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Abstract

Existing reconstruction models in snapshot compressive imaging systems (SCI)
are trained with a single well-calibrated hardware instance, making their perfor-
mance vulnerable to hardware shifts and limited in adapting to multiple hardware
configurations. To facilitate cross-hardware learning, previous efforts attempt to
directly collect multi-hardware data and perform centralized training, which is
impractical due to severe user data privacy concerns and hardware heterogeneity
across different platforms/institutions. In this study, we explicitly consider data
privacy and heterogeneity in cooperatively optimizing SCI systems by proposing a
Federated Hardware-Prompt learning (FedHP) framework. Rather than mitigating
the client drift by rectifying the gradients, which only takes effect on the learning
manifold but fails to solve the heterogeneity rooted in the input data space, FedHP
learns a hardware-conditioned prompter to align inconsistent data distribution
across clients, serving as an indicator of the data inconsistency among different
hardware (e.g., coded apertures). Extensive experimental results demonstrate that
the proposed FedHP coordinates the pre-trained model to multiple hardware con-
figurations, outperforming prevalent FL frameworks for 0.35dB under challenging
heterogeneous settings. Moreover, a Snapshot Spectral Heterogeneous Dataset has
been built upon multiple practical SCI systems. Data and code are aveilable at
https://github.com/Jiamian-Wang/FedHP-Snapshot-Compressive-Imaging.git

1 Introduction

The technology of snapshot compressive imaging (SCI) [Yuan et al., 2021] has gained prominence
in the realm of computational imaging. Taking an example of hyperspectral image reconstruction,
the spectral SCI [Gehm et al., 2007] can fast capture and compress 3D hyperspectral signals as
2D measurements through optical hardware, and then restore the original signals with high fidelity
by training deep neural networks [Meng et al., 2020, Miao et al., 2019]. Despite the remarkable
performance [Cai et al., 2022a,b, Lin et al., 2022, Huang et al., 2021, Hu et al., 2022], existing deep
SCI methods are generally trained with a specific hardware configuration, e.g., a well-calibrated
coded aperture (physical mask). The resulting model is vulnerable to hardware shift/perturbation and
limited in adapting to multiple hardware configurations. However, directly learning a reconstruction
model cooperatively from multi-hardware seems to be infeasible due to data proprietary constraint. It
is also non-trivial to coordinate heterogeneous hardware instances with a unified model.

To elaborate, we first recap previous research efforts of centralized learning solutions. A naive
solution is to jointly train a single reconstruction model with data collected from different hardware
configurations, i.e., coded apertures. As shown in Fig. 1 right, this solution enhances the ability
of reconstruction (0.5dB+) by comparison to a single hardware training scenario. However, the
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Figure 1: Comparison of hyperspectral reconstruction learning strategies. (1) The model trained
with the single hardware (Prevalent treatment) hardly handles other hardware. Both (2) Jointly train
and (3) Self-tuning [Wang et al., 2022] are centralized training solutions. Both (4) FedAvg and the
proposed (5) FedHP adopt the same data split setting. We compare the performance gain of different
methods over (1). All results are evaluated by unseen masks (non-overlapping) sampled from the
practical mask distributions {P1, P2, P3}. FedHP learns a prompt network Φ(·) for cooperation.

performance on inconsistent coded apertures is still non-guaranteed since the model only learns to
fit coded apertures in a purely data-driven manner. Followed by, self-tuning [Wang et al., 2022]
advances the learning by approximating the posterior distribution of coded apertures in a variational
Bayesian framework. Despite the significant performance boost, it is only compatible with the coded
apertures drawing from homogeneous hardware (same distribution) yet cannot handle heterogeneous
hardware. Nevertheless, centralized learning presumes that hardware instances and hyperspectral data
are always publicly available, which hardly holds in practice – both the optical systems (with different
confidential configurations, e.g., coded apertures) and data samples (i.e., measurements captured
from non-overlapping scenes) are generally proprietary assets across institutions, adhering to the
strict privacy policy constraints [Vergara-Laurens et al., 2016, Li et al., 2021], while considering the
multi-hardware cooperative training confining to this concern remains unexplored.

In this work, we leverage federated learning (FL) [Kairouz et al., 2021, Li et al., 2020a, Wang et al.,
2021] for cross-platform/silo multi-hardware reconstruction modeling without sharing the hardware
configurations and local training data. Firstly, the FL benchmark, FedAvg [McMahan et al., 2017],
is adopted and brings performance boost (compared by 3 and 4 in Fig. 1 right). However, FedAvg
has been proven to be limited in solving heterogeneous data [Hsu et al., 2019, Karimireddy et al.,
2020] – the heterogeneity in SCI substantially stems from the hardware, which is usually absorbed
into the compressed data and governs the network training. Thus, different configurations, e.g.,
coded apertures, yield different data distributions. Besides, we consider a more practical scenario
by extending the sample-wise hardware difference into distribution-wise, i.e., not only the different
coded apertures yield heterogeneity, but also coded apertures from different clients may follow
different distributions (see P1 ∼ P3 in Fig. 1).

To adress the heterogeneity issue, this work proposes a Federated Hardware-Prompt (FedHP) frame-
work to achieve multi-hardware cooperative learning with privacy piratically preserved. Prevalent FL
methods handle the heterogeneity by regularizing the global/local gradients [Karimireddy et al., 2020,
Li et al., 2020b], which only take effect on the learning manifold but fail to solve the heterogeneity
rooted in the input data space. Differently, FedHP traces back to the source of the data heterogeneity
of this application, i.e., inconsistent hardware configurations, and devises a prompt network to solve
the client drift issue in input data space. By taking the coded aperture as input, the prompter better
accounts for the underlying inconsistency and closes the gap between input data distributions across
clients. Besides, the prompter explicitly models the correlation between the software and hardware,
empowering the learning by following the spirit of the co-optimization [Goudreault et al., 2023,
Zheng et al., 2021, Robidoux et al., 2021] in computational imaging. In addition, FedHP directly
operates on pre-trained reconstruction backbones with locally well-trained models and keeps them
frozen throughout the learning, which improves the training efficiency than directly optimizing the
reconstruction backbones in FL from scratch. We summarize the contributions as follows.

