (Mueller et al., 2024) leverage neural net-
 076 works and scalable architectures to capture complex feature relationships while maintaining inter-
 077 pretability. Furthermore, extensions such as Neural Additive Models for Location, Scale, and Shape
 078 (NAMLSS) (Thielmann et al., 2024) expand the GAM framework beyond modeling only the condi-
 079 tional mean, enabling interpretable modeling of distributional properties.
 080

081 While neural GAMs can offer more flexible shape functions on large datasets, our method provides
 082 a practical and faithful interpretability solution for tree ensembles, with the additional advantage of
 083 potentially better generalization performance compared with EBM for shallow trees. A comprehen-
 084 sive review of related works is available in Appendix A.

085 **3 PRELIMINARY AND NOTATIONS**

086 **Tree Ensemble Models.** A tree ensemble model, such as XGBoost or LightGBM, can be repre-
 087 sented as the addition of (tree, weight)-pairs

$$088 \quad 089 \quad 090 \quad 091 \quad 092 \quad 093 \quad f(\mathbf{x}) = \sum_{k=1}^K w_k T_k(\mathbf{x}), \quad (1)$$

094 where K is the total number of trees. In gradient boosting, the weights w_k correspond to the learning
 095 rates. Each tree T_k can be further represented as the addition of leaf nodes. By rearranging the
 096 additive components, we can represent (1) as the addition of all leaf nodes, as follows,
 097

$$098 \quad 099 \quad 100 \quad f(\mathbf{x}) = \sum_{m=1}^M v_m \prod_{j \in S_m} I(s_{mj}^l \leq x_j < s_{mj}^u), \quad (2)$$

101 where M is the total number of leaf nodes and v_m is the value of the m -th leaf node, multiplied by
 102 the corresponding tree weight. The symbol S_m represents the set of split variables in the decision
 103 path of the m -th leaf node. The product of indicator functions denotes whether a sample belongs
 104 to the corresponding leaf node. In specific, the interval $[s_{mj}^l, s_{mj}^u)$ is determined by the following
 105 rules.

- 106 • If a tree has no split, then $s_{mj}^l = -\inf$ and $s_{mj}^u = \inf$. This is a special case where the
 107 root node stops splitting, and it corresponds to an intercept term.

108

- As a feature is used only once in the decision path, and the leaf node belongs to the left side
109 of the split point s , then $s_{mj}^u = s$ and $s_{mj}^l = -\inf$. Otherwise, if the leaf node belongs to
110 the right side of the split point, then $s_{mj}^l = s$ and $s_{mj}^u = \inf$.

111

- As a feature is used multiple times in the decision path, then s_{mj}^l and s_{mj}^u are determined
112 by the intersection of these split-generated intervals.

113

114 **Functional ANOVA.** Functional ANOVA decomposes a model as the sum of additive components,
115 as follows.

116

$$f(\mathbf{x}) = \mu + \sum_j f_j(x_j) + \sum_{jk} f_{jk}(x_j, x_k) + \dots, \quad (3)$$

117 where μ is the intercept, which captures the global mean, and

118

- The **main effect** $f_j(x_j)$ shows how the output changes as x_j varies;

119

- The **pairwise interaction** $f_{jk}(x_j, x_k)$ measures how x_j and x_k **jointly influence** the pre-
120 diction beyond what can be explained by their individual effects.

121

122 If $f_{jk} = 0$, the relationship between x_j and x_k is **additive**, meaning there is no interaction between
123 them. Higher-order interactions capture interactions among three or more features. Each component
124 is orthogonal to lower-order components and has zero mean under its respective variables.

4 METHOD

131 Our goal is to interpret the prediction function $f(\mathbf{x})$ using additive effects associated with different
132 subsets of features, following a functional ANOVA-style decomposition in (3). Figure 1 shows the
133 proposed pipeline of building inherently interpretable tree ensemble models by combining inter-
134 pretability constraints, functional ANOVA representation, and post-hoc effect pruning.

151 Figure 1: Pipeline of the tree ensemble interpretation framework.

4.1 TRAINING WITH INTERPRETABILITY-ORIENTED CONSTRAINTS

155 To enhance the interpretability of tree ensemble models like XGBoost, specific hyperparameters can
156 be configured to control model complexity, enforce domain knowledge, and simplify the resulting
157 functional ANOVA structure. Table 1 summarizes the most important hyperparameters and their
158 interpretability roles. Detailed explanations and examples are provided in Appendix B.

159 By carefully configuring these hyperparameters, practitioners can balance predictive performance
160 with interpretability, ensuring that the resulting tree ensemble models remain both accurate and
161 transparent.

162 Table 1: Key hyperparameters for improving interpretability of tree ensemble models.
163

164 Hyperparameter	165 Interpretability Effect
166 Max Tree Depth	167 Depth 1: only main effects (GAM); Depth 2: main + pairwise (EBM-like), etc.
168 Monotonicity	169 Prevents counterintuitive patterns (e.g., higher income leading to lower credit score).
170 Max Bins	171 Reduces unnecessary discontinuities, making effects smoother and easier to visualize.
172 Interaction	173 Keeps model focused on domain-relevant interactions.
174 Regularization	175 Produces sparser functional ANOVA representation by shrinking or eliminating insignificant effects.
176 Early Stopping	177 Prevents overfitting and curbs model growth, leading to simpler and more interpretable structures.

172

4.2 REPRESENTING TREE ENSEMBLE MODELS VIA FUNCTIONAL ANOVA

173 Given a fitted tree ensemble, we can represent it using the functional ANOVA framework. The
174 algorithm can be divided into three steps, i.e., aggregation, purification, and attribution.
175176

4.2.1 AGGREGATION

177 The first step is to rearrange (2) using the functional ANOVA framework defined in (3), by assigning
178 each leaf node to the effect functions. For each leaf node, its corresponding effect function is
179 determined by the distinct split variables at its decision path. For example, leaf nodes with only one
180 distinct split variable are the main effects. The j -th main effect $f_j(x_j)$ is obtained by the sum of all
181 the leaf node functions subject to $S_m = \{j\}$, as follows,
182

183
$$f_j(x_j) = \sum_{S_m=\{j\}} v_m \cdot I(s_{mj}^l \leq x_j < s_{mj}^u). \quad (4)$$

186 Leaf nodes with two distinct split variables correspond to pairwise interactions. A pairwise interaction
187 $f_{jk}(x_j, x_k)$ can be calculated by the sum of all the leaf nodes subject to $S_m = \{j, k\}$, as
188 follows,
189

190
$$f_{jk}(x_j, x_k) = \sum_{S_m=\{j,k\}} v_m \cdot I(s_{mj}^l \leq x_j < s_{mj}^u) \cdot I(s_{mk}^l \leq x_k < s_{mk}^u). \quad (5)$$

