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Abstract

Large Language Models (LLMs) face fundamental challenges in long-context rea-
soning: many documents exceed their finite context windows, while performance
on texts that do fit degrades with sequence length, necessitating their augmentation
with external memory frameworks. Current solutions, which have evolved from
retrieval using semantic embeddings to more sophisticated structured knowledge
graphs representations for improved sense-making and associativity, are tailored
for fact-based retrieval and fail to build the space-time-anchored narrative repre-
sentations required for tracking entities through episodic events. To bridge this
gap, we propose the Generative Semantic Workspace (GSW), a neuro-inspired
generative memory framework that builds structured, interpretable representations
of evolving situations, enabling LLMs to reason over evolving roles, actions, and
spatiotemporal contexts. Our framework comprises an Operator, which maps in-
coming observations to intermediate semantic structures, and a Reconciler, which
integrates these into a persistent workspace that enforces temporal, spatial, and
logical coherence. On the Episodic Memory Benchmark (EpBench) [26] compris-
ing corpora ranging from 100k to 1M tokens in length, GSW outperforms existing
RAG based baselines by up to 20%. Furthermore, GSW is highly efficient, reduc-
ing query-time context tokens by 51% compared to the next most token-efficient
baseline, reducing inference time costs considerably. More broadly, GSW offers a
concrete blueprint for endowing LLMs with human-like episodic memory, paving
the way for more capable agents that can reason over long horizons.

1 Introduction

Large Language Models (LLMs) have transformed natural language understanding, but their ability
to reason over long contexts is still limited by finite input windows. Even with token limits in the
millions, large document collections can easily exceed these bounds. Performance can also degrade
with context length due to phenomena like “context rot” and “lost-in-the-middle” effects [40, 24].
A common workaround is Retrieval-Augmented Generation (RAG), which supplements the LLM’s
input with only the most relevant retrieved content at query time. Standard RAG pipelines split
documents into smaller chunks, encode them into dense embeddings, and retrieve the top-matching
chunks based on semantic similarity to the query—allowing the LLM to focus on a relevant subset of
the corpus during inference.

A key limitation of standard RAG methods is that each text chunk is embedded independently, which
can lead to incomplete retrieval when a query depends on information spread across multiple chunks.
Because similarity scores are computed in isolation, essential context may be missed. To address
this, more recent approaches have adopted structured representations — such as knowledge graphs —
that explicitly model relationships between chunks across the corpus. At query time, these graphs
are traversed or queried to retrieve semantically connected chunks, enabling LLMs to perform more
effective multi-hop reasoning and question answering [20, 21, 11, 19].
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These methods have primarily been evaluated on fact-rich documents such as Wikipedia pages [81,
23, 70]. Yet the vast majority of texts that LLMs encounter are not lists of facts but narratives
of evolving real-world situations. Crime reports, political briefings, corporate filings, legislative
records, war dispatches, and multi-day news coverage all describe actors (people, organizations,
nations) that adopt roles (suspect, regulator, bidder, combatant) and transition through states (arrested
→ arraigned → released; startup → unicorn → acquired) while interacting across space and time.

We contend that reasoning over such documents would be much more accurate and energy efficient,
if one indexed the documents in terms of an internal world model— a structured representation that
keeps track of who is involved, what was done, where and when events occur, how roles change, and
what consequences follow. Indeed, to achieve such a goal, humans possess episodic memory [71, 72]
enabling us not only to plan and reason to seamlessly operate in the real world, but also to create new
or update existing world models by reasoning across multiple experiences [60, 22].

In this work, we introduce the Generative Semantic Workspace (GSW), a unifying computa-
tional framework for modeling world knowledge as structured, probabilistic semantics in the era
of Large Language Models (LLMs). GSW formalizes how an intelligent agent—human or artifi-
cial—constructs and updates an internal representation of evolving situations from sequential input
(e.g., text, video, or dialogue modalities). These representations are interpretable, actor-centric, and
predictive: they reflect semantic regularities in the past while projecting likely future outcomes. GSW
may be viewed as an instance of episodic memory that can be integrated into LLM-based systems as
a reasoning and memory module, serving as a symbolic bridge between language and latent world
models.

To illustrate how GSW can help LLMs reason accurately, we evaluate it on the Episodic Memory
Benchmark (EpBench) [26], that has recently been introduced as a way to benchmark the episodic
memory-like capabilities of LLMs. Following are excerpts from two different documents that relate
to an entity, Carter Stewart, in this EpBench dataset:

Document #1: The imposing structure loomed before him, its grand facade a
testament to both artistry and scientific achievement ...... As he stepped into the
Metropolitan Museum of Art, the echoing chatter of excited voices ...... The
antique clock in the main hall chimed, its resonant tones reminding him of the
date: September 22, 2026 .... found himself particularly engrossed during the third
presentation, where Carter Stewart explained statistical analysis with a clarity
that left the audience spellbound.

Document #2: The air crackled with tension as Carter Stewart stepped onto
the pristine greens of Bethpage Black Course on March 23, 2024 ...... Carter
discussed implications of research, his fingers trembling slightly as he adjusted his
microphone.

An agent reading the narrative in the first document faces a fundamentally different challenge than
traditional fact retrieval. It must understand that “he” refers to a nameless protagonist, who attended
a scientific conference where Carter Stewart spoke. The narrator’s spatial context (Metropolitan
Museum of Art) and temporal context (September 22, 2026), are stated only indirectly and more
importantly have to be also assigned to Carter Stewart who is a presenter. GSW is able to create such
representations as part of its working memory construction task: “Carter Stewart: Role: A presenter
at a Scientific Conference; Date: September 22, 2026, morning session; Location: The Metropolitan
Museum of Art, Topic: statistical analysis; Implements Used: presentation boards and holographic
projectors.” The second document is more straightforward and GSW creates a memory trace such as:
“Carter Stewart; Role: a researcher and presenter; Location: Bethpage Black Course; Date: March
23, 2024, Did What?: Presented his research findings at a Scientific Conference.” A visualization of
the steps of how GSW constructs its working memory is shown in Figures 1, 2 and 3.

When presented with a task such as “List all the unique locations and dates where Carter Stewart
made presentations at Scientific Conference events." a query resolution module (see Section 3)
searches through the GSW constructed from all 200 documents and identifies entities mentioned in
the query (e.g., Carter Stewart) that match query’s intent (e.g., a presenter at scientific conference;
another entity named Carter Stewart whose role is that of a baker by profession would be ignored)
and then returns just the relevant portion of its memory, as in the preceding paragraph. This results
in highly targeted and short texts that an LLM has to reason through to provide an answer. In

2



Situation Summary: Participating in a hackathon.

Julian Ross felt a surge of excitement as he navigated 

through the throng of coders at the hackathon

codersJulian Ross

Role: Event 

Julian glanced at his smartwatch nervously, the 

display reading May 31, 2024

Julian Ross smartwatchMay 31 2024hackathon

Role: Attendee 
Role: Participant in hackathon 

 State:Starting

Emotional State: 

participate
navigated 

through glanced at

Role: Time Device 

State: Displaying Date

Role: Current Date 

State: Displayed on 

smartwatch

Possible Questions Answerable Answer Comments

What did coders participate in? HackathonYes

How was Julian feeling? Yes

Possible Questions Answerable Answer Comments

How was Julian feeling? Yes Nervous

When did the Hackathon take place? No

Who won the hackathon? No

read

Where did the hackathon take place?

Role: Participant in hackathon 

State: Ongoing

Emotional State:  

 Time: Unknown

Space: Unknown

 Time: Unknown

Space: Unknown

 Time: Unknown

Space: Unknown
 Time: May 31 2024

 Space: Unknown

 Time: May 31 2024

 Space: Unknown

Where?When?
Where?

When?
Where?

When?

What?
Who?

Who?

Who? What? When & What?
Who?

When?

Who?

What?

Where?

Excited

-

Available in text

Available in text

-

-

-

State reconciled

No

Text

Text

Figure 1: Operator example: Operator instances of two different chunks, as the GSW framework
processes a story.
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Figure 2: Reconciler example: Reconciled result of the two chunks presented in Fig 1
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Figure 3: Final GSW: A portion of the final reconciled GSW
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Figure 4: Unifying Brain-Inspired and Generative Semantics for Episodic Memory Modeling
The hippocampal complex (DG, CA3, CA1) and neocortical regions (NC) inspire the Reconciler
(retrieval, workspace, update) and Operator (LLM-driven semantic role extraction), respectively.
The neocortical complex, responsible for context-rich consolidation and predictive modeling, aligns
with the Operator module’s functions. The hippocampal complex, which performs indexing, pattern
separation, and sequence modeling, corresponds to the Reconciler. Together, the GSW framework
offers a biologically inspired, interpretable model for simulating world knowledge from text inputs.

contrast, current structured RAG methods are designed to facilitate retrieval of either whole chunks
or community-level summaries that have different levels of similarity to the entities and other phrases
in the query. For example, for this query (see Appendix C ) GraphRAG’s [11] summarization
missed that Carter Stewart was at the same location as the protagonist in Document #1, and included
irrelevant text chunks which led to a list that misses one location and hallucinates two erroneous
locations. HippoRAG2 [21] retrieves the full text of both the relevant documents, along with many
other documents, overwhelming the LLM and leading it to hallucinate three erroneous locations. For
a more detailed comparison, see Section 6, and Tables 1, 4, and 3.

In the rest of this paper, we detail the GSW framework (Section 2) and present a rigorous evaluation
on two versions of the EpBench benchmark (Section 3). The results demonstrate a significant
improvement over existing methods. On the EpBench-200 corpus, GSW achieves a state-of-the-art
F1-score of 0.85, outperforming strong structured RAG baselines. This advantage is particularly
pronounced in the most demanding queries requiring synthesis across as many as 17 different
documents, where GSW improves recall by up to 20% over the next best approach as detailed in
Table 2. Furthermore, GSW is efficient, reducing the number of context tokens sent to the LLM by
51% compared to the most token-efficient baseline, drastically lowers inference costs and reducing
the rate of hallucination in question answering (see Table 3). We further show that this powerful
combination of accuracy and token efficiency holds at scale; on the EpBench-2000 corpus, a 10x
larger dataset, GSW again achieves a state-of-the-art F1-score of 0.773, outperforming the best
baseline by more than 15% on overall recall (Table 4), positioning GSW as a robust and scalable
solution for equipping LLMs with effective episodic memory.