• We introduce and tackle an unexplored problem of hardware cooperative learning in SCI, under
the presence of data privacy constraints and heterogeneous configurations. To our best knowledge,
the proposed FedHP first integrates federated learning into spectral SCI.
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• We uncover the data heterogeneity of SCI that stems from distinct hardware configurations. A
hardware prompt module is developed to solve the distribution shift across clients and empower
the hardware-software co-optimization in computational imaging. The proposed method provides
an orthogonal perspective in handling the heterogeneity of the existing FL practices.

• We build a new Snapshot Spectral Heterogeneous Dataset (SSHD) from multiple practical spectral
snapshot imaging systems. Extensive experiments demonstrate that FedHP outperforms both
centralized learning methods and classic federated learning frameworks. The proposed method
can inspire future work in this novel research direction of hardware collaboration in SCI.

2 Method

2.1 Preliminary Knowledge

We study the cooperative learning problem by taking the representative setup of coded aperture snap-
shot spectral imaging system for hyperspectral imaging as an example, due to its recent advances [Cai
et al., 2022a,b, Lin et al., 2022]. Given the real-world hyperspectral signal X ∈ RH×W×Nλ , where
Nλ denotes the number of spectral channels, the hardware performs the compression with the physi-
cal coded apterture M of the size H ×W , i.e., Mhw ∈ [0, 1]. Accordingly, the encoding process
produces a 2D measurement YM ∈ RH×(W+∆), where ∆ denotes the shifting

YM =

Nλ∑
nλ=1

X′(:, :, nλ)⊙M+Ω,

X′(h,w, nλ) = X(h,w + d(λ− λ∗), nλ),

(1)

where ⊙ denotes the pixel-wise multiplication and Ω presents the measurement noise. For each
spectral wavelength λ, the corresponding signal X(:, :, nλ) is shifted according to the function d(λ−
λ∗) by referring to the pre-defined anchor wavelength λ∗, such that ∆ = d(Nλ − 1). Following the
optical encoder, recent practices train a deep reconstruction network f(·) to retrieve the hyperspectral
data X̂ ∈ RH×W×Nλ by taking the 2D measurement YM as input. We define the initial training
dataset as D and the corresponding dataset for the reconstruction as DM∗

D = {Xi}i=N
i=1 , DM∗

= {YM∗

i ,Xi}i=N
i=1 , (2)

where Xi is the ground truth and YM∗

i is governed by a specific coded aperture M∗. The reconstruc-
tion model finds the local optimum by minimizing the mean squared loss

θ̂ = argmin
θ

1

N

N∑
i=1

||f(θ;YM∗

i )−Xi||22, (3)

where θ expresses all learnable parameters in the reconstruction model. X̂i = f(θ̂;YM∗

i ) is the
prediction. Pre-trained reconstruction models [Cai et al., 2022a, Huang et al., 2021] demonstrates
promising performance when is compatible with a single encoder set-up, where the measurement in
training and testing phases are produced by the same hardware using a fixed coded aperture of M∗.

Motivation. Previous work [Wang et al., 2022] uncovered that most existing reconstruction models
experience large performance descent (e.g., > 2dB in terms of PSNR) when handling the data
encoded by a different coded aperture M† from training, i.e., M† ̸= M∗ as mask determines
the data distribution and also takes effect in learning as (3). Thus, a well-trained reconstruction
model can be highly sensitive to a specific hardware configuration of coded aperture and is hardly
compatible with the other optical systems in the testing phase. A simple solution of adapting the
reconstruction network to a different coded aperture M† is to retrain the model with corresponding
dataset DM†

= {YM†

i ,Xi}i=N
i=1 and then test upon M† accordingly. However, this solution does

not broaden the adaptability of reconstruction models to multi-hardware and can introduce drastic
computation overhead. In this work, we tackle this challenge by learning a reconstruction model
cooperatively from multiple hardware with inconsistent configurations.

2.2 Centralized Learning in SCI

Jointly Train. To solve the above problem, Jointly train (Fig. 1 part 2) serves as a naive solution to
train a model with data jointly collected upon a series of hardware. Assuming there are total number
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of K hardware with different coded apertures, i.e., M1,M2, ...,MK . Each hardware produces a
training dataset upon D as DMk = {YMk

i ,Xi}i=N
i=1 . The joint training dataset for reconstruction is

DM1∼K = DM1 ∪ DM2 ∪ . . . ∪ DMK , (4)
where different coded apertures can be regarded as hardware-driven data augmentation treatments
toward the hyperspectral data. The reconstruction model will be trained with the same mean squared
loss provided in (3) upon DM1∼K . [Wang et al., 2022] demonstrated that jointly learning brings
performance boost compared with single mask training (Fig. 1 right). However, this method adopts a
single well-trained model to handle coded apertures, failing to adaptively cope with the underlying
discrepancies and thus, leading to compromised performances for different hardware.

Self-tuning. Following Jointly train, recent work of Self-tuning [Wang et al., 2022] recognizes
the coded aperture that plays the role of hyperprameter of the reconstruction network, and devel-
ops a hyper-net to explicitly model the posterior distribution of the coded aperture by observing
DM1∼K . Specifically, the hyper-net h(σ;Mk) approximates P (M|DM1∼K ) by minimizing the Kull-
back–Leibler divergence between this posterior and a variational distribution Q(M) parameterized
by σ. Compared with Jointly train, Self-tuning learns to adapt to different coded apertures and
appropriately calibrates the reconstruction network during training, even if there are unseen coded
apertures. However, the variational Bayesian learning poses a strict distribution constraint to the
sampled coded apertures, which limits the scope of Self-tuning under the practical setting.

To sum up, both of the Jointly train and Self-tuning are representative solutions of centralized learning,
where the datasetD and hardware instances with M1, ...,MK from different sources are presumed to
be publicly available. Such a setting has two-fold limitations. (1) Centralized learning does not take
the privacy concern into consideration. Hardware configuration and data information sharing across
institutions is subject to the rigorous policy constraint. (2) Existing centralized learning methods
mainly consider the scenario where coded apertures are sampled from the same distribution, i.e.,
hardware origin from the same source, which is problematic when it comes to the coded aperture
distribution inconsistency especially in the cross-silo case. Bearing the above challenges, in the
following, we resort to the federated learning (FL) methods to solve the cooperative learning of
reconstruction considering the privacy and hardware configuration inconsistency.