192 Similarly, leaf nodes with more than two distinct split variables are assigned to the corresponding
193 higher-order interaction terms. For a depth- d tree ensemble model, each leaf node would have at
194 most d distinct split variables, and hence the highest possible interaction order is also d . In particular,
195 a shallow tree ensemble with a maximum depth of 1 can be represented as a generalized additive
196 model (GAM). A depth-2 tree ensemble can be represented as a generalized additive model with
197 pairwise interaction (GAMI), etc.
198199 Note that all effect functions are piece-wise constant, representing a weighted sum of indicator
200 functions. A main effect $f_j(x_j)$ with N_j distinct split points can be represented as a value vector of
201 length $N_j + 1$. A pairwise interaction $f_{jk}(x_j, x_k)$ with N_j and N_k distinct split points on features j
202 and k , respectively, can be represented as a matrix of size $(N_j + 1, N_k + 1)$. In general, higher-order
203 effects can also be represented using higher-order tensors, using a similar approach.
204205

4.2.2 PURIFICATION

206 The functional ANOVA would suffer from the identifiability issue without any constraint. For ex-
207 ample, a main effect term can be absorbed into its parent interactions without changing the model
208 prediction. This will lead to multiple equivalent representations and make the interpretation non-
209 unique. To ensure a unique interpretation, it is assumed that the decomposed effects satisfy the
210 following constraint
211

212
$$\int f_{i_1 \dots i_t}(x_{i_1}, \dots, x_{i_t}) dx_k = 0, \quad k = i_1, \dots, i_t, \quad (6)$$

213 where i_1, \dots, i_t are feature indices. It implies that all main and interaction effects a) have zero
214 means and b) are mutually orthogonal, i.e.,
215

216
$$\int f_{i_1 \dots i_u}(x_{i_1}, \dots, x_{i_u}) f_{j_1 \dots j_v}(x_{j_1}, \dots, x_{j_v}) d\mathbf{x} = 0, \quad (7)$$

216 whenever $(i_1, \dots, i_u) \neq (j_1, \dots, j_v)$.
 217

218 In the aggregation step, we have rearranged all the leaf node rules to the corresponding effects.
 219 However, these raw effects do not necessarily satisfy the functional ANOVA constraint in (6). To
 220 address this issue, an effective purification algorithm proposed by Lengerich et al. (2020) is applied.
 221 For an arbitrary effect $f_{i_1 \dots i_t}(x_{i_1}, \dots, x_{i_t})$, it approximates (6) by removing the means of each slice
 222 feature $i_1 \dots i_t$ iteratively and sequentially. The removed effects are then added to the corresponding
 223 child effects to ensure the equivalence of the purified model and the original model.
 224

225 For simplicity, we illustrate this algorithm using a pairwise interaction $f_{jk}(x_j, x_k)$. We take the
 226 matrix representation of the pairwise interaction (of size $(N_j + 1, N_k + 1)$) as input. This algorithm
 227 then operates on the matrix using the following steps:
 228

- 229 • Calculate the average value along the first dimension, and get a mean vector of size $(N_k +$
 230 $1)$. Subtract the mean vector from the value matrix, and add it to the corresponding main
 231 effect $f_k(x_k)$.
- 232 • Calculate the average value along the second dimension, and get the mean vector of size
 233 $(N_j + 1)$. Subtract the mean vector from the value matrix, and add it to the corresponding
 234 main effect $f_j(x_j)$.

235 These two steps are repeated multiple times until convergence, i.e., as the maximum absolute dif-
 236 ference of the matrix between two consecutive iterations is less than a predefined threshold. In the
 237 end, we would get a purified pairwise interaction, as well as two updated child main effects. In
 238 general, for a d -way interaction, the purification algorithm would iterate over each dimension of the
 239 corresponding d -way tensor, and for each dimension, it moves the $(d - 1)$ -way mean tensor to the
 240 corresponding child $(d - 1)$ -way interaction. The final result would be a purified d -way interaction,
 241 together with d child $(d - 1)$ -way interactions.
 242

243 The whole purification algorithm would start from the highest-order interactions and recursively
 244 cascade effects from high-order interactions to low-order interactions. Finally, for main effects, we
 245 can simply center them to have zero means, and the subtracted mean is then added to the intercept
 246 term. As the purification step finishes, we can visualize the main effects through 1D line plots and
 247 pairwise interactions via 2D heatmaps. For higher-order interactions, we can draw 1D or 2D plots
 248 for one or two features of interest, while fixing the rest features to certain representative values.
 249

250 **Complexity analysis.** The purification algorithm becomes increasingly expensive as the interaction
 251 order d grows. Both time and memory scale exponentially with d because each purification iteration
 252 requires $O(d \cdot N^d)$ time $O(N^d)$ memory, where N is the number of bins per feature. This makes it
 253 feasible for main effects ($d = 1$) and pairwise interactions ($d = 2$), and possibly $d = 3$ with small
 254 N . However, for $d > 3$, the computational and storage requirements quickly become prohibitive, so
 255 in practice, purification is typically limited to low-order interactions.
 256

257 In the above discussion, we assume the data is uniformly and independently distributed over the
 258 feature space, which may not be the case in practical applications. The weighted functional ANOVA
 259 decomposition (Hooker, 2007) is accordingly proposed by considering the empirical distribution
 260 of data. To use weighted functional ANOVA, we first calculate the probability for each bin of the
 261 matrix / tensor, and the simple average is replaced by the weighted average.
 262

263 4.2.3 ATTRIBUTION

264 As we have converted a tree ensemble model into the functional ANOVA representation, the next
 265 step is to quantify the contribution of the decomposed effects, both locally (for an individual sample)
 266 and globally (for the entire dataset). Below, we introduce the definition of effect contributions and
 267 feature contributions.
 268

269 The effect-level contribution quantifies the contribution of each effect to the model output. For
 270 example, the contribution of the j -th main effect is $f_j(x_j)$, and $f_{jk}(x_j, x_k)$ is the contribution of the
 271 pairwise interaction (j, k) , etc.
 272

273 **Local effect contribution.** The model output for each sample can be interpreted as the sum of all
 274 effect contributions plus the intercept term. Each effect contribution can have a positive, negative, or
 275

270 zero value. By considering the magnitude of effect values, we can select the most significant effects
 271 for an individual sample.

272 **Global effect importance.** After calculating the effect contributions for each sample, we can sum-
 273 marize the importance of each effect by examining the variance of the local effect contributions
 274 across a given dataset, such as the training data. Subsequently, the effect’s importance is normalized
 275 in a way that ensures the sum of all effects’ importance equals 1.

276 In contrast, the feature-level contribution quantifies the contribution of a feature j to the model
 277 output of an individual sample, i.e.,

$$279 \quad z_j(x_j) = f_j(x_j) + \frac{1}{2} \sum_k f_{jk}(x_j, x_k) + \frac{1}{3} \sum_{kl} f_{jkl}(x_j, x_k, x_l) + \cdots + \frac{1}{p} f_{1 \dots p}(x_1, \dots, x_p). \quad (8)$$

282 In this formula, the main effect $f_j(x_j)$ is added directly to the j -th feature contribution. Additionally,
 283 all pairwise interaction effects associated with feature j are included in the feature contribution, but
 284 with a discount factor of 2. This rule is also extended to 3-way, 4-way, and up to p -way interactions,
 285 where p is the number of features. Note that the feature contribution $z_j(x_j)$ is derived from the
 286 Shapley value (Shapley, 1953) of feature j , defined as follows,

$$287 \quad \phi_j = \sum_{S \subseteq \{1, \dots, p\} \setminus \{j\}} \frac{|S|!(p - |S| - 1)!}{p!} (v(S \cup \{j\}) - v(S)), \quad (9)$$

290 where v is the value function that returns the prediction of each feature coalition S . The marginal
 291 contribution of feature j to the coalition S is quantified by $v(S \cup \{j\}) - v(S)$, and the multiplier on
 292 the left is the weight of feature coalitions. In the functional ANOVA framework, the value function
 293 of different feature coalitions is already defined. The proof of the equivalence between Shapley value
 294 and feature contribution $z_j(x_j)$ can be found in Owen (2014). In shallow tree ensemble models, we
 295 can exactly calculate the Shapley value / feature contribution without much computational burden.
 296 According to $z_j(x_j)$, we define the following feature-level importance.