Results and discussions are summarized in Section 4 and a review of related literature is presented
Section 5. Finally, limitations and future work are discussed in Section 6, and a detailed Appendix
provides supporting evidence, including manual evaluations performed to validate the power of
GSW’s episodic memory capabilities.

2 The Generative Semantic Workspace (GSW) Framework

In neuroscience, the neocortex is believed to encode hierarchical abstractions of entities, roles, and
event templates [17, 4, 14]. The hippocampus, especially the CA3 module, plays a complementary
role by binding these representations into coherent spatiotemporal sequences [68, 58, 13]. During
sleep, this neocortical-hippocampal system engages in experience replay, a process through which
episodic traces are reactivated in reverse or forward order to consolidate memory and refine internal
models [51, 41, 78]. This back and forth supports both persistence and prediction of memory [45, 55],
key features of episodic memory.

Motivated by this biological architecture (see Fig 4), an effective memory framework requires a
structured representation capable of encoding actors along with their evolving roles and states.
Crucially, this representation must be capable of spatiotemporal grounding, linking entities and their
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interactions to specific times and locations, much like the binding function of the hippocampus.
Finally, the framework must possess a process for consolidating and updating these structures as
new information arrives, mirroring the way the neocortical-hippocampal loop constantly refines its
world model. This process of building an evolving model is illustrated with a detailed end-to-end
example in Appendix B.

From Episodic Memory to Generative Modeling of Situations and Narratives: The central
challenge, therefore, is to create a continuously evolving semantic model, which requires a bidirec-
tional mapping between text and a structured representation. While early symbolic frameworks like
PropBank [30] and FrameNet [3] attempted this, they were not designed for this full bidirectional
process, relying instead on fixed ontologies that lacked the necessary probabilistic and dynamic
interpretation.

LLMs now make this bidirectional mapping tractable. They can both infer concise semantic identifiers
from text and generate coherent narratives from those identifiers. This enables a new, efficient memory
model where compact semantic traces are stored and reactivated in context. The formal model is
presented next, and its approach is validated in Appendix H, where a human evaluation shows
a strong preference for the GSW semantic maps over those from frameworks like PropBank and
FrameNet.

2.1 A Probabilistic Model for Semantic Memory: The Operator Framework

We now define a minimal schema for encoding these semantic elements—along with predictive cues,
spatiotemporal attributes, and utilities—that serves as the foundation of the GSW framework for
structured memory in LLMs. The agent must distill and maintain a semantic map from text to build a
coherent semantic model.

To make this concrete, let’s consider a single text input Cn at some time step n : Yesterday, in a swift
response to a reported robbery, law enforcement officers apprehended Jonathan Miller, a 32-year-old
resident of Greenview Avenue, in the downtown area.

Explicit information in Cn typically specifies a configuration of participating actors a1, . . . , aK and
the relations or interactions among them. The agent must distill and maintain a semantic map from
these clues to build a coherent semantic model. Let’s represent this interaction pattern at time step n
as (here each entry denotes an interaction from actor ai to aj as inferred from Cn):

Cn ≈

 (a1 → a1)
n · · · (a1 → aK)n

...
. . .

...
(aK → a1)

n · · · (aK → aK)n

 ;

Actors, Roles and States
The word ‘Miller‘, in isolation, corresponds to a broad, unconditioned distribution over possible
behaviors of a human. If ‘Miller‘ is likely to commit a crime, the agent would probably refer to Miller
with a label ‘Criminal‘. We call these labels roles.
Role: An identifier that specifies a distribution over potential actions that an actor ai ∈ A may take
toward other actors aj ∈ A:

πr : A×A → [0, 1] (1)
where πr(ai → aj) denotes the probability of ai acting on aj in role r. For example, assigning the
role of ‘criminal‘ to Miller increases the likelihood that he will engage in actions such as committing
a crime against another actor or increasing the chances that Miller will attempt to flee from ‘law
enforcement‘.

The agent would also know that in addition to Miller being a criminal, Miller has been caught. Or
perhaps he escaped. We call these labels states.
State: An identifier that induces a contextual attribute that modulates the probability distribution
over actions available to an actor within a given role. Given an actor ai with role r, a state s ∈ Sr

constrains the role-induced action distribution πr:
πr,s(ai → aj) = πr(ai → aj | s), (2)

where πr,s denotes the subset of actions available to actor ai in state s. For instance, a criminal in the
state captured may be limited to passive or compliant interactions, precluding actions such as fleeing
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or committing further crimes. Thus, states act as dynamic modifiers of an actor’s interaction profile
within a given situation.

Verbs and Valences
Verbs encode structured semantic attributes helping the agent to structure an event by drawing on
prior experience, as verbs tend to generalize across contexts more reliably than nouns. They provide
causal certificates for roles/states of actors. For example, understanding why Miller transitions from
being free to captured relies on identifying the underlying interaction – such as being arrested –
that bridges those states. A verb’s valences are efficient means of capturing information needed for
reasoning about future outcomes. Verbs can be modeled similar to roles and states:

v(ai → aj) : A×A → Lv, (3)

where the valences ℓk ∈ Lv signal the change in roles and states of the actors interacting via the
verb. When Miller is running from the police, the next state for Miller might be escaped or caught: a
distribution of potential future roles and states.

Time and Space Continuity
Spatiotemporal continuity constraints are crucial to capture world models, not only for individual
actors but especially as interactions/verbs couple their coordinates. For instance, if Officers are
actively apprehending Johnathan Miller in the Downtown area, then it enforces a shared location and
time among the actors. Moreover, if the next day Miller is found in a city a thousand miles away, it
would constrain his unobserved action to that of having flown and lead the agent to narrow down
events that could have led to such a spatial shift. In effect, the flow of time and space regularizes
the semantic map, biasing verb selection toward contextually coherent transitions. If the position
information derived from Cn at time step n is Xn and the temporal information is Tn, then:
Temporal continuity: Tn+1 − Tn must be consistent with the expected temporal scope of v,
Spatial proximity: ∥Xn(ai) − Xn(aj)∥ must fall within a valid range for the verb (e.g., tackle
requires physical closeness)

Forward-Falling Questions to Capture Potential Outcomes and Actions
The collection of roles/states, verbs, and spatiotemporal coordinates constrain the space of future
progression and can be efficiently encoded as a set of questions Qn. For example, given that Miller
has been arrested, “When would Miller be indicted,” “where and when would the trial happen?” “Will
he be free on bail?” A prosecutor agent, for example, would need to start strategizing about such
potential outcomes.

A complete workspace instance can be written as a sampled distribution from an underlying
“Workspace” generative process:

Mn ∼ p(A,R,S,V, T ,X ,Q | C0:n) (4)

where Mn 7→ q(Mn+1 | Mn) models the likelihood of generating the next workspace instance.

2.2 Enabling Recursive Updates: A State Space Approach (The Reconciler Framework)

Given a single text input C0, GSW models the workspace instance M0 as P (M0|C0). We seek to
compute: P (Mn|C0:n). For M1, we introduce W1, an intermediate representation to decompose
P (M1|C0, C1) into parts:

P (M1 | C0, C1)

=
∑

M0,W1

P (M1 | M0,W1)

× P (M0 | C0)P (W1 | C1) (5)

Here, we assume conditional independence between the workspace state M0 and the intermediate
representation W1 given the context sequence, such that:

P (M0,W1 | C0, C1)
= P (M0 | C0)P (W1 | C1) (6)
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Task-specif ic Adaptation: Question Answering
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Operator Reconciler
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Figure 5: Episodic Memory Creation and QA: Figure illustrates the end-to-end process of construct-
ing a workspace and question answering from the workspace. (top) Large-scale text is segmented into
semantically coherent chunks. Each chunk is processed by the Operator model to generate a local
workspace instance, represented as a semantic graph. These instances are incrementally integrated by
the Reconciler resulting in a unified Global Memory. (bottom) During question answering, the system
retrieves relevant portions of this memory by matching named entities in the query to identifiers in
the semantic network. For each match, it reconstructs episodic summaries—contextual recreations of
past situations—which are re-ranked and passed to an LLM to generate the final answer.

where we define W1 to depend solely on the current context C1, and M0 solely on the initial context
C0. For an arbitrary step n:

P (Mn|C0:n) =
∑

Mn−1,Wn

P (Mn|Mn−1,Wn)

× P (Mn−1|C0:(n−1))P (Wn|Cn) (7)

Estimating a workspace instance Mn involves learning parameterized models for three components:
the transition model, the prior workspace, and the context-derived augmentation. The prior workspace
Mn−1 is recursively computed from previous steps. The augmentation step produces an intermediate
representation of the current context Cn. We refer to the model estimating this distribution as the
Operator. The transition model uses a Markovian assumption to produce the updated workspace
instance by reconciling existing workspace semantic maps with new semantic information. We refer
to this module as the Reconciler. Together, the Operator and Reconciler implement a sequential
inference mechanism where the Operator maps each new context Cn to an intermediate state Wn,
and the Reconciler performs a structured update Mn−1 → Mn.

3 Question Answering with GSW

Figure 5 illustrates this process: memory construction via Operator and Reconciler modules, followed
by retrieval, reranking and QA. As described in the caption, once a working memory instance is
constructed, answering a query involves the following steps: the system first matches entities from
the query to the GSW, then generates contextual summaries for those matched entities from the
workspace, re-ranks the summaries for relevance, and finally passes the top-ranked summaries to an
LLM to synthesize the answer.

3.1 EpBench: An Episodic Memory Benchmark

Our experiments utilize the Episodic Memory Benchmark (EpBench) [26], a benchmark specifically
designed to evaluate the capabilities of LLMs for episodic memory recall and reasoning over long
narratives. Unlike many standard Question Answering (QA) benchmarks [31, 83, 81] – focusing on
localized factual retrieval – EpBench targets core episodic capabilities: remembering specific events
situated in unique spatiotemporal contexts and distinguishing between recurring events involving the
same actors.

EpBench documents are structured as synthetic books generated chapter-by-chapter from event
templates (detailing date, location, entity, content) sampled from a larger universe, ensuring recurring
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Table 1: Dataset Statistics: Statistics for the EpBench Dataset ("Long Book" Version) used in
Experiments.