2.3 Federated Learning in SCI

FedAvg. We firstly tailor FedAvg [McMahan et al., 2017], into SCI. Specifically, we exploit a
practical setting of cross-silo learning in snapshot compressive imaging. Suppose there are C clients,
where each client is packaged with a group of hardware following a specific distribution of Pc

Mc
k ∼ Pc, (5)

where Mc
k represents k-th sampled coded aperture in c-th client. For simplicity, we use Mc to denote

arbitrary coded aperture sample in c-th client as shown in Eq. (5). Based on the hardware, each client
computes a paired dataset DMc

from the local hyperspectral dataset Dc

Dc = {Xi}i=Nc
i=1 , DMc

= {YMc

i ,Xi}i=Nc
i=1 , (6)

where Nc represents the number of hyperspectral data in Dc. The local learning objective is

ℓc(θ) =
1

N

N∑
i=1

||X̂i −Xi||22, (7)

where X̂i = f(θ̂;YMc

i ), Mc ∼ Pc, we use θ to denote the learnable parameters of reconstruction
model at a client. FedAvg learns a global model θG without sharing the hyperspectral signal dataset
Dc, DMc

, and Mc across different clients. Specifically, the global learning objective ℓG(θ) is

ℓG(θ) =

C′∑
c=1

αcℓc(θ), (8)

where C ′ denotes the number of clients that participate in the current global round and αc represents
the aggregation weight. Compared with the centralized learning solutions, FedAvg not only bridges
the local hyperspectral data without sharing sensitive information, but also collaborates multi-
hardware with a unified reconstruction model for a better performance (Fig. 1 right comparison
between 3 and 4). However, FedAvg shows limitations in two-folds. (1) It has been shown that
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Figure 2: Learning process of FedHP. We take one global round as an example, which consists of (1)
Initialize, (2) Local Update (Prompt), (3) Local Update (Adaptor), and (4) Aggregation. For each
client, the reconstruction backbone (θpc ), is initialized as pre-trained model upon local training dataset
Dc and kept as frozen throughout the training. The prompt net upon hardware configuration, i.e.,
coded aperture, takes effect on the input data of reconstruction, i.e., YM. Adaptors are introduced to
enhance the learning, where ϵc denotes the parameters of all adaptors.

FedAvg is hard to handle the heterogeneous data [Karimireddy et al., 2020, Khaled et al., 2020,
Hsu et al., 2019]. (2) Directly training the reconstruction backbones from scratch would introduce
prohibitive computation. Next, we firstly introduce the hardware-induced data heterogeneity in SCI.
Then we develop a Federated Hardware-Prompt (FedHP) method to achieve cooperative learning
without optimizing the client backbones.

Data Heterogeneity. We firstly consider the data heterogeneity stems from the different coded
apertures samples, i.e., hardware instances. According to Section 2.1, the optical hardware samples
the hyperspectral signal Xi from D = {Xi}i=N

i=1 and encodes it into a 2D measurement YM
i , which

constitutes DM and further serves as the input data for the reconstruction model. To this end, the
modality of {YM

i }i=1
i=N is vulnerable to the coded aperture variation. A single coded aperture M

defines a unique input data distribution for the reconstruction, i.e., YM
i ∼ PM(YM

i ). For arbitrary
distinct coded apertures, we have PM∗(YM∗

i ) ̸= PM†(YM†

i ) if M∗ ̸= M†. In federated learning,
data heterogeneity persistently exists since there is no identical coded aperture across different
clients. Such a heterogeneous scenario, i.e., sampling non-overlapping masks from the same mask
distribution, can be caused by lightning distortion or optical platform fluttering.

We take a step further to consider the other type of data heterogeneity stemming from the distinct
distributions of coded apertures 2. As formulated in (6), each client collects a coded aperture assemble
following the distribution Pc for c-th client. We have Pc differs from one another, i.e., Pc1 ̸= Pc2

for c1 ̸= c2, c1, c2 ∈ {1, ..., C}. Hardware instances from different clients are produced by distinct
manufacturing agencies, so that the distribution Pc1 and Pc2 drastically differs as demonstrated in
Fig. 1. This is a more challenging scenario than previous case. As presented in Section 3.2, classic
federated learning methods, e.g., FedProx [Li et al., 2020b] and SCAFFOLD [Karimireddy et al.,
2020] hardly converge while the proposed method enables an obvious performance boost.

2.4 FedHP: Federated Hardware-Prompt Learning

Hardware-Prompt Learning. Bearing the heterogeneous issue, previous efforts [Li et al., 2020b,
Karimireddy et al., 2020] mainly focus on rectifying the global/local gradients upon training, which
only takes effect on the learning manifold but fail to solve the heterogeneity rooted in the input data
space, whose effectiveness in this low-level vision task may be limited. Since we uncover two types
of the heterogeneity in snapshot compressive imaging stemming from the hardware inconsistency
(Section. 2.3), this work opts to tackling the client drift issue by directly operating in the input data
space. This can be achieved by collaboratively learning the input data alignment given different
coded apertures. In light of the visual prompt tuning in large models [Liu et al., 2023b, Bahng et al.,
2022], we devise a hardware-conditioned prompt network in the following.

As shown in the Step 2 of Fig. 2, given the input data {YM
i }i=N

i=1 of the reconstruction, the prompt
network aligns the input samples, i.e., measurements YMi , by adding a prompter conditioned on the
hardware configuration. Let Φ(ϕ;M) denote the prompt network (e.g., attention block) parameterized

2We presume that the hyperspectral single dataset Dc, c = 1, ..., C, shares the same distribution by generally
capturing the natural scenes. Heterogeneity stems from the hyperspectral signal is out of the scope of this work.
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by ϕ and YM
i is produced upon coded aperture M. Then, the resulting input sample is aligned as

YM
i = YM

i +Φ(ϕ;M). (9)
In the proposed method, the prompt network collaborates different clients with inconsistent hardware
configurations. It takes effect by implicitly observing and collecting diverse coded aperture samples
of all clients, and jointly learns to react to different hardware settings. The prompter regularizes the
input data space and achieves the goal of coping with heterogeneity sourcing from hardware.