297 **Local feature contribution.** Similar to the local effect contribution, we can locally interpret the
 298 model output of an individual sample at the feature level, i.e., by $z_j(x_j)$.

299 **Global feature importance.** The significance of feature j is determined by evaluating the variance
 300 of $z_j(x_j)$ on a specific dataset, such as the training data. After that, we normalize the feature
 301 importance to ensure that the total importance of all features adds up to 1.

303 4.3 PRUNING TRIVIAL EFFECTS FOR CONCISE INTERPRETATIONS

305 To enhance the interpretability of a tree ensemble model, we can prune trivial effects after it is fitted.
 306 This can be approached as a supervised feature selection problem, where each effect is treated as a
 307 feature. Various existing feature selection algorithms can be employed to identify the most important
 308 effects. In this paper, we introduce two straightforward strategies for effect pruning, as follows.

309 **Sparse Linear Models.** A simple approach for effect pruning is to fit a surrogate sparse linear
 310 model to identify and remove trivial effects. In this paper, we choose Lasso for regression tasks
 311 and L1 regularized logistic regression for classification tasks. The surrogate model can capture the
 312 overall relationships between the effects and their impact on the response. It can also identify and
 313 flag effects that contribute minimally or have a high correlation with other effects. These effects
 314 can be automatically pruned from the model, enhancing its interpretability by focusing on the most
 315 relevant and independent effects.

316 This pruning strategy shares a similar idea with the RuleFit algorithm (Friedman & Popescu, 2008).
 317 Both of them try to pursue a parsimonious representation of tree ensemble models by sparse linear
 318 modeling. The main difference lies in that RuleFit selects the most important decision rules, while
 319 ours performs pruning on the effects functions decomposed by functional ANOVA. Both of these
 320 methods are complementary and can also be combined. For instance, one may initially apply pruning
 321 on the decision rules level and subsequently represent the selected rules using functional ANOVA.
 322 However, such a combination is beyond the scope of this paper.

323 **Forward or Backward Effect Selection.** Another powerful strategy is called forward and backward
 324 selection with early dropping (FBEDk; Borboudakis & Tsamardinos, 2019). It consists of k forward

324 **Algorithm 1** Pruning Functional ANOVA Effects

325 **Require:** Data $\{x, y\}$, initial effects $\mathcal{F} = \{f_S\}$, performance gain threshold τ , forward rounds k

326 1: **Step 1: Sparse Linear Screening**

327 2: Fit a sparse linear model between all $f_S(\mathbf{x}_S)$ and y , and let $\tilde{\mathcal{S}}$ be the currently selected effects.

328 3: **Step 2: Forward Selection with Early Dropping**

329 4: Let $\mathcal{C} \leftarrow \mathcal{F} \setminus \tilde{\mathcal{S}}$ be the candidate effects.

330 5: **for** iteration $r = 1$ to k **do**

331 6: **while** $\mathcal{C} \neq \emptyset$ **do**

332 7: For each $f_S \in \mathcal{C}$, compute the performance gain of adding f_S conditional on $\tilde{\mathcal{S}}$.

333 8: Add the best f_S to $\tilde{\mathcal{S}}$ if its performance gain $\geq \tau$.

334 9: Remove all f_S with performance gain $< \tau$ from \mathcal{C} .

335 10: **end while**

336 11: **end for**

337 12: **Step 3: Backward Elimination**

338 13: **for** each $f_S \in \tilde{\mathcal{S}}$ **do**

339 14: Compute performance gain of f_S conditional on the rest selected effects.

340 15: **if** gain $< \tau$ **then**

341 16: Remove f_S from $\tilde{\mathcal{S}}$.

342 17: **end if**

343 18: **end for**

344 19: **Step 4: Effects Adjustment**

345 20: Fit an unconstrained linear or logistic model between $\tilde{\mathcal{S}}$ and y to reduce bias.

346 21: **return** Pruned effect functions $\tilde{\mathcal{S}}$.

348

349

350

351 selection rounds and one backward elimination. The first forward selection round starts from a
 352 null model or a pre-defined effect set and iteratively adds effects that contribute significantly to the
 353 model’s performance. The performance gain threshold τ controls whether an effect can be selected
 354 or dropped. In this paper, we use the R2 score for regression and the AUC for classification. Both
 355 of them range from 0 to 1, and we can empirically adjust the threshold from 1e-5 to 1e-3, to make
 356 sure selected effects do contribute to the model.

357 As $k > 1$, we would perform multiple rounds of forward selection, and each one starts from the
 358 selected effects of previous rounds. Due to the existence of the performance gain threshold, the
 359 length of the candidate effects list would become smaller and smaller within each round. Multiple
 360 forward rounds are used, as it is possible that one effect is not important in the first forward round but
 361 will become significant as conditioning on some other effects. Typically, $k = 2$ or $k = 3$ iterations
 362 are sufficient for the algorithm to converge and find a stable set of features. This is because the
 363 later iterations re-evaluate features that were dropped early in the first round but might be useful in
 364 combination with the newly selected features. Throughout this paper, we set $k = 2$.

365 Finally, as all the forward selection rounds are complete, we do a backward elimination round,
 366 starting from the least significant effects. This is testing whether the performance gain of each
 367 selected effect (conditioning on the rest selected effects) is greater than the threshold. Effects that
 368 fail this test are considered trivial and then removed from the model. As the effects are selected,
 369 we refit a generalized linear model between the selected effects and the target variable. The scale
 370 of each effect will be changed, while its shape will not. Note that the refitting step may make the
 371 model achieve better predictive performance.

372 **A Hybrid Approach.** In this paper, we use a hybrid approach that combines the above two strate-
 373 gies. First of all, we fit a sparse linear model to roughly select the important effects. Then, we treat
 374 the selected effects as initialization and use the FBEDk algorithm to fine-tune the results. It will
 375 assess the marginal contribution of each effect, and the ones with contributions greater or less than
 376 a pre-defined threshold will be added or deleted accordingly. Finally, given the selected effects, we
 377 refit a linear model without sparsity constraints to adjust the coefficients. See 1 for the pseudo codes
 of this hybrid approach.

Table 2: Predictive performance comparison.