Statistic Value

Number of Chapters 200
Total Tokens 102,870
Total Queries (QA Pairs) 686
Queries by Event Category

(0 / 1 / 2 / 3-5 / 6+ Cues) 180 / 180 / 108 / 128 / 90

Max. Chapters Referenced per Query 17
Min. Chapters Referenced per Query 0

elements that necessitate disambiguation and temporal tracking. Chapters are generated via LLM
prompts and verified for coherence. Moreover, the same time/location/actors (collectively referred to
as cues) appear across multiple chapters. For our evaluation, we use both the standard 200-chapter
version and the extended 2000 chapter version of the dataset and report its Statistics in Table 1
Appendix F.

3.2 Evaluation Metrics

To evaluate model performance on the EpBench dataset’s queries (detailed in Section 3.1), we adopt
the LLM-as-a-Judge evaluation paradigm [84]. For consistency, we strictly follow the LLM-based
answer processing and extraction procedure outlined by the EpBench benchmark authors. This
approach accounts for the possibility that model responses might be longer or more elaborate than
the typically concise ground truth answers. These LLM extracted answers are then used to compute
Precision, Recall and F1 scores which we report in Table 2

3.3 Baseline Methods

We compare GSW against several baseline approaches: Vanilla LLM, standard Embedding-based
RAG [29, 54] for which we utilized the Voyage-031 embedding model selected for its strong
performance on retrieval benchmarks [69, 48] , and the structured RAG methods GraphRAG [11],
HippoRAG2[21], and LightRAG [19]. We detail the hyper-parameter settings for all baselines in
Appendix E .

3.4 Implementation Details

The GSW Operator (Section 2.1) and Reconciler (Section 2.2) were implemented by prompting
GPT-4o [27] according to task-specific instructions, using temperature set to 0 for deterministic
behavior. To ensure fair comparison, we standardized both the maximum context utilization (limited to
17 chapters per query, matching the maximum relevant chapters per query) and the answer generation
model (GPT-4o) across all evaluated methods. The complete prompts are provided in Appendix
A, and API interactions were managed using the Bespoke Curator library [44], indexing costs are
reported in Appendix G. To generate an answer for a given query, we first identify named entities
within the query text. These entities are then matched to corresponding nodes within the current
GSW memory (Mn) using simple string matching. Summaries for the matched entities – aggregated
from the GSW structure – are then retrieved and re-ranked based on semantic similarity to the query.
The final re-ranked summaries are provided to the LLM to answer the query as illustrated in Figure 5.
An end-to-end QA example is presented in B.

4 Results and Discussion

QA Performance: Table 2 presents a comparative analysis of GSW against the baseline methods
detailed in Section 3.3 across Precision (P), Recall (R), and F1-Score (F1) metrics, categorized by the

1https://blog.voyageai.com/2024/09/18/voyage-3/
2Cost calculated using GPT-4o pricing of $2.50 per million tokens.
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Table 2: GSW performance on Epbench-200 (200-Chapters Book) Performance is grouped by
metric (Precision, Recall, F1-Score) across different numbers of matching cues per query. (N=X)
indicates questions per category. Error bars are estimated via bootstrap resampling. Best score in
each column for each metric group is bold; second best is underlined.

Metric Method 0 Cues 1 Cue 2 Cues 3-5 Cues 6+ Cues Overall
(N=180) (N=180) (N=108) (N=128) (N=90) (N=686)

P

Vanilla LLM 0.840 ± 0.019 0.734 ± 0.021 0.735 ± 0.026 0.703 ± 0.021 0.806 ± 0.028 0.766 ± 0.010
Embedding RAG 0.906 ± 0.021 0.745 ± 0.026 0.803 ± 0.028 0.823 ± 0.025 0.886 ± 0.029 0.832 ± 0.012
GraphRAG [11] 0.950 ± 0.016 0.657 ± 0.029 0.677 ± 0.034 0.753 ± 0.028 0.816 ± 0.035 0.781 ± 0.013
HippoRAG2 [21] 0.829 ± 0.027 0.704 ± 0.029 0.817 ± 0.026 0.839 ± 0.026 0.940 ± 0.020 0.812 ± 0.013
LightRAG [19] 0.946 ± 0.017 0.668 ± 0.029 0.615 ± 0.036 0.695 ± 0.031 0.822 ± 0.037 0.763 ± 0.014

GSW (Ours) 0.978 ± 0.011 0.755 ± 0.026 0.810 ± 0.027 0.878 ± 0.019 0.890 ± 0.024 0.865 ± 0.010

R

Vanilla LLM 0.840 ± 0.019 0.781 ± 0.021 0.526 ± 0.021 0.419 ± 0.017 0.229 ± 0.014 0.616 ± 0.011
Embedding RAG 0.906 ± 0.021 0.863 ± 0.025 0.773 ± 0.033 0.746 ± 0.027 0.624 ± 0.036 0.807 ± 0.012
GraphRAG [11] 0.950 ± 0.016 0.764 ± 0.031 0.686 ± 0.035 0.645 ± 0.026 0.537 ± 0.030 0.748 ± 0.014
HippoRAG2 [21] 0.829 ± 0.027 0.823 ± 0.026 0.800 ± 0.029 0.749 ± 0.026 0.675 ± 0.030 0.787 ± 0.013
LightRAG [19] 0.946 ± 0.017 0.716 ± 0.033 0.628 ± 0.035 0.559 ± 0.029 0.458 ± 0.029 0.699 ± 0.015

GSW (Ours) 0.978 ± 0.011 0.863 ± 0.025 0.869 ± 0.023 0.893 ± 0.015 0.822 ± 0.022 0.894 ± 0.009

F1

Vanilla LLM 0.840 ± 0.019 0.709 ± 0.022 0.585 ± 0.021 0.476 ± 0.017 0.325 ± 0.017 0.629 ± 0.010
Embedding RAG 0.906 ± 0.021 0.726 ± 0.026 0.723 ± 0.030 0.745 ± 0.026 0.680 ± 0.035 0.771 ± 0.013
GraphRAG [11] 0.950 ± 0.016 0.625 ± 0.029 0.625 ± 0.034 0.657 ± 0.026 0.607 ± 0.032 0.714 ± 0.013
HippoRAG2 [21] 0.829 ± 0.028 0.676 ± 0.028 0.762 ± 0.028 0.754 ± 0.025 0.746 ± 0.027 0.753 ± 0.013
LightRAG [19] 0.946 ± 0.017 0.594 ± 0.030 0.587 ± 0.032 0.579 ± 0.028 0.561 ± 0.030 0.678 ± 0.014

GSW (Ours) 0.978 ± 0.011 0.744 ± 0.026 0.807 ± 0.024 0.868 ± 0.016 0.834 ± 0.022 0.850 ± 0.010

Table 3: GSW’s Efficiency: Average context tokens passed to the LLM per query on EpBench, and
the estimated cost to answer that query. GSW achieves the best performance (detailed in Table 2)
with the significantly lowest token count and cost, as highlighted below. Best score in each column is
bold; second best is underlined.

Method Avg. Tokens Avg. Cost2

Vanilla LLM ∼101,120 ∼$0.2528
Embedding RAG ∼8,771 ∼$0.0219
GraphRAG [11] ∼7,340 ∼$0.0184
HippoRAG [21] ∼8,771 ∼$0.0219
LightRAG [19] ∼40,476 ∼$0.1012

GSW (Ours) ∼3,587 ∼$0.0090

number of matching cues per query. Across the aggregated metrics, GSW achieves the highest overall
F1-Score (0.850), Precision (0.865), and Recall (0.894), improving overall metrics by more than 10%
over the next-best method. GSW also demonstrates consistent performance across the various Cue
categories, achieving the highest score in 16 out of 18 individual metric computations, and ranking
second in the remaining two, highlighting its robust performance across varying levels of episodic
recall complexity. Particularly noteworthy is GSW’s performance in the ‘6+ Cues’ category. This
is the most demanding scenario, where correct responses can require reasoning across information
spanning up to 17 distinct chapters (see Table 1). Even in this complex setting, GSW demonstrates
robust efficacy and achieves the highest performance over all metrics: F1:0.834 P:0.891, R:0.822. In
particular when compared to HippoRAG2, next most performant in this category, GSW outperforms
it by approximately 20% in recall. Recall, in particular, measures a framework’s ability to map
queries to the correct chapter and context, and it is revealing that for all competing frameworks recall
decreases as the number of matching cues increases, whereas the GSW maintains consistently strong
performance, highlighting the strength of its structured representation in storing episodic information.
Finally, the Vanilla LLM is consistently the poorest performing baseline (e.g overall F1 Score of
0.642) reaffirming the inherent difficulty of the episodic QA task and the necessity of specialized
memory frameworks like the GSW.

Scalability on EpBench-2000: To assess the scalability of our method, we evaluate GSW on the
EpBench-2000 dataset, which increases the corpus size by 10 fold. The results, presented in Table 4,
show that GSW maintains its performance lead by achieving an overall F1-score of 0.773, which is

9



Table 4: Overall performance on Epbench-2000 (2000-Chapters Book). The same convention as
in Table 2 is followed. For a more descriptive full table please refer to Appendix E.

Method Precision Recall F1

Embedding RAG 0.827 ± 0.014 0.688 ± 0.015 0.675 ± 0.015
GraphRAG 0.761 ± 0.017 0.548 ± 0.017 0.544 ± 0.017
HippoRAG2 0.759 ± 0.016 0.648 ± 0.016 0.635 ± 0.015
LightRAG 0.649 ± 0.018 0.497 ± 0.017 0.494 ± 0.016

GSW (Ours) 0.830 ± 0.010 0.796 ± 0.009 0.773 ± 0.009

15% higher than the strongest baseline (embedding RAG), and 22% higher than other structured
RAG methods. Thus, GSW’s advantages in recall and reasoning persist even at a significantly larger
scale. Due to space constraints, the full breakdown table by cue category is provided in Appendix E.