Training. As shown in Fig. 2, we demonstrate the training process of proposed FedHP by taking
one global round as an example3. Since the prompt learning takes effect on pre-trained models, we
initialize the c-th backbone parameters with the pre-trained model θpc on local data DMc

with (7).
The global prompt network ϕG is randomly initialized and distributed to the c-th client

ϕc ← ϕG, c = 1, ..., C ′, (10)
where ϕc is the local prompt network, and C ′ denotes the number of clients participated in the current
global round. To enable better response of the pre-trained backbone toward the aligned input data
space, we also introduce the adaptors into the transformer backbone. As shown in Fig. 2 Step 3, we
show the architecture of the proposed adaptor, which is a CONV-GELU-CONV structure governed
by a residual connection. We insert the adaptors behind the LN layers.

We perform local updates in each global round. It is composed of two stages. Firstly, we update the
local prompt network ϕc for Sp iterations, and fix all the other learnable parameters . The loss is

ℓc =
1

N

N∑
i=1

||f(θpc , ϵc;YMc

i +Φ(Mc))−Xi||22, (11)

where we use ϵc to represent learnable parameters of all adaptors for c-th client. Secondly, we tune
the adaptors for another Sb iterations. Both of the pre-trained backbone and prompt network are
frozen. The loss of c-th client shares the same formulation as (11). After the local update, FedHP
uploads and aggregates the learnable parameters ϕc, c = 1, ..., C of the prompt network. Since the
proposed method does not require to optimize and communicate the reconstruction backbones, the
underlying cost is drastically reduced considering the marginal model size of prompt network and
adpators compared with the backbone, which potentially serves as a supplied benefit of FedHP.

Compared with FedAvg, FedHP adopts the hardware prompt to explicitly align the input data
representation and handle the distribution shift attributing to the coded aperture inconsistency or
coded aperture distribution discrepancy.

3 Experiments

3.1 Implementation details

Dataset. Following existing practices [Cai et al., 2022b, Lin et al., 2022, Hu et al., 2022, Huang et al.,
2021], we adopt the benchmark training dataset of CAVE [Yasuma et al., 2010], which is composed of
32 hyperspectral images with the spatial size as 512× 512. Data augmentation techniques of rotation,
flipping are employed, producing 205 different training scenes. For the federated learning, we equally
split the training dataset according to the number of clients C. The local training dataset are kept
and accessed confidentially across clients. Note that one specific coded aperture determines a unique
dataset according to (2), the resulting data samples for each client can be much more than 205/C.
We employ the widely-used simulation testing dataset for the quantitative evaluation, which consists
of ten 256× 256× 28 hyperspectral images collected from KAIST [Choi et al., 2017]. Besides, we
use the real testing data with spatial size of 660× 660 collected by a SD-CASSI system [Meng et al.,
2020] for the perceptual evaluation considering the real-world perturbations.

Hardware. We collect and will release the first Snapshot Spectral Heterogeneous Dataset (SSHD)
containing a series of practical SCI systems, from three agencies, each of which offers a series of
coded apertures that correspond to a unique distribution4 as presented by federated settings in Fig. 2.
No identical coded apertures exists among all systems. For the case of inconsistent mask distributions,

3We provide an algorithm of FedHP in supplementary.
4More illustrations and distribution visualizations of real collected coded apertures are in supplementary.
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Table 1: PSNR(dB)/SSIM performance comparison. For different clients, we sample non-overlapping
masks from the same mask distribution to train the model and use unseen masks randomly sampled
from all clients for testing. We report mean±std among 100 trials for all methods.

Scene FedAvg FedProx SCAFFOLD FedGST FedHP (ours)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 31.98±0.19 0.8938±0.0025 31.85±0.21 0.8903±0.0028 31.78±0.24 0.8886±0.0025 32.02±0.14 0.8918±0.0018 32.31±0.19 0.9026±0.0020

2 30.49±0.21 0.8621±0.0041 29.85±0.22 0.8516±0.0037 29.81±0.19 0.8473±0.0031 30.13±0.20 0.8519±0.0038 30.78±0.19 0.8746±0.0034

3 31.78±0.23 0.9088±0.0019 30.80±0.23 0.8968±0.0017 30.92±0.17 0.8961±0.0014 31.19±0.22 0.8975±0.0015 31.62±0.25 0.9109±0.0018

4 39.39±0.23 0.9559±0.0018 39.41±0.22 0.9601±0.0013 39.32±0.20 0.9565±0.0011 38.98±0.27 0.9513±0.0020 39.78±0.29 0.9633±0.0017

5 28.70±0.16 0.8821±0.0044 28.14±0.16 0.8765±0.0036 28.08±0.14 0.8742±0.0032 28.53±0.16 0.8743±0.0041 28.92±0.17 0.8935±0.0039

6 30.53±0.30 0.9054±0.0025 30.04±0.23 0.9054±0.0024 29.87±0.21 0.9011±0.0019 30.29±0.21 0.8949±0.0022 30.77±0.22 0.9172±0.0019

7 30.01±0.20 0.8811±0.0027 29.60±0.20 0.8718±0.0026 29.63±0.19 0.8708±0.0027 29.89±0.18 0.8786±0.0024 30.44±0.19 0.8884±0.0024

8 28.60±0.31 0.8880±0.0023 27.93±0.20 0.8845±0.0018 27.74±0.31 0.8802±0.0018 28.35±0.19 0.8752±0.0016 28.56±0.32 0.8957±0.0021

9 31.45±0.15 0.9012±0.0019 31.29±0.15 0.8961±0.0019 31.22±0.14 0.8929±0.0014 30.80±0.12 0.8880±0.0021 31.34±0.13 0.9043±0.0023

10 29.04±0.13 0.8751±0.0022 28.48±0.15 0.8671±0.0035 28.59±0.13 0.8626±0.0028 28.51±0.13 0.8578±0.0024 29.12±0.13 0.8835±0.0021

Avg. 31.21±0.10 0.8959±0.0017 30.76±0.10 0.8900±0.0016 30.71±0.09 0.8872±0.0013 30.85±0.11 0.8858±0.0017 31.35±0.10 0.9033±0.0014
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Figure 3: Reconstruction results on simulation data. The density curves compare the spectral
consistency of different methods to the ground truth. We use the same coded aperture for all methods.

we directly assign hardware systems from one source to form a client. We simulate the scenario of
non-overlapping masks by distributing coded apertures from one source to different clients.