Task	Dataset	<i>n</i>	<i>p</i>	pyGAM	NAM	XGB-1	EBM	GAMI-Net	XGB-2	XGB-3	XGB-5
REG (RMSE)	friedman	2000	10	1.359 ± 0.042	1.420 ± 0.042	1.423 ± 0.032	0.603 ± 0.043	0.149 ± 0.008	0.509 ± 0.030	0.571 ± 0.036	0.693 ± 0.048
	bikesharing	17379	8	0.662 ± 0.008	0.683 ± 0.009	0.662 ± 0.008	0.417 ± 0.010	0.439 ± 0.014	0.413 ± 0.008	0.401 ± 0.010	0.395 ± 0.008
	wine quality	1599	11	0.625 ± 0.016	0.621 ± 0.019	0.619 ± 0.022	0.602 ± 0.024	0.630 ± 0.021	0.609 ± 0.027	0.597 ± 0.027	0.583 ± 0.029
	boston	506	13	3.759 ± 0.615	4.122 ± 0.822	3.820 ± 0.781	3.757 ± 0.654	3.771 ± 0.634	3.237 ± 0.697	3.147 ± 0.742	3.381 ± 0.636
	concrete	1030	8	5.358 ± 0.791	6.973 ± 0.287	5.041 ± 0.392	4.156 ± 0.458	5.258 ± 0.324	4.331 ± 0.578	4.273 ± 0.537	4.083 ± 0.429
	energy	768	9	0.866 ± 0.284	4.880 ± 0.675	0.938 ± 0.067	0.534 ± 0.043	1.103 ± 0.344	0.551 ± 0.075	0.597 ± 0.106	0.670 ± 0.165
	abalone	4177	8	2.162 ± 0.085	2.227 ± 0.081	2.225 ± 0.068	2.232 ± 0.060	2.158 ± 0.108	2.184 ± 0.068	2.174 ± 0.061	2.202 ± 0.056
CLS (AUC)	taiwancredit	30000	18	0.773 ± 0.007	0.766 ± 0.008	0.772 ± 0.007	0.774 ± 0.007	0.770 ± 0.007	0.774 ± 0.006	0.774 ± 0.008	0.775 ± 0.006
	creditismu	20000	7	0.740 ± 0.022	0.743 ± 0.006	0.745 ± 0.009	0.753 ± 0.007	0.753 ± 0.008	0.754 ± 0.008	0.752 ± 0.006	0.753 ± 0.008
	adult	48842	14	0.912 ± 0.003	0.907 ± 0.003	0.912 ± 0.003	0.914 ± 0.003	0.910 ± 0.003	0.913 ± 0.003	0.914 ± 0.003	0.914 ± 0.003
	bank	45211	16	0.916 ± 0.004	0.901 ± 0.002	0.916 ± 0.004	0.930 ± 0.003	0.911 ± 0.005	0.932 ± 0.003	0.935 ± 0.002	0.936 ± 0.003
	compas	5278	13	0.731 ± 0.014	0.734 ± 0.015	0.734 ± 0.014	0.735 ± 0.013	0.734 ± 0.013	0.733 ± 0.013	0.733 ± 0.014	0.731 ± 0.013
	magic	19020	10	0.908 ± 0.008	0.903 ± 0.006	0.908 ± 0.007	0.936 ± 0.004	0.920 ± 0.009	0.939 ± 0.004	0.940 ± 0.005	0.940 ± 0.003
	titanic	2201	3	0.744 ± 0.028	0.738 ± 0.024	0.744 ± 0.028	0.757 ± 0.029	0.744 ± 0.026	0.757 ± 0.030	0.757 ± 0.029	0.757 ± 0.029

5 NUMERICAL RESULTS

Among the tree ensemble models, we choose the XGB model implemented by the `xgboost` package throughout the experiments. As maximum depth is the most important hyperparameter, we abbreviate XGB with max depth 1 as XGB-1, and XGB with max depth 2 as XGB-2, etc. The detailed experiment setup can be found in Appendix C.

5.1 PREDICTIVE PERFORMANCE COMPARISON

To comprehensively evaluate the predictive accuracy of competing models, we conduct experiments on a diverse collection of publicly available benchmark datasets spanning both classification and regression tasks. For regression, we evaluate performance on the friedman simulation dataset and six widely used real-world datasets, including bike sharing, wine quality, boston, concrete, energy, and abalone. The classification suite includes tianwancredit, creditsimu, adult, bank, compas, magic, and titanic, covering a broad range of sample sizes. These datasets represent typical tabular learning scenarios in housing prices, credit scoring, socio-economic prediction, healthcare risk assessment, etc.

The results in Table 2 show that across both regression and classification tasks. The best results are highlighted in bold, while statistically close results are underlined. For regression datasets, XGB-2 often ranks among the top methods, with RMSE only slightly higher than the best values in datasets like Boston, Concrete, Energy, and Abalone. Similarly, for classification datasets, XGB-2 reaches AUC values comparable to or just below the top-performing models. Importantly, while achieving near state-of-the-art predictive performance, XGB-2 remains highly interpretable, striking a favorable balance between accuracy and model transparency. This makes it a strong candidate for applications where interpretability is critical without substantially sacrificing performance.

5.2 CASE STUDY: FRIEDMAN DATASET

The Friedman data is generated using the following simulation function as described in (Friedman, 1991; Breiman, 1996).

$$y(x) = 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + \varepsilon, \quad (10)$$

where $\varepsilon \sim N(0, \sigma^2)$. The covariates are uniformly distributed between 0 and 1. In this experiment, we simulate data with $n = 2000$ and $\sigma = 0.1$. In addition, we introduce another 5 noise features (x_6 to x_{10}) when generating the data. We first fit an XGB-2 model using training data, and then transform it into a functional ANOVA representation with 10 main effects and 45 pairwise interactions. After that, we use Lasso with different regularization strengths to reveal the relationship between predictive performance and the number of selected effects in Figure 2. The x-axis is the regularization strength; the bar chart (on the left y-axis) shows the number of selected effects, and the line plot (on the right y-axis) displays the 5-fold cross-validation R-squared (R2) score. From the results, it can be observed that R2 reaches its maximum when the regularization is small (from 0.001 to 0.009). As the regularization strength increases to 0.078, the selected effects suddenly shrink to 5

Figure 3: The fitted results of XGB-2 vs. the ground truth of the Friedman dataset.

main effects and 1 pairwise interaction, while the R2 score does not change too much. This means that the rest 5 main effects and 44 pairwise interactions are trivial and can be pruned.

Inspired by this, we do post-hoc effect pruning by fitting a Lasso with a regularization strength of 0.078, and then fine-tune the selected effects by the FBEDk algorithm. It is worth mentioning that after effect pruning, the test set RMSE gets improved to around 0.425. This means that removing the trivial effects can not only enhance model interpretability but also mitigate overfitting.

Figure 3 displays the obtained main effects and pairwise interactions after effect pruning, together with the ground truth functions. For each effect plot, we show the corresponding effect importance in the title. Overall, the effects fitted by XGB-2 are close to the actual functions, and the difference is due to the inherent model form of tree ensemble models, i.e., the piecewise constant model fits. More details about global and local feature / effect importance can be found in Appendix D.