Token Efficiency: Beyond query performance, GSW demonstrates substantial improvements in token
efficiency, as detailed in Table 3, which presents the average number of context tokens supplied to the
LLM per query, and the corresponding cost for all compared methods. GSW achieves a remarkable
51% reduction in token usage when compared to the next most token-efficient baseline (GraphRAG).
This advantage is even more pronounced when compared to stronger performing baselines such as
Embedding RAG and HippoRAG2, against which GSW offers a token reduction of nearly 59%.
GSW’s efficient approach to query resolution contributes to the reduction in token count: Rather than
passing entire chapters or raw document chunks, GSW utilizes its semantic structure to generate
entity-specific summaries (Prompt in Appendix A), thereby providing only targeted query-specific
information to the LLM as illustrated in Appendix B. This focused contextual information also
reduces hallucinations as supported by the GSW’s leading performance in the ‘0 Cues’ category,
where no matching cues are present in the source document.

Several additional ablation studies are presented in Appendix E, further qualitative insights into
GSW’s behaviour and outputs are presented in Appendix C.

5 Related Work

The relevant literature has been discussed in the Introduction, and a detailed literature review is in-
cluded in Appendix F. To summarize, Retrieval-Augmented Generation (RAG) [36, 16, 29] retrieves
relevant chunks from indexed documents using dense [9, 56, 32], sparse [57], or hybrid [7] embed-
dings. While effective for fact-based QA, standard RAG struggles to connect dispersed information
due to its reliance on chunk-based retrieval [6, 47]. Structured approaches like GraphRAG[11],
LightRAG[19] and HippoRAG[20, 21] mitigate this by modeling relationships and supporting multi-
hop reasoning.

6 Concluding Remarks and Limitations

In this work, we introduced the Generative Semantic Workspace (GSW) as a framework for equipping
LLMs with human-like episodic memory. Its two core components—the Operator, which interprets
local semantics within short context windows, and the Reconciler, which integrates and updates these
representations over time—jointly construct a persistent, structured memory. This memory maps raw
text into evolving configurations of roles, states, and interactions within a coherent global workspace.
On the Episodic Memory Benchmark, GSW outperforms existing approaches in both accuracy and
token efficiency, offering a scalable and interpretable alternative to long-context or retrieval-based
systems.

Nevertheless, we identify key limitations and avenues for future work. Firstly, GSW’s evaluation,
while utilizing EpBench for its strengths in spatiotemporal assessment, is constrained by the limited
scope of current episodic memory benchmarks in thoroughly probing the complex evolution of actor
roles and states within extended narratives; we are developing a more comprehensive benchmark to
specifically address this gap. Secondly, the present GSW implementation relies on a strong closed-
source LLM (GPT-4o). Empirical validation of promising open-source alternatives [80, 18, 67] within
our Operator-Reconciler architecture is therefore essential.
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Our technical appendix is structured as follows:

1. Appendix A: Prompts to LLM.
2. Appendix B: GSW QA Example.
3. Appendix C: Qualitative Analysis of GSW performance.
4. Appendix D: Further Implementation Details.
5. Appendix E: Ablation studies.
6. Appendix F: Related work on Memory Augmentation for LLMs.
7. Appendix G: Computation Cost and Resources to build the GSW.
8. Appendix H: Related Computational Models of Workspaces.
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A Prompts to the LLM

In the following section we describe the prompts used by each component of our GSW framework.

A.1 Operator

We present the prompt to generate operator representation in Fig 6 and 7. The full prompt is
considerably longer and includes detailed instructions for each task. For brevity, we have included
the introduction and first task in full, with summaries of the remaining tasks. The complete prompt is
available in our code repository.

User Prompt:

You are required to perform the operator extraction, you should follow the following steps:
Task 1: Actor Identification
Your first task is to identify all actors from the given context. An actor can be:
1. A person (e.g., directors, authors, family members)
2. An organization (e.g., schools, festivals)
3. A place (e.g., cities, countries)
4. A creative work (e.g., films, books)
5. A temporal entity (dates, years)
6. A physical object or item (e.g., artifacts, products) 
7. An abstract entity (e.g., awards, concepts that function as actors)
Guidelines for Actor Extraction:
-  Ground actor extraction in the given situation (<situation>) and the background context 
(<background_context>).
-  It is crucial that you follow the above, since we will attempt to merge relevant actors across chunks in the next 
step.
-  If an entity mentioned in the <input_text> (e.g., 'the journey', 'the event', 'the project') is clearly a direct 
reference to the overall <situation>, you should name the extracted actor based on the situation description 
itself.
-  Include all mentioned dates as temporal entities
-  Do not include phrases or complete sentences
-  Extract each actor only once, even if mentioned multiple times
[Further guidelines omitted for brevity]
Task 2: Role Assignment
[Description of role assignment task]
Task 3: State Identification
[Description of state identification task]
Task 4: Explicit Verb Phrase Identification
[Description of verb phrase identification task]
Task 4.5: Implicit Action Phrase Inference
[Description of implicit action phrase inference task]
Task 5: Prototypical Semantic Role Question Generation
[Description of semantic role question generation task]
Task 6: Answer Mapping and Actor Connection
[Description of answer mapping task]

Inputs:

Input Text: " Input chunk to be processed by the operator" 
Background Context: " This chunk places the chunking within the entire document, providing context to the 
chunk.
Situation: " The situation that is presented in this chunk" 

Figure 6: LLM prompt for Operator extraction. 3

A.2 Reconciler

We present the prompt to reconcile unanswered queries with incoming context in Fig 8
3Background context generated according to contextual chunking by Anthropic, see https://www.

anthropic.com/news/contextual-retrieval.
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User Prompt:

You are a helpful assistant that is an expert at understanding spatio- temporal relationships between entities. 
You will be given a list of entities along with the context of the narrative in which they appear. 
Your task is to link entities that share a spatio- temporal relationship. 

Read the `Text Chunk` and examine the entities in the `Operator Output`. Identify groups of entity IDs that share 
the same location (spatial context) or the same time/date (temporal context) based on the events described.
The entities have the following attributes:
*  `id`: (String) The entity ID.
*  `name`: (String) The entity name.
*  `roles`: A role is a situation- relevant descriptor (noun phrase) that describes how an actor functions or exists 
within the context. Roles define the potential relationships an actor can have with other actors.
*  `states`: A state is a condition or description (using adjectives or verb phrases) that characterizes how an 
actor exists in their role at a specific point. States provide additional context about the actor's condition, status, 
or situation. 

Return a JSON object with a single key "spatio_temporal_links". The value should be a list of link objects. Each 
link object must have:
*  `linked_entities`: (List of Strings) Entity IDs sharing the context (e.g., `["e1", "e2", "e3"]`).
*  `tag_type`: (String) Either "spatial" or "temporal".
*  `tag_value`: (String or Null)
    *  If the specific location/time/date is mentioned in the `Text Chunk` for this group, extract it.
    *  Otherwise, use `null`.

Inputs:

Input Text: " Input chunk used to perform linking" 
Operator Output: "Operator output for above chunk"

Figure 7: LLM prompt for Space Time coupling.

User Prompt:

You are an expert question answering system. Analyze the provided text and answer the specified questions 
based ONLY on the text. Provide answers in the specified JSON format.

Your task is to determine if the Text Chunk provides a specific answer for any of these unanswered questions. 
Base your answers ONLY on the provided Text Chunk.
Respond ONLY with a JSON list containing objects for the questions you can now answer. Each object should 
have:
-  "question_id": The ID of the question being answered.
-  "answer_text": The specific text snippet from the Text Chunk that answers the question.
-  "answer_entity_id": (Optional) If the answer corresponds exactly to one of the Entities Introduced in This 
Chunk, provide its ID. Otherwise, omit this field or set it to null.
If no questions can be answered from the text, respond with an empty JSON list: []

Inputs:

Input Text: " Input chunk to be processed by the operator" 
Entities: " Entities that were introduced in this chunk"
Unanswered Questions: "Unanswered questions that could be answered " 

Figure 8: LLM prompt for QA reconciliation.
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A.3 Question Answering

We present the prompt to generate entity summaries which are passed to the answering agent in Fig 9
and the prompt used by the answering agent is presented in Fig 10

User Prompt:

You are an expert narrative summarizer. Your task is to create a concise, chronological summary paragraph 
about a single entity based on structured information extracted from a text. Focus on creating a coherent story of 
the entity's involvement and changes based *only*  on the provided timeline.

INSTRUCTIONS:
1. Write a single paragraph summarizing the key roles, states, experiences, and actions of the entity.
2. Follow the chronological order presented by the Chunk IDs.
3. Integrate the roles, states, and actions into a coherent narrative. Mention key interactions with other entities or 
objects when provided in the context.
4. You will be provided with spatial and temporal context for entity.
5. These will be provided in the form of a timeline of how they were captured in the text, be sure to incorporate all 
this spatial and temporal information particularly, provide importance to specific information (like name of place/ 
explicit dates etc.).
6. Focus on what entity did, what roles they held, their state of being, where they were located, when events 
happened, and significant events they participated in.
5. Keep the summary concise and factual according to the input. Do not add outside information or make 
assumptions.
6. Output *only*  the summary paragraph, with no preamble or markdown formatting.

Inputs:

Input Entity: " Entity with role/state information and space/time links as well as questions answered by it." 

Figure 9: LLM prompt for entity summary generation.

19



User Prompt:

You are a  question answering agent that only uses provided information to answer questions.
Your task is to answer questions based exclusively on the knowledge graph information provided. Do not use 
any external knowledge.
The information provided is extracted from a Generative Semantic Workspace (GSW) representation, which 
captures:
-  Entities: People, places, objects, and concepts
-  Verb Phrases: Actions or events involving the entities
-  Spatial Relationships: Locations of entities
-  Temporal Relationships: Time periods of entities
We use the GSW to extract entity summaries, and you will be provided with these summaries along with graph 
structure for the GSW for each relevant chapter in order to answer the question.
Always ground your answer in the provided information, and only provide answers for which there is clear 
evidence in the information provided. If the information needed is not available, 
state that you cannot answer based on the available information.
Please answer the following question using ONLY the information provided in the knowledge base extract 
below.

First determine which chapters are most likely to contain relevant information based on the question, then 
based on the entity summaries and the graph structure for those chapters, determine the most likely answer.
Answers will always be a SINGLE entity representing a person, event, location or time period. It will not be a 
description or a concept.
QUESTION: questions
KNOWLEDGE BASE INFORMATION: gsw summaries
First provide a reasoning for which chapters are most likely to contain relevant information based on the 
question.
Then provide a reasoning for which entity is most likely to be the correct answer based on the entity summaries 
and the graph structure for those chapters.