Implementation details. We adopt MST-S [Cai et al., 2022a] as the reconstruction backbone. The
prompt network is instantiated by a SwinIR [Liang et al., 2021] block. Limited by the computational
resource, we set the number of clients as 3 in main comparison. We empirically find that collaborate
such amount of clients can be problematic for popular federated learning methods under the very
challenging scenario of data heterogeneity (see Section 3.2). For FL methods, we update all clients
throughout the training, i.e., C ′ = C = 3. For the proposed method, we pre-train the client backbones
from scratch for 4× 104 iterations on their local data. Notably, the total training iterations of different
methods are kept as 1.25×105 for a fair comparison. The batch is set as 12. We set the initial learning
rate for both of the prompt network and adaptor as αp = αb = 1× 10−4 with step schedulers, i.e.,
half annealing every 2×104 iterations. We train the model with an Adam [Kingma and Ba, 2014]
optimizer (β1 = 0.9, β2 = 0.999). We use PyTorch [Paszke et al., 2017] on an NVIDIA A100 GPU.

Compared Methods. We compare FedHP with mainstream FL methods, including FedAvg [McMa-
han et al., 2017], FedProx [Li et al., 2020b], and SCAFFOLD [Karimireddy et al., 2020]. Besides,
GST [Wang et al., 2022] paves the way for the robustness of the reconstruction toward multiple
hardware. Thereby, we integrate this method into the FL framework, dubbed as FedGST. All methods
require to train and aggregate the entire client backbones. By comparison, FedHP updates and shares
the prompt network, outperforming the others with smaller amount of parameters being optimized
and communicated. We adopt PSNR and SSIM [Wang et al., 2004] for the quantitative evaluation.

3.2 Performance

Simulation Results. We quantitatively compare different methods in Table 1 by considering the data
heterogeneity stems from non-overlapping masks. FedHP performs better than the classic federated
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Table 2: PSNR(dB)/SSIM performance comparison. Masks from each client are sampled from a
specific distribution for training. We randomly sample non-overlapping masks (unseen to training)
from all distributions for testing. We report mean±std among 100 trials for all methods.

Scene FedAvg FedProx SCAFFOLD FedGST FedHP (ours)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 29.15±0.09 0.8392±0.0065 23.01±0.11 0.5540±0.0069 22.99±0.13 0.5535±0.0066 29.46±0.65 0.8344±0.0067 30.37±0.70 0.8628±0.0084

2 28.28±0.10 0.8102±0.0052 20.91±0.08 0.4486±0.0052 20.89±0.09 0.4474±0.0055 27.89±0.36 0.7733±0.0068 28.67±0.38 0.8160±0.0072

3 28.42±0.11 0.8464±0.0083 17.57±0.11 0.4621±0.0082 17.58±0.12 0.4608±0.0083 28.45±0.50 0.8363±0.0073 29.81±0.68 0.8771±0.0066

4 36.93±0.27 0.9369±0.0036 23.08±0.25 0.4856±0.0036 23.00±0.30 0.4848±0.0038 36.12±0.50 0.9181±0.0050 37.37±0.53 0.9395±0.0032

5 25.84±0.07 0.8037±0.0069 18.99±0.07 0.4316±0.0082 18.99±0.06 0.4301±0.0065 26.21±0.52 0.7988±0.0081 27.47±0.73 0.8487±0.0011

6 27.28±0.04 0.8655±0.0041 19.10±0.04 0.4077±0.0041 19.10±0.04 0.4063±0.0042 27.52±0.49 0.8384±0.0048 28.31±0.45 0.8649±0.0050

7 26.81±0.09 0.8042±0.0094 20.15±0.09 0.4903±0.0093 20.14±0.09 0.4883±0.0098 26.88±0.57 0.7957±0.0073 28.29±0.81 0.8298±0.0108

8 25.77±0.05 0.8473±0.0030 19.89±0.07 0.4402±0.0031 19.89±0.06 0.4395±0.0039 26.22±0.44 0.8206±0.0029 26.54±0.45 0.8470±0.0054

9 28.30±0.09 0.8541±0.0074 18.33±0.11 0.4285±0.0071 18.30±0.11 0.4269±0.0078 27.74±0.48 0.8199±0.0073 29.36±0.63 0.8536±0.0054

10 26.04±0.12 0.8075±0.0035 20.06±0.12 0.3461±0.0036 20.03±0.13 0.3451±0.0036 25.72±0.22 0.7433±0.0046 26.78±0.26 0.8111±0.0076

Avg. 28.63±0.07 0.8496±0.0041 20.85±0.07 0.5405±0.0059 20.00±0.09 0.4374±0.0040 28.24±0.39 0.8177±0.0045 28.98±0.23 0.8481±0.0054

Measurement

RGB Reference FedAvg

FedHP

481.6nm

453.3 457.6 462.1 466.8 471.6 476.5 481.6 486.9 492.4 498.0 503.9 509.9...
516.2 522.7 529.5 536.5 543.8 551.4 558.6 567.5 575.3 584.3 594.4 604.2...
614.4 625.1 636.3 648.1

492.4nm 498.0nm 522.7nm 567.5nm 594.4nm 625.1nm

Figure 4: Visualization of reconstruction results on real data. Six representative wavelengths are
selected. We use the same unseen coded aperture for both FedAvg and FedHP.

learning methods. By comparison, FedProx and SCAFFOLD only allows sub-optimal performance,
which uncovers the limitations of rectifying the gradient directions in this challenging task. Besides,
FedGST works inferior than FedHP, since FedGST approximates the posterior and expects coded
apertures strictly follows the identical distribution, which can not be guaranteed in practice. In Fig. 3,
we visualize the reconstruction results with sampled wavelengths. FedHP not only enables a more
granular retrieval on unseen coded aperture, but also maintains a promising spectral consistency as
shown by randomly cropped patches (e.g., a, b in Fig. 3).

Challenging Scenario of Heterogeneity. We consider a more challenging scenario where the data
heterogeneity is caused the distinct coded aperture distributions of different clients. We compare
different methods in Table 2. All methods experience large performance degradation, among which
FedProx and SCAFFOLD becomes ineffective. Intuitively, it is hard to concur the clients under the
large distribution gap, while directly adjusting the input data space better tackles the problem.

Real Results. In Fig. 4, we visually compare the FedAvg with FedHP on the real data. Specifically,
both methods are evaluated under an unseen hardware configuration, i.e., coded aperture from an
uncertain distribution. The proposed method introduces less distortions among different wavelengths.
Such an observation endorses FedHP a great potential in collaborating hardware systems practically.