5.3 CASE STUDY: BIKE SHARING DATASET

This dataset¹ records the hourly count of rental bikes in the Capital bikeshare system from 2011 to 2012. It has 17389 samples, each data record captures the weather and seasonal conditions within an hour, and the task is to predict the total rental bikes, including both casual and registered. For modeling purposes, we remove some of the highly redundant variables. The selected predictors include season, hr (hour of a day), holiday (whether the day is a holiday or not), weekday (day of the week), weathersit (weather conditions), atemp (normalized feeling temperature), hum (normalized humidity), and windspeed (normalized wind speed). As the response is counting data, we process it using a log transformation.

We first fit an XGB-3 model, and then analyze the relationship between the number of effects and the predictive performance using the Lasso regularization path plot, as shown in Figure 4. Based on this plot, we conduct post-hoc effect pruning with Lasso (regularization strength equals 0.005) and FBEDk (for fine-tuning). Finally, the pruned model has 8 main effects, 37 pairwise interactions, and 46 3-way interactions. The pruned model has a test set RMSE of around 0.408, which is close to that of the raw XGB-3 model (0.406, with the same random seed).

Figure 2: The number of selected effects (y-axis) and 5-fold cross-validation performance under different regularization strengths of Lasso for the Friedman dataset.

¹<https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset>

Figure 5: The fitted results of XGB-2 vs. the ground truth of the Friedman dataset.

The decomposed effects of the final model is displayed in Figure 5, which shows the most important main effects and pairwise interactions after pruning. For 3-way interactions, we can use the sliced 1D plot to reveal the patterns. For example, the most important 3-way interaction is season, weekday, and atemp. It's interesting to note that even the most important 3-way interaction has an effect importance close to zero, which indicates that high-way interactions are in general less important than main effects and 2-way interactions. Conditioning on different value combinations of season and weekday, we draw this interaction value against atemp in Figure 5. This plot only uses season=1.0, and the other values of season can also be drawn in other plots. It reveals that atemp has an increasing trend to the target as season=1.0 and weekday is 2.0 or 3.0 (Tuesday or Wednesday); however, a decreasing trend is observed as weekday is 6.0 (Saturday).

6 CONCLUSION

This paper proposes an interpretation algorithm to open the black box of tree ensemble models. Based on the functional ANOVA framework, a fitted tree ensemble model can be equivalently converted into the generalized additive model with interactions. Each of the decomposed main effects and pairwise interactions can be easily interpreted and visualized. Multi-way interactions are more difficult to interpret; however, we empirically show that they are less important and sometimes can be pruned without sacrificing too much predictive performance.

A notable limitation of the proposed approach is its difficulty in capturing interactions beyond third-order. While this restriction is sufficient for many tabular datasets, it constrains the model's applicability in domains where higher-order or more complex feature interactions play a critical role, such as in computer vision or natural language understanding. This limitation arises from the combinatorial growth of interaction terms and the corresponding challenges in estimation and interpretability. Future work could address this by exploring strategies to efficiently approximate or selectively model higher-order interactions.

REFERENCES

Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey Hinton. Neural additive models: Interpretable machine learning with neural nets. In *Advances in Neural*

Figure 4: The number of selected effects (y-axis) and 5-fold cross-validation performance under different regularization strengths of Lasso for the BikeSharing dataset.

540 *Information Processing Systems (NeurIPS)*, volume 34, pp. 4699–4711, 2021. URL <https://arxiv.org/abs/2004.13912>.

541

542 Daniel W Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box super-
543 vised learning models. *Journal of the Royal Statistical Society Series B: Statistical Methodology*,
544 82(4):1059–1086, 2020.

545

546 James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *Journal of*
547 *Machine Learning Research*, 13(2), 2012.

548 Giorgos Borboudakis and Ioannis Tsamardinos. Forward-backward selection with early dropping.
549 *The Journal of Machine Learning Research*, 20(1):276–314, 2019.

550

551 Leo Breiman. Bagging predictors. *Machine Learning*, 24:123–140, 1996.

552

553 Leo Breiman. Random forests. *Machine Learning*, 45:5–32, 2001.

554 Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized addi-
555 tive model for interpretable deep learning, 2021. URL <https://arxiv.org/abs/2106.01613>.

556

557 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
558 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp.
559 785–794, 2016.

560

561 David GT Denison. Boosting with bayesian stumps. *Statistics and Computing*, 11(2):171–178,
562 2001.

563 Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
564 categorical features support. *arXiv preprint arXiv:1810.11363*, 2018.

565

566 Abhimanyu Dubey, Filip Radenovic, and Dhruv Mahajan. Scalable interpretability via polynomials,
567 2022.

568 James Enouen and Yan Liu. Sparse interaction additive networks via feature interaction detection
569 and sparse selection, 2022.

570

571 Jerome H Friedman. Multivariate adaptive regression splines. *Annals of Statistics*, 19(1):1–67, 1991.

572 Jerome H Friedman. Greedy function approximation: a gradient boosting machine. *Annals of*
573 *Statistics*, pp. 1189–1232, 2001.

574

575 Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule ensembles. *Annals of*
576 *Applied Statistics*, 2(3):916 – 954, 2008. doi: 10.1214/07-AOAS148. URL <https://doi.org/10.1214/07-AOAS148>.

577

578 Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of depen-
579 dent variables. *Journal of Computational and Graphical Statistics*, 16(3):709–732, 2007.

580

581 Linwei Hu, Vijayan N Nair, Agus Sudjianto, Aijun Zhang, and Jie Chen. Interpretable machine
582 learning based on functional anova framework: Algorithms and comparisons. *arXiv preprint*
583 *arXiv:2305.15670*, 2023.

584

585 Jianhua Z Huang. Projection estimation in multiple regression with application to functional anova
586 models. *Annals of Statistics*, 26(1):242–272, 1998.

587

588 Amr Kayid, Nicholas Frosst, and Geoffrey E Hinton. Neural additive models library, 2020.

589

590 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
591 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in Neural*
592 *Information Processing Systems*, 30, 2017.

593

594 Benjamin Lengerich, Sarah Tan, Chun-Hao Chang, Giles Hooker, and Rich Caruana. Purifying
595 interaction effects with the functional anova: An efficient algorithm for recovering identifiable
596 additive models. In *International Conference on Artificial Intelligence and Statistics*, pp. 2402–
597 2412. PMLR, 2020.

594 Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with
 595 pairwise interactions. In *Proceedings of the 19th ACM SIGKDD international conference on*
 596 *Knowledge Discovery and Data Mining*, pp. 623–631. ACM, 2013.

597

598 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 599 *in Neural Information Processing Systems*, 30, 2017.

600 Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit
 601 Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global
 602 understanding with explainable ai for trees. *Nature Machine Intelligence*, 2(1):56–67, 2020.

603

604 Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Quantifying model complexity via
 605 functional decomposition for better post-hoc interpretability. In *Joint European Conference on*
 606 *Machine Learning and Knowledge Discovery in Databases*, pp. 193–204. Springer, 2019.

607

608 Andreas Mueller, Julien Siems, Harsha Nori, David Salinas, Arber Zela, Rich Caruana, and Frank
 609 Hutter. Gamformer: In-context learning for generalized additive models, 2024.

610

611 Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. Interpretml: A unified framework for
 612 machine learning interpretability. *arXiv preprint arXiv:1909.09223*, 2019.