Inputs:

Question: "Question to be answered"
GSW Summaries: "Summaries produced by the GSW relevant to answer questions"

Figure 10: LLM prompt for final Question Answering.

B GSW QA Example

Figure 11 illustrates the end-to-end question answering (QA) pipeline of the GSW framework,
showcasing how a sample query from the EpBench dataset is processed through each stage.

C Qualitative Analysis of GSW performance

This section presents a qualitative analysis of selected queries to further illustrate GSW’s superior
performance and token efficiency compared to baseline methods, as detailed in Table 6. The chosen
queries, whose full text and ground truth answers are provided in Table 5, are representative of
varying complexity, with answers requiring the synthesis of information linked to two to seven distinct
contextual cues. This detailed examination reveals specific failure modes in baseline approaches that
GSW is naturally suited to overcome.

For instance, GraphRAG, which generates summaries of varying detail from source documents,
frequently struggles with information loss and often provides an excessive volume of irrelevant
context to the LLM, increasing the likelihood of hallucinations. This limitation is particularly
noticeable in its handling of queries Q3 and Q4 (see Table 6). These queries demand precise spatial
and temporal understanding of events, aspects that GraphRAG’s summarization process does not
natively or consistently capture, leading to missing information or inaccuracies in its responses.

HippoRAG2, on the other hand, processes every query through its knowledge graph –constructed
by connecting semantically similar phrases across triples derived from all the chapters– to identify
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 Input Query:

Reflect on the experiences of Carter Stewart related to Scientific Conference. List all the unique locations where 
these events took place, without mentioning the events themselves.
 Named Entit ies : 

                     Carter Stewart, Scientific Conference

Retrieved Summaries:

Chapter 29:
Entity: Carter Stewart -  Summary: On January 3, 2026, at Yankee Stadium, Carter Stewart, a performer and mime artist, was 

preparing for a signif icant performance....

Chapter 49:
Entity: Carter Stewart -  Summary: Entity: Carter Stewart -  Summary: On September 22, 2026, during the morning sessions of a 

scientif ic conference at the Metropolitan Museum of Art, Carter Stewart took on the role of a presenter,....

Entity: The scientif ic conference -  Summary: The scientif ic conference, held on September 22, 2026, was a pivotal moment 

that took place at the Metropolitan Museum of Art. This event was attended by various individuals

Chapter 134:
Entity: Carter Stewart -  Summary: On December 25, 2025, Carter Stewart organized a literary- themed festival at Yankee 

Stadium, stepping onto the f ield with a sense of pride as both an organizer and participant...

Entity: Carter Stewart's pocket watch -  Summary: On December 25, 2025, Carter Stewart's pocket watch, a timekeeping 

device adorned with intricate clockwork gears and miniature constellations....

Chapter 166:
Entity: Carter Stewart -  Summary: On March 23, 2024, Carter Stewart, a researcher and presenter, stepped onto the Bethpage 

Black Course to present his research f indings at a Scientif ic Conference...

Entity: Scientif ic Conference -  Summary: The Scientif ic Conference, held at the Bethpage Black Course on March 23, 2024, 

was an event that buzzed with anticipation as it unfolded in a unique setting? a golf  course....

Reranked Summaries:

Chapter 166:
Entity: Carter Stewart -  Summary: On March 23, 2024, Carter Stewart, a researcher and presenter, stepped onto the Bethpage 
Black Course to present his research findings at a Scientific Conference...
Entity: Scientific Conference -  Summary: The Scientific Conference, held at the Bethpage Black Course on March 23, 2024, 
was an event that buzzed with anticipation as it unfolded in a unique setting? a golf course....

Chapter 49:
Entity: Carter Stewart -  Summary: Entity: Carter Stewart -  Summary: On September 22, 2026, during the morning sessions of a 
scientific conference at the Metropolitan Museum of Art, Carter Stewart took on the role of a presenter,....
Entity: The scientific conference -  Summary: The scientific conference, held on September 22, 2026, was a pivotal moment 
that took place at the Metropolitan Museum of Art. This event was attended by various individuals
.
.
.
.

Final Answer:
            Bethpage Black Course, Metropolitan Museum of  Art

 Other reranked  
summaries

Figure 11: Illustrative example of the GSW QA framework: First, NER is performed on the
input query to identify key entities. In this version of QA implementation these extracted entities
are matched to the relevant GSW instances of chapters via string matching, and the entity-specific
summaries (see Appendix D.3) from the GSWs are retrieved. Subsequently, these retrieved entity
summaries are re-ranked based on their semantic similarity to the input query—a score calculated
using cosine similarity between their embeddings and the query’s embedding. The figure displays a
selection of initially retrieved summaries followed by the top re-ranked summaries. Finally, these
re-ranked summaries are passed to an answering LLM, which then produces the final answer. As
our considerably smaller average token count shows, our entity summaries are already concise, and
only entity-relevant chapters are retrieved. Future implementations could leverage several avenues
for further reduction in token counts without compromising performance. For example, in a query
involving multiple entities, GSWs that have all the entities could be retrieved and sent to the LLM for
a final answer; currently our re-ranking step ranks them at the top but we send summaries from other
chapters as well, which is not necessary.
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the relevant chapters, and then provides full texts of these chapters as context to the LLM for a final
answer. The strength of this approach is that they do not need to perform fine-grained analysis of the
text -for example for dates and locations;- as long as their retrieval process gets the right chapter, the
onus is on the LLM to retrieve the relevant spatio-temporal information. This is a good bet if the
documents themselves are short and the number of documents needed to answer a query are few. In
the EpBench data set the document size is around 500 tokens and the number of documents needed to
answer some of the questions is 17; since QA cannot know the number of documents needed for any
given question, 17 documents (chapters) were sent for each query across all evaluated methods. As
observed for queries Q2 and Q4 in Table 6, this strategy of providing full documents can overwhelm
the LLM, leading to hallucinations or the failure to pinpoint the correct answer even when the right
document with the necessary information is present in the retrieved context. Furthermore, there were
instances (e.g., Q3, Q5) where HippoRAG2 failed to retrieve all the pertinent documents required to
comprehensively answer the query.

In contrast, GSW’s structured representation and targeted summary generation (as detailed in Table
6 showing ’None’ for errors and lower token counts) effectively mitigate these issues. The ability
of our GSW framework to collate and then structure spatio-temporal information scattered across
the length of a document (via reconciliation) is aptly captured in the entity-level summary for Carter
Stewart that is retrieved in response to Q2 (first three sentences are shown below):

On September 22, 2026, during the morning sessions of a scientific conference at
the Metropolitan Museum of Art, Carter Stewart took on the role of a presenter,
delivering a final presentation that included statistical analysis using presentation
boards and holographic projectors.

The necessary information – Carter Stewart, location, and time –in the original document came from
three different paragraphs; in fact, Carter Stewart is referred to as "He" until after location and time
information is given:

The imposing structure loomed before him, its grand facade a testament to both
artistry and scientific achievement ...... As he stepped into the Metropolitan
Museum of Art, the echoing chatter of excited voices ...... The antique clock in
the main hall chimed, its resonant tones reminding him of the date: September 22,
2026 .... found himself particularly engrossed during the third presentation, where
Carter Stewart explained statistical analysis with a clarity that left the audience
spellbound."
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Table 5: Selected Queries and Ground Truth Answers for Qualitative Analysis
Query ID Query Text Ground Truth Answer

Q1 Consider all events that Jackson Ramos has
been involved in. List all the locations where
these events took place, without mentioning the
events themselves.

High Line, Snug Harbor Cultural Center,
Central Park, One World Trade Center, Ellis
Island

Q2 Reflect on the experiences of Carter Stewart
related to Scientific Conference. List all the
unique locations where these events took place,
without mentioning the events themselves.

Bethpage Black Course, Metropolitan Museum
of Art

Q3 Consider all events that Ezra Edwards has been
involved in. List all the locations where these
events took place, without mentioning the
events themselves.

Water Mill Museum, Port Jefferson, Yankee
Stadium, New York Botanical Garden,
Brooklyn Bridge, Bethpage Black Course, One
World Trade Center

Q4 Recall the events related to Tech Hackathon
that occurred on March 23, 2025. List all the
locations where these events took place,
without describing the events themselves.

Yankee Stadium, Water Mill Museum,
Woolworth Building, Queensboro Bridge

Q5 Recall the events related to Tech Hackathon
that occurred on November 13, 2026. List all
the locations where these events took place,
without describing the events themselves.

Trinity Church, Woolworth Building, Statue of
Liberty, Fire Island National Seashore

Table 6: Qualitative Performance Comparison on Selected Queries (referencing Query IDs from
Table 5)
Query ID Method Token Count Error Description Analysis/Reason

Q1
GSW 2011 None NA
HippoRAG2 9289 None NA
GraphRAG 8189 Missing 1 location Info not available in retrieved

context.

Q2
GSW 1568 None NA
HippoRAG2 8225 Hallucinated 3 extra locations. Too much irrelevant

information resulted in LLM
hallucination.

GraphRAG 8220 Missed 1 location and
Hallucinated 2

All required info present in
context but LLM hallucinated.

Q3
GSW 1726 None NA
HippoRAG2 8475 Missed 1 location Info not available in retrieved

context.
GraphRAG 7058 Missed 1 location Info not available in retrieved

context.

Q4
GSW 5530 None NA
HippoRAG2 8614 Missed 2 locations All required info present in

context but LLM hallucinated.
GraphRAG 7936 Missed 3 locations and

Hallucinated 1
All required info present in
context but LLM hallucinated.

Q5
GSW 6452 None NA
HippoRAG2 8355 Missed 1 location Info not available in retrieved

context
GraphRAG 7936 Missed 2 locations Info not available in retrieved

context.
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D Implementation Details

In this section, we provide further implementation details for the GSW as well as baselines imple-
mented.

D.1 Operator

The operator representations are obtained by prompting GPT-4o with the prompt presented in Fig.
6 with a temperature of 0 to reduce stochasticity. Prior to obtaining the operator representations,
we perform co-reference resolution at a Chapter level resolution. Chapters are then chunked into
smaller text chunks each containing three sentences without overlap between consecutive chunks.
Space-Time coupling is performed after the operator representations are obtained by prompting
GPT-4o with the prompt presented in Fig. 7 with temperature set to 0 and max generation tokens set
to 1000.