3.3 Model Discussion

We conduct model discussion in Table 3. Specifically, we accumulate the total cost (e.g., number of
parameters, GMACs, and training time) of all clients in a federated system.

Ablation Study. We firstly consider a scenario that trains three clients independently without FL
(FedHP w/o FL). For a fair comparison, each client pre-trains the backbone by using the same proce-
dure as FedHP and are then enhanced with a prompt network and adaptors for efficient fine-tuning.
By comparison, FedHP enables an obvious improvement (0.6dB) by implicitly sharing the hardware
and data. We then investigate the effectiveness of the prompter and adaptor to the reconstruction,
respectively. By observation, directly removing the adaptor leads to limited performance descent.
Using prompt network brings significant performance boost. The hardware prompter aligns the input
data distributions, potentially solving the heterogeneity rooted in the input data space, considering
fact that learning manifold is highly correlated with the coded apertures.

Discussion of the client number. In Table 4a, we discuss the power of FedHP with more real
clients under the scenario of Hardware shaking. The performance gap between FedHP and FedAvg
consistently remains with the client number increasing, which demonstrates the practicability of the
FedHP for the cross-silo spectral system cooperative learning, e.g., 3 ∼ 5 clients/institutions.
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Table 3: Ablation study and complexity analysis under the non-overlapping masks. The PSNR
(dB)/SSIM are computed among 100 testing trials. We report the model complexity and the accumu-
lative training time of all clients (e.g., C = 3).

Method Prompter Adaptor FL PSNR SSIM #Params (M) GMACs Training (days)
FedAvg ✗ ✗ ✓ 31.21±0.10 0.8959±0.0017 0.12 2.85 10.62
FedHP w/o FL ✓ ✓ ✗ 30.75±0.11 0.8890±0.0015 0.27 12.78 2.86
FedHP w/o Adaptor ✓ ✗ ✓ 31.09±0.10 0.8996±0.0017 0.15 11.01 2.68
FedHP w/o Prompter ✗ ✓ ✓ 19.19±0.01 0.2303±0.0008 0.12 2.87 2.54
FedHP (Full model) ✓ ✓ ✓ 31.35±0.10 0.9033±0.0014 0.27 12.78 2.86

Table 4: Model discussions of the proposed FedHP.
(a) #Client discussion. Averaged values are reported.
C FedAvg FedHP Performance gap
4 31.06 0.8955 31.33 0.9023 0.27 0.0068
5 31.05 0.9025 31.32 0.9029 0.27 0.0004

(b) Comparison with a deep Unfolding method.
Methods PSNR(dB) SSIM #Params (M)
GAP-Net 31.07±0.20 0.8895±0.0035 3.83
FedHP 31.35±0.10 0.9033±0.0014 0.27

Comparison with a deep unfolding method. We also compare the proposed FedHP with a repre-
sentative deep unfolding method of GAP-Net [Meng et al., 2023] as deep unfolding methods can be
adaptable to various hardware configurations. Specifically, we use three clients and keep training and
testing settings of GAP-Net the same as FedHP. As shown in Table 4b, FedHP improves by 0.28dB
with only 7% model size. In fact, despite the adaptability, deep unfolding still shows limitations in
solving hardware perturbation/replacement for a given system [Wang et al., 2022].

4 Related Work

Hyperspectral Image Reconstruction. In hyperspectral image reconstruction (HSI), learning
deep reconstruction models [Cai et al., 2022a,b, Lin et al., 2022, Huang et al., 2021, Meng et al.,
2020, Hu et al., 2022, Miao et al., 2019] has been the forefront among recent efforts due to high-
fidelity reconstruction and high-efficiency. Among them, MST [Cai et al., 2022a] devises the first
transformer backbone by computing spectral attention. Existing reconstruction learning strategies
mainly considers the compatibility toward a single hardware instance. The learned model can be
highly sensitive to the variation of hardware. To tackle this practical challenge, GST [Wang et al.,
2022] paves the way by proposing a variational Bayesian learning treatment.

Federated Learning. Federated learning [Kairouz et al., 2021, Li et al., 2020a, Wang et al., 2021]
collaborates client models without sharing the privacy-sensitive assets. However, FL learning suffers
from client drift across clients attributing to the data heterogeneity issue. One mainstream [Karim-
ireddy et al., 2020, Li et al., 2020b, Xu et al., 2021, Jhunjhunwala et al., 2023, Reddi et al., 2021]
mainly focus on regularizing the global/local gradients. As another direction, personalized FL meth-
ods [Collins et al., 2021, Chen and Chao, 2022, Fallah et al., 2020, T Dinh et al., 2020, Jiang and Lin,
2023] propose to fine-tune the global model for better adaptability on clients. However, customizing
the global model on client data sacrifices the underlying robustness upon data distribution shift [Wu
et al., 2022, Jiang and Lin, 2023], which contradicts with our goal of emphasizing the generality
across hardware and thus is not considered. In this work, we propose a federated learning framework
to solve the multi-hardware cooperative learning considering the data privacy and heterogeneity,
which to the best knowledge, is the first attempt of empowering spectral SCI with FL. Besides,
the principle underlying this method can be potentially extended to broad computational imaging
applications [Zheng et al., 2021, Liu et al., 2023a, Goudreault et al., 2023, Robidoux et al., 2021]

5 Conclusion

In this work, we observed an unexplored research scenario of multiple hardware cooperative learning
in spectral SCI, considering two practical challenges of privacy constraint and the heterogeneity
stemming from inconsistent hardware configurations. We developed a Federated Hardware-Prompt
(FedHP) learning framework to solve the distribution shift across clients and empower the hardware-
software co-optimization. The proposed method serves as a first attempt to exploit the power of FL in
spectral SCI. Besides, we have collected a Snapshot Spectral Heterogeneous Dataset (SSHD) from
multiple real spectral SCI systems. Future works may theoretically derive the convergence of FedHP
and exploit the behavior of FedHP under a large number of clients. We hope this study will inspire
broad explorations in this novel direction of hardware collaboration in SCI.