613

614 Jonathan J Oliver and David Hand. Averaging over decision stumps. In *Machine Learning: ECML-*
 615 *94: European Conference on Machine Learning Catania, Italy, April 6–8, 1994 Proceedings* 7,
 616 pp. 231–241. Springer, 1994.

617

618 Art B Owen. Sobol’indices and shapley value. *SIAM/ASA Journal on Uncertainty Quantification*, 2
 619 (1):245–251, 2014.

620

621 Filip Radenovic, Abhimanyu Dubey, and Dhruv Mahajan. Neural basis models for interpretability,
 622 2022. URL <https://arxiv.org/abs/2205.14120>.

623

624 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?" explaining the
 625 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference*
 626 *on Knowledge Discovery and Data Mining*, pp. 1135–1144, 2016.

627

628 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 629 use interpretable models instead. *Nature Machine Intelligence*, 1(5):206–215, 2019.

630

631 Lennart Schneider, Bernd Bischl, and Janek Thomas. Multi-objective optimization of performance
 632 and interpretability of tabular supervised machine learning models. In *Proceedings of the Genetic*
 633 *and Evolutionary Computation Conference*, GECCO ’23, pp. 538–547, New York, NY, USA,
 634 2023. Association for Computing Machinery. ISBN 9798400701191. doi: 10.1145/3583131.
 635 3590380. URL <https://doi.org/10.1145/3583131.3590380>.

636

637 Daniel Servén and Charlie Brummitt. pygam: Generalized additive models in python, March 2018.

638

639 Lloyd S Shapley. A value for n-person games. *Contributions to the Theory of Games*, 2:307–317,
 640 1953.

641

642 Charles J Stone. The use of polynomial splines and their tensor products in multivariate function
 643 estimation. *Annals of Statistics*, 22(1):118–171, 1994.

644

645 Agus Sudjianto and Aijun Zhang. Designing inherently interpretable machine learning models.
 646 *arXiv preprint arXiv:2111.01743*, 2021.

647

648 Anton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, and Benjamin Säfken. Neural
 649 additive models for location scale and shape: A framework for interpretable neural regression
 650 beyond the mean, 2024.

651

652 Zebin Yang, Aijun Zhang, and Agus Sudjianto. GAMI-Net: An explainable neural network based
 653 on generalized additive models with structured interactions. *Pattern Recognition*, 120:108192,
 654 2021. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2021.108192>. URL <https://www.sciencedirect.com/science/article/pii/S0031320321003484>.

648 A EXTENDED RELATED WORKS
649650 The techniques in interpretable machine learning can be roughly classified into post-hoc explanation
651 tools and inherently interpretable models. The former aims at explaining an arbitrary model, and it
652 can be further divided into global and local explanations. Examples of global explanation include
653 partial dependence plot (PDP; Friedman, 2001) and accumulative local effects (ALE; Apley & Zhu,
654 2020), where both of them are used to reveal the relationship between one or two features and the
655 model prediction. In contrast, local explanation methods like the local interpretable model-agnostic
656 explanation (LIME; Ribeiro et al., 2016) and Shapley additive explanations (SHAP; Lundberg &
657 Lee, 2017; Lundberg et al., 2020) decompose the prediction outcome of an individual sample into
658 the contributions of each feature. The primary drawback of post-hoc explanation tools is that the
659 interpretation results are mere approximations, which may deviate from the original model and be
660 incorrect or unfaithful (Rudin, 2019). This can pose significant risks, especially in sensitive domains
661 such as healthcare and finance.662 The second category aims at developing inherently interpretable models. This is in contrast to
663 black-box models (e.g., neural networks), in which the decision-making process is too complicated
664 to interpret. In practice, much of the complexity is unnecessary and may lead to overfitting. The
665 key idea of inherently interpretable models is to regularize or constrain complex models to be in-
666 terpretable, without sacrificing predictive performance. Some principles of designing interpretable
667 models include additivity, sparsity, smoothness, etc (Sudjianto & Zhang, 2021).668 For instance, an explainable boosting machine (EBM; Lou et al., 2013) is a generalized additive
669 model (GAM) with functional pairwise interactions. It fits the main effects and interactions sequen-
670 tially using shallow tree ensemble models. The generalized additive model with structured pairwise
671 interactions network (GAMI-Net; Yang et al., 2021) is an alternative to EBM, but uses modularized
672 neural networks to estimate the main effects and pairwise interactions. The GAMI-Lin-T (Hu et al.,
673 2023) model is another recently proposed interpretable model under the functional ANOVA frame-
674 work. It also uses the boosting algorithm, and the base learners are trees with linear functions in
675 leaves.676 More recent work has explored combining the flexibility of deep learning with the transparency of
677 GAMs. Neural Additive Models (NAMs; Agarwal et al., 2021) extend classical GAMs by training
678 a separate neural subnetwork per feature and summing their outputs, offering deep learning expres-
679 sivity while preserving clear per-feature shape functions. NODE-GAM and NODE-GA²M (Chang
680 et al., 2021) further improve scalability by introducing differentiable architectures for GAMs and
681 GA²Ms that can handle large datasets and benefit from modern optimization techniques. Neural
682 Basis Models (NBM; Radenovic et al., 2022) address the parameter inefficiency of NAMs by learn-
683 ing a small shared set of basis functions across features. Similarly, Scalable Polynomial Additive
684 Models (SPAM; Dubey et al., 2022) employ tensor decompositions to compactly model higher-order
685 interactions. Sparse Interaction Additive Networks (SIAN; Enouen & Liu, 2022) focus on detecting
686 and selecting only a small subset of important interactions, balancing interpretability and predictive
687 power. Extensions such as NAM-LSS (Thielmann et al., 2024) incorporate probabilistic modeling by
688 predicting not only the mean but also other distributional parameters, while GAMformer (Mueller
689 et al., 2024) leverages transformers to perform amortized inference of GAM components. These
690 developments highlight a growing trend toward models that remain inherently interpretable while
691 offering scalability and accuracy comparable to complex black-box models.692 The proposed interpretation algorithm combines elements from both categories mentioned above,
693 serving as a post-hoc tool specifically for interpreting tree ensemble models. Notably, it endows tree
694 ensemble models with inherent interpretability, ensuring the derived interpretations are precise with-
695 out any approximation. Additionally, a recently introduced effect purification algorithm (Lengerich
696 et al., 2020) is incorporated to tackle the identifiability problem between main effects and their cor-
697 responding interaction effects under the functional ANOVA framework. This paper leverages this
698 purification algorithm to convert tree ensemble models into a functional ANOVA-based representa-
699 tion.700 In the literature, there exist some attempts to interpret shallow tree ensemble models. For example,
701 the decision stump boosting (Oliver & Hand, 1994; Denison, 2001) uses decision trees with only one
702 split as base learners, and the resulting model can be represented as a generalized additive model.
703 The EBM models share the same model form as tree ensemble models, as the maximum tree depth

702 is 2. Both of them are composed of main effects and pairwise interactions, and the effect functions
 703 are piecewise constant. The main difference is in the model fitting method. In EBM, the main effects
 704 are fitted first in a round-robin fashion, and followed by the pairwise interactions. In contrast, tree
 705 ensemble models fit all effects greedily without any predefined order, and, therefore, tend to have
 706 better predictive performance.