D.2 Reconciler

Reconciliation is performed on consecutive chunks of operator representations; for our study, we
reconcile all chunks of a particular chapter to produce one reconciled GSW representation per chapter.
Roles and states for reconciled entities are time-stamped and stored, and this historical information is
subsequently utilized during the generation of entity-level summaries.

When a reconciled entity provides new space/time information, its associated space/time nodes
are updated accordingly. All previously recorded space/time information is also time-stamped and
preserved to enrich these entity-level summaries. Furthermore, it is important to note that if an update
to a space/time node is triggered by one entity, this new spatio-temporal information is propagated to
all other entities coupled with that same node; this dynamic is illustrated in Figures 2 and 3.

Finally, the reconciliation process also addresses ’forward-falling questions’ —queries identified
by previous Operator instances that can now be answered using the integrated information from the
reconciled GSW as detailed in Section 2.1. These questions are resolved by prompting GPT-4o with
the instructions detailed in Figure 8. For this QA resolution task, the temperature is set to 0 and
maximum generation tokens are set to 500.

D.3 QA

Prior to the final question answering (QA) stage, entity-specific summaries are generated using the
GSW structure. For each entity, a prompt is constructed incorporating its roles, states, associated
spatio-temporal information, and the questions it addresses through verb phrases (as captured in its
GSW representation). This summarization prompt, detailed in Figure 9, is processed by GPT-4o with
a temperature of 0 and a maximum of 500 generation tokens.

The question answering (QA) process unfolds as follows: First, Named Entity Recognition (NER) is
performed on the input question to identify relevant entities for querying the GSW. Based on these
extracted entities, basic string matching is used to find corresponding entities within the consolidated
GSW representations. Next, the entity-specific summaries (generated as described previously)
for these matched entities are retrieved and then re-ranked. This re-ranking is based on the cosine
similarity between the embeddings of the entity summaries and the embedding of the input query.
To ensure consistency, the Voyage-03 model is employed as the embedding model for both the
summaries and the query. Finally, these re-ranked summaries are passed to the answering agent
(GPT-4o ). The context provided to the agent is limited to summaries derived from a maximum of 17
diverse chapters, a constraint applied to maintain consistency across all evaluated methods and to
ensure all dataset questions can be addressed. A detailed example of the QA process is presented in
Appendix B.

D.4 Baselines

For HippoRAG2 [21], GraphRAG [11], and LightRAG [19], we adhere to each method’s default
hyperparameters and prompt formats as provided in their respective official implementations. To
ensure consistency across baselines, we modify the answering model in HippoRAG2 to use GPT-4o,
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aligning it with other evaluated methods. Additionally, we set top-k to 17 for HippoRAG2 to retrieve
the top 17 relevant documents to align with the QA settings. The detailed configurations for each
baseline are listed in Tables7–9.

Table 7: GraphRAG Baseline Parameter

Setting Value
Mode Local
LLM Model gpt-4o
Embedding Model text-embedding-3-small
Response Type Multiple paragraphs
Max Context Tokens 12000
Text Unit Proportion 0.5
Community Report Proportion 0.1
Top-K Entities 10
Top-K Relationships 10
Include Entity Rank True
Include Relationship Weight True
Include Community Rank False

Table 8: HippoRAG2 Baseline Parameter

Setting Value
LLM Indexing Model gpt-4o-mini
LLM Answering Model gpt-4o
Embedding Model NV-Embed-v2
QA Top-K 17
Linking Top-K 5
Retrieval Top-K 200

Table 9: LightRAG Baseline Parameter

Setting Value
LLM Model gpt-4o

Embedding Model text-embedding-3-
small

Retrieval Mode Hybrid
Chunk Token Size 1200
Chunk Overlap Size 100

D.5 Bootstrapping for Evaluation

In our main evaluation for EpBench-200 and EpBench-2000, we represent error bars computed via
bootstrap resampling on 1,000 iterations. For each evaluation, we resampled the test set predictions
with replacement and computed performance metrics on each bootstrap sample. The LLM judge
operated with temperature=0 for deterministic outputs. These standard deviations indicate the
variability in scores when different combinations of test examples are weighted through resampling

E Ablation Studies

We present the results of ablation studies we performed on our GSW framework.

E.1 Evaluating the GSW on the Short Book Dataset

Table 10 presents results comparing GSW against Vanilla LLM on the shorter 20-chapter variant
of EpBench. Both GSW and Vanilla LLM demonstrate strong performance on this smaller dataset.
The Vanilla LLM performs particularly well on this version because the entire context length is
approximately 10,000 tokens, which easily fits within the model’s context window. Notably, even
with this shorter context, we observe that Vanilla LLM begins to struggle relative to GSW as the
number of matching cues increases, particularly in the 3-5 cue category where GSW shows superior
recall (0.910 vs 0.781) and F1-score (0.857 vs 0.777).

This finding further supports our main results presented in Table 2 of the main paper, as it demonstrates
how Vanilla LLM’s performance deteriorates with increased context length. While performing
competitively on short narratives, Vanilla LLM struggles with the 200-chapter version where context
exceeds 100,000 tokens. In contrast, GSW maintains robust performance across both short and long
narratives , highlighting the value of our approach.
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Table 10: GSW vs. Vanilla LLM performance on EpBench 20-Chapter "Short Book": Results
are grouped by metric (Precision, Recall, F1-Score) across different numbers of matching cues per
query. (N=X) indicates questions per category. Best score in each cell is bold.

Metric Method 0 Cues 1 Cue 2 Cues 3-5 Cues Overall
(N=180) (N=180) (N=72) (N=24) (N=456)

P Vanilla LLM 0.889 0.781 0.900 0.799 0.843
GSW (Ours) 0.939 0.751 0.804 0.854 0.841

R Vanilla LLM 0.889 0.919 0.813 0.781 0.883
GSW (Ours) 0.939 0.856 0.819 0.910 0.886

F1 Vanilla LLM 0.889 0.812 0.821 0.777 0.842
GSW (Ours) 0.939 0.745 0.784 0.857 0.834

E.2 Detailed Results on EpBench-2000

The detailed statistics for EpBench-2000 are presented in Table 11. Although the maximum number
of chapters referenced per query in the EpBench-2000 dataset reaches 138, we choose to limit the
maximum context utilization to 17 chapters per query, maintaining the same configuration applied
to EpBench-200 in the main paper. This choice is based on the fact that the 138-chapter scenario
represents an extreme outlier, while 17 chapters suffice to address the majority of queries effectively.
Furthermore, processing 138 chapters per query would introduce significant computational overhead
and inefficiencies, as it requires feeding an excessive volume of text to the model, which could
negatively impact both performance and resource utilization. Since we use the same number of
chapters per query as in EpBench-200, we therefore expect a very similar token usage.

Table 12 reports the complete set of metrics for GSW and all baselines on the EpBench-2000
dataset, broken down by cue complexity. These results expand upon the summary in the main text,
demonstrating that GSW retains its lead across all levels of episodic complexity, and outperforming the
strongest baseline by more than 15% in F1-score and 14% in recall. The EpBench-2000 experiment
further highlights GSW’s ability to scale effectively while maintaining strong performance in long-
context, high-recall settings.

Table 11: EpBench-2000 Dataset Statistics.

Statistic Value

Number of Chapters 1967
Total Tokens 1,012,097
Total Queries (QA Pairs) 623
Queries by Event Category

(0 / 1 / 2 / 3-5 / 6+ Cues) 90 / 165 / 114 / 124 / 130

Max. Chapters Referenced per Query 138
Min. Chapters Referenced per Query 0

E.3 Ablating components of the GSW for Question Answering

Table 13 presents the results of ablating both components of the GSW as well as approaches to
retrieval, highlighting the importance of each component and our string matching + reranking retrieval
mechanism. We note that while naive string matching achieves almost similar performance to our
retrieval method, it consumes almost double the number of tokens.

F Related work on Memory Augmentation for LLMs

Enabling LLMs to effectively process long narratives requires capabilities akin to human episodic
memory – constructing and maintaining a dynamic, coherent understanding of events unfolding
over space and time [71, 12]. Key to this is the ability to accurately track entities, including their
evolving states and roles, and to ground events and answer queries based on specific spatial and
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Table 12: GSW performance on Epbench (2000-Chatpers Book): Performance is grouped by
metric (Precision, Recall, F1-Score) across different numbers of matching cues per query. (N=X)
indicates questions per category. Error bars are estimated via bootstrap resampling. Best score in
each column for each metric group is bold; second best is underlined.

Metric Method 0 Cues 1 Cue 2 Cues 3-5 Cues 6+ Cues Overall
(N=90) (N=165) (N=114) (N=124) (N=130) (N=623)

P

Embedding RAG 0.789 ± 0.043 0.751 ± 0.028 0.845 ± 0.026 0.840 ± 0.031 0.911 ± 0.025 0.827 ± 0.014
GraphRAG [11] 0.943 ± 0.025 0.747 ± 0.038 0.639 ± 0.040 0.692 ± 0.038 0.795 ± 0.043 0.761 ± 0.017
HippoRAG2 [21] 0.620 ± 0.051 0.638 ± 0.032 0.803 ± 0.032 0.824 ± 0.028 0.893 ± 0.021 0.759 ± 0.016
LightRAG [19] 0.790 ± 0.042 0.534 ± 0.039 0.560 ± 0.040 0.593 ± 0.035 0.787 ± 0.039 0.649 ± 0.018

GSW (Ours) 0.867 ± 0.0025 0.761 ± 0.0020 0.841 ± 0.0019 0.841 ± 0.0019 0.870 ± 0.0019 0.830 ± 0.0010

R

Embedding RAG 0.789 ± 0.043 0.764 ± 0.032 0.795 ± 0.033 0.637 ± 0.031 0.480 ± 0.028 0.688 ± 0.015
GraphRAG [11] 0.943 ± 0.025 0.492 ± 0.037 0.587 ± 0.039 0.538 ± 0.036 0.321 ± 0.025 0.548 ± 0.017
HippoRAG2 [21] 0.620 ± 0.050 0.703 ± 0.034 0.769 ± 0.031 0.647 ± 0.029 0.491 ± 0.026 0.648 ± 0.016
LightRAG [19] 0.790 ± 0.042 0.525 ± 0.038 0.549 ± 0.038 0.440 ± 0.033 0.270 ± 0.017 0.497 ± 0.017