9



References
Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Visual prompting: Modify-

ing pixel space to adapt pre-trained models. arXiv preprint arXiv:2203.17274, 2022. 5

Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, and Luc
Van Gool. Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction.
In CVPR, 2022a. 1, 3, 7, 9

Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Henghui Ding, Yulun Zhang, Radu Timofte, and
Luc Van Gool. Degradation-aware unfolding half-shuffle transformer for spectral compressive
imaging. In NeurIPS, 2022b. 1, 3, 6, 9

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
image classification. In ICLR, 2022. 9

Inchang Choi, MH Kim, D Gutierrez, DS Jeon, and G Nam. High-quality hyperspectral reconstruction
using a spectral prior. Technical report, 2017. 6

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
tations for personalized federated learning. In ICML, 2021. 9

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS, 2020. 9

Michael E Gehm, Renu John, David J Brady, Rebecca M Willett, and Timothy J Schulz. Single-
shot compressive spectral imaging with a dual-disperser architecture. Optics express, 15(21):
14013–14027, 2007. 1

Félix Goudreault, Dominik Scheuble, Mario Bijelic, Nicolas Robidoux, and Felix Heide. Lidar-in-
the-loop hyperparameter optimization. In CVPR, 2023. 2, 9

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019. 2, 5

Xiaowan Hu, Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, and
Luc Van Gool. Hdnet: High-resolution dual-domain learning for spectral compressive imaging. In
CVPR, 2022. 1, 6, 9

Tao Huang, Weisheng Dong, Xin Yuan, Jinjian Wu, and Guangming Shi. Deep gaussian scale mixture
prior for spectral compressive imaging. In CVPR, 2021. 1, 3, 6, 9

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedexp: Speeding up federated averaging
via extrapolation. In ICLR, 2023. 9

Liangze Jiang and Tao Lin. Test-time robust personalization for federated learning. In ICLR, 2023. 9

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021. 2, 9

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
ICML, 2020. 2, 5, 7, 9, 15

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In ICAIS, 2020. 5

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 7

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020a. 2, 9

10



Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In MLSys, 2020b. 2, 5, 7, 9, 15

Yijing Li, Xiaofeng Tao, Xuefei Zhang, Junjie Liu, and Jin Xu. Privacy-preserved federated learning
for autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 23(7):8423–
8434, 2021. 2

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In ICCV, 2021. 7

Jing Lin, Yuanhao Cai, Xiaowan Hu, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, and
Luc Van Gool. Coarse-to-fine sparse transformer for hyperspectral image reconstruction. In ECCV,
2022. 1, 3, 6, 9

Jiaming Liu, Rushil Anirudh, Jayaraman J Thiagarajan, Stewart He, K Aditya Mohan, Ulugbek S
Kamilov, and Hyojin Kim. Dolce: A model-based probabilistic diffusion framework for limited-
angle ct reconstruction. In ICCV, 2023a. 9

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023b. 5

Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David Kittle, Lawrence Carin, Guillermo
Sapiro, and David J Brady. Coded aperture compressive temporal imaging. Optics express, 21(9):
10526–10545, 2013. 13

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017. 2,
4, 7

Ziyi Meng, Jiawei Ma, and Xin Yuan. End-to-end low cost compressive spectral imaging with
spatial-spectral self-attention. In ECCV, 2020. 1, 6, 9

Ziyi Meng, Xin Yuan, and Shirin Jalali. Deep unfolding for snapshot compressive imaging. Interna-
tional Journal of Computer Vision, pages 1–26, 2023. 9

Xin Miao, Xin Yuan, Yunchen Pu, and Vassilis Athitsos. λ-net: Reconstruct hyperspectral images
from a snapshot measurement. In ICCV, 2019. 1, 9

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NeurIPS 2017 Workshop on Autodiff, 2017. 7

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
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A Appendix / supplemental material

We provide more discussions and results of the proposed FedHP as follows

• Limitations discussion. (Section A.1).

• Broader impacts on the proposed FedHP. (Section A.2).

• More discussions on new hardware (Section A.3).

• Detailed algorithm of FedHP (Section A.4).

• More visualizations and analysis (Section A.5).

• More discussions on data privacy protection (Section A.6).

• More statistical analysis (Section A.7).

A.1 Limitations

One of the limitations of the proposed method is the lack of the real hardares due to the privacy
concern. Thus it is hard for us to perform the federated learning on a large number of the clients as in
other tasks like the classification, e.g., C > 100. This in return, motivate us to solve the practical
concerns of this field. We are working on collecting more real data and will continue exploring the
power of the proposed method.

A.2 Broader Impacts

This work develops a federated learning treatment to enable the collaboration of the CASSI systems
with different hardware configurations. The proposed method will practically encourage the cross-
institution collaborations with emerging optical system designs engaged. By improving the robustness
of the pre-trained reconstruction software backend toward optical encoders, this work will help
expedite the efficient and widespread deployment of the deep models on sensors or platforms.

Table 5: Performance comparison between FedAvg and FedHP on CACTI (e.g., C = 3).
Methods PSNR (dB) SSIM
FedAvg 27.35±1.22 0.9174±0.0046

FedHP 27.87±0.89 0.9192±0.0047

A.3 New Hardware

Our key technical contribution is to provide a new multi-hardware optimization framework adapting
to hardware shift by only accessing local data. The principle underlying the proposed FedHP can
be potentially extended to broad SCI applications. This work serves as a proof of concept to inspire
future endeavors in a more general scope. Besides experimental results on CASSI, we also perform
additional experiments by applying FedHP to another prevalent SCI system of Coded Aperture
Compressive Temporal Imaging (CACTI) [Llull et al., 2013]. The results in Table 5 present a
performance boost of FedHP over FedAvg baseline (under the same setting as the manuscript),
demonstrating that the proposed FedHP does not particularly pertain to CASSI.