707 Our work is also highly related to Molnar et al. (2019), where the authors introduce a post-hoc
 708 tool to measure model complexity, by leveraging ALE and functional ANOVA to approximate main
 709 effects and interaction strength. In Schneider et al. (2023), post-hoc interpretability metrics like fea-
 710 ture sparsity, interaction sparsity, and monotonicity are proposed, and a multi-objective optimization
 711 framework is designed to search for a better trade-off of model interpretability and predictive per-
 712 formance. Compared to these 2 methods, our work is a complement and an alternative that provides
 713 exact, faithful interpretations for tree ensemble models by construction. a) In the model decompo-
 714 sition stage: By constraining the model to be a shallow tree ensemble, we can perform an exact
 715 functional ANOVA decomposition. We identify main effects and interactions exactly with a precise
 716 functional form, without approximating them with ALE or PDPs. Our explanation is guaranteed
 717 to match the model’s output exactly, for every prediction; b) In the pruning stage, we provide the
 718 option to further enhance the fitted model, towards a more interpretable / robust model. Beyond
 719 reporting a sparsity score (like Schneider et al.), our enhanced model can still be directly visualized
 720 and interpreted for every main effect and interaction.

721 B INTERPRETABILITY-ORIENTED HYPERPARAMETERS

724 This appendix provides full descriptions and practical considerations for the hyperparameters listed
 725 in Table 1, which can be adjusted to enhance the interpretability of tree ensemble models.

727 B.1 MAXIMUM TREE DEPTH

729 In the full functional ANOVA representation, the total number of effects is $2^p - 1$. This number
 730 would become extremely large with the increase of p . If all the effects are active or non-zero, then the
 731 resulting model can be very complicated and hard to interpret. Fortunately, in tree ensemble models,
 732 we can easily control the highest interaction order by maximum tree depth, which is a commonly
 733 used hyperparameter. For example, as the maximum tree depth is 1, then all the interaction effects
 734 are zero, and the model reduces to a generalized additive model (GAM) with at most p main effects;
 735 as the tree depth is 2, then the model would only have main effects and pairwise interactions, which
 736 has same model form as the explainable boosting machine (EBM). In this case, the total number of
 737 effects is less than or equal to $p(p + 1)/2$. As not all the features are used as split variables, the
 738 number of active effects is usually smaller than the number of possible effects.

739 With a maximum tree depth of 3, we can still interpret the interactions involving 3 features using
 740 3D heatmaps or sliced 1D plots. For example, we can examine a 3-way interaction by visualizing
 741 one or two features while keeping the rest one or two features fixed at certain values. However, as
 742 the tree depth increases, the model’s complexity grows exponentially, making it more challenging
 743 to interpret deep tree ensemble models.

744 In addition, deep tree ensembles are hard to interpret, also from an algorithmic perspective. If given
 745 adequate computing resources, the purification algorithm can be applied to arbitrary interaction
 746 effects. However, the tensors representing high-order interactions tend to become excessively large,
 747 making them difficult to process. In practical scenarios, purifying interactions involving 4 or more
 748 features becomes challenging, and sometimes even impossible. Hence, to maintain feasibility, our
 749 interpretation in this paper is restricted to depth-3 tree ensemble models.

750 In practice, well-configured shallow tree ensemble models are often sufficient to achieve good pre-
 751 dictive performance. It’s worth noting that when we limit the maximum depth of base tree learners,
 752 it is recommended to increase the number of estimators (boosting rounds). This is because shallow
 753 trees in nature have much lower expressive power compared to deeper ones. For instance, a depth 2
 754 tree ensemble model with 100 estimators would have at most 400 leaf nodes, while a similar depth
 755 5 model would have at most 3200 leaf nodes. Therefore, to compensate for the reduction in tree
 depth, we may need to increase the number of estimators.

756
757

B.2 MONOTONICITY

758
759
760
761
762
763
764

In many real-world applications, enforcing feature monotonicity in a model is highly desirable for interpretation purposes. In a credit scoring model, it is expected that applicants' credit scores increase monotonically with their income. However, in practice, this assumption can be easily violated due to noisy data, rendering the model difficult to interpret and diminishing people's trust in its predictions. In tree ensemble models, monotonicity constraints can be imposed in fitting each tree. For instance, to make a feature monotonic increasing, we can prohibit candidate splits of that feature where the resulting left child node value is greater than that of the right one.

765
766
767
768
769

The monotonicity constraint can be specified by leveraging domain knowledge before model training. It can significantly enhance the interpretability and trustworthiness of the model. On the other hand, the EBM model, as a counterpart benchmark, lacks inherent monotonicity constraints, and adjustments can only be made post-training. Such post-hoc adjustments may introduce bias and potentially decrease the overall performance of the model.

770
771
772

B.3 MAXIMUM NUMBER OF BINS

773
774
775
776
777
778

This parameter is preliminarily employed to reduce the search space of split points. Instead of considering all possible unique feature values as candidate split points, it selects a predetermined number of quantiles for each feature as candidates. From the perspective of model interpretability, restricting the number of bins can also prevent unnecessary discontinuities and make the estimated effects more easily comprehensible. Therefore, this hyperparameter is very useful in practical applications.

779
780
781

B.4 INTERACTION CONSTRAINT

782
783
784
785
786
787

Certain tree ensemble learning frameworks provide an API that allows for the restriction of candidate feature interactions. By using this option, interactions outside of a predefined list of interactions can be prohibited. For example, if we specify the allowed interactions as (x_1, x_2) and (x_2, x_3) , the resulting fitted model would not include interactions such as (x_1, x_3) . This feature is useful when we possess prior or domain knowledge about the data being modeled, or when we just aim to reduce the complexity of the model.

788
789
790
791
792
793
794
795
796

It is important to note that by applying the feature interaction constraint, the maximum tree depth parameter can be relaxed and set to a larger value without increasing the highest order of interactions. For example, if our goal is to include only main effects and pairwise interactions, we can set the maximum tree depth to a value greater than 2, while constraining the interaction list to encompass all possible pairwise interactions. This approach provides flexibility in hyperparameter tuning, allowing us to vary the depth of the trees while still capturing the desired level of interactions. By using this trick, we can strike a balance between model complexity and interpretability, tailoring the model to our specific requirements.

797
798

B.5 MISCELLANEOUS

799
800
801

There are several other hyperparameters that can be utilized to enhance the interpretability of tree ensemble models. Here, we outline some of the commonly employed ones:

802
803
804
805
806

L1 / L2 Regularization. Similar to the regularization techniques used in linear models, the application of L1 or L2 regularization can help penalize large values in leaf nodes. By increasing the regularization strength, insignificant leaf nodes can be eliminated, effectively reducing their impact to zero. Consequently, the functional ANOVA representation will also become sparser, making it easier to interpret.

807
808
809

Early Stopping Conditions. In addition to the aforementioned criteria, certain early stopping conditions can also be considered as interpretability constraints. These include hyperparameters such as the minimum number of samples per leaf, the minimum loss reduction required for splits, the number of rounds for early stopping, and so on.