GSW (Ours) 0.867 ± 0.025 0.844 ± 0.019 0.864 ± 0.016 0.792 ± 0.017 0.633 ± 0.017 0.796 ± 0.009

F1

Embedding RAG 0.789 ± 0.043 0.644 ± 0.031 0.758 ± 0.032 0.679 ± 0.031 0.561 ± 0.029 0.675 ± 0.015
GraphRAG [11] 0.943 ± 0.025 0.436 ± 0.035 0.547 ± 0.038 0.541 ± 0.036 0.405 ± 0.027 0.544 ± 0.017
HippoRAG2 [21] 0.620 ± 0.050 0.583 ± 0.031 0.732 ± 0.031 0.681 ± 0.027 0.578 ± 0.026 0.635 ± 0.015
LightRAG [19] 0.790 ± 0.042 0.436 ± 0.034 0.514 ± 0.037 0.463 ± 0.033 0.375 ± 0.021 0.494 ± 0.016

GSW (Ours) 0.867 ± 0.025 0.741 ± 0.020 0.818 ± 0.017 0.789 ± 0.017 0.698 ± 0.016 0.773 ± 0.009

Table 13: Ablation Study of GSW Components on EpBench (200-Chapter Book): Performance
across different event categories (Precision, Recall, F1-Score). (N=X) indicates questions per category.
Full GSW model results (at the bottom) are for reference from Table 2 in the main paper.

Metric GSW Configuration / Ablation 0 Events 1 Event 2 Events 3-5 Events 6+ Events Overall
(N=150) (N=150) (N=90) (N=98) (N=60) (N=548)

P

w/o Space/Time Linking 0.978 0.799 0.814 0.851 0.854 0.868
QA Input: Verb Phrases 0.939 0.839 0.807 0.896 0.874 0.878
Retrieval: Str.Match, No reranking 0.967 0.773 0.860 0.872 0.932 0.879
Retrieval: Emb. Match, No reranking 0.922 0.792 0.797 0.874 0.876 0.855
Retrieval: NER emb, no reranking 0.944 0.747 0.823 0.872 0.854 0.854

GSW (Full) 0.978 0.755 0.810 0.878 0.891 0.865

R

w/o Space/Time Linking 0.978 0.800 0.810 0.738 0.723 0.827
QA Input: Verb Phrases 0.939 0.766 0.644 0.674 0.551 0.747
Retrieval: Str.Match, No reranking 0.967 0.834 0.850 0.819 0.822 0.867
Retrieval: Emb. Match, No reranking 0.922 0.820 0.833 0.825 0.781 0.845
Retrieval: NER emb, no reranking 0.944 0.710 0.750 0.721 0.624 0.768

GSW (Full) 0.978 0.863 0.868 0.892 0.822 0.894

F1

w/o Space/Time Linking 0.978 0.731 0.764 0.762 0.761 0.811
QA Input: Verb Phrases 0.939 0.733 0.633 0.719 0.621 0.754
Retrieval: Str.Match, No reranking 0.967 0.748 0.826 0.823 0.859 0.846
Retrieval: Emb. Match, No reranking 0.922 0.726 0.788 0.827 0.810 0.817
Retrieval: NER emb, No reranking 0.944 0.629 0.717 0.748 0.693 0.756

GSW (Full) 0.978 0.745 0.806 0.867 0.834 0.850

temporal contexts established within the narrative [26]. While LLMs possess remarkable core
abilities, achieving this level of sophisticated, stateful reasoning over extended sequences remains a
significant challenge. The following sections analyze inherent limitations in common approaches
used to provide context to LLMs, evaluating why they often fall short of systematically delivering
these specific episodic memory capabilities.

F.1 Leveraging Long context LLMs

One approach to providing LLMs with relevant context is to leverage their increasingly large context
windows, potentially feeding the entire long narrative along with a query into the prompt. The rapid

27



expansion of context lengths, now reaching millions of tokens, has certainly broadened the scope of
tasks LLMs can handle by allowing more raw information to be processed simultaneously [66].

However, relying solely on this native processing mechanism faces significant hurdles when evaluated
against the demands of episodic memory. Firstly, while context windows are growing, they are not in-
finite, and extremely long narratives may still exceed even the largest available limits. Secondly, even
when a narrative technically fits, processing vast amounts of text for every query is computationally
expensive, impacting latency and cost. More fundamentally, processing quality often degrades with
extreme context lengths [34, 25, 77]. Research has shown that LLMs can struggle to consistently
access and utilize information spread across very long contexts, with performance notably dipping
for information located in the middle ("lost in the middle" phenomenon) [40]. Feeding potentially
large amounts of irrelevant text alongside the crucial details for a specific episodic query can distract
the model and hinder its ability to pinpoint and reason over the necessary information.

Finally, perhaps the most critical limitation for systematic episodic tracking is the inherently un-
structured nature of the input context. Even with all the necessary details about entity states, roles,
locations, and times present within the text, the LLM lacks explicit mechanisms to structure this
information dynamically. It must rely solely on its attention mechanism and in-context learning to
piece together relationships, track state changes, and maintain temporal coherence across potentially
thousands of tokens. This makes the reliable, systematic tracking required for robust episodic memory
challenging and often brittle when relying only on the native context window [26].

F.2 Memory Augmentation for LLMs

To overcome the challenges of static parametric knowledge and the inefficiencies of processing entire
documents in context, Retrieval-Augmented Generation (RAG) has become a standard technique
[36, 16]. The typical RAG pipeline involves pre-processing a knowledge corpus (e.g., the entire
narrative document) into smaller chunks. These chunks are then indexed, commonly using dense
vector embeddings obtained from encoder style LLMs[9, 56, 32], though sparse methods like
BM25[57] or hybrid approaches are also employed [7]. At inference time, the user query is used
to retrieve the top-k most relevant chunks from the index based on a similarity metric (e.g., cosine
similarity for dense vectors). These retrieved chunks are then presented as augmented context to an
LLM, which generates the final response based on both its parametric knowledge and the retrieved
information.[54]

This approach has proven effective for many knowledge-intensive tasks, particularly fact-based
question answering where retrieving specific evidence snippets is sufficient [29]. However, when
evaluated against the requirements of robust episodic memory recall over long narratives, the limita-
tions of standard RAG become apparent [26]. Firstly, the process of retrieving discrete, potentially
disconnected chunks based on local query relevance often fragments the narrative flow. This makes
it exceedingly difficult for the LLM to reliably follow evolving storylines or track the changing
states and roles of entities over time, as the necessary context may be spread across multiple chunks
that are not retrieved together[6].

Moreover, this fragmentation problem is compounded by the framework being highly sensitive to the
initial chunking strategy[47]. Arbitrary chunk boundaries can split crucial information related to an
event or an entity’s state, leading to information loss during retrieval. For instance, if a character’s
state changes within a passage, but the chunking algorithm divides this passage at an inopportune
point, the complete context of this state change may not be captured in any single retrieved chunk.
Optimal chunking is non-trivial and can significantly impact the ability to reconstruct the necessary
context for complex episodic reasoning. Consequently, while standard RAG offers efficiency gains
over naive long-context processing, its inherent lack of structure and narrative coherence makes
it ill-suited for systematically addressing the dynamic, stateful, and context-dependent nature of
episodic memory tasks.

Additionally, standard RAG mechanisms based on semantic similarity often struggle with incorporat-
ing specific spatio-temporal constraints that are essential for episodic memory. Embeddings typically
capture semantic content but may not adequately encode the nuances of time and location, making
it difficult to retrieve context relevant to a specific point in time or place mentioned in a query or
implied by the narrative history.
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F.3 Structured Representations as Memory

Recognizing the limitations of standard RAG, particularly its tendency to fragment narratives and
struggle with temporal coherence, recent work has explored incorporating more explicit structure into
the retrieval and augmentation process. Instead of treating the source narrative as a flat sequence of
independent chunks, these methods attempt to build richer representations that capture relationships
or hierarchies within the text, aiming to provide more contextually relevant information to the LLM.

While these structured approaches offer advantages over standard RAG by preserving more relational
or hierarchical context and enabling more sophisticated information integration (like multi-hop
reasoning or global summarization), they still face challenges when viewed through the lens of
episodic memory [26]. Graph-based methods like GraphRAG[11], LightRAG[19], HippoRAG[21,
20] and RAPTOR[59] suffer from two broad limitations. First, they lack mechanisms to track entity
state/role changes across time—they represent entities as static nodes without modeling how attributes
or relationships evolve throughout a narrative. Second, they provide no specific framework to ground
the evolving narrative in space and time, making it difficult to represent sequential developments
or causal relationships. These methods typically represent semantic relationships or summarize
community structures within a potentially static corpus, but they are not explicitly designed to model
the temporal flow of events within a single narrative or to meticulously track the dynamic changes
in entity states and roles as the narrative unfolds sequentially. Their structure captures connections,
but not necessarily the chronological progression and state transitions required for recalling specific
episodes.

Other research efforts have targeted episodic memory more directly. For instance, Larimar [8]
proposes modifications to the LLM’s attention mechanism, while EM-LLM [15] introduces specific
memory components integrated with openweight models. While promising, these approaches often
require fundamental changes to the LLM architecture or are designed specifically for openweight
models, limiting their applicability. In contrast, our GSW framework is proposed as a plug-and-play
episodic memory module compatible with any underlying LLM (including closed-source models like
GPT-4o via API) and, critically, requires no specialized training or fine-tuning of model parameters,
relying instead on the LLM’s capabilities for its operator and reconciliation functions.

G Computation Cost and Resources to build the GSW

The primary computational costs for the Generative Semantic Workspace (GSW) framework are
associated with its initial, one-time indexing process. To index the 200 chapters of the Epbench
dataset, the total expense is approximately $15 when utilizing GPT-4o. This cost covers all stages
of GSW construction, including the generation of operator representations, reconciliation, and the
creation of entity-specific summaries. By leveraging parallel calls to the OpenAI API, managed
via the Bespoke Curator library [44], this entire indexing task for 200 chapters can be completed
in roughly 1 hour. Alternatively, the OpenAI Batch API can be used to reduce costs, with indexing
taking hours.