A.4 Algorithm

The learning procedure of proposed FedHP is provided in Algorithm 1. Let us take one global round
for example, the learning can be divided into four stages. (1) Initializing the global prompt network
from scratch and then distributing it to local clients. Then instantiating the client backbones with
the pre-trained models upon the local training dataset. The adaptors are also randomly initialized for
a better adaptation of the pre-trained backbones to the aligned input data representation. (2) Local
updating of the prompt network, during which all the other learnable parameters in the system are
kept fixed. (3) Local updating of the adaptors. Notably, the parameters of the adaptors is only updated
and maintained in local. (4) Global aggregation of the local prompt networks.
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Algorithm 1 FedHP Training Algorithm

Input: Number of global rounds T ; Number of clients C; Number of client subset C ′; Pre-trained
models θpc , c = 1, ..., C; Number of local update iterations Sp, Sb; Random initialized parameter
of prompt network ϕG; Random initialized parameter of adaptors of c-th client ϵc; Learning rate
αp of prompt network; Learning rate αb of adaptors;

Output: ϕG, ϵc, c = 1, ..., C;
1: Server Executes;
2: Randomly choose a set of clients of number C ′;
3: for t = 1, ..., T do
4: for c ∈ C ′ in parallel do
5: Send global prompt network ϕG to ϕc;
6: ϕc ← LocalTraining(θpc , ϵc, ϕc);
7: end for
8: ϕG ←

∑c=C′

c=1
|Dc|
|D| ϕc;

9: end for
10: return ϕG;
11: LocalTraining(θpc , ϵc, ϕc);
12: for s = 1, ..., Sp do
13: ϕc ← ϕc − αp∇ℓ(θpc , ϵc, ϕc) using ℓc =

1
N

∑N
i=1 ||f(θpc , ϵc;YMc

i +Φ(Mc))−Xi||22;
14: end for
15: for s = 1, ..., Sb do
16: ϵc ← ϵc − αb∇ℓ(θpc , ϵc, ϕc) using ℓc =

1
N

∑N
i=1 ||f(θpc , ϵc;YMc

i +Φ(Mc))−Xi||22;
17: end for
18: return ϕc to server;

A.5 Visualizations

In this section, we provide more visualization results of different methods. In Figs. 5∼6, we present
the reconstruction results of different methods under the scenario of hardware shaking, i.e., the
data heterogeneity is naively induced from the different CASSI instances across clients. FedHP
enables more fine-grained details retrieval. Besides, we compare the spectral density curves on
selected representative spatial regions. The higher correlation to the reference, the better spetrum
consistency with the ground truth. In Figs. 7∼9, we show additional real reconstruction results of
FedAvg and FedHP on selected wavelengths. By comparison, FedAvg fails to reconstruct some
content, while the proposed FedHP allows a more granular result.
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Figure 5: Reconstruction results on simulation data. The density curves compares the spectral
consistency of different methods to the ground truth. We use the same coded aperture for all methods.
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Figure 6: Reconstruction results on simulation data. The density curves compares the spectral
consistency of different methods to the ground truth. We use the same coded aperture for all methods.
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Figure 7: Visualization of reconstruction results on real data. Seven (out of 28) representative
wavelengths are selected. We use the same unseen coded aperture for both FedAvg and FedHP.

In Figs. 8, we visualize the different distributions of coded apertures in distinct clients under the
scenario of the distribution shift of coded apertures among different clients leads to the data het-
erogeneity among different local input dataset. This mimics a very challenging scenario where in
different clients (e.g., research institutions), the corresponding CASSI systems source from different
manufacturers. The proposed FedHP allows a potential collaboration among different institutions for
the hyperspectral data acquisition for the first time despite the large distribution gap. By comparison,
classic methods of FedProx [Li et al., 2020b] or SCAFFOLD [Karimireddy et al., 2020] fail to
provide reasonable retrieval results.

A.6 Data Privacy Protection

FedHP inherently addresses privacy from different perspectives. (1) Hardware decentralization: In
the FedHP framework, real hardware configurations (e.g., real masks) remain confidential to the local
clients. This design makes it difficult to reverse-engineer the pattern or values of the real mask without
direct sharing. (2) Raw data decentralization: FedHP maintains a private hyperspectral dataset for
each client. The hyperspectral images are processed locally (e.g., encoding or data augmentation) and
never leaves the client, thereby minimizing the risk of exposure. (3) Training process decentralization:
FedHP only collects the local updates from the prompt network, which are then shared with the
central server. The local updates are anonymized and aggregated without accessing underlying data,
preventing any tracing back to the data source and thus protecting confidentiality. In Table 3, we
quantitatively compared the performance of the proposed “FedHP” and “FedHP w/o FL” under
privacy-constrained environments. FedHP demonstrates a dB average improvement, showcasing its
robust model performance and offering a significant privacy advantage that aligns with regulations
restricting data sharing.
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Figure 8: Coded aperture distributions across Clients 1 ∼ 3 under the scenario of manufacturing
discrepancy. The symmetrical logarithm scale is employed for better visualization.
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Figure 9: Visualization of reconstruction results on real data. Seven (out of 28) representative
wavelengths are selected. We use the same unseen coded aperture for both FedAvg and FedHP.

A.7 Statistical Analysis

We further conducted a statistical analysis using a paired t-test to compare the PSNR and SSIM values
from FedHP and FedAvg. We define the hypotheses as follows: (1) Null hypothesis (H0 ): there is
no significant difference in the PSNR and SSIM values between FedAvg and proposed FedHP. (2)
Alternative hypothesis (Ha): there is a significant difference in the PSNR and SSIM values between
FedAvg and proposed FedHP.

We calculated the differences based on the averaged PSNR and SSIM values for each scene from
both FedAvg and FedHP, resulting in ten differences values for PSNR (dPSNR) and SSIM (dSSIM). We
performed the paired t-test using t = d̄

sd/
√
n

, where d̄ denotes the mean of the difference values for
either PSNR or SSIM, sd is the standard deviations, and n is the number of the paired observations.

We calculated the p-value upon the t-distribution for a two-tailed test using the formula p-value =
2× P (T > |t|), where P (T > |t|) denotes the probability that a t-distributed random variable with
n− 1 degrees of freedom exceeds the absolute value of the observed t-statistic.

For PSNR, we observe t = 2.50 and p-value is 0.034. Since the p-value is less than the typical
significance level of 0.05. Therefore, we reject the null hypothesis (H0) and conclude that there is a
statistically significant difference between the PSNR values of FedAvg and FedHP. For SSIM, we
observe t = 7.39 and p-value is 0.00004. The p-value of is significantly less than 0.05, indicating a
very strong statistically significant difference between the SSIM values of FedAvg and FedHP. The
test results in PSNR and SSIM confirms that the performance gap between FedHP and FedAvg is
statistically significant.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of the work performed by the authors in the
supplementary.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the information needed to reproduce the main experimental
results of the paper in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The manuscript and the supplementary provides detailed information in
reproduce the results. We claim to release the dataset, code, and pretrained models in the
abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The manuscript and the supplementary provides detailed information about
the experimental setting/details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by variances for the experiments that support the
main claims of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources has been reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper will release a new dataset of SSHD. We provide rich details about
SSHD in the manuscript and the supplementary.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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