810 C EXPERIMENT SETUP
811812 For comparison, the spline-based GAM, Neural additive model (NAM), EBM, GAMI-Net, and
813 XGB-5 are included as benchmarks. The spline-based GAM is implemented by the *pyGAM* Python
814 package (Servén & Brummitt, 2018). The NAM is implemented by the *nam* Python package (Kayid
815 et al., 2020). The EBM model is implemented in the Python package *interpret* (Nori et al., 2019).
816 The GAMI-Net model is based on the implementation in the *PiML* Python package². Moreover,
817 the proposed tree ensemble model interpretation algorithm is also integrated into the *PiML* package.
818819 We randomly split each dataset into training (80%) and test (20%) sets. For hyperparameter tun-
820 ing and monitoring the early stopping criteria, 20% of the training samples are used for validation
821 purposes. For each XGBoost model, we tune the number of estimators (50 to 3000), learning rate
822 (0.01 to 1), L1 regularization (0.001 to 1000), L2 regularization (0.001 to 1000), and maximum
823 number of bins (2 to 200). In *pyGAM*, we tune the spline order (0 to 3), number of splines (10 to
824 50), and smoothing penalty (0.001 to 1000). In *EBM*, we tune the number of interactions (0 to 100)
825 and the learning rate (0.01 to 1). For each model, we tune the hyperparameters using the random
826 search strategy (Bergstra & Bengio, 2012), and the number of trials is set to 30. Specifically, we
827 randomly generate 30 hyperparameter configurations for each model within the search space; the
828 one that achieves the best validation performance is selected, and then we refit the model using all
829 the training data. For speed consideration, most hyperparameters in *NAM* are set to default, and
830 we empirically set the activation function to ReLU, and the maximum epoch to 200. *GAMI-Net* is
831 configured and trained using the default settings, with the number of interactions fixed to 10.
832833 The predictive performance is measured by the root-mean-square error (RMSE) for regression tasks
834 and the area under the ROC curve (AUC) for binary classification tasks. All the experiments are
835 repeated 10 times.
836837 D EXTENDED CASE STUDIES
838839 D.1 MORE RESULTS OF FRIEDMAN DATASET
840841 Figure 6a and Figure 6b show the effect and feature importance defined in Section 4. The 5 main
842 effects X_1, X_2, \dots, X_5 are most important to the model prediction, followed by the interaction
843 $X_1 \times X_2$. The feature importance further aggregates the contribution of interactions to each feature.
844 It turns out that X_4 is the most important, X_2, X_1 are less important, and X_5, X_3 are of the least
845 importance.
846847 Given a specific sample, the local explanation tries to explain how the model generates its prediction.
848 The prediction can be additively decomposed into effect contributions and feature contributions, see
849 a demo in Figure 6c and Figure 6d. The left axis is the effect / feature names, the right axis shows
850 the feature values of the given sample, and the bar charts represent the contributions of each effect /
851 feature to the prediction. In the title, we also give the predicted value and the actual response.
852853 D.2 CASE STUDY: CREDITSIMU DATASET
854855 This example is a credit decision dataset³ with synthetic features of applicants, including Mort-
856 gage (mortgage size), Balance (average credit card balance), Amount Past Due (minimum required
857 payment that was not applied to the account as of the last payment due date), Delinquency status
858 (0: current, 1: less than 30 days delinquent, 2: 30-60 days delinquent, 3: 60-90 days, etc), Credit
859 Inquiry (number of credit inquiries), Open Trade (number of open credit accounts), and Utilization
860 (credit utilization ratio). This data is provided in the *PiML* package, and the response feature is
861 binary, indicating whether the application is approved or not.
862863 According to our domain knowledge, it is expected that some of the features are monotonic with
864 respect to the credit card approval rate. In addition to the raw XGB-2 model, we fit another XGB-
865 2 model with enhanced interpretability constraints. Specifically, we constrain the Mortgage to be
866867²<https://github.com/SelfExplainML/PiML-Toolbox/>868³<https://github.com/SelfExplainML/PiML-Toolbox/blob/main/datasets/SimuCredit.csv>

Figure 6: The effect and feature importance of the Friedman dataset.

Figure 7: The number of selected effects (y-axis) and 5-fold cross-validation performance under different regularization strengths of Lasso for the CreditSimu dataset.

monotonically increasing and Utilization to be monotonically decreasing. We also limit the maximum number of bins to 20 to avoid unnecessary jumps in fitted shape functions. The constrained XGB-2 model still achieves a test AUC score of around 0.754. This means that the interpretability constraint does not come with any sacrifice in predictive performance.

Finally, we also show the Lasso regulation path of the constrained XGB-2 upon functional ANOVA decomposition in Figure 7. According to the trade-off between model sparsity and AUC score, we prune the constrained XGB-2 via L1-regularization logistic regression (with regularization strength equal to 10) and FBEDk (for fine-tuning). The pruned model has a test AUC score of around

Figure 8: The visualization comparison of different versions of XGB-2 on the CreditSimu dataset.

0.753 but only includes 7 main effects and 15 pairwise interactions. In Figure 8, we show the extracted main effects and pairwise interactions of the pruned XGB-2 model. Note that this is a binary classification task, and hence the y-axis is the log odds ratio. For comparison purposes, we also display the effects of the raw XGB-2 and constrained XGB-2. For simplification, we only show the effects of Mortgage, Utilization, Delinquency, and Balance. It can be found that these constraints make the shape functions of main effects less jumpy and easier to interpret.

Figure 9: The number of selected effects (y-axis) and 5-fold cross-validation performance under different regularization strengths of Lasso for the TaiwanCredit dataset.

D.3 CASE STUDY: TAIWANCREDIT DATASET

TaiwanCredit data ⁴ is obtained from the UCI repository, which consists of 30,000 credit card clients in Taiwan from 200504 to 200509. In this experiment, we only use the 18 payment features as predictors, including Pay_1 to 6 (past payment delay status), BILL_AMT1 to 6 (amount of bill statement), and PAY_AMT1 to 6 (amount of previous payment). Note that Pay_1 is renamed from Pay_0 in the original data. The target variable is default payment, with 1 indicating default payment.

Similar to the previous analysis, we first add monotonically increasing constraints for Pay_1 to 6 (history of past payment) and BILL_AMT1 to 6; while PAY_AMT1 to 6 are enforced to be monotonically decreasing. In addition, the maximum number of bins is set to 20. With these interpretability constraints, the constrained XGB-2 model has a test set AUC score of around 0.772, which is slightly lower than that of the raw XGB-2 (around 0.774). The regularization path of the constrained XGB-2 model is drawn in Figure 9. Using this plot, we set the regularization strength of L1-regularized logistic regression to 15 and fine-tune the selected effects by FBEDk. The final pruned model has 15 main effects and 24 pairwise interactions, which is much smaller than the non-pruned model (18 main effects and 97 pairwise interactions). Meanwhile, the pruned model also has a test set AUC score of around 0.772.

Figure 10 shows the effects visualization of the 3 versions of XGB-2 models. Clearly, with enhanced interpretability constraints, the effect functions look much more reasonable compared to the unconstrained ones. This further verified our belief that properly imposed constraints can make machine learning models more interpretable.

⁴<https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients>

Figure 10: The visualization comparison of different versions of XGB-2 on the TaiwanCredit dataset.