Our primary experiments leverage API-based models (e.g., GPT-4o) and therefore do not necessitate
dedicated local computing infrastructure. However, for tasks such as running the baseline method
evaluations reported in this study, and for broader experimentation involving various dense retriever
models or locally-hosted chat models, we utilized a single server node equipped with four A6000
GPUs.

H Related Computational Models of Semantics

Semantic representation frameworks have a rich history in NLP, yet as we explore below, their design
choices create inherent limitations for tracking evolving actor states and relationships—a critical
requirement for episodic memory. Among the most influential frameworks are PropBank [30] and
FrameNet [3], which attempt to define correspondences between (a) the syntactic “realizations” of
semantics explicit within language structure, and (b) finite, discrete sets of semantic “roles” [35].
These approaches rely heavily on manually-annotated lexicon ontologies developed by expert linguists.
While valuable for understanding individual sentences, they were not designed for the dynamic,
interconnected tracking that episodic memory demands. Below, we detail these frameworks and their
limitations for serving as memory systems:
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PropBank: PropBank utilized a bottom-up approach: (1) Dependency Parse Trees [50] were applied
to a large text corpus to distill shared syntactic patterns (“Framesets”) specific to each verb (a process
known as “lexical sampling”). (2) For each Frameset, the corresponding sentences were manually
annotated with an enumerated set of arguments ARG:0,..., ARG:N. These arguments were later
associated to verb-specific definitions using VerbNet [61]. The semantic roles are identified as
corresponding spans within the sentence (commonly a NP, NNP subtree in the dependency parsing).
For example, the sentence (A):

Officers captured Sarah at the
Sepulveda on-ramp of the 405.

would be annotated with the arguments:

Agent: officers, Predicate: captured, Patient: Sarah.

Perhaps the greatest benefit of PropBank was that its syntactic “grounding” made it possible for
rule-based and early ML models [28, 63] to learn the task of distilling the semantics given a sentence,
albeit within the confines of a limited ontology of > 3000 verbs and > 4000 Framesets

Event Databases: PropBank evolved in several directions, including efforts to unify it with related
semantic lexicon such as VerbNet and FrameNet [52, 62], or augment it via the DWD overlay [64] to
WikiData [75]. The latter of these efforts now manifests as “Event” databases [39, 79] such as the
ACE [10] and ERE [1] datasets, and led to the DARPA initiative of Event identification/extraction
challenges. Events are best motivated by their related identification tasks: Given a sentence, identify
the event(s) – from a set of hundreds of events in a pre-annotated schema [82, 76, 43] – that the
sentence is referring to. For example, (A) would be annotated with the Capture event.

FrameNet: In contrast to PropBank and related Event ontologies, FrameNet4 utilizes a top-down
approach that is not tethered to the syntax structure. Rather, expert linguists aggregated roles
(redefined as “Frame Elements” (FE)) from a large corpus of sentences, which are known to co-exist
under a conceptual gestalt, or “Frame”. Each frame additionally comprises a set of “Lexical Units”
(LU) - valences (mostly verbs and nouns) whose occurrence in a sentence increases the likelihood of
a frame. For example,

the Frame: Taking Captive

would contain the following frame elements and lexical units:

FE: Agent, Captive, Cause
LU: capture.v, secure.v

FrameNet (1000s of frames and 10, 000s of FE) is a substantially larger and more comprehensive
ontology [2] compared to Propbank. When originally constructed, automated systems could not
effectively identify the frames implied by a sentence; today, however, Transformer models [73, 9, 5]
have demonstrated success at accurately modeling the sentence-to-frame mapping.

Despite the enormous success and wide adoption of PropBank, FrameNet, and their descendant works,
the explicit, finite, and discrete lexicons they employ raise the question: When is an explicit lexicon
ontology complete?. While FrameNet provides Frame-Frame precedence and subset relationships,
these are coarse-grained and do not adequately answer the question: How can we track the evolution
of semantics across a stream of sentences? - a key requirement for any semantic model to serve as a
memory.

More recent work [65] has attempted to assemble a comparatively larger (and less stringent) open-
schema semantic ontology of concepts using game-play based crowd-sourcing techniques [74].
However, such efforts to scale manual annotation ultimately do not address how a complete ontol-
ogy can be constructed. Event Graph Models (EGM) [46] generate event networks to describe the
dynamics of events in a text corpus, often using a combination of submodules such as Coreference
Resolution [49], Named Entity Recognition (NER) [37] and Semantic Role Labeling [53]. Exten-
sions [38] generate the most likely event template sequences. These methods rely on predefined event
schema to enumerate the set of possible events. However, while EGMs both track the evolution of

4https://framenet.icsi.berkeley.edu/
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semantics across sentences and offer an unsupervised approach to extending existing ontologies,
these often marginalize across individual contexts in the training corpus, and generate the most likely
event schema that follows a current event schema network. As a result, these works have yet to
design methods to track the semantics across a specific document. The GSW, particularly through the
operator, is designed to overcome these challenges by generating actor-centric, evolving semantic
maps that are not constrained by predefined, static lexicons and can capture the nuances of unfold-
ing situations.To demonstrate the GSW Operator’s effectiveness in producing these comprehensive
semantic maps from complex, real-world text, we conducted a qualitative human evaluation.

H.0.1 Comparing Existing Semantic Models to the Operator

To empirically validate the Operator’s capability in generating these comprehensive semantic maps,
particularly its proficiency in interpreting narrative-rich texts where actor, roles and states undergo
significant evolution, we leveraged news reports, as they are a popular resource for sampling semantics-
rich stories that belong to universally recognized situation patterns. We query GDELT [33], a
Jigsaw-powered news-indexing platform, with Situation identifiers to retrieve a small set of situation-
conditioned en_US articles. Table 14 presents statistics about the data. These situations were
manually selected as an initial seed set – similar to FrameNet’s early versions containing few
frames [42] – to assess the validity of the GSW framework. Situation-specific seeds are assembled
using a bootstrapped method that invokes FrameNet: (a) Frames are linked using subframe and
precedence relationships to create weakly connected components; (b) Headers/labels of the frames in
each component form the seed search phrases. We evaluate our framework on situations like “Crime
and Justice”, “Fire Fighting”, “Healthcare”, and “Technology Development”.

Table 14: Data Statistics: Situation-specific news reports are sampled from GDELT. Each document
(or article) is split into short contexts C1, . . . , CN (of 3 sentences) before being passed into the
Operator to generate the sematic representation.

Situation Label Documents Sentences Tokens
crime and justice 80 1209 100,635

fire fighting 79 1116 87,901
technology development 81 1334 122,493

healthcare 81 1259 117,962
economy 78 1264 110,605

Table 15 presents these results across five diverse situations, showing strong human preference for
the Operator generated representations compared to existing semantic frameworks.

Table 15: Operator Evaluations: Comparison with Existing Frameworks: Given a short context,
English-speaking annotators are shown the unlabeled outputs of the Operator and a baseline frame-
work (GLEN, BERT-SRL, FST) and asked to select the one which best summarizes the semantics in
the text. The Operator is preferred over baselines across situations.

Situation Ours vs. Baseline

vs. Zhan et al. vs. Shi & Lin vs. Chanin
(GLEN) (BERT-SRL) (FST)

Crime & Justice 0.90 (0.10) 0.96 (0.04) 0.70 (0.30)
Economy 0.98 (0.02) 0.96 (0.04) 0.86 (0.14)
Firefighting 0.98 (0.02) 0.98 (0.02) 0.79 (0.21)
Healthcare 1.00 (0.00) 0.96 (0.04) 0.94 (0.06)
Tech. Development 0.96 (0.04) 0.96 (0.04) 0.86 (0.14)

H.1 Annotator Guidelines

Annotators who exceeded $50K in total gross pay were recruited from UpWork, a talent resource.
These candidates were first interviewed in a 10-minute session to verify that they were proficient in
English and those that had prior experience in annotating large-scale AI/ML data – listed as a verified
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skill on the platform – were selected to move on to the next round. Following this, they were given
a set of 10 task prototype examples and 10 unanswered labeling tasks. Those that got 9 out of the
10 annotations right moved on to the first round of labeling. Each task was labeled twice – by the
annotator and a verifier – to ensure quality of the results. Annotators were paid $5/40 samples which
was estimated to take them about 30 minutes at most, or at the rate of $10/hour, which was confirmed
to exceed the federal minimum wage where the annotators were situated. Annotator guidelines are
presented in Fig. 12

Figure 12: Annotator instructions for UpWork Task: Annotators are asked to compare the outputs
of the Operator to the Semantic map output by a baseline framework (either GLEN, BertSRL, FST)
given a shared input text context. During annotation, one random baseline map and the Operator
output are presented in random order and the annotator is asked to pick the representation of the
Semantics that best reflects the information in the context.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the main claims in our paper are supported by detailed experiments in the
main paper and the supplementary material.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our work in Section 6

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We provide a probabilistic interpretation of our framework in Section 2 but do
not present any theoretical results that require a proof.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe Implementation Details and Evaluation methods in Section 3 and
provide further information about prompts used and hyperparameter in Appendix A and E.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the code and data is included with the submission in the supplementary
material and will be open sourced upon acceptance.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper does not train any models, all hyperparamters required to reproduce
the results are detailed in Appendix E.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report any statistical bars since the only sources of stochasticity in
our pipeline are those internal to the OpenAI API.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

33



Answer: [Yes]

Justification: We present the cost and computation requirements in Appendix H

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does not violate any of the guidelines stated in the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not believe this paper will have an immediate positive or negative
impact to society.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any models, we only make use of open sourced and peer
reviewed datasets.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit all the owners of assests we have used in our work.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our main assets are our codebase which has been properly documented and
submitted with the supplementary material.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We run one experiment detailed in Appendix I that involves crowdsourcing on
Upwork, all relevant information is provided in Appendix I.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
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Justification:We include one human-annotation experiment presented in Appendix I. This
involved professional annotators evaluating system outputs without collection of personal
data or exposure to sensitive content. Given the minimal risk nature of the task and in
accordance with our institution’s practices for this type of professional evaluation, formal
IRB approval was not sought for this study.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [Yes]
Justification: The core methodology of our work is dependent on calls to an LLM, the paper
details all our usage of an LLM.
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